图形的旋转专题提高训练

合集下载

图形的旋转提高训练

图形的旋转提高训练

1.值得思考的问题:透过近年的中考试卷,大家逐渐意识到,几何变换已经成为形成中考综合题的新宠儿,与“几何变换”的相关内容成为重点之一2.旋转变换的作用是什么?能解决什么问题?旋转可以移动图形的位置而不改变图形的大小,是全等变换. 变换的目的是为了实现已知与结论中的相关元素的相对集中或分散重组,使表面上不能发生联系的元素联系起来.在转化的基础上为问题的解决铺设桥梁,沟通思路.一些难度较大的问题借助平移、对称、旋转的合成及相互关系可能会更容易一些.3.在什么情况下需要利用旋转变换?图形具备什么条件时可以实现旋转?当条件、结论中的图形位置分散时,即需要通过移动图形集中.当图形中存在等腰三角形、等腰直角三角形、等边三角形、正方形、菱形等具有等线段...、共顶点的图形......的情况下可以考虑用旋转变换,把分散的条件重组于一个三角形(或其他图形)中,从而借助相关图形的性质为最终的问题解决服务.1、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ; ② PQ ∥AE ; ③ AP =BQ ; ④ DE =DP ; ⑤ ∠AOB =60°;加:CO 平分∠AOE . 恒成立的有______________(把你认为正确的序号都填上).(第8题图)A B C D E F2、如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF ;②△ABE ∽△ACD ;③BE DC DE +=; ④222BE DC DE += 其中正确的是( )A .②④; B .①④; C .②③; D .①③. 3、已知Rt △ABC 中,∠ACB=90°,CA=CB ,有一个圆心角为45°,半径的长等于AC 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .①当扇形CEF 绕点C 在∠ACB 的内部旋转时,如图①,求证:MN 2 =AM 2 + BN 2 ; ②当扇形CEF 绕点C 旋转至图②的位置时,关系式MN 2 =AM 2 + BN 2是否仍然成立?若成立,请证明;若不成立,请说明理由.4、M 为等边三角形ABC 内部一点,且M 到三角形的三角形顶点的长分别为3,4,5,求这个等边三角形的面积.CA BEFMN图②ABC E DO PQCA BEF MN图①5、已知点P 是等边三角形ABC 外一点,AP=a ,BP=b ,求PC 的最大值.6(1)如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF =45 °,求证:EF =BE +FD .(2)正方形的BC 、DC 边上有动点E 、F 角EAF 始终保持45°的大小不变,则EF 边上的高是定值(3)如图,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是BC 、CD 上的点,且∠EAF 是∠BAD 的一半,那么结论EF =BE +FD 是否仍然成立?若成立,请证明;若不成立,请说明理由.7、在边长为2的正方形ABCD 内求一点P ,使得PA +PB +PC 之和为最小,并求这个最小值及此时PA 、PB 、PC 的大小.8.已知,点P 是正方形ABCD 内的一点,连P A 、PB 、PC . (1)将△P AB 绕点B 顺时针旋转90°到△P ′CB 的位置(如图15-1). ①设AB 的长为a ,PB 的长为b (b <a ),求△P AB 旋转到△P ′CB 的过程中边P A 所扫过区域(图15-1中阴影部分)的面积; ②若P A =2,PB =4,∠APB =135°,求PC 的长.(2)如图15-2,若P A 2+PC 2=2PB 2,请说明点P 必在对角线AC 上.图15-1ABCDPP′ABCDP图15-29.△ABC 是边长为1的正三角形,△BDC 是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60度角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,形成一个三角形AMN , 求证:△AMN 的周长为2.10..已知,AB =AD ,∠BAD=60°, ∠DPC=120°, 求证:PD+PB+PC≥AC.11、已知:PA =,4PB =,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧.(1)如图,当∠APB=45°时,求AB 及PD 的长;(2)当∠APB 变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.12、如图, 已知等边三角形ABC 中,点D 、E 、F 分别为边AB 、AC 、BC 的中点,M 为直线BC 上一动点,△DMN 为等边三角形(点M 的位置改变时, △DMN 也随之整体移动). (1)如图1,当点M 在点B 左侧时,请你连结EN ,并判断EN 与MF 有怎样的数量关系?点F 是否在直线NE 上?请写出结论,并说明理由; (2)如图2,当点M 在BC 上时,其它条件不变,(1)的结论中EN 与MF 的数量关系是否仍然成立? 若成立,请利用图2证明;若不成立,请说明理由;(3)如图3,若点M 在点C 右侧时,请你判断(1)的结论中EN 与MF 的数量关系是否仍然成立? 若成立,请直接写出结论;若不成立,请说明理由.(第12题图1)(第12题图2)(第12图3)NMN MD C BA A BC D P13.如图1,点P 是线段MN 的中点,请你利用该图形画一对以点P 为对称中心的全等三角形.请你参考这个作全等三角形的方法,解答下列问题: (1)如图2, 在Rt △ABC 中,∠BAC =90°,AB >AC ,点D 是BC 边中点,过D 作射线交AB 于E ,交CA 延长线于F ,请猜想∠F 等于多少度时,BE =CF (直接写出结果,不必证明).(2)如图3,在△ABC 中,如果∠BAC 不是直角,而(1)中的其他条件不变,若BE =CF的结论仍然成立,请写出△AEF 必须满足的条件,并加以证明.图1MP 图2FED CBA图3FED CBA14、 已知:在Rt △ABC 中,AB=BC ,在Rt △ADE 中,AD=DE ,连结EC ,取EC 的中点M ,连结DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图①,探索BM 、DM 的关系并给予证明;(2)如果将图①中的△ADE 绕点A 逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.图②MDBACE图①MD BACE。

湘教版数学七年级下册_《旋转》提高训练

湘教版数学七年级下册_《旋转》提高训练

《旋转》提高训练一、选择题1.如图,将方格纸中的图形绕点O顺时针旋转90°后得到的图形是()A.B.C.D.2.如图,把△AOB绕点O顺时针旋转得到△COD,则旋转角是()A.∠AOC B.∠AOD C.∠AOB D.∠BOC3.在平面直角坐标系中,将点P(﹣3,2)绕坐标原点O顺时针旋转90°,所得到的对应点P'的坐标为()A.(﹣2,﹣3)B.(2,3)C.(﹣3,﹣2)D.(3,2).4.在平面直角坐标系中,O为坐标原点,点A的坐标为(2,5),把OA绕点O 逆时针旋转90°,那么A点旋转后所得到点的坐标是()A.(﹣5,2)B.(﹣5,﹣2)C.(﹣2,5)D.(﹣2,﹣5)5.如图,∠AOB=90°,把∠AOB顺时针旋转50°得到∠COD,则下列说法正确的是()A.∠AOC与∠BOD互余B.∠BOC=50°C.∠BOC的余角只有∠AOC D.∠AOD=140°二、填空题6.如图,在△ABC中,∠ACB=90°,AC=3,CB=5,点D是CB边上的一个动点,将线段AD绕着点D顺时针旋转90°,得到线段DE,连结BE,则线段BE的最小值等于.7.将点B(﹣3,1)绕坐标原点O旋转180°,则点B的对应点B1的坐标为.8.如图,在平面直角坐标系中,已知点A(3,0),B(0,4),如果将线段AB 绕点B顺时针旋转90°至CB,那么点C的坐标是.9.如图,OA⊥OB,Rt△CDE的边CD在OB上,∠ECD=45°,CE=4,若将△CDE 绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则OC的长度为.10.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC ∥BC',∠ABC=70°,则旋转的角度是.三、解答题11.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A 按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求证:AD⊥EF;(2)求CG的长.12.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,连接CD.(1)试判断△CBD的形状,并说明理由;(2)求∠BDC的度数.13.已知△ABC在平面直角坐标系中的位置如图所示.(1)写出A,B,C三点的坐标;(2)将△ABC绕着点C顺时针方向旋转90°后得到△A1B2C,画出旋转后的△A1B1C,并写出A1,B1的坐标.14.如图,△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°,得到△DEC(其中点D、E分别是A、B两点旋转后的对应点).(1)请画出旋转后的△DEC;(2)试判断DE与AB的位置关系,并证明你的结论.15.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴向右平移4个单位,在图中画出平移后的△A1B1C1(2)作△ABC关于坐标原点成中心对称的△A2B2C2.(3)求B1的坐标,C2的坐标.《旋转》提高训练参考答案与试题解析一、选择题1.如图,将方格纸中的图形绕点O顺时针旋转90°后得到的图形是()A.B.C.D.【分析】利用已知将图形绕点O顺时针旋转90°得出符合题意的图形即可.【解答】解:如图所示:将方格纸中的图形绕点O顺时针旋转90°后得到的图形是,故选:B.【点评】本题考查了生活中的旋转现象,在找旋转中心时,要抓住“动”与“不动”,熟悉图形的性质是解题的关键.2.如图,把△AOB绕点O顺时针旋转得到△COD,则旋转角是()A.∠AOC B.∠AOD C.∠AOB D.∠BOC【分析】根据旋旋转角的定义即可判断;【解答】解:如图,把△AOB绕点O顺时针旋转得到△COD,旋转角是∠AOC或∠BOD,故选:A.【点评】本题考查旋转变换,旋转角等知识,解题的关键是熟练掌握基本知识,属于中考基础题.3.在平面直角坐标系中,将点P(﹣3,2)绕坐标原点O顺时针旋转90°,所得到的对应点P'的坐标为()A.(﹣2,﹣3)B.(2,3)C.(﹣3,﹣2)D.(3,2).【分析】根据旋转中心为点O,旋转方向顺时针,旋转角度90°,作出点P的对称图形P′,可得所求点的坐标.【解答】解:如图所示,由图中可以看出点P′的坐标为(2,3).故选:B.【点评】本题考查了坐标与图形的变换﹣旋转,熟练掌握关于原点的对称点的坐标特征是解决问题的关键.4.在平面直角坐标系中,O为坐标原点,点A的坐标为(2,5),把OA绕点O 逆时针旋转90°,那么A点旋转后所得到点的坐标是()A.(﹣5,2)B.(﹣5,﹣2)C.(﹣2,5)D.(﹣2,﹣5)【分析】首先根据旋转的性质作图,利用图象则可求得点B的坐标.【解答】解:过点B作BC⊥x轴于点C,过点B作BC⊥y轴于点F,∵点A的坐标为(2,5),将OA绕原点O逆时针旋转90°到OB的位置,∴BC=2,CO=5∴点B的坐标为:(﹣5,2),故选:A.【点评】此题考查了旋转的性质,解题的关键是数形结合思想的应用得出BC,BF的长.5.如图,∠AOB=90°,把∠AOB顺时针旋转50°得到∠COD,则下列说法正确的是()A.∠AOC与∠BOD互余B.∠BOC=50°C.∠BOC的余角只有∠AOC D.∠AOD=140°【分析】根据旋转变换的性质得到∠BOD=∠AOC=50°,根据余角和补角的概念判断即可.【解答】解:由旋转变换的性质可知,∠BOD=∠AOC=50°,∵∠AOB=90°,∴∠COB=40°,∴∠AOC与∠BOD相等,不互余,A错误;B错误;∠BOC的余角有∠AOC和∠BOD,C错误;∠AOD=∠AOB+∠BOD=140°,D正确;故选:D.【点评】本题考查的是旋转的性质、余角和补角的概念,掌握旋转变换的性质、认识旋转角是解题的关键.二、填空题6.如图,在△ABC中,∠ACB=90°,AC=3,CB=5,点D是CB边上的一个动点,将线段AD绕着点D顺时针旋转90°,得到线段DE,连结BE,则线段BE的最小值等于.【分析】过E作EF⊥BC于F,根据余角的性质得到∠DEF=∠ADC,根据全等三角形的性质得到DF=AC=3,EF=CD,设CD=x,根据勾股定理得到BE2=x2+(2﹣x)2=2(x﹣1)2+2,于是得到结论.【解答】解:过E作EF⊥BC于F,∵∠C=∠ADE=90°,∴∠EFD=∠C=90°,∠FED+∠EDF=90°,∠EDF+∠ADC=90°,∴∠DEF=∠ADC,在△EDF和△DAC中,,∴△EDF≌△DAC(AAS),∴DF=AC=3,EF=CD,设CD=x,则BE2=x2+(2﹣x)2=2(x﹣1)2+2,∴AD2的最小值是2,∴AD的最小值是,故答案为:.【点评】本题考查了全等三角形的性质和判定,旋转的性质,二次函数的最值,勾股定理的应用,关键是得出二次函数的解析式.7.将点B(﹣3,1)绕坐标原点O旋转180°,则点B的对应点B1的坐标为(3,﹣1).【分析】根据题意可得,点B和点B的对应点B1关于原点对称,据此求出B1的坐标即可.【解答】解:∵将点B(﹣3,1)绕坐标原点O旋转180°后,得到的对应点B1,∴点B和点B1关于原点对称,∵点B的坐标为(﹣3,1),∴B1的坐标为(3,﹣1).故答案为:(3,﹣1).【点评】本题考查了坐标与图形变化﹣旋转,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.8.如图,在平面直角坐标系中,已知点A(3,0),B(0,4),如果将线段AB 绕点B顺时针旋转90°至CB,那么点C的坐标是(﹣4,1).【分析】作CD⊥y轴于点D,如图,根据旋转的性质得∠ABC=90°,BC=BA,再利用等角的余角相等得到∠CBD=∠A,则可证明△ABO≌△BCD得到BD=OA=3,CD=OB=4,然后根据第二象限内点的坐标特征写出C点坐标.【解答】解:如图,作CD⊥y轴于点D,∵A(3,0),B(0,4),∴OA=3,OB=4,∵线段AB绕点B顺时针旋转90°至CB,∴∠ABC=90°,BC=BA,∵∠ABO+∠A=90°,∠ABO+∠CBD=90°,∴∠CBD=∠A,在△ABO和△BCD中,∴△ABO≌△BCD(AAS),∴BD=OA=3,CD=OB=4,∴OD=OB﹣BD=4﹣3=1,∴C点坐标为(﹣4,1).故答案为:(﹣4,1).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.解决本题的关键是作CD⊥y 轴于点D后求出CD和OD的长.9.如图,OA⊥OB,Rt△CDE的边CD在OB上,∠ECD=45°,CE=4,若将△CDE 绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则OC的长度为2.【分析】根据旋转得出∠NCE=75°,求出∠NCO,根据直角三角形30度角的性质可得:OC=CN,可得结论.【解答】解:∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,∴∠ECN=75°,CN=CE=4,∵∠ECD=45°,∴∠NCO=180°﹣75°﹣45°=60°,∵AO⊥OB,∴∠AOB=90°,∴∠ONC=30°,∴OC=CN=2,故答案为:2.【点评】本题考查了含30度角的直角三角形性质,旋转性质,三角形的内角和定理等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目比较好.10.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC ∥BC',∠ABC=70°,则旋转的角度是40°.【分析】根据旋转前后的两个图形全等,则:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,所以∠A=∠AA'B=70°,根据三角形的内角和定理可得∠ABA'=40°.【解答】解:由旋转得:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,∵AC∥BC',∴∠AA'B=∠A'BC'=70°,∴∠A=∠AA'B=70°,∴∠ABA'=180°﹣70°﹣70°=40°,即旋转角是40°,故答案为:40°.【点评】本题考查了旋转的性质:旋转前后两图形全等,明确对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等腰三角形的性质和三角形内角和定理.三、解答题11.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A 按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF 过点D.(1)求证:AD⊥EF;(2)求CG的长.【分析】(1)由平移的性质可知:AB∥DF,再利用平行线的性质即可证明;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】(1)证明:∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠ADF+∠DAB=180°∴∠ADF=90°,∴AD⊥EF.(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴=,∵AC=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.【点评】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质,解直角三角形,相似三角形的判定和性质,判断出△ADE∽△ACB 是解本题的关键.12.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,连接CD.(1)试判断△CBD的形状,并说明理由;(2)求∠BDC的度数.【分析】(1)根据图形旋转不变性的性质得出△ABC≌△EBD,故可得出BC=BD,由此即可得出结论;(2)根据图形选旋转不变性的性质求出∠EBD的度数,再由等腰三角形的性质即可得出∠BDC的度数.【解答】解:(1)∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∴△CBD是等腰三角形.(3)∵△ABC≌△EBD,∴∠EBD=∠ABC=30°,∴∠DBC=180﹣30°=150°,∵△CBD是等腰三角形,∴∠BDC===15°.【点评】本题考查的是旋转的性质,熟知图形旋转不变性的性质是解答此题的关键.13.已知△ABC在平面直角坐标系中的位置如图所示.(1)写出A,B,C三点的坐标;(2)将△ABC绕着点C顺时针方向旋转90°后得到△A1B2C,画出旋转后的△A1B1C,并写出A1,B1的坐标.【分析】(1)根据平面坐标系得出A、B、C三点的坐标即可;(2)分别画出A,B的对应点A1,B2,写出A1,B1的坐标即可.【解答】解:(1)如图所示:A、B、C三点的坐标分别为:(﹣1,2),(﹣3,1),(0,﹣1);(2)△A1B2C如图所示,A1,B1的坐标分别为(3,0),(2,2).【点评】本题考查作图﹣旋转变换,解题的关键是熟练掌握基本知识,属于中考常考题型.14.如图,△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°,得到△DEC(其中点D、E分别是A、B两点旋转后的对应点).(1)请画出旋转后的△DEC;(2)试判断DE与AB的位置关系,并证明你的结论.【分析】(1)根据要求画出△DCE即可;(2)利用“8字型”证明∠AFE=∠DCE即可解决问题;【解答】解:(1)旋转后的△DEC如图所示.(2)结论:DE⊥AB.理由:延长DE交AB于点F.由旋转不变性可知:∠A=∠D,∠ACB=∠DCE=90°,∵∠AEF=∠DEC,∠∠AFE=∠DCE=90°,∴DE⊥AB.【点评】本题考查旋转变换,解题的关键是熟练掌握利用“8字型”证明角相等,属于中考常考题型.15.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴向右平移4个单位,在图中画出平移后的△A1B1C1(2)作△ABC关于坐标原点成中心对称的△A2B2C2.(3)求B1的坐标(2,﹣2),C2的坐标(4,1).【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A,B,C的对应点△A2,B2,C2即可;(3)根据B1,C2,的位置写出坐标即可;【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)求B1的坐标(2,﹣2),C2的坐标(4,1).【点评】本题考查作图﹣旋转变换,平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.。

《 图形的旋转能力提升 》同步练习(附答案) 2022年北师大版

《 图形的旋转能力提升 》同步练习(附答案) 2022年北师大版

图形的旋转知能演练提升能力提升1.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B按顺时针方向转动一个角度到△A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°2.如图,在△ABC中,∠C=90°,以点B为旋转中心,按顺时针方向把△ABC旋转90°,请作出旋转后的三角形.3.如图,小明将△ABC绕O点旋转得到△A'B'C',其中点A',B',C'分别是A,B,C的对应点.随即又将△ABC的边AC,BC及旋转中心O擦去(不留痕迹),他说他还能把旋转中心O及△ABC的位置找到,你认为可以吗?假设可以,试确定旋转中心O及△ABC的位置;假设不可以,请说明理由.4.如图,在所给图形的方格中,画出△ABC绕点O顺时针旋转90°后的图形.旋转几次可以与原图形重合?5.如图,画出图案绕点O顺时针方向旋转90°后的图形.6.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点分别为A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.(3)假设将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.创新应用7.如图是两个边长为a的正方形,让一个正方形的顶点在另一个正方形的中心上,此时重叠局部的面积为a2,现把其中一个正方形ABCD固定不动,另一个正方形EFGH绕中心E旋转,那么在旋转过程中,两个正方形重叠局部的面积是否发生变化?请说明理由.答案:能力提升1.A2.分析:显然,旋转后点B的对应点B'就是点B,另外只需分别作出点A,C绕点B按顺时针方向旋转90°后的对应点即可.作法:(1)过点B作AB的垂线并在这条垂线上截取BA'=BA,即得点A的对应点A'.(2)过点B作BC的垂线,并在这条垂线上截取BC'=BC,即得点C的对应点C'.(3)连接A'C'.△A'B'C'就是所求作的三角形.3.解:如图,连接AA',BB',分别作AA',BB'的中垂线相交于点O,那么点O即为旋转中心.再作C'的对应点C,连接AC,BC,那么△ABC的位置也确定出来了.4.解:如图,△A'B'C'即为△ABC绕点O顺时针旋转90°后的图形,旋转4次可以与原图形重合.5.解:如图.6.解:(1)(2)如图.(3)旋转中心在直线B1B2和A1A2的交点,由上图可知旋转中心坐标为(0,-2).创新应用7.解:在旋转过程中,两个正方形重叠局部的面积没有变化,还是a2.理由如下:连接EC,EB,那么S△EBC=a2.∵∠BEC=∠FEH=90°,∴∠CEH=∠BEF.又∵EB=EC,∠EBC=∠ECD=45°,∴△EBM≌△ECN.∴S△EBM=S△ECN.∴S四边形EMCN=S△EMC+S△ECN=S△EMC+S△EBM=S△EBC=a2.能力提升1.以下各式能用完全平方公式进行因式分解的是()A.x2+1B.x2+2x-1C.x2+x+1D.x2+4x+42.假设x为任意实数,那么多项式x-1-x2的值()3.以下多项式中,不能用公式法因式分解的是()A.-x2+16y2B.81(a2+b2-2ab)-(a+b)2C.m2-mn+n2D.-x2-y24.因式分解:(a+b)(a+b+6)+9=.5.因式分解:4+12(x-y)+9(x-y)2=.6.当x=时,多项式-x2+2x-1有最大值.7.利用因式分解计算:1012+101×198+992的值.8.先因式分解,再求值:(a2+b2)2-4a2b2,其中a=3.5,b=1.5.9.a,b,c为△ABC的三条边长,且b2+2ab=c2+2ac,试判断△ABC的形状.创新应用10.观察思考:1×2×3×4+1=25=52,2×3×4×5+1=121=112,3×4×5×6+1=361=192,4×5×6×7+1=841=292,…………从以上几个等式中,你能得出什么结论?能证明吗?答案:能力提升1.D2.B3.D4.(a+b+3)25.(3x-3y+2)26.107.解:原式=1012+2×101×99+992=(101+99)2=2021年=40 000.8.解:(a2+b2)2-4a2b2=(a2+b2+2ab)(a2+b2-2ab)=(a+b)2(a-b)2,当a=3.5,b=1.5时,原式=(3.5+1.5)2×(3.5-1.5)2=25×4=100.9.解法一:∵b2+2ab=c2+2ac,∴b2-c2+2ab-2ac=0,∴(b+c)(b-c)+2a(b-c)=0,(b-c)(b+c+2a)=0.∵a,b,c为三角形的三边长,∴b+c+2a>0.∴b-c=0,即b=c.∴△ABC为等腰三角形.解法二:∵b2+2ab=c2+2ac,∴b2+2ab+a2=c2+2ac+a2,∴(a+b)2=(a+c)2.∵a,b,c为三角形的三边长,∴a+b=a+c.∴b=c.∴△ABC为等腰三角形.创新应用10.分析:仔细观察,寻找规律是关键.等式左边是四个连续自然数的积与1的和,等式右边是一个完全平方数,因此结论是四个连续自然数的积与1的和是一个完全平方数.解:结论:四个连续自然数的积与1的和是一个整数的完全平方数.证明:设最小的自然数是n,那么这四个自然数的积与1的和可以表示为n(n+1)(n+2)(n+3)+1=n(n+3)(n+1)·(n+2)+1=(n2+3n)(n2+3n+2)+1=(n2+3n)2+2(n2+3n)+1=(n2+3 n+1)2.。

人教版九年级数学第二十三章第1节《图形的旋转》解答题提高训练 (30)(含答案)

人教版九年级数学第二十三章第1节《图形的旋转》解答题提高训练 (30)(含答案)

第二十三章第1节《图形的旋转》解答题提高训练 (30)一、解答题1.阅读下面材料:如图()1,把ABC沿直线BC平行移动线段BC的长度,可以变到DEC的位置;如图()2,以BC为轴,把ABC翻折180,可以变到DBC的位置;如图()3,以点A为中心,把ABC旋转180,可以变到AED的位置.像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.回答下列问题:①在图()4中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,使ABE变到ADF的位置;②指图中线段BE与DF之间的关系,为什么?2.如图,在方格网中已知格点△ABC(1)试在图中画出△ABC以A为旋转中心,沿顺时针旋转90∘后的图形△AB1C1;(2)请在方格网中标出使以点A、B、C、D为顶点的四边形是中心对称图形的点D(标出一个即可).3.正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)画出△ABC关于点O成中心对称的图形△A1B1C1;(2)将△A1B1C1沿y轴正方向平移5个单位得到△A2B2C2,画出△A2B2C2;(3)若△ABC与△A2B2C2 绕点P旋转重合,则点P的坐标为 .4.已知,点A(8,0)、B(6,0).将线段OB绕着原点O逆时针方向旋转角度α到OC,连接AC.将AC绕着点A顺时针方向旋转角度β至AD,连接OD(1)当α=30°,β=60°时,求OD的长(2)当α=60°,β=120°时,求OD的长(3)已知E (10,0),当β=90°时,改变α的大小,求ED 的最大值5.(1)如图1,四边形EFGH 中,FE EH =,180EFG EHG ∠+∠=,点,A B 分别在边,FG GH 上,且12AEB FEH ∠=∠,求证:AB AF BH =+.(2)如图2,四边形EFGH 中,FE EH =,点M 在边EH 上,连接FM ,EN 平分FEH ∠交FM 于点N ,ENM α∠=,1802FGH α∠=-,连接,GN HN .①找出图中与NH 相等的线段,并加以证明;②求NGH ∠的度数(用含α的式子表示).6.已知:ABC 和DEC 都是等腰直角三角形,90ACB DCE ∠=∠=︒,(1)如图①,点D 在ABC 内,求证:AD BE ⊥; (2)如图②,A ,D ,E 三点在同一条直线上,若132AB =10DE =,求ACD △的面积;(3)如图③,若9AB =,点D 在AB 上运动,求BDE 周长的最小值.7.如图,四边形ABCD 是正方形,E ,F 分别在线段BC 和CD 上,EAF ∠=︒45.连接EF 。

专题23.1 图形的旋转(专项拔高卷)学生版-2024-2025学年九年级数学上册真题汇编专项拔高卷

专题23.1 图形的旋转(专项拔高卷)学生版-2024-2025学年九年级数学上册真题汇编专项拔高卷

2024-2025学年人教版数学九年级上册同步专题热点难点专项练习专题23.1 图形的旋转(专项拔高卷)考试时间:90分钟试卷满分:100分难度:0.51姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•二道区校级模拟)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB=CB′,则∠C′的度数为()A.18°B.20°C.24°D.28°2.(2分)(2023•赛罕区二模)如图,在等腰△ABC中,AB=AC,点D是BC的中点.将△ABD绕点A旋转后得到△ACE那么下列结论正确的是()A.AB=AE B.AB∥EC C.∠ABC=∠DAE D.DE⊥AC3.(2分)(2023春•荆门期末)如图,正方形ABCD的边长为4,对角线AC、BD相交于点O,将△ABD绕B 点顺时针旋转45°得到△BEF,EF交CD于点G连接BG交AC于H,连接EH.则下列结论:①EG=CG=CF;②四边形EHCG是菱形;③△BDG的面积是;④;其中正确的是()A.①②③B.①②④C.①③④D.①②③④4.(2分)(2023•河西区模拟)如图,将△ABC绕点C逆时针旋转,旋转角为α(0°<α<180°),得到△CDE,这时点A旋转后的对应点D恰好在直线AD上,则下列结论不一定正确的是()A.∠CBD=∠ECD B.∠CAB=∠CDBC.∠ECB=αD.∠EDB=180°﹣α5.(2分)(2023春•昌江区校级期中)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AB=8,将Rt△ABC 绕点C顺时针旋转得到Rt△A1B1C,当A1,B1,A三点共线时,AA1的值为()A.12 B.C.D.6.(2分)(2023春•太仓市期末)如图,在平面直角坐标系中,点A(5,0),点B(8,4).若将线段AB 绕点O逆时针旋转得到线段A′B′,当点B′恰好落在y轴正半轴上时,点A′的坐标为()A.(,)B.(,)C.(2,)D.(3,5)7.(2分)(2023春•新城区校级期末)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=4,将△ABC 绕点C按逆时针方向旋转得到△A′B′C′,此时点A′恰好落在AB边上,则点B′与点B之间的距离为()A.B.C.4 D.28.(2分)(2023春•德州期中)边长相等的两个正方形ABCD和OEFG如图所示,若将正方形OEFG绕点O按顺时针方向旋转120°,在旋转的过程中,两个正方形重叠部分四边形OMAN的面积()A.先增大再减小B.先减小再增大C.不断增大D.不变9.(2分)(2023春•遂平县期末)如图,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBG.延长AE交CG于点F,连接DE.下列结论:①AF⊥CG,②四边形BEFG 是正方形,③若DA=DE,则CF=FG;其中正确的结论是()A.①②③B.①②C.②③D.①③10.(2分)(2023春•凤城市期中)如图,已知直线y=kx+2k交x、y轴于A、B两点,以AB为边作等边△ABC(A、B、C三点逆时针排列),D、E两点坐标分别为(﹣6,0)、(﹣1,0),连接CD、CE,则CD+CE 的最小值为()A.6 B.5+C.6.5 D.7评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•昌图县期末)如图,点E在正方形ABCD的CD边上,将△ADE绕点A顺时针旋转90°得到△ABF,若四边形AECF的面积为16,DE=3,则AE的长度为.12.(2分)(2023•宁江区三模)如图,在矩形ABCD中,AB=5,AD=3,矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB′C′D′,若点B的对应点B′落在边CD上,则B′C的长为.13.(2分)(2023•崇川区校级开学)如图,△ABC中,∠BAC=55°,将△ABC逆时针旋转α(0°<α<55°),得到△ADE,DE交AC于F.当α=30°时,点D恰好落在BC上,此时∠AFE等于.14.(2分)(2023春•靖江市期末)如图,在△ABC中,∠ACB=90°,AC=7cm,BC=24cm.将△ABC绕点C 按顺时针方向旋转后得△DEC,直线AD、EB相交于点F.取BC的中点G,连接GF,则GF长的最大值为cm.15.(2分)(2023春•武侯区校级期末)如图,等边△ABC中,AB=8,O是BC上一点,且,点M 为AB边上一动点,连接OM,将线段OM绕点O按逆时针方向旋转60°至ON,连接AN、CN,则△BCN周长的最小值为.16.(2分)(2023春•凤城市期末)如图,在△ABC中,∠C=90°,∠B=30°,AC=4,点P为AB上一点,将线段PB绕点P顺时针旋转得线段PQ,点Q在射线BC上,当PQ的垂直平分线MN经过△ABC一边中点时,PB的长为.17.(2分)(2023春•黔东南州期末)如图,平行四边形ABCD中,AB=16,AD=12,∠A=60°,E是边AD 上一点,且AE=8,F是边AB上的一个动点,将线段EF绕点E逆时针旋转60°,得到EG,连接BG、CG,则BG+CG的最小值是.18.(2分)(2023春•灌云县期中)如图,在Rt△ABC中,AB=5,∠B=30°,点P是在直角边BC上一动点,且△APD为等边三角形,则CD的最小值是.19.(2分)(2023•南召县模拟)如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、1、,则正方形ABCD的面积为.20.(2分)(2023•南山区三模)如图,矩形ABCD中,BC=2AB,点P为边AD上的一个动点,线段BP绕点B顺时针旋转60°得到线段BP′,连接PP′,CP′.过点P′作P′E⊥BC,垂足为点E,若P′E=AP =1,则AD=.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2023•仓山区校级开学)如图,△AEC绕A点顺时针旋转60°得到△APB,∠AEC=120°.求证:B、P、E三点共线.22.(6分)(2022秋•江汉区校级期末)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=1,将△ABC 绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,连结BB'.(1)说明△CAA′为等边三角形;(2)求△A'BB'的周长.23.(8分)(2023•思明区模拟)如图,△ABC中,∠ACB=30°,AC=5,BC=4,将△ABC绕点C逆时针旋转得到△DEC,使得CE∥AD,连接BE,与AD交于点F.(1)求证:∠CAD=∠CBE;(2)求四边形ACEF的面积.24.(8分)(2023•德阳)将一副直角三角板DOE与AOC叠放在一起,如图1,∠O=90°,∠A=30°,∠E =45°,OD>OC.在两三角板所在平面内,将三角板DOE绕点O顺时针方向旋转α(0°<α<90°)度到D1OE1位置,使OD1∥AC,如图2.(1)求α的值;(2)如图3,继续将三角板DOE绕点O顺时针方向旋转,使点E落在AC边上点E2处,点D落在点D2处,设E2D2交OD1于点G,OE1交AC于点H,若点G是E2D2的中点,试判断四边形OHE2G的形状,并说明理由.25.(8分)(2023春•渠县校级期末)阅读下面材料,并解决问题:(1)如图①等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌△ABP,这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;(2)基本运用请你利用第(1)题的解答思想方法,解答下面问题已知如图②,△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2;(3)能力提升如图③,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点O为Rt△ABC内一点,连接AO,BO,CO,且∠AOC=∠COB=∠BOA=120°,求OA+OB+OC的值.26.(8分)(2023•铁岭模拟)已知∠ABN=90°,在∠ABN内部作等腰△ABC,AB=AC,∠BAC=α(0°<α≤90°).点D为射线BN上任意一点(与点B不重合),连接AD,将线段AD绕点A逆时针旋转α得到线段AE,连接EC并延长交射线BN于点F.(1)如图1,当α=90°时,线段BF与CF的数量关系是;(2)如图2,当0°<α<90°时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)过点E作EP⊥BN,垂足为点P.如图3,当α=60°,,PD=1时,请直接写出BD的长.27.(8分)(2023•碑林区校级模拟)似曾相识(1)如图①,正方形ABCD的边长等于4,中心为O,正方形OA′B′C′的边长也等于4,在正方形OA′B′C′绕着点O旋转的过程中,若将这两个正方形重叠部分的面积记为S,那么S是否为定值?若S为定值,请直接写出该定值;若S变化,请直接写出它的变化范围.类比探索(2)如图②,等边△ABC的边长等于4,中心为O,等边△OA′B′的边长也等于4,在等边△OA′B′绕着点O旋转的过程中,若将这两个等边三角形重叠部分的面积记为S,那么S是否为定值?若S为定值,请直接写出该定值;若S变化,请求出它的变化范围.。

图形的平移与旋转提高题

图形的平移与旋转提高题

图形的平移与旋转提高题一.选择题(共17小题)1.如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2=()A.50°B.60°C.45°D.以上都不对2.如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形的个数()A.1个B.3个 C.4个 D.5个3.如图,已知等边△ABC的面积为4,P、Q、R分别为边AB、BC、AC上的动点,则PR+QR的最小值是()A.3 B.2 C. D.44.在正五边形ABCDE所在的平面内能找到点P,使得△PCD与△BCD的面积相等,并且△ABP为等腰三角形,这样的不同的点P的个数为()A.2 B.3 C.4 D.55.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°6.如图,▱ABCD中,点E、F分别在AD、AB上,依次连接EB、EC、FC、FD,图中阴影部分的面积分别为S1、S2、S3、S4,已知S1=2、S2=12、S3=3,则S4的值是()A.4 B.5 C.6 D.77.若平行四边形的一边长为7,则它的两条对角线长可以是()A.12和2 B.3和4 C.14和16 D.4和88.如图,在▱ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是()A.∠E=∠CDF B.EF=DF C.AD=2BF D.BE=2CF 9.如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A.1 B.3﹣C.﹣1 D.4﹣210.如图,平行四边形ABCD中,AE⊥BC,AF⊥DC,AB:AD=2:3,∠BAD=2∠ABC,则CF:FD的结果为()A.1:2 B.1:3 C.2:3 D.3:411.如图,O是▱ABCD的对角线交点,E为AB中点,DE交AC于点F,若S▱ABCD=16.则S△DOE的值为()A.1 B.C.2 D.12.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30 B.36 C.54 D.7213.某学校共有3125名学生,一次活动中全体学生被排成一个n排的等腰梯形阵,且这n排学生数按每排都比前一排多一人的规律排列,则当n取到最大值时,排在这等腰梯形阵最外面的一周的学生总人数是()A.296 B.221 C.225 D.64114.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S=S△CDE;△ABE=S△CEF.其中正确的是()⑤S△ABEA.①②③B.①②④C.①②⑤D.①③④15.已知:如图,梯形ABCD是等腰梯形,AB∥CD,AD=BC,AC⊥BC,BE⊥AB 交AC的延长线于E,EF⊥AD交AD的延长线于F,下列结论:①BD∥EF;②∠AEF=2∠BAC;③AD=DF;④AC=CE+EF.其中正确的结论有()A.1个B.2个 C.3个 D.4个16.如图,▱ABCD中,∠AEB=36°,BE平分∠ABC,则∠C等于()A.36°B.72°C.108° D.144°17.如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.A.只有①②B.只有①②③C.只有③④D.①②③④二.选择题(共16小题)18.如图,E、F是▱ABCD的边AD上的两点,△EOF的面积为4,△BOC的面积为9,四边形ABOE的面积为7,则图中阴影部分的面积为.19.如图,在平行四边形ABCD中,AD=2AB,AH⊥CD于H,M为AD的中点,MN∥AB,连接NH,如果∠D=68°,则∠CHN=.20.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交=15cm2,S△BQC=25cm2,则阴影部分的面于点P,BF与CE相交于点Q,若S△APD积为cm2.21.如图,M是▭ABCD的AB的中点,CM交BD于E,则图中阴影部分的面积与▱ABCD的面积之比为.22.如图,等腰梯形ABCD中,AB∥DC,∠A=60°,AD=DC=10,点E,F分别在AD,BC上,且AE=4,BF=x,设四边形DEFC的面积为y,则y关于x的函数关系式是(不必写自变量的取值范围).23.如图,▱ABCD中,AC⊥AB,AB=3cm,BC=5cm,点E为AB上一点,且AE=AB.点P从B点出发,以1cm/s的速度沿BC→CD→DA运动至A点停止.则当运动时间为秒时,△BEP为等腰三角形.24.如图,在等腰梯形ABCD中,AD∥BC,AB=AD,BC=()AD,以AD 为边作等边三角形ADE,则∠BEC=.25.如图,在▱ABCD中,E、F分别是AD、BC的中点,AC分别交BE、DF于G、H,以下结论:①BE=DF;②AG=GH=HC;③EG=BG;④S△ABE=3S△AGE.其中,正确的有.26.等腰梯形的周长为60 cm,底角为60°,当梯形腰x=cm时,梯形面积最大,等于cm2.27.已知:如图点O是平行四边形ABCD的对角线的交点,AC=38,BD=24,AD=14,那么△OBC的周长=.28.如图,在▱ABCD中,对角线AC=21cm,BE⊥AC,垂足为E,且BE=5cm,AD=7cm,则AD和BC之间的距离为cm.29.如图,平行四边形中,∠ABC=75°.AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED=°.30.在平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD的五等分点,点B1,B2和D1,D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1cm2,则平行四边形ABCD的面积为cm2.31.在▱ABCD中,若∠A:∠B=2:1,AD=20cm,AB=16cm,则AD与BC两边间的距离是cm,▱ABCD的面积是cm2.32.在▱ABCD中,AC与BD相交于点O,∠AOB=45°,BD=2,将△ABC沿直线AC翻折后,点B落在点B′处,那么DB′的长为.33.如图,对面积为1的平行四边形ABCD逐次进行以下操作:第一次操作,分别延长AB,BC,CD,DA至点A1,B1,C1,D1,使得A1B=2AB,B1C=2BC,C1D=2CD,D1A=2AD,顺次连接A1,B1,C1,D1,得到平行四边形A1B1C1D1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1D1、D1A1至点A2,B2,C2,D2,使得A2B1=2A1B1,B2C1=2B1C1,C2D1=2C1D1,D2A1=2A1D1,顺次连接A2,B2,C2,D2记其面积为S2;…;按此规律继续下去,可得到平行四边形A5B5C5D5,则其面积S5=.三.解答题(共7小题)34.如图,在▱ABCD中,M、N分别是AD,BC的中点,∠AND=90°,连接CM 交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.35.理论探究:已知平行四边形ABCD的面积为100,M是AB所在直线上一=;(2)如图2,当点M 点.(1)如图1:当点M与B重合时,S△DCM=;(3)如图3,当点M在AB(或BA)的与B与A均不重合时,S△DCM=;延长线上时,S△DCM拓展推广:如图4,平行四边形ABCD的面积为a,E、F分别为DC、BC延长线上两点,连接DF、AF、AE、BE,求出图中阴影部分的面积,并说明理由.实践应用:如图5是我市某广场的一平行四边形绿地ABCD,PQ、MN分别平行=300m2,S四边形MBQO=400m2,S四边于DC、AD,它们相交于点O,其中S四边形AMOP=700m2,现进行绿地改造,在绿地内部作一个三角形区域MQD(连接DM、形NCQOQD、QM,图中阴影部分)种植不同的花草,求出三角形区域的面积.36.如图,在▱ABCD中,BD为对角线,EF垂直平分BD分别交AD、BC的于点E、F,交BD于点O.(1)试说明:BF=DE;(2)试说明:△ABE≌△CDF;(3)如果在▱ABCD中,AB=5,AD=10,有两动点P、Q分别从B、D两点同时出发,沿△BAE和△DFC各边运动一周,即点P自B→A→E→B停止,点Q自D→F→C→D停止,点P运动的路程是m,点Q运动的路程是n,当四边形BPDQ 是平行四边形时,求m与n满足的数量关系.(画出示意图)37.如图,已知▱ABCD,AE平分∠BAD,交DC于E,DF⊥BC于F,交AE于G,且DF=AD.(1)试说明DE=BC;(2)试问AB与DG+FC之间有何数量关系?写出你的结论,并说明理由.38.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从A点开始沿AD边向D以3cm/s的速度运动,动点Q从点C开始沿CB 边向点以1cm/s的速度运动,点P、Q分别从A、C同时出发,设运动时间为t (s).(1)当其中一点到达端点时,另一点也随之停止运动.①当t为何值时,以CD、PQ为两边,以梯形的底(AD或BC)的一部分(或全部)为第三边能构成一个三角形?②当t为何值时,四边形PQCD为等腰梯形?(2)若点P从点A开始沿射线AD运动,当点Q到达点B时,点P也随之停止运动.当t为何值时,以P、Q、C、D为顶点的四边形是平行四边形?39.如图,点E,F是▱ABCD的对角线AC上的两点,且CE=AF.(1)写出图中每一对全等的三角形(不再添加辅助线)(2)请你猜想:线段BE与线段DF有怎样的关系?并对你的猜想加以证明.40.如图所示,在平行四边形ABCD中,∠ABC的角平分线分别交AC,AD于E,F点,EG⊥BC,若BA=6,AC=8,AD=10.(1)求FD的长;(2)求△BEC的面积.2017年11月20日135****3978的初中数学组卷参考答案一.选择题(共17小题)1.B;2.D;3.B;4.D;5.D;6.D;7.C;8.D;9.D;10.B;11.C;12.D;13.B;14.C;15.D;16.C;17.B;二.选择题(共16小题)18.10;19.56°;20.40;21.1:3;22.;23.,2,,;24.75°或165°;25.①、②、③、④;26.15;;27.45;28.15;29.65;30.;31.8;160;32.;33.135;三.解答题(共7小题)34.;35.50;50;50;36.;37.;38.;39.;40.;。

图形的旋转(中考专题提升)2022—2023学年人教版数九年级学上册

图形的旋转(中考专题提升)2022—2023学年人教版数九年级学上册

图形的旋转(中考专题提升)一、单选题1.有一个正n边形旋转90后与自身重合,则n为()A.6 B.9 C.12 D.152.如图所示的运动员只经过旋转不能得到的是( )3.如图,OAB绕点O逆时针旋转80到OCD的位置,已知45∠等于()AOB∠=,则AODA.55B.45C.40D.35△,点B'恰好落在CA的延长线上,4.如图,将直角三角板ABC绕顶点A顺时针旋转到AB C''B C,则BAC'∠为(),∠=︒∠=︒3090A.90︒B.60︒C.45︒D.305.如图,将△ABC绕点A逆时针旋转55°,得到△ADE,若∠E=70°且AD⊥BC于点F,则∠BAC的度数为( )A.65°B.70°C.75°D.80°6.如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,将ABC 绕点C 逆时针旋转90°得到DEC ,则AED ∠的度数为( )A .105°B .120°C .135°D .150°7.将矩形ABCD 绕点A 顺时针旋转()0360αα︒<<︒,得到矩形AEFG .当GC GB =时,下列针对α值的说法正确的是( )A .60︒或300︒B .60︒或330︒C .30D .60︒8.如图,在Rt △ABC 中,∠BAC=90°,AB=AC=3,将一个无限大的直角尺MON 的直角顶点O 与BC 边上的中点D 重合并绕点D 旋转,分别交AB 、AC 所在的直线于点E 、F,连接EF,若BE=1,则EF 的长度为( )A.B. C.或 D.无法确定9.如图,在边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接CE,将线段CE绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是()A.6 B.3 C.2 D.1.510.如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE 绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A.12°B.16°C.20°D.24°二、填空题11.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A'BO',则点A'的坐标为.12.如图,将正方形ABCD 绕点A 按逆时针方向旋转到正方形AB ' C ' D ' ,旋转角为α( 0︒<α< 180︒),连接B ' D 、C ' D ,若B ' D =C ' D ,则∠α =____.13.如图,AB=BC=CD,AB⊥BC,∠BCD=30°,则∠BAD=________°.14.如图,点E 在正方形ABCD 的边CB 上,将△DCE 绕点D 顺时针旋转90°到△DAF 的位置,连接EF,过点D 作EF 的垂线,垂足为点H,与AB 交于点G,若AG=4,BG=3,则BE 的长为 .15.如图,△ABC ,△ADE 均为等腰直角三角形,∠BAC=∠DAE=90°,将△ADE 绕点A 在平面内自由旋转,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点,若AD=3,AB=7,则线段MN 的取值范围是______.16.如图,在ABC 中,3AB =,2AC =,60BAC ∠=︒,P 为ABC 内一点,则PA PB PC ++的最小值为__________.三、解答题17.如图,以点O 为旋转中心,将△ABC 按顺时针方向旋转60°,作出旋转后的图形(不用写作法).18.阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC 内有一点P ,且3PA =,4PB =,5PC =,求∠APB 的度数. 小伟是这样思考的:如图2,利用旋转和全等的知识构造AP C '△,连接PP ',得到两个特殊的三角形,从而将问题解决.参考小伟同学思考问题的方法,解决下列问题.(1)请你计算图1中∠APB 的度数.(2)如图3,在正方形ABCD 内有一点P ,且2PA =,1PB =,3PD =,求∠APB 的度数.19.已知ABC 是等边三角形,点B ,D 关于直线AC 对称,连接AD ,CD .(1)求证:四边形ABCD 是菱形;(2)在线段AC 上任取一点Р(端点除外),连接PD .将线段PD 绕点Р逆时针旋转,使点D 落在BA 延长线上的点Q 处.请探究:当点Р在线段AC 上的位置发生变化时,DPQ ∠的大小是否发生变化?说明理由.(3)在满足(2)的条件下,探究线段AQ 与CP 之间的数量关系,并加以证明.20.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A(1,4),B(4,1),C(4,3).(1)画出将△ABC 向左平移5个单位长度得到的△A 1B 1C 1;(2)画出将△ABC 绕原点O 顺时针旋转90°得到的△A 2B 2C 2.21.已知:如图,在ABC ∆中,120BAC ∠=︒,以BC 为边向形外作等边三角形BCD ∆,把ABD ∆绕着点D 按顺时针方向旋转60︒后得到ECD ∆,若3AB =,2AC =,求BAD ∠的度数与AD 的长.22.已知,四边形ABCD 是正方形,DEF 绕点D 旋转(DE AB <),90EDF ∠=︒,DE DF =,连接AE ,CF.(1)如图1,求证:ADE≌CDF;(2)直线AE与CF相交于点G.①如图2,BM AGBN CF于点N,求证:四边形BMGN是正方形;⊥于点M,⊥②如图3,连接BG,若4DE=,直接写出在DEF旋转的过程中,线段BG长度的最小值.AB=,2参考答案1--10CCBBD AACCA11.812.60°13.15 14.15.22≤MN ≤5216.1917.解析 如图所示,△A'B'C'即为所求.18.(1)150APB ∠=︒(2)135APB ∠=︒19.(1)连接BD ,ABC 是等边三角形,AB BC AC ∴==,点B ,D 关于直线AC 对称,∴AC 垂直平分BD ,,DC BC AD AB ∴==,AB BC CD AD ∴===,∴四边形ABCD 是菱形;(2)当点Р在线段AC 上的位置发生变化时,DPQ ∠的大小不发生变化,始终等于60°,理由如下: 将线段PD 绕点Р逆时针旋转,使点D 落在BA 延长线上的点Q 处,PQ PD ∴=, ABC 是等边三角形,,60AB BC AC BAC ABC ACB ∴==∠=∠=∠=︒,连接PB ,过点P 作PE CB ∥交AB 于点E ,PF ⊥AB 于点F ,则60,60APE ACB AEP ABC ∠=∠=︒∠=∠=︒,60APE BAC AEP ∴∠=∠=︒=∠,APE ∴是等边三角形,AP EP AE ∴==,PF AB ⊥,APF EPF ∴∠=∠,点B ,D 关于直线AC 对称,点P 在线段AC 上,∴PB = PD ,∠DPA =∠BPA ,∴PQ = PD ,PF AB ⊥,QPF BPF ∴∠=∠,∴∠QPF -∠APF =∠BPF -∠EPF ,即∠QPA = ∠BPE ,∴∠DPQ =∠DPA - ∠QPA =∠BPA -∠BPE = ∠APE = 60°;(3)AQ = CP ,证明如下:AC = AB ,AP = AE ,∴AC - AP = AB – AE ,即CP = BE ,AP = EP ,PF ⊥AB ,∴AF = FE ,PQ = PD ,PF ⊥AB ,∴QF = BF ,∴ QF - AF = BF – EF ,即AQ = BE ,∴AQ = CP .20. (1)如图所示,△A 1B 1C 1即为所求.(2)如图所示,△A 2B 2C 2即为所求.21.60BAD ∠=︒,AD=5【解析】只要证明A 、B 、D 、C 四点共圆,即可推出∠BAD=∠BCD =60°,然后证明A 、C 、E 三点共线,根据旋转的性质,推出AD=AE=AC+CE=AC+AB=2+3=5.解:∵ABC ∆的120BAC ∠=︒,以BC 为边向形外作等边BCD ∆,∴12060180BAC BDC ∠+∠=︒+︒=︒.∴A ,B ,D ,C 四点共圆,∴60BAD BCD ∠=∠=︒,180ACD ABD ∠+∠=︒,又∵ABD ECD ∠=∠,∴180ACD ECD ∠+∠=︒,∴180ACE ∠=︒,即A ,C ,E 共线.∵把ABD ∆绕D 点按顺时针方向旋转60︒到ECD ∆位置且3AB =,∴3AB CE ==,∴235AD AE AC AB ==+=+=.本题考查旋转变换、等边三角形的性质、四边形内角和定理等知识,解题的关键是充分利用旋转不变性解决问题,本题的突破点是证明A 、C 、E 共线,△AED 是等边三角形即可. 22(1)证明:四边形ABCD 是正方形,AD DC ∴=,90ADC ∠=︒.DE DF =,90EDF ∠=︒.ADC EDF ∴∠=∠,ADE CDF ,在ADE 和CDF 中,DA DC ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩ADE ∴≌()SAS CDF △;(2)①证明:如图2中,设AG 与CD 相交于点P .90ADP ∠=︒,90DAP DPA ∴∠+∠=︒. ADE ≌CDF ,DAE DCF ∴∠=∠.DPA GPC ∠∠=,90DAE DPA GPC GCP ∠∠∠∠∴+=+=︒.90PGN ∠∴=︒,BM AG ⊥,BN GN ⊥,∴四边形BMGN 是矩形,90MBN ∴∠=︒.四边形ABCD 是正方形,AB BC ∴=,90ABC MBN ∠∠==︒.ABM CBN ∴∠=∠.又90AMB BNC ∠∠==︒,AMB ∴≌CNB △.MB NB ∴=.∴矩形BMGN 是正方形;②解:作DH AG ⊥交AG 于点H ,作BM AG ⊥于点M ,∵90,90,DHA AMB ADH DAH BAM AD AB ∠=∠=︒∠=︒-∠=∠= ∴AMB ≌DHA .BM AH ∴=.222AH AD DH =-,4=AD ,DH ∴最大时,AH 最小,2DH DE ==最大值.23BM AH ∴==最小值最小值由()2①可知,BGM 是等腰直角三角形,226BG BM ∴=最小值。

【基础+提升】人教版小学五年级下册数学《旋转》同步练习(含答案)

【基础+提升】人教版小学五年级下册数学《旋转》同步练习(含答案)

第五单元图形的运动(三)第1课时旋转【基础训练】一、选择题1.图形绕点O逆时针旋转90°得到的图形是()。

A.B.C.D.2.钟表的分针从9走到12,顺时针旋转了()度。

A.60 B.30 C.3 D.90 3.如图,图1绕“O”点逆时针旋转90°可以到达图()的位置.A.1B.2C.3D.44.下图中的三角形①是绕点A()旋转了90度.A.顺时针B.逆时针5.由图形(1)不能变为图形(2)的方法是()。

A.图形(1)绕“O”点逆时针方向旋转90°得到图形(2)B.图形(1)绕“O”点顺时针方向旋转90°得到图形(2)C.图形(1)绕“O”点逆时针方向旋转270°得到图形(2)D.以线段OP所在的直线为对称轴画图形(1)的轴对称图形得到图形(2)二、填空题6.①中的图形甲绕点O按( )方向旋转( )°,得到图形乙;②中的图形乙是由图形甲绕点A按( )方向旋转( )°得到的。

7.钟表的时针从“6”走到“9”旋转了( )°,再旋转90°走到数字( )。

8.如下图,图形①( )时针旋转90°得到图形②,图形②向( )平移( )个格得到图形③.9.如下图,平行四边形绕点A( )时针旋转了( ),三角形绕点B( )时针旋转了( ).10.如下图,正六边形至少要绕点O旋转( )度才能与原来的图形重合.三、判断题11.时针从12时半到3时,旋转了90°。

( )12.把图形绕圆心逆时针旋转90 后得到的图形是。

( )【提升训练】四、解答题13.如图,这个图案是由一个什么样的图形经过怎样的变化得到的?是由这个图案旋转了多少度?几次呢?14.图形C怎样变换得到图形B?图形B怎样变换得到图形A?图形A怎样变换回到图形C?15.按要求画一画,填一填.(1)分别画出图形①绕点A顺时针旋转90°和逆时针旋转90°后的图形.(2)图形②先绕点C________时针旋转________°,再向________平移________格可以得到图形③.参考答案1.A2.D3.B4.A5.A6.逆时针 90 顺时针 907.90 128.顺右 59.顺 90°逆 90°10.6011.×12.×13.由一个长方形通过五次旋转得到的,每次旋转角度分别是60°14.图形C先向左平移3格,再向下平移1格,最后围绕中心点顺(或逆)时针旋转180°后,可以得到图形B.图形B先向上平移3格,再向左平移4格,最后围绕中心点顺时针旋转90°后,可以得到图形A.图形A先围绕中心点顺时针旋转90°,再向右平移7格,最后向下平移2格后,就可以得到图形C.15.(1)(2)逆;90;下;2.。

小学数学旋转问题练习题

小学数学旋转问题练习题

小学数学旋转问题练习题旋转问题是小学数学中的一个重要内容,它不仅能够培养学生的观察力和逻辑思维能力,还能提高他们的几何想象能力。

下面是一些有关旋转问题的练习题,希望能够帮助同学们更好地理解和掌握这一知识点。

题目一:旋转图形的坐标变化已知点A(-2, 3),要求绕原点逆时针旋转90°,求旋转后点的坐标。

解析:根据旋转的特点,逆时针旋转90°后,点A的横坐标变为原来的纵坐标的相反数,纵坐标变为原来的横坐标。

所以,旋转后的点的坐标为(3, 2)。

题目二:矩形绕顶点旋转已知长方形ABCD的顶点A(2, 4),要求将该矩形绕顶点A逆时针旋转180°,求旋转后矩形的顶点坐标。

解析:绕顶点A逆时针旋转180°后,矩形的顶点D变为A,顶点C变为B,顶点B变为C,顶点A变为D。

因此,旋转后矩形的顶点坐标为A(2, 4),B(-2, 4),C(-2, -4),D(2, -4)。

题目三:正方形绕中心点旋转已知正方形EFGH的中心点为O(0, 0),边长为4个单位,要求将该正方形逆时针旋转270°,求旋转后正方形的顶点坐标。

解析:绕中心点O逆时针旋转270°后,正方形的顶点顺序依次变为G、H、E、F。

利用正方形的对称性可知,旋转后正方形的顶点坐标分别为G(2, -2),H(2, 2),E(-2, 2),F(-2, -2)。

题目四:三角形绕中心点旋转已知三角形IJK的中心点为P(0, 0),顶点分别为I(1, 1),J(1, -1),K(-1, -1),要求将该三角形逆时针旋转120°,求旋转后三角形的顶点坐标。

解析:绕中心点P逆时针旋转120°后,三角形的顶点顺序变为J、K、I。

利用旋转的性质可知,旋转后三角形的顶点坐标分别为J(0, -2),K(1.732, -0.366),I(-1.732, -0.366)(保留小数点后有效数字)。

通过以上练习题的解析,我们可以发现,旋转问题的解答关键在于观察和运用几何知识。

提升小学生数学能力几何形状的变换练习题

提升小学生数学能力几何形状的变换练习题

提升小学生数学能力几何形状的变换练习题提升小学生数学能力:几何形状的变换练习题在小学数学中,几何形状的变换是一个重要的学习内容,通过变换练习题,可以帮助学生提升他们的数学能力和几何思维。

本文将提供一些关于几何形状变换的练习题,帮助小学生巩固和提升他们的数学能力。

练习题一:旋转1. 将正方形旋转90度,得到的形状是什么?2. 将长方形旋转180度,得到的形状是什么?3. 将三角形旋转270度,得到的形状是什么?练习题二:翻转1. 将正方形按照对角线进行翻转,得到的形状是什么?2. 将长方形按照长边进行翻转,得到的形状是什么?3. 将三角形按照底边进行翻转,得到的形状是什么?练习题三:平移1. 将正方形向右平移3个单位,得到的形状是什么?2. 将长方形向上平移2个单位,得到的形状是什么?3. 将三角形向左平移4个单位,得到的形状是什么?练习题四:对称1. 将正方形按照中心点进行对称,得到的形状是什么?2. 将长方形按照长边中心线进行对称,得到的形状是什么?3. 将三角形按照底边中心线进行对称,得到的形状是什么?练习题五:组合变换1. 对一个正方形进行旋转和翻转,得到的形状是什么?2. 对一个长方形进行平移和对称,得到的形状是什么?3. 对一个三角形进行旋转、翻转和平移,得到的形状是什么?通过这些练习题,小学生可以锻炼他们的几何思维和数学能力。

在解答这些问题的过程中,他们需要运用到旋转、翻转、平移和对称的概念和技巧。

同时,通过这些练习题,他们还能够加深对不同几何形状之间关系的理解,并培养他们的观察能力和逻辑思维能力。

请小学生根据这些练习题进行实践,可以在纸上作图,也可以使用计算机绘图软件进行练习。

在解答问题时,可以使用直观的方法,也可以通过计算得出答案。

在完成练习后,可以与同学或老师进行讨论,共同进步。

总结:几何形状的变换是小学数学中的重要内容,通过练习题可以帮助小学生提升他们的数学能力和几何思维。

在学习过程中,小学生需要掌握旋转、翻转、平移和对称的概念和技巧,通过解答练习题,他们可以加深对各个几何形状之间关系的理解,并培养观察能力和逻辑思维能力。

旋转专项练习题

旋转专项练习题

旋转专项练习题在几何学中,旋转是一种常见的变换操作,它可以将一个图形沿着中心点或轴线旋转一定角度。

通过多次练习旋转操作,不仅可以锻炼我们的思维能力,还能够提高我们的几何学知识。

本文将为您提供一些旋转专项练习题,帮助您巩固和拓展相关知识。

题目一:旋转矩形对于给定的矩形ABCD,中心点为O,若将该矩形按顺时针方向绕O点旋转90度,求旋转后各点的坐标。

解析:根据旋转规则,顺时针旋转90度可以理解为每个点的坐标绕O点逆时针旋转90度。

已知矩形ABCD的坐标如下:A(0, 0) B(4, 0) C(4, 2) D(0, 2)根据旋转规则,逆时针旋转90度后的坐标为:A'(-0, 0) B'(0, -4) C'(-2, -4) D'(-2, 0)题目二:旋转三角形对于给定的三角形ABC,中心点为O,若将该三角形按逆时针方向绕O点旋转180度,求旋转后各点的坐标。

解析:根据旋转规则,逆时针旋转180度可以理解为每个点的坐标绕O点旋转180度。

已知三角形ABC的坐标如下:A(0, 0) B(4, 0) C(2, 3)根据旋转规则,旋转180度后的坐标为:A'(0, 0) B'(-4, 0) C'(-2, -3)题目三:旋转正方形对于给定的正方形ABCD,中心点为O,若将该正方形按逆时针方向绕O点旋转270度,求旋转后各点的坐标。

解析:根据旋转规则,逆时针旋转270度可以理解为每个点的坐标绕O点逆时针旋转270度。

已知正方形ABCD的坐标如下:A(0, 0) B(4, 0) C(4, 4) D(0, 4)根据旋转规则,逆时针旋转270度后的坐标为:A'(0, 0) B'(0, 4) C'(-4, 4) D'(-4, 0)题目四:旋转圆形对于给定的圆形O,若将该圆形按逆时针方向绕O点旋转45度,求旋转后各点的坐标。

解析:由于圆形的每个点到中心点的距离都相等,因此旋转后每个点的坐标仍然是相对于中心点O的极坐标系。

图形的旋转专题训练

图形的旋转专题训练

f )

1 c

2 5

D
1
c m
3 C

{
4

6


7
I
j
!
J
圆心 角与弦 弧 之

f
l
I
夯 实 基 础 (1 0 分 钟
1

I

c D
OF

g
&嘴

B 的 延 长 线 上 的 D 处 . 则 B E = C D

( ) 四边 形 A C 2 B D绕 D点 逆 时针 方 向旋 曩 转 9 。 的 边彤 . 0后 :
r J

/l 1 { ) /。 C/ f } f
C I )

图形的旋 转专题训练
夯 实基础(0分钟 ) 1
鼻 _


将 图 形
按 顺 时针 方 向旋 转 9 。 。
3 如 图 ,照 相 时为 了把 近 处 的较 高物 体 照下 , .

2下醍
A o
( 4题 ) 第 ( 5题 ) 第

c f]审 圆 / ■ 一 l\ r 一
方 格 中 分 别 嘲 } 这 条 小 金 鱼 向 仃 平 移 瓦 个 _ l {
格 和 以点 4 为旋 转 中心 顺叫 针 方 向旋 转
9 。 得 到 的 小 金 鱼 ( 要 求 j 平 移 、 O后 只 l J 旋 转 后 的 图 形 。 不 要 求 写 作 图 步 骤 和
过程 ) .
( 3题 ) 第
如 图所 示 的 图 形 绕 圆 心 旋 转 —

《图形的旋转(解答题)》之中考真题精选汇编(能力提升卷)

《图形的旋转(解答题)》之中考真题精选汇编(能力提升卷)

《图形的旋转(解答题)》之中考真题精选汇编(能力提升卷)1.综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.2.如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB 上.(1)【动手操作】如图②,若点P 在线段CB 上,画出射线P A ,并将射线P A 绕点P 逆时针旋转90°与BD 交于点E ,根据题意在图中画出图形,图中∠PBE 的度数为 度;(2)【问题探究】根据(1)所画图形,探究线段P A 与PE 的数量关系,并说明理由;(3)【拓展延伸】如图③,若点P 在射线CB 上移动,将射线P A 绕点P 逆时针旋转90°与BD 交于点E ,探究线段BA ,BP ,BE 之间的数量关系,并说明理由.3.在Rt △ABC 中,∠ACB =90°,CA =CB ,点O 为AB 的中点,点D 在直线AB 上(不与点A ,B 重合),连接CD ,线段CD 绕点C 逆时针旋转90°,得到线段CE ,过点B 作直线l ⊥BC ,过点E 作EF ⊥l ,垂足为点F ,直线EF 交直线OC 于点G .(1)如图1,当点D 与点O 重合时,请直接写出线段AD 与线段EF 的数量关系;(2)如图2,当点D 在线段AB 上时,求证:CG +BD =√2BC ;(3)连接DE ,△CDE 的面积记为S 1,△ABC 的面积记为S 2,当EF :BC =1:3时,请直接写出S 1S 2的值.4.如图是由小正方形组成的8×6网格,每个小正方形的顶点叫做格点.正方形ABCD四个顶点都是格点,E是AD上的格点,仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先将线段BE绕点B顺时针旋转90°,画对应线段BF,再在CD上画点G,并连接BG,使∠GBE=45°;(2)在图(2)中,M是BE与网格线的交点,先画点M关于BD的对称点N,再在BD 上画点H,并连接MH,使∠BHM=∠MBD.5.如图1,点P是线段AB上与点A,点B不重合的任意一点,在AB的同侧分别以A,P,B为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB和射线BA,∠2的两边不在直线AB上,我们规定这三个角互为等联角,点P为等联点,线段AB为等联线.(1)如图2,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点的方法,作出以线段AB为等联线、某格点P 为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图3,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD.将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.①确定△PCF的形状,并说明理由;②若AP:PB=1:2,BF=√2k,求等联线AB和线段PE的长(用含k的式子表示).6.如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是,MN与AC的位置关系是.特例研讨:(2)如图2,若∠BAC=90°,BC=4√2,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.①求∠BCF的度数;②求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.7.如图,在等边三角形ABC中,D为AB上的一点,过点D作BC的平形线DE交AC于点E,点P是线段DE上的动点(点P不与D、E重合).将△ABP绕点A逆时针方向旋转60°,得到△ACQ,连接EQ、PQ,PQ交AC于F.(1)证明:在点P的运动过程中,总有∠PEQ=120°.(2)当APDP为何值时,△AQF是直角三角形?8.如图,在2×4的方格纸ABCD中,每个小方格的边长为1.已知格点P,请按要求画格点三角形(顶点均在格点上).(1)在图1中画一个等腰三角形PEF,使底边长为√2,点E在BC上,点F在AD上,再画出该三角形绕矩形ABCD的中心旋转180°后的图形;(2)在图2中画一个Rt△PQR,使∠P=45°,点Q在BC上,点R在AD上,再画出该三角形向右平移1个单位后的图形.9.如图1,已知线段AB,AC,线段AC绕点A在直线AB上方旋转,连接BC,以BC为边在BC上方作Rt△BDC,且∠DBC=30°.(1)若∠BCD=90°,以AB为边在AB上方作Rt△BAE,且∠AEB=90°,∠EBA=30°,连接DE,用等式表示线段AC与DE的数量关系是;(2)如图2,在(1)的条件下,若DE⊥AB,AB=4,AC=2,求BC的长;(3)如图3,若∠BCD=90°,AB=4,AC=2,当AD的值最大时,求此时tan∠CBA 的值.10.1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当△ABC的三个内角均小于120°时,如图1,将△APC绕点C顺时针旋转60°得到△A′P′C,连接PP′,由PC=P′C,∠PCP′=60°,可知△PCP′为三角形,故PP′=PC,又P′A′=P A,故P A+PB+PC=P′A′+PB+PP′≥A′B,由可知,当B,P,P′,A′在同一条直线上时,P A+PB+PC取最小值,如图2,最小值为A′B,此时的P点为该三角形的“费马点”,且有∠APC=∠BPC=∠APB=;已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为点.(2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求P A+PB+PC的值;(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=2√3km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/km,a元/km,√2a元/km,选取合适的P的位置,可以使总的铺设成本最低为元.(结果用含a的式子表示)11.如图,在方格纸中按要求画图,并完成填空.(1)画出线段OA绕点O顺时针旋转90°后得到的线段OB,连接AB;(2)画出与△AOB关于直线OB对称的图形,点A的对称点是C;(3)填空:∠OCB的度数为.12.【问题呈现】△CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.【问题探究】(1)如图1,当m=1时,直接写出AD,BE的位置关系:.(2)如图2,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当m=√3,AB=4√7,DE=4时,将△CDE绕点C旋转,使A,D,E三点恰好在同一直线上,求BE的长.13.在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(i)如图2,连接CD,求证:BD=CD;(ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.14.综合与实践.(1)提出问题.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE,连接BD,连接CE交BD的延长线于点O.①∠BOC的度数是.②BD:CE=.(2)类比探究.如图2,在△ABC和△DEC中,∠BAC=∠EDC=90°,且AB=AC,DE=DC,连接AD、BE并延长交于点O.①∠AOB的度数是;②AD:BE=.(3)问题解决.如图3,在等边△ABC中,AD⊥BC于点D,点E在线段AD上(不与A重合),以AE为边在AD的左侧构造等边△AEF,将△AEF绕着点A在平面内顺时针旋转任意角度.如图4,M为EF的中点,N为BE的中点.①说明△MND为等腰三角形.②求∠MND的度数.15.在4×4的方格纸中,请按下列要求画出格点三角形(顶点均在格点上).(1)在图1中先画出一个以格点P为顶点的等腰三角形P AB,再画出该三角形向右平移2个单位后的△P′A′B′.(2)将图2中的格点△ABC绕点C按顺时针方向旋转90°,画出经旋转后的△A′B′C.16.【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由;【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由;【模型迁移】(3)在(2)的条件下,若AD=4√2,BD=3CD,求cos∠AFB的值.17.如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.18.如图,网格中每个小正方形的边长均为1,△ABC的顶点均在小正方形的格点上.(1)将△ABC向下平移3个单位长度得到△A1B1C1,画出△A1B1C1;(2)将△ABC绕点C顺时针旋转90度得到△A2B2C2,画出△A2B2C2;(3)在(2)的运动过程中请计算出△ABC扫过的面积.19.如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB的中点,DE=2,AB=4.(1)将△CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.。

人教版九年级数学第二十三章第1节《图形的旋转》解答题提高训练 (40)(含答案)

人教版九年级数学第二十三章第1节《图形的旋转》解答题提高训练 (40)(含答案)

第二十三章第1节《图形的旋转》解答题提高训练 (40)一、解答题1.将ABC ∆的边AB 绕点A 顺时针旋转α得到AB ',边AC 绕点A 逆时针旋转β得到AC ',180αβ+=︒,连接B C '',作AB C ''∆的中线AD .图① 图② 图③(初步感知)(1)如图①,当90BAC ∠=︒,4BC =时,AD 的长为 ;(探究运用)(2)如图②,ABC ∆为任意三角形时,猜想AD 与BC 的数量关系,并证明. (应用延伸)(3)如图③,已知等腰ACB ∆,AC BC m ==,延长AC 到D ,延长CB 到E ,使CD CE n ==,将CED ∆绕点C 顺时针旋转一周得到CE D ''∆,连接BE '、AD ',若90CBE '∠=︒,求AD '的长度(用含m 、n 的代数式表示).2.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4), (1)将△ABC 各顶点的横坐标保持不变,纵坐标分别减5后得到△111A B C ,请在图中画出△111A B C ;(2)将△ABC 绕点(1,0)按逆时针方向旋转90°后得到的△222A B C ,请在图中画出△222A B C ,并分别写出△222A B C 的顶点坐标.3.定义:如图,,A B 为直线l 同侧的两点,过点A 作直线l 的对称点'A ,连接'A B 交直线l 于点P ,连接AP ,则称点P 为点,A B 关于直线l 的“等角点”.如图①,在ABC 中,,D E 分别是AB AC 、上的点,,AB AC AD AE ==,然后将ADE 绕点A 顺时针旋转一定角度,连接,BD CE ,得到图②,延长CE 交BA 的延长线于点N ,延长BD 至点M ,使DM EN =,连接AM ,得到图③,请解答下列问题: (1)在图②中,BD 与CE 的数量关系是 ;(2)在图③中,求证:点A 为点C ,M 关于直线BN 的“等角点”.4.如图,Rt △ABC 的三个顶点的坐标分别为A (-3,2)、B (0,4)、C (0,2).⑴将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C .平移△ABC ,若A 对应点A 2的坐标为(0,-4),画出平移后对应的△A 2B 2C 2;⑵若将△A 1B 1C 绕某一点旋转得到△A 2B 2C 2,请直接写出旋转中心的坐标为 .⑶在x 轴上找一点P ,使得直线CP 将△ABC 的面积分为1:2,直接写出P 点的坐标为 .5.如图,在边长为6的正方形ABCD 内部有两个大小相同的长方形AEFG 、HMCN ,HM 与EF 相交于点P ,HN 与GF 相交于点Q ,AG=CM=x ,AE=CN=y .(1)用含有x 、y 的代数式表示长方形AEFG 与长方形HMCN 重叠部分的面积S 四边形HPFQ ,并求出x应满足的条件;(2)当AG=AE,EF=2PE时,①AG的长为_______;②四边形AEFG旋转后能与四边形HMCN重合,请指出该图形所在平面内能够作为旋转中心的所有点,并分别说明如何旋转的.6.如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,∠DCE=120°,当∠DCE 的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;(2)由(图1)的位置将∠DCE绕点C逆时针旋转θ角(0<θ<90°),线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,并说明理由.△的三个顶点都在格点上,7.在正方形网格中,建立如图所示的平面直角坐标xoy,ABC4,4,请解答下列问题:点A的坐标()(1)画出ABC △关于y 轴对称的111A B C △,并写出点11,A B 的坐标;(2)将ABC △绕点C 逆时针旋转90,画出旋转后的222A B C △, 并写出点22,A B 的坐标. 8.(1)如图:已知D 为等腰直角△ABC 斜边BC 上的一个动点(D 与B 、C 均不重合),连结AD,△ADE 是等腰直角三角形,DE 为斜边,连结CE,求∠ECD 的度数.(2)当(1)中△ABC 、△ADE 都改为等边三角形,D 点为△ABC 中BC 边上的一个动点(D 与B 、C 均不重合),当点D 运动到什么位置时,△DCE 的周长最小?请探求点D 的位置,试说明理由,并求出此时∠EDC 的度数.(3)在(2)的条件下,当点D 运动到使△DCE 的周长最小时,点M 是此时射线AD 上的一个动点,以CM 为边,在直线CM 的下方画等边三角形CMN,若△ABC 的边长为4,请直接写出DN 长度的最小值.9.在平面直角坐标系xOy 中,旋转角α满足0180α︒≤≤︒,对图形M 与图形N 给出如下定义:将图形M 绕原点逆时针旋转α得到图形'M .P 为图形'M 上任意一点,Q 为图形N 上的任意一点,称PQ 长度的最小值为图形M 与图形N 的“转后距”.已知点()1,3A ,点()4,0B ,点()2,0C .(1)当90α=︒时,记线段OA 为图形M .①画出图形'M ;②若点C 为图形N ,则“转后距”为_________;③若线段AC 为图形N ,求“转后距”;(2)已知点(),0P m 在点B 的左侧,点13,2Q m ⎛⎫-- ⎪ ⎪⎝⎭,记线段AB 为图形M ,线段PQ 为图形N ,对任意旋转角α,“转后距”大于1,直接写出m 的取值范围. 10.四边形ABCD 的位置如图所示,解答下列问题:(1)将四边形ABCD 先向左平移4格,再向下平移6格,得到四边形A 1B 1C 1D 1,画出平移后的四边形A 1B 1C 1D 1;(2)将四边形A 1B 1C 1D 1绕点A 1逆时针旋转90°得到四边形A 1B 2C 2D 2,画出旋转后的四边形A 1B 2C 2D 2.11.如图(a ),两个不全等的等腰直角三角形OAB 和OCD 叠放在一起,并且有公共的直角顶点O .(1)将图(a )中的OAB 绕点O 顺时针旋转90角,在图(b )中作出旋转后的OAB (保留作图痕迹,不写作法,不证明).(2)在图(a )中,你发现线段AC ,BD 的数量关系是 ,直线AC ,BD 相交成 度角.(3)将图(a )中的OAB 绕点O 顺时针旋转一个锐角,得到图(c ),这时(2)中的两个结论是否成立?作出判断并说明理由.若OAB 绕点O 继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由.12.如图,已知四边形ABCD为正方形,点E是边AD上任意一点,△ABE接逆时针方向旋转一定角度后得到△ADF,延长BE交DF于点G,且AF=4,AB=7.(1)请指出旋转中心和旋转角度;(2)求BE的长;(3)试猜测BG与DF的位置关系,并说明理由.13.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,1),C(0,1).(1)画出与△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)画出以C1为旋转中心,将△A1B1C1逆时针旋转90°后的△A2B2C2;(3)尺规作图:连接A1A2,在C1A2边上求作一点P,使得点P到A1A2的距离等于PC1的长(保留作图痕迹,不写作法);(4)请直接写出∠C1A1P的度数.14.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是__,B4的坐标是__;(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n的坐标是__,B n的坐标是__.15.如图,在已知的平面直角坐标系中,△ABC的顶点都在正方形网格的格点上,若A,B 两点的坐标分别是A(-1,0),B(0,3).(1)将△ABC绕原点O顺时针旋转90°得到△A1B1C1,画出△A1B1C1;(2)以点O为位似中心,与△ABC位似的△A2B2C2满足A2B2:AB=2:1,请在网格内画出△A2B2C2,并直接填写△A2B2C2的面积为______.16.(1)探究证明:在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E,当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;(2)发现探究:当直线MN绕点C旋转到图2的位置时,(1)中的结论是否成立,如果不成立,DE、A D、BE应满足的关系是_____.(3)解决问题:当直线MN绕点C旋转到图3的位置时,若BE=8,AD=2,请直接写出DE的长为_____.17.如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A 、B 、C 的坐标分别是A (﹣2,3)、B (﹣1,2)、C (﹣3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径弧A A 1的长度为 ;(结果保留π)(3)在y 轴上找一点D ,使DB+DB 1的值最小,并求出D 点坐标.18.阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB 的中点O 旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG. 请你参考小明的做法解决下列问题:⑴ 现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.在图3中画出示意图,标注字母,指明拼接而成的平行四边形;⑵ 如图4,在面积为2的平行四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,分别连结AF 、BG 、CH 、DE 得到一个新的平行四边形MNPQ ,请在图4中探究平行四边形MNPQ 面积的大小(画图并直接写出结果).19.如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A ,B 的坐标分别是A (3,3)、B (1,2),△AOB 绕点O 逆时针旋转90°后得到△11OB A .(1)画出△11OB A ,直接写出点1A ,1B 的坐标;(2)在旋转过程中,点B 经过的路径的长;(3)求在旋转过程中,线段AB 所扫过的面积. OBA20.如图,在正方形ABCD 中,点M 、N 是BC 、CD 边上的点,连接AM 、BN ,若BM=CN(1)求证:AM ⊥BN(2)将线段AM 绕M 顺时针旋转90°得到线段ME ,连接NE ,试说明:四边形BMEN 是平行四边形;(3)将△ABM 绕A 逆时针旋转90°得到△ADF ,连接EF ,当1 BM BC n 时,请求出四边形四边形ABCDAMEFS S 的值【答案与解析】一、解答题1.(1)2;(2)12AD BC =,证明见解析;(3)223AD m n '=+. (1)只要证明BC=B′C′=4,再利用直角三角形斜边中线的性质即可解决问题;(2)如图①中,延长AD 到E ,使得DE=AD .连接EB′,EC′.只要证明△AB ′E ≌△BAC ,即可解决问题;(3)分两种情形,利用(2)中结论以及勾股定理计算即可;(1)90αβ+=︒,180BAB CAC ''∴∠+∠=︒,90BAC ∠=︒,90B AC ''∴∠=︒,AB AB AC AC ''∴==,BAC B AC ''∠=∠,ABC AB C ''∴∆≅∆,4BC B C ''∴==,AD是直角三角形AB C ''∆斜边的中线,122AD B C ''∴==. 故答案为2.(2)证明:如图中,延长AD 到E ,使得DE AD =.连接EB ',EC '.B D DC ''=,AD DE =,。

人教版九年级数学第二十三章第1节《图形的旋转》解答题提高训练 (55)(含答案)

人教版九年级数学第二十三章第1节《图形的旋转》解答题提高训练 (55)(含答案)

第二十三章第1节《图形的旋转》解答题提高训练 (55)一、解答题1.正方形ABCD 中,点P 是直线AC 上的一个动点,连接BP ,将线段BP 绕点B 顺时针旋转90︒得到线段BE ,连接CE .(1)如图1,若点P 在线段AC 上,①直接写出ACE ∠的度数为 °;②求证:2222PA PC PB +=;(2)如图2,若点P 在CA 的延长线上,1PA =,13PB =,①依题意补全图2;②直接写出线段AC 的长度为 .2.如图(1) 将三角板ABC 与∠DAE 摆放在一起,射线AE 与AC 重合,射线AD 在三角形ABC 外部,其中∠ACB =30°,∠B =60°,∠BAC =90°,∠DAE =45°.固定三角板ABC ,将∠DAE 绕点A 按顺时针方向旋转,如图(2),记旋转角∠CAE =α.(1)当α为60°时,在备用图(1)中画出图形,并判断AE 与BC 的位置关系,并说明理由;(2)在旋转过程中,当0°<α<180°,∠DAE 的一边与BC 的平行时,求旋转角α的值; (3)在旋转过程中,当0°<α≤90°时,探究∠CAD 与∠BAE 之间的关系.(温馨提示:对于任意△ABC ,都有∠A +∠B +∠C =180°)3.已知△ABC,△ADE是等边三角形.(1)当△ABC与△ADE在如图所示位置时,连接BD,CE.①求证:CE=BD;②求直线CE与直线BD相交所成的较小的角的度数;(2)将△ADE绕点A顺时针旋转一周,当点C,D,E在同一条直线上,且这三个点中位于中间位置的点到另外两个点的距离相等时,连接BD,若ADE的边长为5,请直接写出BD的长.4.如图,在△ABC和△ADE中,点E在BC边上,∠B=∠D,AB=AD,∠BAD=∠CAE,(1)求证:AE=AC(2)若∠AEC=60°,将△ADE绕点A逆时针旋转后与△ABC重合,则这个旋转角的度数__ (3)若AC=4,BC=7,∠AEC=60°,求△ABE的面积.5.如图,△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A按逆时针方向旋转α°.得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)用α表示∠ACE的度数;(3)若使四边形ABFE是菱形,求α的度数.6.如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标;(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.7.我们定义:如果两个等腰三角形的顶角相等,且项角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,形象的可以看作两双手,所以通常称为“手拉手模∠=∠,则△ABD 型”.例如,如(1),ABC与ADE都是等腰三角形,其中BAC DAE≌△ACE(SAS).(1)熟悉模型:如(2),已知ABC与ADE都是等腰三角形,AB=AC,AD=AE,且=;BAC DAE∠=∠,求证:BD CEPA PB PC=,求(2)运用模型:如(3),P为等边ABC内一点,且::3:4:5∠的度数.小明在解决此问题时,根据前面的“手拉手全等模型”,以BP为边构造等边APBBPM△,这样就有两个等边三角形共顶点B,然后连结CM,通过转化的思想求出了∠的度数为度;∠的度数,则APBAPB(3)深化模型:如(4),在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,求BD的长.8.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.(Ⅰ)求证:∠A=∠EBC;(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.9.在平面直角坐标系中,O 为原点,(0,6)B ,(8,0)A ,以点B 为旋转中心把ABO 逆时针旋转,得A BO ''△,点O ,A 旋转后的对应点为O ',A ',记旋转角为α.(1)如图1,若90α=︒,求AA '的长.(2)如图2,若120α=︒,求点O '的坐标.10.如图,△ABC 中,AB =AC ,∠B =60°,P 是BC 边上一点,将AP 绕点A 逆时针旋转60°,点P 旋转后的对应点为P ',连接CP '.(1)画出旋转后示意图;(2)连接PP ',若∠BAP =20°,求∠PP 'C 的度数.11.如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A 、B 的坐标分别是A (3,2)、B (1,3).△AOB 绕点O 逆时针旋转90°后得到△A 1OB 1.(1)画出旋转后的图形;(2)点A1的坐标为 ;(3)在旋转过程中,点B经过的路径为弧BB1,那么弧BB1的长为多少?12.如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CFED.设FC与AB交于点H,且A(0,3),C(5,0).(1)当α=60°时,△CBD的形状是_________;(2)当0°<α<90°旋转过程中,连结OH,当△OHC为等腰三角形时,请直接写出点H的坐标.13.如图,将图中的平行四边形ABCD先绕D按顺时针方向旋转90后,再平移,使点D 平移至E点,作出旋转及平移后的图形.(保留作图痕迹)14.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA’处,求调整后点A’比调整前点A的高度降低了多少cm?(结果取整数)?(参考数据:sin35°0.57,cos35°0.82,tan35°0.70)15.已知,在矩形ABCD中,AB=6,BC=8,将矩形ABCD绕点D按顺时针方向旋转,得到矩形A′B′C′D′,直线DA′,B′C′分别与直线BC相交于点P,Q.(1)①如图1,当矩形A′B′C′D的顶点B′落在射线DC上时;②如图2,当矩形A′B′C′D的顶点B′落在线段BC的延长线上时,DP= ;(2)①如图3,当点P位于线段BC上时,求证:DP=PQ;②在矩形ABCD旋转过程中(旋转角0°<α≤90°),请直接写出BP=BQ时,CP的长:.(3)在矩形ABCD旋转过程中(旋转角45°<α≤180°),以点D,B′,P,Q为顶点的四边形能否成为平行四边形?如果能,请直接写出此时CP的长(或CP的取值范围);如果不能,请简要说明理由.16.(8分)如图所示,在方格图中有三角形ABC(每个小方格的边长为1个单位长度)(1)画出三角形ABC绕点B顺时针旋转90°所得的三角形A1B1C1.(2)画出三角形ABC先向左平移2个单位再向下平移3个单位所得的三角形A2B2C2.17.(6分)在如图的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上(每个小方格的顶点叫格点).(1)画出关于点的中心对称的;如果建立直角坐标系,使点B的坐标为(-5,2),点C的坐标为(-2,2),则点A1的坐标为▲;(2) 画出绕点顺时针旋转后的,并求线段BC扫过的面积.18.已知∠GOH=90°,A、C分别是OG、OH上的点,且OA=OC=4,以OA为边长作正方形OABC.现将正方形OABC绕O点顺时针旋转,当A点第一次落在∠GOH的角平分线OP上时停止旋转;旋转过程中,AB边交OP于点M,BC边交OH于点N(如图2),(1)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(2)设△MBN的周长为p,在正方形OABC的旋转过程中,p值是否有变化?请证明你的结论.19.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.20.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是______三角形.(2)若OB=5,OC=3,求OA的长.【答案与解析】一、解答题1.(1)①90;②证明见解析;(2)①补全图形见解析;②4.(1)①证明△BAP ≌△BCE ,得∠BAC=∠BCE=45°,从而可求出结论;②连接PE ,可得△PBE ,△PCE 均为直角三角形,利用勾股定理即可求解; (2)①根据提示补全图形即可;②连接PE ,可得△PBE ,△PCE 均为直角三角形,利用勾股定理求得PE=26,PC=5,从而可求AC=4.(1)∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∵∠PBE=90°,∴∠ABP=∠CBE ,又BP=BE ,∴△BAP ≌△BCE ,∴∠BAP=∠BCE∵AC 是正方形的对角线,∴∠BAC=∠BCA=45°,∴∠BCE=∠BCA=45°,∴∠BCE+∠BCA=90°,即ACE ∠的度数为90°;②证明:连接PE ,如图.∵四边形ABCD 是正方形,∴CB AB =,1245∠=∠=°,3490∠+∠=°.∵将线段BP 绕点B 顺时针旋转90︒得到线段BE ,∴BE BP =,5490∠+∠=°.∴2PE PB =,53∠=∠。

精品 九年级数学上册 图形的旋转 综合提高题解析

精品 九年级数学上册 图形的旋转 综合提高题解析

图形的旋转综合提高题1.时钟中面上的分针从12时开始绕中心旋转120°,则下列说法正确的是()A.此时分针指向的数字是3B.此时分针指向的数字是4C.此时分针指向的数字是6D.分针转动了,但时针却未作改变2.如图,在直角△ABC 中,∠C=900,∠A=350,以直角顶点C 为旋转中心,将△ABC 旋转到△A'B'C 的位置,其中A'、B'分别是A、B 的对应点,且点B 在斜边A'B'上,直角边CA'交AB 于点D,这时∠BDC 的度数是().A.70° B.90° C.100° D.105°3.如图,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长,圆心为直角的扇形纸板的圆心放在O 点处,并将纸板的圆心绕O 旋转,求正方形ABCD 的边被纸板覆盖部分的面积为()A.213a B.214a C.212a D.14a 4.如图,边长为1的正方形ABCD 绕点A 逆时针旋转300到正方形///AB C D ,则图中阴影部分面积为() A.313- B.33 C.314- D.125.如图,点P 是等边三角形ABC 内部一点,::5:6:7APB BPC CPA ∠∠∠=,则以PA、PB、PC 为边的三角形的三内角之比为()A.2:3:4 B.3:4:5 C.4:5:6 D.不能确定6.如图,直角梯形ABCD 中,∠BCD=90°,AD∥BC,BC=CD,E 为梯形内一点,且∠BEC=90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF,连EF 交CD 于M.已知BC=5,CF=3,则DM:MC 的值为()A.5:3B.3:5C.4:3D.3:47.如图,用等腰直角三角板画∠AOB=45°,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 按逆时针方向旋转22°,则三角板的斜边与射线OA 的夹角为______°.8.将直角边长为5cm 的等腰直角ΔABC 绕点A 逆时针旋转15°后,得到ΔAB’C’,则图中阴影部分的面积是cm 29.如图,已知梯形ABCD 中,AD∥BC,∠B=90°,AD=3,BC=5,AB=1,把线段CD 绕点D 逆时针旋转90°到DE 位置,连结AE,则AE 的长为______.10.在平面直角坐标系中,已知点P 0的坐标为(1,0),将点P 0绕着原点O 按逆时针方向旋转60°得到P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°,得点P 3,则P 3的坐标是______.11.在矩形ABCD 中,2AD AB ,E 是AD 的中点,一块三角板的直角顶点与点E 重合,将三角板绕点E 按顺时针方向旋转.当三角板的两直角边与AB BC ,分别交于点M N ,时,观察或测量BM 与CN 的长度,你能得到什么结论?并证明你的结论.12.如图,P 是正方形ABCD 内的一点,AP=1,PB=2,∠APB=135°.求PC 的长.13.已知:如图,四边形ABCD中,∠D=60°,∠B=30°,AD=CD.求证:BD2=AB2+BC2.14.已知:如图,E是正方形ABCD的边CD上任意一点,F是边AD上的点,且FB平分∠ABE.求证:BE=AF+CE.15.如图,已知A、B是线段MN上的两点,4>MB.以A为中心顺时针旋转点M,以MA,1MN,1==B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设xAB=.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;16.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点0是AC的中点,过点0的直线l从与AC 重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.(1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________;②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________;(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.17.如图,已知△ABC是等腰直角三角形,∠C=90°,(1)将一个三角板的45°角的顶点和点C重合,使这个角落在∠ACB的内部,两边分别与斜边AB交于EF两点,然后将这个角绕着点C在∠ACB的内部旋转,观察在EF的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果;(2)探索:AE、EF、FB三条线段能否组成以EF为斜边的直角三角形?18.如图,P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。

图形的旋转能力提升

图形的旋转能力提升

旋转能力提升一.选择题(共3小题)1.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.如图,将△ABC先向右平移1个单位,再绕点P按顺时针方向旋转90°,得到△A′B′C′,则点B的对应点B′的坐标是()A.(4,0)B.(2,﹣2)C.(4,﹣1)D.(2,﹣3)3.如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC∥C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有()A.①②③B.①②④C.①③④D.②③④二.填空题(共4小题)4.如图,在平面直角坐标系中,平移△ABC至△A1B1C1的位置.若顶点A(﹣3,4)的对应点是A1(2,5),则点B(﹣4,2)的对应点B1的坐标是.5.如图,等边△ABC中,AB=10,点E为高AD上的一动点,以BE为边作等边△BEF,连接DF,CF,则∠BCF =,FB+FD的最小值为.6.△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点AF长度的最小值是.7.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为.8.如图,点P是正△ABC内一点.P A=3,PB=4,PC=5,将线段AP绕点A逆时针旋转60°得到线段AP',连结.P'P,P'C,下列结论中正确的是(填序号),①△AP'C可以由△APB绕点A逆时针旋转60°得到;②线段PP'=3;③四边形APCP'的面积为6+;④S△APB+S△BPC=6+5.三.解答题(共4小题)9.如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣1),B(2,﹣5),C(5,﹣4).(1)将△ABC先向左平移6个单位,再向上平移4个单位,得到△A1B1C1,画出两次平移后的△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1绕点C1顺时针旋转90°后得到△A2B2C1,并写出点A2的坐标;10.如图,等边三角形ABC内有一点P,分别连结AP、BP、CP,若AP=6,BP=8,CP=10.(1)则线段AP、BP、CP构成的三角形是三角形(填“钝角、直角、锐角”);(2)将△BP A绕点B顺时针旋转60°,画出旋转后的△BP1A1,并由此求出∠BP1A1的度数;(3)求三角形ABC的面积.11.如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.12.(杨雨泽推荐有一定难度)在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,如图(1),易证EG=CG且EG⊥CG.(1)将△BEF绕点B逆时针旋转90°,如图(2),则线段EG和CG有怎样的数量关系和位置关系?请直接写出你的猜想.(2)将△BEF绕点B逆时针旋转180°,如图(3),则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明.参考答案与试题解析一.选择题(共3小题)1.【解答】解:A.不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.既是轴对称图形,又是中心对称图形,故此选项符合题意;故选:D.2.【解答】解:作出旋转后的图形如下:∴B'点的坐标为(4,﹣1),故选:C.3.【解答】解:①∵△ABC绕A点逆时针旋转50°得到△AB′C′,∴BC=B′C′.故①正确;②∵△ABC绕A点逆时针旋转50°,∴∠BAB′=50°.∵∠CAB=20°,∴∠B′AC=∠BAB′﹣∠CAB=30°.∵∠AB′C′=∠ABC=30°,∴∠AB′C′=∠B′AC.∴AC∥C′B′.故②正确;③在△BAB′中,AB=AB′,∠BAB′=50°,∴∠AB′B=∠ABB ′=(180°﹣50°)=65°.∴∠BB′C′=∠AB′B+∠AB′C′=65°+30°=95°.∴C′B′与BB′不垂直.故③不正确;④在△ACC′中,AC=AC′,∠CAC′=50°,∴∠ACC ′=(180°﹣50°)=65°.∴∠ABB′=∠ACC′.故④正确.∴①②④这三个结论正确.故选:B.二.填空题(共4小题)4.【解答】解:∵点A(﹣3,4)的对应点是A1(2,5),∴点B(﹣4,2)的对应点B1的坐标是(1,3).故答案为:(1,3).5.【解答】解:如图,∵△ABC是等边三角形,AD⊥CB,∴∠BAE =∠BAC=30°,∵△BEF是等边三角形,∴∠EBF=∠ABC=60°,BE=BF,∴∠ABE=∠CBF,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴∠BAE=∠BCF=30°,作点D关于CF的对称点G,连接CG,DG,BG,BG交CF的延长线于点F′,连接DF′,此时BF′+DF′的值最小,最小值=线段BG的长.∵∠DCF=∠FCG=30°,∴∠DCG=60°,∵CD=CG=5,∴△CDG是等边三角形,∴DB=DC=DG,∴∠CGB=90°,∴BG ===5,∴BF+DF的最小值为5,故答案为:30°,5.6.【解答】解:∵△ACB,△DEC都是等边三角形,∴AC=CB,DC=EC,∠ACB=∠DCE=60°,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴∠DBC=∠EAC=20°,∵∠BAC=60°,∴∠BAF=∠BAC+∠CAE=80°.如图1中,设BF交AC于点T.同法可证△BCD≌△ACE,∴∠CBD=∠CAF,∵∠BTC=∠ATF,∴∠BCT=∠AFT=60°,∴点F在△ABC的外接圆上运动,当∠ABF最小时,AF的值最小,此时CD⊥BD,∴BD ===4,∴AE=BD=4,∠BDC=∠AEC=90°,∵CD=CE,CF=CF,∴Rt△CFD≌Rt△CFE(HL),∴∠DCF=∠ECF=30°,∴EF=CE•tan30°=,∴AF的最小值=AE﹣EF=4﹣,故答案为:80,4﹣.7.【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y =x +,∵直线EF⊥CC′,经过CC ′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).(本题可以用图象法,直接得出P坐标).故答案为(1,﹣1).6.【解答】解:∵△ABC为等边三角形,∴AB=AC=BC,∠BAC=60°,∵线段AP绕点A逆时针旋转60°得到线段AP',∴AP=AP′,∠P AP′=60°,∴△APP′为等边三角形,∴∠AP′P=60°,PP′=AP=3,所以②正确;∵∠BAC﹣∠P AC=∠P AP′﹣∠P AC,即∠BAP=∠CAP′,在△AP′C和△APB中,,∴△AP′C≌△APB(SAS),∴△AP'C可以由△APB绕点A逆时针旋转60°得到,所以①正确;∴S△APB=S△ACP′,P′C=PB=4,在△PP′C中,∵PP′=3,P′C=4,PC=5,∴PP′2+P′C2=PC2,∴△PP′C为直角三角形,∠PP′C=90°,∴四边形APCP'的面积=S△APP′+S△PP′C =×32+×3×4=6+,所以③正确;把△BAP绕B点顺时针旋转60°得到△BCD,连接PD,如图,∴BP=BD=4,CD=AP=3,∠PBD=60°,S△BAP =S△BCD,∴△PBD为等边三角形,∴PD=PB=4,∵CD=3,PD=4,PC=5,∴CD2+PD2=PC2,∴△PCD为直角三角形,∠PDC=90°,∴S△APB+S△BPC=S△BCD+S△BPC=S四边形BPCD=S△PBD+S△PCD =×42+×3×4=6+4,所以④错误.故答案为:①②③.三.解答题(共4小题)9.【解答】解:(1)如图,△A1B1C1即为所求,点A1的坐标(﹣5,3);(2)如图,△A2B2C1即为所求,点A2的坐标(2,4);10.【解答】解:(1)∵AP=6,BP=8,CP=10,∴AP2+BP2=CP2,∴线段AP、BP、CP构成的三角形是直角三角形,故答案为:直角;(2)如图,△BP1A1为所作;∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BP A绕点B顺时针旋转60°得到△BP1A1,∴点A1与点C重合,BP=BP1=8,A1P1=AP=6,∠PBP1=60°,∴△BPP1为等边三角形,∴∠BP1P=60°,PP1=BP=8,∵PP1=8,P1C=6,CP=10,∴AP12+PP12=CP2,∴△PCP1是直角三角形,∠PP1C=90°,∴∠BP1A1=∠BP1P+∠PP1C=60°+90°=150°;(3)过C点作CD⊥BP1于D点,如图,∵∠BP1A1=150°,∴∠CP1D=30°,∴CD =CP1=3,∴P1D =CD=3,∴BD=8+3,在Rt△BCD中,BC2=CD2+BD2=32+(8+3)2=100+48,∴三角形ABC的面积=BC2=×(100+48)=25+36.11.【解答】解:(1)BD=CE,理由如下:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵AE是由AD绕点A逆时针旋转60°得到的,∴∠DAE=60°,AD=AE,∴∠BAC=∠DAE,∴∠BAC﹣DAC=∠DAE﹣∠DAC,即:∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)①由(1)得:∠DAE=60°,AD=AE,BD=CE,∴△ADE是等边三角形,∴DE=AE,∴AE=DE=BE﹣BD=BE﹣CE,故答案为:AE=BE﹣CE;②如图,∠BAD=45°,理由如下:连接AF,作AG⊥DE于G,∴∠AGD=90°,∵F是BC的中点,△ABC是等边三角形,△ADE是等边三角形,∴AF⊥BC,∠ABF=∠ADG=60°,∴∠AFB=∠AGD,∴△ABF∽△ADG,∴,∠BAF=∠DAG,∴∠BAF+∠DAF=∠DAG+∠DAF,∴∠BAD=∠F AG,∴△ABD∽△AFG,∴∠ADB=∠AGF=90°,由(1)得:BD=CE,∵CE=DE=AD,∴AD=BD,∴∠BAD=45°.12.【解答】解:(1)如图2中,结论:EG=CG,EG ⊥CG.(2)如图3中,EG=CG,EG⊥CG.证明:延长FE交DC延长线于M,连MG.∵∠AEM=90°,∠EBC=90°,∠BCM=90°,∴四边形BEMC是矩形.∴BE=CM,∠EMC=90°,由图(3)可知,∵BD平分∠ABC,∠ABC=90°,∴∠EBF=45°,又∵EF⊥AB,∴△BEF为等腰直角三角形∴BE=EF,∠F=45°.∴EF=CM.∵∠EMC=90°,FG=DG,∴MG =FD=FG.∵BC=EM,BC=CD,∴EM=CD.∵EF=CM,∴FM=DM,又∵FG=DG,∠CMG =∠EMC=45°,∴∠F=∠GMC.在△GFE与△GMC中,,∴△GFE≌△GMC(SAS).∴EG=CG,∠FGE=∠MGC.∵∠FMC=90°,MF=MD,FG=DG,∴MG⊥FD,∴∠FGE+∠EGM=90°,∴∠MGC+∠EGM=90°,即∠EGC=90°,∴EG⊥CG第11页(共11页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A D
C B C '
D '
B '
E A D E
M
B
E
C (F)
D A
E B G A
C (F )
D 图(2)
图形的旋转专题提高训练
1、如图,ACB A C B '''△≌△,BCB ∠'=30°,则ACA '∠的度数为( ) A .20° B .30° C .35° D .40°
2、如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根 号)。

3、 如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC
=90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:4
4、如图,已知Rt △ABC ≌Rt △DEC ,∠E =30°,D 为AB 的中点,AC =1,若△DEC 绕点D 顺时针旋转,使ED 、CD 分别与Rt △ABC 的直角边AC 、BC 相交于M 、N ,则当△DMN 为等边三角形时,AM 的值为 A 3 B 23
C 3
D .1
5、如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A 顺时针
旋转45°,则这两个正方形重叠部分的面积是 .
C A
B B '
A '
6、将直角边长为5cm 的等腰直角ΔABC 绕点A 逆时针旋转15°后,得到ΔAB ’C ’,则图中阴
影部分的面积是 cm 2
7、如图,在边长为1的正方形ABCD 中,E 、F 分别是AB 、AD 上的点,且△AEF
的周长为2,求∠ECF 的度数.
8、在矩形ABCD 中,AB =2,AD =3.
(1)在边CD 上找.
一点E ,使EB 平分∠AEC ,并加以说明;(3分) (2)若P 为BC 边上一点,且BP =2CP ,连接EP 并延长交AB 的延长线于F .
①求证:点B 平分线段AF ;(3分)
②△PAE 能否由△PFB 绕P 点按顺时针方向旋转而得到,若能,加以证明,并求出旋转度数;若不能,请说明理由.(4分)
A
C
F
E
9、已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,
EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证1
2
DEF CEF ABC S S S +=
△△△.
当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.
10、已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .
(1)求证:EG =CG ;
(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
A E
C F
B D 图1
图3
A
D
F
E
C
B
A
D
B
C
E 图2
F
D
图①
D
图②
图③
11、在ABC △中,2120AB BC ABC ==∠=,°,
将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC BC 、于D F 、两点.
(1)如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;
(2)如图2,当α30=°时,试判断四边形1BC DA 的形状,并说明理由; (3)在(2)的情况下,求ED 的长.
12、如图5,在四边形ABCD 中,∠ABC=30°,∠ADC=60°,AD=DC 。

证明:
BD 2=AB 2+BC 2
图 5
B
C D
A
A
D
B
E
C
F 1A
1C
A
D
B
E
C
F 1A
1C。

相关文档
最新文档