微弱信号检测的前置放大电路
测量微弱信号的放大电路设计要点与技巧
测量微弱信号的放大电路设计要点与技巧测量微弱信号是科研领域中常见的实验任务之一,而放大电路设计则是实现这一目标的关键。
在本文中,我将探讨一些测量微弱信号的放大电路设计要点和技巧,希望能为科研工作者提供有益的指导。
首先,了解信号的性质至关重要。
微弱信号通常在低频范围内,并且很容易受到环境干扰。
因此,在设计放大电路时,要考虑选择适当的频率带宽。
一般来说,带宽应该比信号频率的两倍高,这样能够有效地避免高频噪声的干扰。
其次,选择合适的放大器是成功设计放大电路的关键。
低噪声放大器是测量微弱信号的理想选择,因为它们能够增加信号的幅度同时减少噪声的干扰。
常见的低噪声放大器包括运算放大器和差动放大器。
运算放大器广泛应用于各种测量仪器中,而差动放大器则在抵抗共模噪声方面表现出色。
此外,合理设置放大器的增益也是非常重要的。
过高的增益可能会引入更多的噪声,因此需要在信号幅度和噪声干扰之间寻找一个平衡点。
经验表明,设置适当的增益可以确保信号得到放大,同时保持噪声干扰的最低程度。
在设计放大电路时,还需要注意地线的布局和连接。
地线是将电路与外界连接的重要通道,不良的地线布局可能导致干扰信号的引入。
因此,要确保地线布线短小粗直,尽量减少环路面积,以减少可能引入的噪声干扰。
此外,选择合适的滤波器也是测量微弱信号的成功关键之一。
滤波器能够消除信号中的杂散噪声,从而提高信噪比。
常见的滤波器类型包括低通滤波器、带通滤波器和带阻滤波器。
不同的信号频率需要不同类型的滤波器,因此在设计放大电路时要仔细选择合适的滤波器。
最后,校准和调整放大电路也是设计过程中的关键环节。
由于不同的器件走线、元件容差等原因,放大电路可能存在一些偏差。
因此,需要通过校准和调整来保证放大电路的准确性和稳定性。
校准过程中需要使用特定的校准仪器和设备,例如示波器和信号发生器。
综上所述,设计测量微弱信号的放大电路需要特别关注信号性质、放大器选择、增益设置、地线布局、滤波器选择和校准调整等方面。
微弱信号检测前置处理模块电路设计
微弱信号检测前置处理模块电路设计孙韩【摘要】从Y光纤斐索型激光干涉微振动检测仪的微弱信号检测实际需求出发,基于高速DSP数据采集与处理系统,采用集成运放芯片AD620,设计了一种能实现前置放大、带通滤波、电平抬升、增益可调等功能的前置处理模块电路。
经实验测试,该电路设计具有抑制噪声、抗干扰能力强,信号放大、带通滤波效能高等的优点,能有效进行微弱信号前置放大、去噪等处理,为后续A/D转换和高速DSP数据采集奠定基础。
%According to the actual demand of weak signal detection of Y type optical fiber Laser in-terference micro vibration detector,based on high-speed DSP data acquisition and processing system, using the integrated operational amplifier AD620 chip,a kind of pre-processing module circuit which can realize function of pre-amplifier, band-pass filter, level up and gain adjustable is designed. Through experimental test,the circuit designed in this paper has a strong suppress noise and anti-in-terference ability,the advantages of signal amplification and band-pass filtering efficiency higher. It can also effectively amplify a weak signal and suppress the noise,and lay a foundation for subsequent A/D conversion and high-speed DSP data acquisition.【期刊名称】《江西科学》【年(卷),期】2015(000)004【总页数】4页(P598-601)【关键词】微小振动测量;微弱信号检测;前置处理模块;电路设计【作者】孙韩【作者单位】安徽大学电子信息工程学院,230601,合肥【正文语种】中文【中图分类】TN248微振动测量广泛应用于石油勘探,各种发电机组、机床及桥梁的振动监测,高层建筑晃动测试,船舶及飞机等的发动机振动分析中。
微弱电流信号的检测和放大电路.doc
电压放大器结构合理,准确得实现了电压放大功能。
经I/V转换器后电压(通道B),经一级差分式放大电路后输出电压(通道C),经二级差分式放大电路后输出电压(通道D)波形对比如图9所示:
图9运算放大电路输入输出电压波形对比
3.
本设计采用开关式相敏检波电路。相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。其结构如图10所示。
要求:电路要包括电流/电压转换电路,信号放大电路,调制和解调电路,并采用multisim仿真。
三、设计时间及进度安排
设计时间共两周(2015.6.23~2015.7.3),具体安排如下表:
周安排
设 计 内 容
设计时间
第一周
布置设计任务和具体要求及设计安排;提出设计思路和初步设计方案、根据设计方案,进行具体的设计,根据指导意见,修改具体设计;仿真实现设计要求,指导、检查完成情况。
15.06.23-15.06.26
第二周
设计、仿真,撰写、完成专业模块设计报告,验收、考核
15.06.29-15.07.03
四、指导教师评语及成绩评定
指导教师评语:
年 月 日
成绩
指导教师(签字):
第一章课程设计的目的
课程设计是学生理论联系实际的重要实践教学环节,是对学生进行的一次综合性专业设计训练。通过课程设计使学生获得以下几方面能力,为毕业设计(论文)奠定基础。
经过相敏检波输出电压为4.327V,输入输出电压如图13所示。
图
经过相敏检波电路的波形如图14所示:
图14相敏检波电路输出波形
4.
为了给相敏检波电路提供同频方波信号,实现检波功能。其结构如图15所示。
图
其同向端接地,反向端接入高频正弦来自压信号(1KHZ),输出端为方波信号。当反向端正弦电压小于0时,输出高电平;当反向端输入的正弦电压大于0时,输出低电平。所以输入正弦波输出为反向的正弦波。输入信号和输出信号对比如图16所示。
微弱光信号的光电探测放大电路的设计
微弱光信号的光电探测放大电路的设计对于各种微弱的被测量,例如弱光、弱磁、弱声、小位移、小电容、微流量、微压力、微振动和微温差等,一般都是通过相应的传感器将其转换为微电流或低电压,再经放大器放大其幅值以反映被测量的大小。
但是,由于被测量的信号很微弱,传感器的本底噪声、放大电路及测量仪器的固有噪声以及外界的干扰往往比有用信号的幅值大的多,同时,放大被测信号的过程也放大了噪声,而且必然还会附加一些额外的噪声,例如放大器的内部固有噪声和外部干扰的影响,因此,只有在有效地抑制噪声的条件下增大微弱信号的幅值,才能提取出有用信号。
本文针对检测微弱光信号的光电二极管放大电路,综合分析了其电路噪声、信号带宽及电路稳定性,在此基础上设计了一种低噪声光电信号放大电路,并给出电路参数选择方法。
1 基本电路光电二极管作为光探测器有两种应用模式如图1所示。
(1)光伏模式,如图1 (a)。
此时,光电二极管处于零偏置状态,不存在暗电流,低噪声,线性度好,因而适于精密领域。
本文就是以这种模式为例进行分析,实际应用中,这个电路一般还需在Rf上并联一个小电容Cs,从而使电路稳定。
(2)光导模式,如图1(b)。
这种模式需要给光电二极管加反向偏置电压,因而存在暗电流,产生噪声电流,同时因为非线性,一般应用在高速场合。
当光照射到光电二极管时,光电二极管产生一个与照明度成比例的微弱电流Ip,该电流流过跨接在放大器负输入端和输出端的反馈电阻Rf,将运算放大器视为理想放大器,根据理想运算放大器输入端的“虚断”特性,从而有E0=IpRf。
可以看出,光电二极管放大电路实际上是一个I/V转换电路。
这个电路看起来非常简单,只需一个反馈电阻,一个光电二极管和一个放大器便可实现。
从输出电压的线性表达式很容易推出,使反馈电阻Rf增大,将使得输出电压也成比例的增大。
经之前分析时,一般给出其典型值为100MΩ。
在下面的分析我们将看到,反馈电阻不但影响信号的带宽,而且影响整个电路噪声。
小目标微弱信号检测电路设计
小目标微弱信号检测电路设计在靶场测试领域,天幕靶是一种常用的光电触发设备。
既可以用作区截装置测量弹丸的飞行速度,也可采用多幕交汇技术测量弹丸的着靶坐标,还可以作为其他设备的测试触发装置。
但现有天幕靶灵敏度低、视场小、抗干扰能力差。
本文设计了一种小目标微弱信号检测电路,通过光电二极管进行光电信号转换,并且设计了信号放大电路与滤波处理, 有效地滤除了干扰信号, 提高了天幕靶抗干扰能力。
硬件设计整体流程图如下图所示,光电探测器将接收到的光信号转换为电信号,并通过前置放大电路与主放大电路进行信号放大,电压比较器可以将电信号转换成脉冲,经过滤波电路将干扰信号去除后送入单片机的中断控制口,单片机产生中断,处理中断程序,然后会有脉冲输出,脉冲经过信号输出电路进行整形,由于输出信号需要进行长距离的传输,因此需要驱动电路将信号驱动。
图1为整体设计硬件原理图。
图1 整体设计硬件原理图光电转换电路利用可见光探测器单元硅PIN光电二极管作为光电转换期间来完成光信号到电信号的转换。
这种器件体积小而且响应速度快,被广泛的应用于光电检测。
光电二极管是半导体产品,当它受到光照时会产生电流或电压。
它们没有内置增益,但与其他类型的光子探测器相比却有着更大的动态范围。
本电路设计采用20只光电二极管连接起来形成阵列。
图2为其中的两路设计,其余各路连接方法相同。
其中LM7812为电源稳压芯片,保证输出稳定的电压,R1、R2为采样电阻,电容C5与C6主要用于交流耦合。
图2 光电转换电路前置放大电路光电前置放大电路如图3所示, 电路在光电转换电路和放大器的输出之间加一个由R3和C7组成的RC滤波电路, 这样就限制了放大器输出信号的带宽, 滤掉了经过放大的噪声和放大器本身的噪声。
电容C8 用来补偿RC滤波环节引起的相角滞后,电容C9用来补偿放大电路输入端的复合电容引起的相角滞后, 控制噪声增益的峰值。
图3 前置放大电路主放大电路由于前置放大器的输出信号比较微弱,需要进行再次放大以满足后续电路的需求。
微弱信号检测装置
设被测输入信号为:
(3-5)
当输入信号频率与参考信号频率的基波相等(),且满足时,经过推导化简,我们有相关器的输出:
(3-6)
进而得到以下结论:
1.时间常数,为积分器的时间常数,由电容和电阻决定。理论上积分时间越长越好。
2.当测试时间时,,得到稳态解:
(3-7)
由此可知,相关器输出为直流电压,式2-10为我们找到了输入信号幅度与输出直流电平的线性关系,这也正是整个设计最根本的依据。输出直流电压其值正比于输入信号基波振幅,并与信号和参考信号之间的相位差的余弦成正比;为近似积分器的直流放大倍数;负号表示反相输出,而为乘法器输出直流分量的系数。
其次由于实验室提供的直流电压源其实是由交流电整形而来的,肯定会有文波,纹波对电路的稳定性,低噪性会有一定影响,故而最好加上直流稳压器。另外电路中发生高低电平转换时候会有一个很大的脉冲信号,电路的这个状态会对直流电压源产生影响,使之产生波动,故而需要加入电容去耦合电路。电容去耦对低噪声前置放大器极为重要,忽略这一步会使得放大后的波形严重恶化。一般来说电容去耦在离直流电压源很近的地方并联一个小电容,远一点的地方并联一个大电容,这个大电容也可以作为各部分电路公用的去耦电容。
(2)实现对已知频率的微弱正弦输入信号幅度检测,要求:微弱正弦信号输入频率范围为100Hz-10KHz,幅度有效值范围为100uV-500uV,微弱正弦信号幅度有效值检测误差不超过10%。
(3)检测的幅度有效值显示在数码管或者液晶显示屏上,要求显示精度达到小数点后面1位,显示时间不超过1分钟。
(4)设计一个白噪声和衰减后的输入正弦信号相叠加的加法电路,输入信号叠加白噪声后的信噪比在-20dB-0dB范围内连续可调。
(2)当微弱正弦信号输入信号的幅度有效值为100uV-500uV,信噪比在-20dB时,要求对输入微弱正弦信号幅度有效值检测误差不超过10%。
微弱信号检测的前置放大电路设计研究
微弱信号检测的前置放大电路设计研究摘要:当前在现代农业生产发展中,检测微弱信号越来越受到高度重视,尤其是在精准农业产业发展过程中。
本文以电压电流转换设施为载体,对微弱信号检测前置放大电路设计的相关技术要求进行了阐述,并且通过具有远程集成控制的电路器件的选用和抗噪影响的技术改进,对在电路设计中应当注意的一些技术要点进行了分析,而且经过微弱信号检测,结果比较安全科学。
关键词:微弱信号;检测前置;放大电路;设计分析一.前言近年来,随着现代农业的不断发展,通过在安全、高效的时限内采集收取农田生态条件和农作物生产资料,并且实现肥料、水分、农药等精准作业,有效地防范和杜绝生态破坏、环境污染问题,实现农业生产经营经济、社会、生态效益最大化的精准农业,得到了前所未有的健康发展。
生物传感设施在上述信息资料的采集取得中具有很大的作用,比如,在精准农业种植物施水灌溉过程中需要充分考虑空气指数和土壤中水分的含量,利用传感设施对这些信号的变化情况进行检测,及能够实现精准农业灌溉的良好效果。
所以近年来很多生物传感设施在精准农业中的生态条件、农作物生长环节等信息采集检测上得到了很好的应用。
不过由于一些农作物自身具有的生理属性,存在着一定程度的微弱信号,很多电流和电压信息都无法满足级次需求,因此,便设计了前置放大电路,通过这种选系统结构来检测微弱信号的相关信息。
笔者试就微弱信号检测的前置放大电路设计中应当把握的技术要点,谈些粗浅的认识。
二.微弱信号检测前置放大电路设计中应当把握的技术要点2.1 前置放大电路系统结构一般来说,微弱信号是生物传感设施形成的信号,通常频率不是很高,在对具有一定差异性的农作物自身属性进行检测的时候,能够获取一定的电流和电压数值。
而要获取这样的电流信号资料,需要先将其转换生成电压信号,并且利用电路系统的放大功效,在滤波设施的作用下,降低频率较高的噪音影响(如图1)。
(图1 微弱信号检测前置放大电路系统结构示意图)由于传感设施形成的信号是微弱的,很可能遭受噪音的干扰,因而在放大仪器的选用上通常倾向于仪表设施。
前置放大电路实验报告
前置放⼤电路实验报告前置放⼤电路实验报告第⼗六组:于海⽟131308238边倍倍131308301韩艳英131308309⽬录1.简介 (3)2.放⼤器的作⽤与⽬的 (3)3.放⼤器的设计与原理 (4)4.放⼤电路器件及其参数 (6)5.设计步骤 (6)6.调试与实验结果 (9)7.问题及解决⽅法 (11)8.实验总结 (11)9.参考⽂献 (11)⼀.简介:前置放⼤器在放⼤有⽤信号的同时也将噪声放⼤,低噪声前置放⼤器就是使电路的噪声系数达到最⼩值的前置放⼤器。
对于微弱信号检测仪器或设备,前置放⼤器是引⼊噪声的主要部件之⼀。
整个检测系统的噪声系数主要取决于前置放⼤器的噪声系数。
仪器可检测的最⼩信号也主要取决于前置放⼤器的噪声。
所以放⼤器⼀般都是直接与检测信号的传感器相连接,只有在放⼤器的最佳源电阻等于信号源输出电阻的情况下,才能使电路的噪声系数最⼩。
⽽在设计前置电压放⼤器时只需要在⽰波器中观察电压的放⼤波形并分析放⼤倍数,其⾃⾝放⼤器所引起的⼲扰可以忽略不计,因此是设计电压放⼤器的最佳选择。
前置电压放⼤器主要应⽤于对电压信号的放⼤,本⽂介绍了具有弱信号放⼤能⼒的低频电压放⼤器的基本原理、内容和实现过程。
整个电路主要由稳压电源、前置放⼤器共两部分构成。
稳压电源主要是为前置放⼤器提供稳定的直流电源;前置放⼤器主要是电压的放⼤;设计的电路结构简洁、实⽤,充分利⽤到了集成成功放的优良特性。
实验结果表明该电压放⼤器在带宽、失真度、幅度等⽅⾯具有较好的指标、较⾼的实⽤性。
⼆.放⼤器的作⽤与⽬的1.放⼤器的作⽤(1).提⾼系统的信噪⽐(前放紧靠探测器,传输线短,分布电容Cs减⼩,提⾼了信噪⽐。
(2).减少外界⼲扰的相对影响(信号经前放初步放⼤.)。
(3)合理布局,便于调节与使⽤(前放为⾮调节式,主放放⼤调节倍数、成形常数)。
(4).实现阻抗转换和匹配(前放设计为⾼输⼊阻抗,低输出阻抗)。
(5).实现电压的两级放⼤。
微弱信号检测的超低噪音宽带放大器设计
产能经济微弱信号检测的超低噪音宽带放大器设计秦正波 任羊弟 王 辉 安徽师范大学物理与电子信息学院摘要:本文简要报道了微型超低噪音宽带快电荷灵敏前置放大器。
该放大器主要采用高增益宽带低噪音电压反馈型集成运放芯片OPA847,其低电压输入噪音低至0.85nV/Hz1/2, 带宽高至3.9GHz。
整个成本低至数百元,是同类型产品的1/10或更少,该前置放大器具有电路结构简单、紧凑,超高速,极低噪音,超高稳定性等优点。
经实验测试,该放大器能有效进行微弱信号的放大和噪音的抑制,可广泛应用于普通物理实验的光电探测的前置放大,科研上也具有较可观的应用前景。
关键词:微弱信号检测;前置放大器;超低噪音中图分类号:TN722 文献识别码:A 文章编号:1001-828X(2017)007-0339-02The design of an ultra-low-noise wideband amplifier for the weak signal measurementQIN Zheng-bo,REN Yang-di,WANG Hui(Department of Physics, Anhui Normal University, Wuhu 241000, Anhui, China)Abstract: A miniature, ultra-low-noise, and high-sensitivity preamplifier has been introduced in brief in this paper. The design is adopted which mainly combines a high-gain bandwidth, low-noise, voltage-feedback operational amplifier OPA847. The input voltage noise density reaches to as low as 0.85nV/Hz1/2 and bandwidth gets up to 3.9 GHz. The device costs only several hundred yuan, which is less than one tenth of cost for similar products. The preamplifier has the advantage of simple, compact, super-high speed, ultra-low noise and super-high stability et al. The amplifier has the function of the gain of weak signal and suppression of noise after testing. It is applied to the amplification of photoelectric detection and has the application foreground for scientific research.Key words: weak signal detection; pre-amplifier; ultra-low-noise引言在大学物理实验中的光电测量,光信息传输实验中的微弱信号检测或者飞行时间质谱实验中的质谱检测,无论光谱测量中使用的光电倍增管[1],还是质谱实验中使用的微通道板[2-3],最终输出的都是脉冲电子流,尤其是电子流具有瞬态性和高速性(10-9秒),而普通的低带宽的放大器无法有效的进行高速电子脉冲信号的放大,并且会造成时间积分上的拉宽,造成信号损失乃至丢失,最终可能不为采集装置所采集,因此从检测器上所获得的微弱信号,需要经过前置放大器进行预放大才可以被瞬态采集卡或者示波器进行信号采集及数据处理。
前置放大器在微弱信号检测中的应用进展
前置放大器在微弱信号检测中的应用进展2010年光电电子技术结课作业前置放大器在微弱光电信号检测中的应用进展前置放大器在微弱光电信号检测中的应用进展摘要光电检测系统中光电器件紧密连接一个低噪声前置放大器,它的任务是:放大光电探测器件所输出的微弱电信号;匹配后置处理电路与探测器件之间的阻抗。
对前置放大器的要求是:低噪声、高增益、低输出阻抗、足够的信号带宽和负载能力,以及良好的线性和抗干扰能力。
针对不同类型的光电检测系统的相应的前置放大电路的种类不同有T 型网络前置放大电路、差分式前置放大电路、双运放前置放大电路、高阻型前置放大电路,低阻型前置放大电路等等。
关键词:前置放大电路,微弱光信号检测,光电转换引言微弱信号的检测和处理技术主要运用迅速发展起来的电子学、信息论以及物理方法等加以分析噪声,对信号进行检测、采集有用信号。
微弱信号不仅信号本身的幅度较小,而且往往都是淹没在背景噪声之中。
而其中的光电检测技术是光学与电子学相结合而产生的一门新兴检测技术[1]。
它主要利用电子技术对光学信号进行检测, 并进一步传递、储存、控制、计算和显示[2]。
光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。
它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息, 然后用光电探测器件将光学信息量变换成电量, 并进一步经过电路放大、处理, 以达到电信号输出的目的[3]。
由于光电探测器所接收到的信号一般都非常微弱而且光探测器输出的信号往往被深埋在噪声之中的特点, 要对这样的微弱信号进行处理, 一般都要先进行预处理, 以将大部分噪声滤除掉,并将微弱信号放大到后续处理器所要求的电压幅度。
这样, 就需要通过前置放大电路、滤波电路和主放大电路来输出幅度合适、并已滤除掉大部分噪声的待检测信号。
1 光电检测电路模块[4]上图为光电检测电路模块示意图前置放大电路位于光电转换器后级放大电路之间对整个光电检测系统性能的影响很大,为得到有用的信号设计低噪声,高精度的前置放大电路就变得非常重要。
微弱信号检测的前置放大电路
针对精准农业中对微弱信号检测的技术需 求,本ppt设计了以电流电压转换器,仪表 放大器和低通滤波器为主要结构的微弱信 号检测前置放大电路。结合微弱信号的特 点讨论了电路中噪声的抑制和隔离,提出 了电路元件的选择方法与电路设计中降低 噪声干扰的注意事项。本文利用集成程控 增益仪表放大器PGA202 设计了微弱信号 检测前置放大电路,并利用微弱低频信号 进行了测试,得到了理想的效果。
4、电路的设计与实现
综合考虑微弱信号检测的需要和市场上芯片的供应情况, 本文选用PGA202 搭建仪表放大器,对微弱信号检测前 置放大电路进行了整体设计。
4.1 PGA202 简介 这里所选用的PGA202 是由BURR-BROWN 公司生产的,
PGA202 是一种程控仪表放大器,它内部集成了程控的 增益改变逻辑电路。由于省去了增益控制部分,利用 PGA202 搭建仪表放大器可以使电路结构得到很大的简 化,并且它的放大倍数稳定精确,为后续的数据处理提供 了方便。PGA202 的内部结构如图3。
电路中的仪表放大级通常设计为程控放大倍数的结构,通过程控开关 调整反馈电阻的大小,从而改变放大倍数。为了对数字电路和模拟电 路进行隔离,程控开关选用光偶开关。为了提高仪表放大器的性能, 可以选用集成仪表放大器。很多公司提供了不同类型的集成仪表放大 器,如INA127,它内部集成了仪表放大器的主要结构,有很好的对 称性,可通过改变外接电阻的大小改变放大倍数。PGA202 是一款可 程控放大倍数的仪用放大器,应用它可以简化电路结构,但PGA202 需要搭建差分输入级,这样就降低了共模抑制能力。2007 年末ADI 公司推出的AD8253 芯片集以上两种芯片的优点于一身,不但集成 了完整的仪表放大电路,还集成了程控放大倍数的逻辑电路,是微弱 信号检测前置放大电路的理想选择。
音频小信号前置放大电路
1、选题目的随着电子产业的不断发展,人们对电子产品的要求越来越高,如何实现将小信号放大且得到理想的输出信号,是人们迫切需要解决的问题。
对于音频小信号前置放大电路设计,已有许多设计方案,但结构比较复杂,输出波形不太稳定。
我们设计的电路中采用两级放大电路时电路更加稳定灵活,在输入端加入了电压跟随器使得电路的输入电阻无穷大输出电阻可控制,因此我们的设计电路受到了广大用户的欢迎。
2、指导思想首先设计电压跟随器使得输入电阻无穷大,再通过两级放大电路,在电压跟随器的同相输入端接入正弦小信号,放大的信号由放大电路的输出端输出。
如输入正弦信号的峰峰值为10mV,则放大后的输出信号峰峰值为10V左右,也就是电压放大倍数放为一千倍左右,否则将不能满足音频功率前置放大电路的性能指标。
3、电路特点总体结构简单清晰,设计思路明确。
设计原理简单:采用两级高通滤波电路,使得放大电路设计简单;同时也采用电压跟随器,使得输入和输出电阻基本满足课题要求。
选用内含消除自激的运算放大器设计放大电路使得电路设计简单。
4、电路设计4.1总体方框图输入电压一级放大二级放大输出跟随器电路电路4.2工作原理根据课题要求电路的输入电压与输出电压应满足比例大于或等于1000的运算关系,若采用一级放大电路,电阻的选择和调整不方便,因此选用两级放大电路。
为使放大电路稳定加入了消除自激的电容。
另外根据放大器所需直流电源的要求设计输出电压为正负15伏的稳压源。
4.2.1同相比例放大电路的参数计算U1ATL082CM32481RfR R120314图2-1同相比例运算电路同相比例放大运算电路引入了电压串联负反馈,可认为输入电阻为无穷大输出电阻为零。
根据“虚短”和“虚断”的概念,集成运放的净输入电压为零,即P N I u u u ==说明集成运放有共模输入电压。
净输入电流为零 ,因而R i i F =,即Nf0u R N O u u R --= f f O N R Ru u u R RP ==(1+)(1+) 将P u 、Nu 及Iu 三者关系代入上式,得(1)f O IR u u R=+上式表明O u 与I u 同相且O u 大于I u 。
MIT5530阵列感应测井仪前置放大电路设计
0 引 言
高精度、 高分 辨 率 多频 阵列 感应 成 像测 井 仪 器
MI 5 0与 常规感 应测 井仪 器 相 比, 提 供 5种 径 T5 3 能 向探测 深度 的合 成 电阻率 曲线 , 向电 阻率 剖 面 成 径 像 , 提供 的井 下信 息 很 好 地 克服 了井 眼 、 入 、 所 侵 围
及温度补偿模块 的设计重点和难点 ; 电路进行时域 、 对 频域 和噪声特 性仿真 ; 对其温 度性能进 行实际测 试 , 出其 得 主要 的性能指标 。分析前置放大电路容易出现的故 障并 提出解决措施 。验证该前置放大器 的可行性和实用性 。 关键词 :阵列感 应测井仪器 ;微弱信号 ; 前置放大 电路 ; 性能 ; 真 仿
DANG e g, CHEN o LIM e g h n, M A a , JANG u o g, L U e Fn Ta , n c u Xio I Yo h n I W i
( c nc l n e ,ChnaP toe m g ig C Te h ia Ce tr i e r lu Lo gn O. LTD.,Xia ’ n,Sh a x 1 0 7 a n i7 0 7 ,Chi ) na
弱信 号检测 , 关键 措 施 之 一就 பைடு நூலகம் 尽 量 减 少测 量 过 程 中引入 的观测 噪声 , 前 置放 大 器 是 引 入 噪声 的 主 而 要部 件之一 [ 。本 文所设 计 的前 置放大 电路 具有 低 1 ]
党峰 ,陈涛 ,李梦春 ,马骁 ,江友宏 ,刘伟
( 中国石油集 团测井有限公 司技 术中心 , 陕西 西安 7 0 7 ) 10 7
摘要 :根据微弱信号检测技术和电路低 噪声设计基 本原理 , 结合 阵列感应仪 器本身 的接收信 号强度微 弱 、 干扰严 重等特性 , 分析 阵列感应测井仪器前置放大 电路的低噪声单位增益缓冲级模 块 、 1级放大模块 、 2级放 大模块 第 第
基于锁相放大的微弱信号检测电路前置滤波器设计
∀测控技术 # 2007 年第 26 卷第 3 期
基于锁相放大的微弱信号检测电路前置滤波器设计
肖寅东, 赵 辉, 王厚军
610054 ) ( 电子科技大学 自动化工程学院 , 四川 成都
摘要 : 针对降低前置放大器噪声的方法展开研究 。 分析了影响系统噪声的主要 因素 , 提出并详细阐述了一套前置减噪滤 波 器的设计方法 。 该方法采 用了基于锁相放大技术的微弱信号检测电路 , 取得了 明显的噪声优化 , 进一步降噪 7. 25% 。 关键词 : 锁相放大 ; 微弱信 号检测 ; 前置滤波器 中图分类号 : TN713 文献标识码 : B 文章编号 : 1000- 8829( 2007) 03- 0086- 03
Abstrac t : A m ethod to bate no ise o f preamp is discussed. T he pr i m ary no ise gene ra tion part of syste m is ana lyzed. A prefilter m ade up by inductive parts is added ahead of prea m p. T hat can effic iently reduce the no ise . A m ethod to design pre filter is deve loped and proved opti ma . l A pp ly ing th is m e thod , a better pe rfo r m ance ( 7. 25 % i m proved) is gained on the circu it for w eak signa l de tection ba sing on lo ck in a m plifier ( L I A ). It is a very i m portant to i m prove s igna l to no ise ratio( SNR ) for weak signal de tection. K ey word s : LI A; w eak s igna l de tection ; pre filter 利用锁相放大技 术进行视频微弱信号提取是指将窄带低频 信号或者通过激励方式 转化成 在低频 基带上 调幅信 号的直流、 缓变微弱信号进行前 置放大后 , 经频 谱搬移 和低通 滤波获 取信 号真实值的一 种信 号提 取方 法。该 方法 能克 服工 频干 扰的 影 响 ; 避开 1 /f 低频噪声 ; 避免直流放 大器的温度、 零点漂移 ; 抑制 噪声 , 极大地高信 噪比 [ 1] 。 因此 该技 术在 等离 子腐 蚀监 测 [ 2] 、 光纤瓦斯传感器 [ 1] 、 车辆温度测试 [ 3] 、 扫描电子 显微镜 [ 4] 、 生物 医学信号 [ 5] 等领域获得了广泛的应用。 锁相放大技术的 检测信号集中在中心频点附近的中低频窄 带通道内。由于具有这一特征 , 选择散粒噪声比较小的 JFET 作 为第一级放大器 , 构成分 立放大 环节是 常见的 做法。同时 如何 降低中心频点上的噪 声、 提高信噪比是该技术的关键问题。 根据弗里斯 ( F r iis) 定理 [ 6] , 第一 级放大 器的噪 声系数 和放 大增益很大程度上决定了系统 的噪声系数。降低电路噪声系数 的关键是减小其第一 级电路的 噪声系 数 , 同 时要提 高前级 功率 增益。 针对锁相放大技 术的特点 , 本设 计采用 前置降 噪滤波 器有 效降低第一级放大器的等效输 入噪声 , 提高整个系统的信噪比。 前置滤波器设计的最优化问题 是提升系统噪声性能的关键。在 深入分析罗斯 ( R othe) 等人提出的 E n - In 噪声模型 [ 7] ( 见图 1) 后 , 将放大器内部噪声源用两个等效噪声源表示 , 构建滤波器模
光电检测技术中的微弱光信号前置放大电路设计
光电检测技术中的微弱光信号前置放大电路设计光电检测技术是光学与电子学相结合而产生的一门新兴检测技术[1]。
它主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示[2]。
光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。
它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的[3]。
然后采用电子学、信息论、计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。
微弱信号检测的目的是从强噪声中提取有用信号,同时提高检测系统输出信号的信噪比1光电检测电路的基本构光电探测器所接收到的信号一般都非常微弱,而且光探测器输出的信号往往被深埋在噪声之中,因此,要对这样的微弱信号进行处理,一般都要先进行预处理,以将大部分噪声滤除掉,并将微弱信号放大到后续处理器所要求的电压幅度。
这样,就需要通过前置放大电路、滤波电路和主放大电路来输出幅度合适、并已滤除掉大部分噪声的待检测信号。
其光电检测模块的组成框图如图 1 所示2光电二极管的工作模式与等效模2.1 光电二极管的工作模光电二极管一般有两种模式工作:零偏置工作和反偏置工作,图 2 所示是光电二极管的两种模式的偏置电路。
图中,在光伏模式时,光电二极管可非常精确的线性工作;而在光导模式时,光电二极管可实现较高的切换速度,但要牺牲一定的线性。
事实上,在反偏置条件下,即使无光照,仍有一个很小的电流(叫做暗电流或无照电流 1。
而在零偏置时则没有暗电流,这时二极管的噪声基本上是分路电阻的热噪声;在反偏置时,由于导电产生的散粒噪声成为附加的噪声源。
因此,在设计光电二极管电路的过程中,通常是针对光伏或光导两种模式之一进行最优化设计,而不是对两种模式都进行最优化设计[4]一般来说,在光电精密测量中,被测信号都比较微弱,因此,暗电流的影响一般都非常明显。
10502067_微弱信号检测前置处理模块电路设计
收稿日期:2015-07-02;修订日期:2015-08-10作者简介:孙 韩(1994-),女,安徽合肥人,研究方向:通讯系统原理与设计、嵌入式开发、自动控制。
基金项目:安徽大学2013年大学生科研训练计划项目“压缩感知用于频谱检测方案的研究”(编号:kyx12013034)。
第33卷 第4期2015年8月江 西 科 学JIANGXI SCIENCEVol.33No.4Aug.2015 doi :10.13990/j.issn1001-3679.2015.04.032微弱信号检测前置处理模块电路设计孙 韩(安徽大学电子信息工程学院,230601,合肥)摘要:从Y 光纤斐索型激光干涉微振动检测仪的微弱信号检测实际需求出发,基于高速DSP 数据采集与处理系统,采用集成运放芯片AD620,设计了一种能实现前置放大、带通滤波、电平抬升、增益可调等功能的前置处理模块电路。
经实验测试,该电路设计具有抑制噪声、抗干扰能力强,信号放大、带通滤波效能高等的优点,能有效进行微弱信号前置放大、去噪等处理,为后续A /D 转换和高速DSP 数据采集奠定基础。
关键词:微小振动测量;微弱信号检测;前置处理模块;电路设计中图分类号:TN248 文献标识码:A 文章编号:1001-3679(2015)04-598-04Pre⁃processing Module Circuit Design of Weak Signal DetectionSUN Han(School of Electronic Information Engineering Anhui University,230601,Hefei,PRC)Abstract :According to the actual demand of weak signal detection of Y type optical fiber Laser in⁃terference micro vibration detector,based on high⁃speed DSP data acquisition and processing system,using the integrated operational amplifier AD620chip,a kind of pre⁃processing module circuit which can realize function of pre⁃amplifier,band⁃pass filter,level up and gain adjustable is designed.Through experimental test,the circuit designed in this paper has a strong suppress noise and anti⁃in⁃terference ability,the advantages of signal amplification and band⁃pass filtering efficiency higher.It can also effectively amplify a weak signal and suppress the noise,and lay a foundation for subsequent A /D conversion and high⁃speed DSP data acquisition.Key words :micro vibration measuring;weak signal detection;pre⁃processing module;circuit design0 引言微振动测量广泛应用于石油勘探,各种发电机组、机床及桥梁的振动监测,高层建筑晃动测试,船舶及飞机等的发动机振动分析中。
微弱信号检测的前置放大电路
图2 微弱信号检测前置放大电路原理图
3、噪声的抑制和屏蔽
在微弱信号检测的过程中,噪声的抑制和 屏蔽至关重要,由于信号微弱,很容易受 到噪声污染,这些噪声主要由环境噪声、 电路元器件自身产生的噪声和电源的工频 噪声组成,因此在噪声的抑制和屏蔽上要 综合考虑这几方面的因素。Fra bibliotek.1 元器件的选择
在进行微弱信号检测过程中,为了减少集成运算放大器对电路的干扰, 应选择接近理想运算放大器的芯片。主要参数的要求是具有较小的输 入偏执电流、输入偏执电压和零漂,具有较大的共模抑制比和输入电 阻。特别是电流电压转换级对集成运放的要求较高,一般需要运放的 输入偏执电流在pA 级。目前市面上有很多满足条件的集成运算放大 器,如AD8571、LMC6482、LF351 和OPA2703 等。
电路中的仪表放大级通常设计为程控放大倍数的结构,通过程控开关 调整反馈电阻的大小,从而改变放大倍数。为了对数字电路和模拟电 路进行隔离,程控开关选用光偶开关。为了提高仪表放大器的性能, 可以选用集成仪表放大器。很多公司提供了不同类型的集成仪表放大 器,如INA127,它内部集成了仪表放大器的主要结构,有很好的对 称性,可通过改变外接电阻的大小改变放大倍数。PGA202 是一款可 程控放大倍数的仪用放大器,应用它可以简化电路结构,但PGA202 需要搭建差分输入级,这样就降低了共模抑制能力。2007 年末ADI 公司推出的AD8253 芯片集以上两种芯片的优点于一身,不但集成 了完整的仪表放大电路,还集成了程控放大倍数的逻辑电路,是微弱 信号检测前置放大电路的理想选择。
图3 PGA202 的内部结构
在图 3 中可以看到, A0 和A1 为数字程控信号 的输入端,控制PGA202 中集成的前置逻辑电路, 通过改变A0、A1 的值可以使仪表运算放大器的 倍数在1、10、100 和1000 之间改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0703020211 邓园园
引言
针对精准农业中对微弱信号检测的技术需 求,本ppt设计了以电流电压转换器,仪表 求,本ppt设计了以电流电压转换器,仪表 放大器和低通滤波器为主要结构的微弱信 号检测前置放大电路。结合微弱信号的特 点讨论了电路中噪声的抑制和隔离,提出 了电路元件的选择方法与电路设计中降低 噪声干扰的注意事项。本文利用集成程控 增益仪表放大器PGA202 增益仪表放大器PGA202 设计了微弱信号 检测前置放大电路,并利用微弱低频信号 进行了测试,得到了理想的效果。
5、结论
本ppt中所讨论的微弱信号检测前置放大电路适用 ppt中所讨论的微弱信号检测前置放大电路适用 于精准农业中的生物传感器。运用本文所阐述的 降噪方法,有效的抑制和屏蔽了可能对电路造成 影响的各种噪声,如环境噪声、工频噪声等。通 过利用微弱低频信号对以程控增益集成仪表放大 器PGA202 为核心的微弱信号检测前置放大电路 进行测试,得到了较为理想的结果,说明该电路 可以在微弱信号的检测过程中得到应用。 本ppt创新点:本文针对精准农业中对微弱信号检 ppt创新点:本文针对精准农业中对微弱信号检 测的需求,结合屏蔽和抑制噪声的措施,利用 PGA202 设计了完整的微弱信号检测前置放大电 路。
图3 PGA202 的内部结构
在图 3 中可以看到, A0 和A1 为数字程控信号 的输入端,控制PGA202 的输入端,控制PGA202 中集成的前置逻辑电路, 通过改变A0、 通过改变A0、A1 的值可以使仪表运算放大器的 倍数在1 10、 倍数在1、10、100 和1000 之间改变。 4.2 滤波器的设计 为了加强滤波器滤除噪声的能力,笔者采用了二 阶低通滤波器,并在滤波器的设计过程中选择了 同样的电容电阻组合。滤波器的截止频率可通过 公式RC2 公式RC2 f 1 0 0 ω = π = 来进行计算,由于 生物传感器的信号多为低频信号,因此可以将低 通滤波器的截止频率设计的低一些。在笔者所设 计的电路中,电阻值100kΩ,电容值33nF,截 计的电路中,电阻值100kΩ,电容值33nF,截 止频率为48Hz。 止频率为48Hz。
图2 微弱信号检测前置放大电路原理图
3、噪声的抑制和屏蔽 在微弱信号检测的过程中,噪声的抑制和 屏蔽至关重要,由于信号微弱,很容易受 到噪声污染,这些噪声主要由环境噪声、 电路元器件自身产生的噪声和电源的工频 噪声组成,因此在噪声的抑制和屏蔽上要 综合考虑这几方面的因素。
3.1 元器件的选择
在进行微弱信号检测过程中,为了减少集成运算放大器对电路的干扰, 应选择接近理想运算放大器的芯片。主要参数的要求是具有较小的输 入偏执电流、输入偏执电压和零漂,具有较大的共模抑制比和输入电 阻。特别是电流电压转换级对集成运放的要求较高,一般需要运放的 输入偏执电流在pA 输入偏执电流在pA 级。目前市面上有很多满足条件的集成运算放大 器,如AD8571、LMC6482、 器,如AD8571、LMC6482、LF351 和OPA2703 等。 电路中的仪表放大级通常设计为程控放大倍数的结构,通过程控开关 调整反馈电阻的大小,从而改变放大倍数。为了对数字电路和模拟电 路进行隔离,程控开关选用光偶开关。为了提高仪表放大器的性能, 可以选用集成仪表放大器。很多公司提供了不同类型的集成仪表放大 器,如INA127,它内部集成了仪表放大器的主要结构,有很好的对 器,如INA127,它内部集成了仪表放大器的主要结构,有很好的对 称性,可通过改变外接电阻的大小改变放大倍数。PGA202 是一款可 称性,可通过改变外接电阻的大小改变放大倍数。PGA202 程控放大倍数的仪用放大器,应用它可以简化电路结构,但PGA202 程控放大倍数的仪用放大器,应用它可以简化电路结构,但PGA202 需要搭建差分输入级,这样就降低了共模抑制能力。2007 年末ADI 需要搭建差分输入级,这样就降低了共模抑制能力。2007 年末ADI 公司推出的AD8253 公司推出的AD8253 芯片集以上两种芯片的优点于一身,不但集成 了完整的仪表放大电路,还集成了程控放大倍数的逻辑电路,是微弱 信号检测前置放大电路的理想选择。
3.2 工频噪声和环境噪声的隔离
工频噪声是影响电路的主要噪声,通常可 通过电路的电源传递到电路中。为了减少 这种影响,在电路设计时应在连接电源处 增加旁路电容,隔离电源的交流噪声。除 了这些措施外,为了滤除50Hz 了这些措施外,为了滤除50Hz 的工频干扰, 还可以在模数转换时采用具有50Hz 还可以在模数转换时采用具有50Hz 陷波的 模数转换器。另外,数字电路部分与模拟 电路部分分别接地,尽量减少模拟电路的 接地点同时采用画圈接地的方法都可以有 效的隔离噪声。
4.3 电路设计
为了提高仪表放大器差分输入级的对称性,同时满足零漂、 输入偏执电流、输入偏执电压等参数的需求,选用了性能 参数较好并且同一芯片中含有两个运算放大器的 OPA2277 作为仪表放大器的差分输入级。在电压电流转 换级采用了性能参数更为理想的集成运放AD8571, 换级采用了性能参数更为理想的集成运放AD8571, AD8571 的输入偏执电流为20-70pA,输入偏执电压为 的输入偏执电流为20-70pA,输入偏执电压为 1uV,共模抑制比达到120-140dB,可以满足I/V 1uV,共模抑制比达到120-140dB,可以满足I/V 转换 输入级对运放性能的要求。在实际的电路设计中还考虑了 噪声的隔离,为减少电1uF 连接电源处分别并联了0.1uF 的旁路电容。另外为降低环 境噪声对输入信号的污染,将电路的输入点放在了画圈接 地的圈中,利用接地圈对环境噪声起到屏蔽作用。整体电 路的设计如图4 路的设计如图4 所示。
2、电路基本结构
生物传感器所产生的信号一般为频率较低的微弱 信号,检测不同的植物生理参数,可能得到电压 或电流信号。对于电流信号,应首先把电流信号 转换成为电压信号,通过放大电路的放大,最后 利用低通滤波器,滤除混杂在信号中的高频噪声。 微弱信号检测前置放大电路的整体结构如图1 微弱信号检测前置放大电路的整体结构如图1。
4.4 电路的测试
本文按照图4 制作了电路板,选择R0 本文按照图4 制作了电路板,选择R0 的大小为 1kΩ,对电路的性能进行了测试。测试过程采用 1kΩ,对电路的性能进行了测试。测试过程采用 TFG2300 数字合成信号发生器产生20H 正弦信 数字合成信号发生器产生20H 号,通过串联500 kΩ高精度电阻分压后接入电 号,通过串联500 kΩ高精度电阻分压后接入电 路。设信号发生器产生信号的振幅为A 路。设信号发生器产生信号的振幅为A,仪表放 大器的输入信号的振幅可以通过公式00 500Rk 大器的输入信号的振幅可以通过公式00 500Rk RA A in += 计算。采用TDS1002 数字示波器 计算。采用TDS1002 观察到电路输出了较平滑的正弦波形。表1 观察到电路输出了较平滑的正弦波形。表1 中给 出了A1、 出了A1、A0 分别为11、10 时电路的测试数据。 分别为11、 通过表1 通过表1 可以看出放大器的放大倍数稳定增益误 差较小。 表1 电路测试结果
4、电路的设计与实现
综合考虑微弱信号检测的需要和市场上芯片的供应情况, 本文选用PGA202 本文选用PGA202 搭建仪表放大器,对微弱信号检测前 置放大电路进行了整体设计。 4.1 PGA202 简介 这里所选用的PGA202 是由BURR这里所选用的PGA202 是由BURR-BROWN 公司生产的, PGA202 是一种程控仪表放大器,它内部集成了程控的 增益改变逻辑电路。由于省去了增益控制部分,利用 PGA202 搭建仪表放大器可以使电路结构得到很大的简 化,并且它的放大倍数稳定精确,为后续的数据处理提供 了方便。PGA202 的内部结构如图3 了方便。PGA202 的内部结构如图3。
考虑到传感器产生的信号非常微弱,很容易受到 噪声的污染,所以放大电路选择仪表放大器结构。 仪表放大器拥有差分式结构,对共模噪声有很强 的抑制作用,同时拥有较高的输入阻抗和较小的 输出阻抗,非常适合对微弱信号的放大。另外为 了使输出电压在高频段以更快的速度下降,提高 低通滤波器滤除噪声的能力,这里选择了二阶低 通滤波器。微弱信号检测前置放大电路原理图如 图2。生物传感器产生的生物信号通常具有很大的 动态范围,达到几个数量级,原理图中R2 动态范围,达到几个数量级,原理图中R2 为可变 电阻,通过改变R2 电阻,通过改变R2 的阻值,可以改变仪表放大器 的放大倍数,从而适应放大不同大小的微弱信号。