电磁感应习题课

合集下载

10第十章 习题(222345)

10第十章 习题(222345)

二、选择题 1、在下列描述中正确的是( ) B (A)感生电场和静电场一样,属于无旋场 (B)感生电场和静电场的共同点,就是对场中的电荷 具有作用力 (C)因为感生电场对电荷具有类似于静电场对电荷的 作用力,所以在感生电场中也可类似于静电场一样 引入电势 (D)感生电场和静电场一样,是能脱离电荷而单独存 在。 解:根据感生电场性质
• 二、选择题 • 1、两个相同的线圈,每个自感系数均为L0,将它 们顺向串联起来,并放得很近,使每个线圈所产生 的磁通量全部穿过另一个线圈,则该系统的总自感 系数为( ) D • (A)0 (B)L0/2 (C)2L0 (D)4L0 解:设每个线圈通电流I,则 0 NB0 S , L0 顺向串联后,设I不变,则 B 2 B0
2、感生电场是:( )A (A)由变化的磁场激发,是无源场 (B)由电荷激发,是有源场。 (C)由电荷激发,是无源场。 (D)由变化的磁场激发,是有源场。 解:根据感生电场性质 三、计算题 1、如图所示,在两无限长载流导线组成的平面内, 有一固定不动的矩形导体回路。两电流方向相反,若 I I 0 cos t I 0, 有电流, (式中, 为大于0的常数)。求线 圈中的感应电动势。
解:根据法拉第电磁感应定律、 磁矩概念判断
2、一闭合导体环,一半在匀强磁场中,另一半在 磁场外,为了环中感生出顺时针方向的电流,则 应:( )B (A)使环沿轴正向平动。 (B)使环沿轴正向平动。 (C)环不动,增强磁场的磁感应强度。 (D)使环沿轴反向平动。 解:根据法拉第电磁感 应定律判断
• 3、如图,长度为l的直导线ab在均匀磁场B中以速 度 v 移动,直导线ab中的电动势为( ) D (A)Blv. B)Blvsinα. (C)Blvcosα .(D) 0.

电磁感应-习题课

电磁感应-习题课

20 20 2a 2a
2 2a2
24.一半径为R的无限长柱形导体上均匀流有电流I,该
导体材料的磁导率为μ0,则在导体轴线上一点的磁场
能量密度wmo= 0 ;在与导体轴线相距r处.(r<R)的
磁场能量密度wmr=
.
I 2r2
H I 1 ( I r 2 ) Ir
2r 2r R 2
(A) 1.5×106V/m; (B)1.5×108V/m; (C)3.0×106V/m; (D)3.0×108V/m.
1 2

0
E
2

B2
20
[B
]
E cB
22.有两个长直密绕螺线管,长度及线圈匝数均相同,半
径分别为r1和r2,管内充满均匀介质,其磁导率分别为μ1
和μ2,设r1 :r2 = 1 :2 , μ1:μ2 =2:1,其自感之比
杆的一端接一个N匝的矩形线圈,线圈的一部分在均匀
磁场B中,设杆的微小振动规律为 x A cost 线圈
随杆振动时,线圈中的感应电动势为
.
i

N
d dt

N
d (Bbx) dt

NBbAsin
t
6.如图所示,电量Q均匀分布在一半径为R、长为
L(L>>R)的绝缘长圆筒上,一单匝矩形线圈的一条边与
圆筒的轴线相重合.若筒以角速度 线性减速旋转.则线圈中感应电流为
0(1
0.
t t0)
线圈回路的通量等于零.
7.如图所示,一半径为r的很小的金属环,在初始时刻与
一半径为a(a>>r)的大金属圆环共面且同心,在大圆环
中通以恒定的电流I,方向如图.如果小圆环以匀角速绕

大学物理 磁学习题课

大学物理 磁学习题课
2
( I 1 I 2 ) ln 2
第11章 恒定电流的磁场
17
MN上电流元I3dx所受磁力:
0 I1
a M
dx N
c I2
d F I 3 B d x I 3 [ 2(r x) 2(2r x) ] d x
r
0 I1
I3 r Or b
r d
x
F I3 [
0
0 I1
2(r x)

0I2
2(2r x)
]d x

0I3

S
B
圆面
Φm
2 B S BR cos
1 B d S B R 2 2
n
60°
R
B
任意曲面
S

S
很多漏掉负号 类似本页二.1(1)磁通量
12
第11章 恒定电流的磁场
P42 一选择1.

H dl 2 I L1

H dl I L2
1
第11章 恒定电流的磁场
16
P44 二1、如图所示,载有电流I1和I2的长直导线ab和cd相互平行,相距为
3r,今有载有电流I3的导线MN = r,水平放置,且其两端MN分别与I1、I2 的距离都是r,ab、cd和MN共面,求导线MN所受的磁力大小和方向.
载流导线MN上任一点处的磁 感强度大小为: I 0 I 2 0 1 I1 B 2( r x ) 2( 2r x )
1
B
•直导线延长线上
a
第11章 恒定电流的磁场
P
6
2.
圆电流轴线上某点的磁场
B
大小:

电磁感应习题课

电磁感应习题课

高二物理简报 电磁感应的综合应用【知识点一】电磁感应中的电路问题、与力学综合问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于 。

(2)该部分导体的电阻或线圈的电阻相当于电源的 ,其余部分是 。

2.电源电动势和路端电压(1)电动势:E =Bl v 或E = 。

(2)路端电压:U =IR = 。

3.安培力的大小⎭⎪⎬⎪⎫感应电动势:E =Bl v感应电流:I =E R 安培力公式:F =BIl ⇒F =B 2l 2vR4.安培力的方向(1)先用 确定感应电流方向,再用 确定安培力方向。

(2)根据楞次定律,安培力方向一定和导体切割磁感线运动方向 。

[试一试]1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感应强度为B ,方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻。

一根与导轨接触良好、有效阻值为R2的金属导线ab 垂直导轨放置,并在水平外力F 的作用下以速度v 向右匀速运动,则(不计导轨电阻)( )A .通过电阻R 的电流方向为P →R →MB .a 、b 两点间的电压为BL vC .a 端电势比b 端高D .外力F 做的功等于电阻R 上发出的焦耳热2、如图所示,ab 和cd 是位于水平面内的平行金属轨道,轨道间距为l ,其电阻可忽略不计。

ac 之间连接一阻值为R 的电阻,ef 为一垂直于ab 和cd 的金属杆,它与ab 和cd 接触良好并可沿轨道方向无摩擦地滑动,其电阻可忽略。

整个装置处在匀强磁场中,磁场方向垂直于图中纸面向里,磁感应强度为B 。

当施外力使杆ef 以速度v 向右匀速运动时,杆ef 所受的安培力为( )A.v B 2l 2RB.v Bl RC.v B 2l RD.v Bl 2R【重难点突破一】电磁感应与电路知识的综合应用1.对电磁感应电源的理解(1)电源的正、负极可用右手定则或楞次定律判定。

(2)电源电动势的大小可由E =Bl v 或E =n ΔΦΔt 求得。

13 电磁学:第20、21章 习题课及部分习题解答

13 电磁学:第20、21章 习题课及部分习题解答

Zhang Shihui
2) dΨmA = M dI = 6.28×10−4 × (−50) = −3.14×10−6 (Wb/s)
dt
dt
3) ε = − dΨmA = 3.14 ×10−4 (V)
dt
题.一螺绕环单位长度上的线圈匝数为n =10匝/cm。环
心材料的磁导率μ =μ0。求在电流强度I为多大时,线圈 中磁场的能量密度w =1J/m3? (μ0 =4π×10-7 T·m/A)
正方向如箭头所示,求直导线中的感生电动势。
解:设直导线中通电流i,计算直导
线在线圈中产生的磁通量ϕ ;通过 y
计算互感系数M=ϕ/i,进而求感生电
A yDI
动势。
O
x E Cx
建立如图所示的坐标系,y沿直导线。 b
取如图所示的窄带作为微元 dS = 2 ydx
B
h
其中 y = tan 30ο = 3
解: ε ac = ε ab + εbc

εab
=

d Φ扇形Oab dt
=

d dt
⎛ ⎜⎜⎝

3 4
R2B
⎞ ⎟⎟⎠
=
3R2 d B 4 dt
第20、21章 电磁感应 电磁波
练习册·第20章 电磁感应·第8题
εbc
=

d ΦΔObc dt
= − d [− π R2
dt 12
B] =
π R2
12
解:根据充电方向知Æ极板间场 强竖直向下。
由于充电电流 i 的增加 dD向下且
变大。
dt
+i
P⊗H E

由方向成右手螺 旋定则。

【大学物理bjtu】磁习题课2(磁感应)

【大学物理bjtu】磁习题课2(磁感应)

∫∫ D ⋅ dS = ∫∫∫ ρdV
S V
通量
∫∫ B ⋅ dS = 0
dΦ ∂B ∫LE ⋅ dl = − dt = −∫∫S ∂t ⋅ dS ∂D ∫LH ⋅ dl = ∫∫S jC ⋅ dS + ∫∫S ∂t ⋅ dS
S
环流
要求: 要求:公式的精确表达以及 每个公式的物理意义. 每个公式的物理意义.
位移电流密度
∂D jd = ∂t
Id =
dt
=∫
s
∂t
⋅ dS
引入位移电流概念的思想是:变化着的电场 引入位移电流概念的思想是 变化着的电场 也如同传导电流一样,可以激发磁场. 可以激发磁场 也如同传导电流一样 可以激发磁场
8.麦克斯韦方程组的积分形式 麦克斯韦方程组的积分形式: 麦克斯韦方程组的积分形式
ε2 = ∫ E ⋅ dl = ∫ E1 ⋅ dl +∫ E2 ⋅ dl
0 0 R
O
R R
ε ∆OAC = ε OA + ε AC + ε CO ε2 = εAC = ε∆OAC = dB ( S
做辅助线OA、 做辅助线 、 OC, ,
=0
A
v
D
F R C
R2 π dB + S扇形ODF )= ( 3+ ) ∆AOC dt 4 3 dt 2 R π dB 方向: 方向: ε = ( 3 + ) − vBR 方向:左→右 方向:左→右 4 3 dt
ε 21 = − M
是通过回路1(2)的由回路 的由回路2(1)中电流 式中Ψ12 (Ψ21) 是通过回路 的由回路 中电流 I2(I1) 所产生的全磁通。 所产生的全磁通。 dI 1 互感电动势

高中物理(新人教版)选择性必修二课后习题:第二章 电磁感应中的动力学、能量和动量问题【含答案及解析】

高中物理(新人教版)选择性必修二课后习题:第二章 电磁感应中的动力学、能量和动量问题【含答案及解析】

第二章电磁感应习题课:电磁感应中的动力学、能量和动量问题课后篇素养形成必备知识基础练1.(多选)如图所示,有两根和水平方向成α角的光滑平行的金属轨道,间距为l,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B。

一根质量为m的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋于一个最大速度v m,除R外其余电阻不计,则()A.如果B变大,v m将变大B.如果α变大,v m将变大C.如果R变大,v m将变大D.如果m变小,v m将变大金属杆从轨道上滑下切割磁感线产生感应电动势E=Blv,在闭合电路中形成电流I=BlvR,因此金属杆从轨道上滑下的过程中除受重力、轨道的弹力外还受安培力F作用,F=BIl=B 2l2vR,先用右手定则判定感应电流方向,再用左手定则判定出安培力方向,如图所示。

根据牛顿第二定律,得mg sin α-B 2l2vR=ma,当a=0时,v=v m,解得v m=mgRsinαB2l2,故选项B、C正确。

2.(多选)如图所示,两足够长的平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成矩形闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1。

用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后()A.金属棒ab、cd都做匀速运动B.金属棒ab上的电流方向是由b向aC.金属棒cd所受安培力的大小等于2F3D.两金属棒间距离保持不变ab、cd进行受力和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab速度小于金属棒cd速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向是由b到a,A、D错误,B正确;以两金属棒整体为研究对象有F=3ma,隔离金属棒cd分析F-F安=ma,可求得金属棒cd所受安培力的大小F安=23F,C正确。

3.如图所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长,置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速完全进入磁场,两次速度大小相同,方向均垂直于MN。

第7课时:电磁感应中的能量转化和图象问题习题课

第7课时:电磁感应中的能量转化和图象问题习题课

第七课时电磁感应中的能量转化和图象问题习题课1.把一个矩形框从匀强磁场中匀速拉出第一次速度为V1,第二次速度为V2,且V2=2V1.若两次拉出线框所做的功分别为W1和W2,产生的热量分别为Q1和Q2,下面说法正确的是( )A.W1=W2,Q1=Q2 B.W1<W2,Q1<Q2C.W1=2W2,Q1=Q2 D.W2=2W1,Q2=2Q12.如左图中的虚线上方空间有垂直线框平面的匀强磁场,直角扇形导线框绕垂直于线框平面的轴O以角速度ω匀速转动.设线框中感应电流的方向以逆时针为正方向,那么在下图中能正确描述线框从图所示位置开始转动一周的过程中,线框内感应电流随时间变化情况的是()3.如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R1和R2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab,质量为m,导体棒的电阻与固定电阻R1和R2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab沿导轨向上滑动,当上滑的速度为v时,受到安培力的大小为F.此时()A.电阻R1消耗的热功率为Fv/3 B.电阻R2消耗的热功率为Fv/6C.整个装置因摩擦而消耗的热功率为μmgv cosθD.整个装置消耗的机械功率为(F+μmg cosθ)v4.如左图所示,圆形线圈P静止在水平桌面上,其正上方悬挂一相同的线圈Q,P和Q共轴.Q中通有变化电流,电流随时间变化的规律如右图所示.P所受的重力为G,桌面对P的支持力为F N.则以下判断正确的是A. t1时刻F N>GB. t2时刻F N>GC. t3时刻F N<GD. t3时刻F N=G5.一矩形线圈位于一随时间t变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图1所示.以I表示线圈中的感应电流,以图中的线圈上所示方向的电流为正,则图2的I-t图正确的是()图1图26.如图所示,在倾角为300的绝缘斜面上,固定两条无限长的平行光滑金属导轨,匀强磁场B 垂直于斜面向上,磁感应强度B =0.4T ,导轨间距L =0.5m ,两根金属棒ab 、cd 与导轨垂直地放在导轨上,金属棒质量m ab =0.1kg ,m cd =0.2kg ,每根金属棒的电阻均为r =0.2 ,导轨电阻不计.当用沿斜面向上的拉力拉动金属棒ab 匀速向上运动时.cd 金属棒恰在斜面上保持静止.求:(g 取10m/s 2)(1) 金属棒cd 两端电势差; (2) 作用在金属棒ab 上拉力的功率.7.在图甲所示区域(图中直角坐标系Oxy 的1、3象限)内有匀强磁场,磁感应强度方向垂直于图面向里,大小为B 半径为l ,圆心角为60o 的扇形导线框OPQ 以角速度ω绕O 点在图面内沿逆时针方向匀速转动,导线框回路电阻为R .(1)求线框中感应电流的最大值I 0和交变感应电流的频率f .(2)在图乙中画出线框转一周的时间内感应电流I 随时间t 变化的图像.(规定与图甲中线框的位置相应的时刻为t =0)8.水平面上两根足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆,如图所示;金属杆与导轨的电阻忽略不计,匀强磁场竖直向下.用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动.当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 和F 的关系如图.(取重力加速度g =10m/s 2)(1)金属杆在匀速运动之前做什么运动?(2)若m =0.5kg ,L =0.5m ,R =0.5Ω;磁感应强度B 为多大?(3)由v -F 图线的截距可求得什么物理量?其值为多少?9.如图所示,将边长为a、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度为b、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里.线框向上离开磁场时的速度刚好是进人磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进人磁场.整个运动过程中始终存在着大小恒定的空气阻力f且线框不发生转动.求:(1)线框在下落阶段匀速进人磁场时的速度v2;(2)线框在上升阶段刚离开磁场时的速度v1;(3)线框在上升阶段通过磁场过程中产生的焦耳热Q.10.如图甲所示,不计电阻的“U”形光滑导体框架水平放置,框架中间区域有竖直向上的匀强磁场,磁感应强度B=1.0T,有一导体杆AC横放在框架上,其质量为m=0.10kg,电阻为R=4.0Ω.现用细绳栓住导体杆,细绳的一端通过光滑的定滑轮绕在电动机的转轴上,另一端通过光滑的定滑轮与物体D相连,物体D的质量为M=0.30kg,电动机的内阻为r=1.0Ω.接通电路后,电压表的示数恒为U=8.0V,电流表的示数恒为I=1.0A,电动机牵引原来静止的导体杆AC平行于EF向右运动,其运动的位移—时间图像如图乙所示.取g=10m/s2.求:(1)匀强磁场的宽度;(2)导体杆在变速运动阶段产生的热量.全国卷Ⅰ如图所示,LOO’L’为一折线,它所形成的两个角∠LOO’和∠OO’L‘均为450。

《法拉第电磁感应定律》习题课

《法拉第电磁感应定律》习题课

过程中通过电阻R的电量的大小依次为Q1、 Q2、 Q3和Q4 ,则
A.Q1= Q2 =Q3= Q4 B.Q1= Q2 =2Q3=2 Q4 C. 2Q1= Q2 =Q3= Q4 D. Q1≠ Q2 =Q3≠ Q4
× b × d ×× × R ×
×
× × ×
×
× × ×
×
× c × × a
如图,在匀强磁场中固定放置一根串接一电阻R的直角形金 属导轨aob(在纸面内),磁场方向垂直纸面朝里,另有两根
金属导轨c、d分别平行于oa、ob放置。保持导轨之间接触良
好,金属导轨的电阻不计。现经历以下四个过程:①以速率v 移动d,使它与ob的距离增大一倍;②再以速率v移动c,使它 与oa的距离减小一半;③然后,再以速率2v移动c,使它回到 原处;④最后以速率2v移动d,使它也回到原处。设上述四个
法拉第电磁感应定律 习题课
知识回顾:
感应电动势的有无取决于: 磁通量是否变化
感应电动势的大小取决于: 磁通量的变化率的大小 t Φ 法拉第电磁感应定律: E n t
(n为线圈的匝数) 通常计算平均感应电动势 E求解

重要的推论: E BLv1 BLvsin
(θ为v与B夹角) 多用于计算瞬时感应电动势
1.磁感应强度以10T/s的变化率均匀增加 2.磁感应强度随时间变化满足以下关系: B=(10+10t)T 3.磁场的磁感应强度随时间变化的图象如图所示:
通过电阻R的电流又各为为多少?
练习1
练习3
练习3: 如下图所示,导线全部为裸导线,半径 为r的圆内有垂直于圆平面的匀强磁场,磁感应强 度为B。一根长度大于2r的导线MN以速度v在圆环 上无摩擦地自左端匀速滑动到右端,电路的固定电 阻为R,其余电阻忽略不计。试求MN从圆环的左 端滑到右端的过程中电阻R上的电流强度的平均值 以及通过的电量。

电磁感应习题课

电磁感应习题课

的感应电流,在i随时间增大的过程中,电阻消耗的功率
F
a
b 电阻
A.等于F的功率
B.等于安培力的功率的绝对值
C.等于F与安培力合力的功率 D.小于iE
3.两根相距为L的足够长的金属直角导轨如图所示放置,它们各有
一边在同一水平面内,另一边垂直于水平面。质量均为m的金属细
杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均
2.如图所示,位于一水平面内的、两根平行的光滑金属导轨,处在
匀强磁场中,磁场方向垂直于导轨所在的平面,导轨的一端与一电阻相
连;具有一定质量的金属杆ab放在导轨上并与导轨垂直。现用一平行于
导轨的恒力F拉ab,使它由静止开始向右运动。杆和导轨的电阻、感应
电流产生的磁场均可不计。用E表示回路中的感应电动势,i表示回路中
面转化为线框中的电能,另一方面使线框动能增加 C.从ab边出磁场到线框全部出磁场的过程中,F所做的功等
于线框中产生的电能 D.从ab边出磁场到线框全部出磁场的过程中,F所做的功
小于线框中产生的电能
2.如图,边长L的闭合正方形金属线框的电阻R,以速度v匀 速穿过宽度d的有界匀强磁场,磁场方向与线框平面垂直,磁 感应强度B,若L<d,线框穿过磁场的过程中产生的焦耳热为 ___________;若L>d,线框穿过磁场的过程中产生的焦耳热 为________________.
R1 R2 l a b M N P Q B v
10.如图所示,顶角θ=45º的金属导轨MON固定在水平面内,导轨处 在方向竖直、磁感应强度为B的匀强磁场中。一根与ON垂直的导体棒在 水平外力作用下以恒定速度v0沿导轨MON向右滑动,导体棒的质量 为m,导轨与导体棒单位长度的电阻均为r。导体棒与导轨接触点为a和 b,导体棒在滑动过程中始终保持与导轨良好接触。t=0时,导体棒位于 顶角O处。求:⑴t时刻流过导体棒的电流强度I和电流方向。⑵导体棒 作匀速直线运动时水平外力F的表达式。⑶导休棒在0-t时间内产生的焦 耳热Q。

人教版高中物理选择性必修第二册课后习题 第2章 电磁感应 习题课三 电磁感应中的综合问题

人教版高中物理选择性必修第二册课后习题 第2章 电磁感应 习题课三 电磁感应中的综合问题

习题课三电磁感应中的综合问题课后·训练提升基础巩固一、选择题(第1~2题为单选题,第3~6题为多选题)1.如图所示,垂直于导体框平面向里的匀强磁场的磁感应强度为B,导体ef的长为l,ef的电阻为r,外电阻阻值为R,其余电阻不计。

ef与导体框接触良好,当ef在外力作用下向右以速度v匀速运动时,ef两端的电压为( )A.BlvB.BlvRR+r C.BlvrR+rD.BlvrR,导体棒切割磁感线产生的感应电动势为E=Blv,ef两端的电压相当于电源的路端电压,根据闭合电路欧姆定律得U ef=ER总·R=BlvR+rR,选项B正确。

2.在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图甲所示,当磁场的磁感应强度B随时间t 按图乙所示变化时,下列选项能正确表示线圈中感应电动势E变化的是( )内,磁感应强度均匀增大,根据楞次定律,线圈中感应电流为负方向,且保持不变;1~3s内,磁感应强度不变,线圈中感应电流为零;3~5s 内,磁感应强度均匀减小,线圈中感应电流为正方向,且保持不变;0~1s内和3~5s内磁场的变化率之比为2∶1,即感应电动势之比为2∶1,可得出感应电动势图像为B,选项B正确。

3.由螺线管、电阻和水平放置的平行板电容器组成的电路如图所示,其中,螺线管匝数为n,横截面积为S,电容器两极板间距为d。

螺线管处于竖直向上的匀强磁场中,一质量为m、电荷量为q的带正电颗粒悬停在电容器中,重力加速度大小为g,则( )A.磁感应强度均匀增大B.磁感应强度均匀减小C.磁感应强度变化率为nmgdqSD.磁感应强度变化率为mgdnqS,带正电颗粒悬停在电容器中,粒子受重力与静电力作用,故静电力竖直向上,电容器下极板带正电,即通电螺线管的下端为电源正极,根据电源内部的电流由负极流向正极,由安培定则可知磁感应强度均匀减小,选项A错误,B正确。

带正电颗粒悬停在电容器中,粒子受重力与静电力作用,有qE=mg,根据法拉第电磁感应定律有E电=nΔΦΔt =nΔBΔtS,且E=E电d,联立解得ΔBΔt =mgdnqS,选项C错误,D正确。

电 磁 感 应 习 题 课

电 磁 感 应 习 题 课

电 磁 感 应 习 题 课(数学表达式中字母为黑体者表示矢量)壹 内容提要一、法拉第电磁感应定律 εi = -d Φ /d t (εi =-d Ψ/d t , Ψ =N Φ) ; I i =εi /R =-(1/R )d Φ/d t , q i =⎰21d i t t t I =(1/R )(Φ1-Φ2); 楞次定律(略)。

二、动生电动势 εi = ⎰l v×B·d l 。

三、感生电动势 εi =-d Φ /d t =()⎰⋅∂∂-S S Bd t ;感生电场(涡旋电场)E k (题库为E i ):高斯定理0d i =⋅⎰SS E ,安培环路定理 ⎰=⋅ll E d k -d Φ /d t =()⎰⋅∂∂-SS Bd t , 感生电场为无源场、有旋场(非保守场),其电场线为闭合曲线。

四、自感 L=Φ/I (L=Ψ/I ) , εL =-L d I /d t ; 互感 M=Φ21/I 1 =Φ12/I 2 , ε21=-M d I 1 /d t , ε12=-M d I 2 /d t 。

五、磁场能量 自感磁能W m =LI 2 /2 , 磁能密度w m =B ・H / 2 , 某磁场空间的磁能W m =∫V w m d t =∫V (1/2) B ・H d t 。

六、位移电流 I d =d ψ/d t , j d =∂D/∂t , 电位移通量ψ (题库为ΦD ) ψ=∫S D ・d S 。

七、麦克斯韦方程组的积分形式V ρ d d 0⎰⎰=⋅SVS D ,()⎰⎰⋅∂∂-=⋅SlS Bl E d d t ,⎰=⋅SSB 0d ,()⎰⎰⋅∂∂+=⋅SlS Dj l H d d t 。

八、电磁波的性质 (1)横波性与偏振性,E 、H 、u 相互垂直且成右手螺旋;(2) E 、H 同步变化; (3)ε1/2E =μ1/2H ; (4)电磁波速u=1/(εμ)1/2, 真空中u=1/(ε0μ0)1/2。

电磁感应习题课

电磁感应习题课

.
(1分)
(2)由能量守恒定律得 mgh= (2分) . (2)mghm3 g 2 R 2 2B 4 L 4
(2分)
高中物理 选修3-2
电磁感应现象习题练习与分析
东山二中 沈雄斌
一、电磁感应现象 楞次定律 右手定则 1、感应电流产生的条件 穿过闭合回路的磁通量发生变化 2、楞次定律的理解与应用 感应电流的磁场总要阻碍引起感应 电流的磁通量的变化
3、右手定则
导体切割磁感线运动产生感vmax; (2)金属杆由静止开始下落至速度最大的过程中,电阻R上 产生的热量Q.
【解析】(1)杆速度最大时合力为零有 ILB=mg I=
E R
①(1分) ②(1分) ③(1分)
mgR B2 L 2
E=BLvmax
①②③联立得vmax=
1 mv max 2+Q 2 m3 g 2 R 2 得Q=mgh2B 4 L 4 答案:(1) mgR2 B2 L
B
三、电磁感应中的力学问题
1、当杆ab的速度为v时,求ab 杆中的电流及加速度的大小 2、下滑过程中速度的最大值
四、电磁感应中的能量问题
如图所示,平行光滑的金属导轨竖直放置,宽为L,上端接
有阻值为R的定值电阻.质量为m的金属杆与导轨垂直放置且
接触良好.匀强磁场垂直于导轨平面,磁感应强度为B.导轨 和杆的电阻不计.金属杆由静止开始下落,下落h时速度达 到最大,重力加速度为g,求:
在两根平行的长直导线M、N中,通以同方 向,等大小的电流,线框abcd与导线在同一 平面内,线框沿着与导线垂直的方向从右向 左匀速运动,移动中线框感应电流的方向。
a
b
I
I
c
d
M
N

华南师范大学电磁学习题课-电磁感应

华南师范大学电磁学习题课-电磁感应
r dB ˆ Ei e 2 dt (r R)
L
ˆ e
a
o
θ
R
rdl h
L Ei
b
ˆ 的方向与磁场B的方向满足右手螺旋关系 其中 e 在金属棒上取一微元段 dl ,如图所示. 那么在这微元段 dl 上的感生电动势为 r dB r dB r dB ˆ dl d i Ei dl e dl cos( ) cosdl
0 D a L1 ln a
D
S
证明:两条平行的输电线一去一回构成一长窄条 回路,可以引入单位长度的自感的概念. 当电线中 通有电流I时,通过导线间单位长度的面积S的磁 通量为
Da
2
B
a
Da
1
1dr 2

a
0 I 0 I D a dr ln 2r a
那么这两条输电线单位长度的自感为
0 D a L1 ln I a
19
10.19 两个平面线圈,圆心重合地放在一起,但轴线 正交. 二者的自感系数分别为L1和L2,以L表示二者 相连结时的等效自感,试证明: L2 (1) 两线圈串联时,L=L1+L2;
1 1 1 (2) 两线圈并联时, L L1 L2
L1
a f
小方块所受的力安培力大小为
f BIa
方向与沿小方块的速度方向相反 故小方块所受的电磁阻尼力矩大小为
M=fr BIar ( Bar) 2 b


方向与沿圆盘角速度方向相反
18
10.18两条平行的输电线半径为a,二者中心相距为D, 电流一去一回. 若忽略导线内的磁场,证明这两条输 电线单位长度的自感为 a

电磁感应习题课之能量问题

电磁感应习题课之能量问题

高二物理电磁感应提高练习(2014-3-4)1.将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直,关于线圈中产生的感应电动势和感应电流,下列表述正确的是( )A .感应电动势的大小与线圈的匝数无关B .穿过线圈的磁通量越大,感应电动势越大C .穿过线圈的磁通量变化越快,感应电动势越大D .感应电流产生的磁场方向与原磁场方向始终相同2、如图1所示,矩形金属框置于匀强磁场中,ef 为一导体棒,可在ab 和cd 间滑动并接触良好;设磁感应强度为B ,ef 长为L ,在Δt 时间内向左匀速滑过距离Δd ,由电磁感应定律E=n t∆∆Φ可知,下列说法正确的是( )A 、当ef 向左滑动时,左侧面积减少L ·Δd,右侧面积增加L ·Δd ,因此E=2BL Δd/ΔtB 、当ef 向左滑动时,左侧面积减小L ·Δd ,右侧面积增大L ·Δd ,互相抵消,因此E=0C 、在公式E=nt∆∆Φ中,在切割情况下,ΔΦ=B ·ΔS ,ΔS 应是导线切割扫过的面积,因此E=BL Δd/ΔtD 、在切割的情况下,只能用E=BLv 计算,不能用E=n t∆∆Φ计算3.矩形导线框abcd 固定在匀强磁场中,如图甲所示,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直于纸面向里,磁感应强度B 随时间t 变化的规律如图乙所示,则( )A .从0到t 1时间内,导线框中电流的方向为adcbaB .从0到t 1时间内,导线框中电流越来越小C .从t 1到t 2时间内,导线框中电流越来越大D .从t 1到t 2时间内,导线框bc 边受到安培力大小保持不变4.如图所示,让线圈由位置1通过一个匀强磁场的区域运动到位置2,下列说法中正确的是 A .线圈进入匀强磁场区域的过程中,线圈中有感应电流,而且进入时的速度越大,感应电流越大B .整个线圈在匀强磁场中匀速运动时,线圈中有感应电流,而且感应电流是恒定的C .整个线圈在匀强磁场中加速运动时,线圈中有感应电流,而且感应电流越来越大D .线圈穿出匀强磁场区域的过程中,线圈中有感应电流,而且感应电流一定越来越大5.如图所示,空间存在两个磁场,磁感应强度大小均为B ,方向相反且垂直纸面,MN 、PQ 为其边界,OO ′为其对称轴。

大学物理课件电磁感应习题

大学物理课件电磁感应习题

I a
b
v
l
例题:在半径为R的圆柱形体积内,充满磁感应强度为 B的均匀磁场。有一长为L的金属棒放在磁场中,设磁 场在增强,并且变化率已知,求棒中的感生电动势。

R

o B
L
R o
h E感 r
开始时滑动边与对边重合,试求任意时刻矩形框中的感
应电动势及方向。



B

ds
s

ab

a
I (t 0 2y
)


ldykˆ

I 0
(t)l
ln
a

b
2
a
ε
d a b dI (t)
dl
0 ln
(l
I (t) )
(a)
i
dt
2 a
dt
dt

(t
1)
(2)若长直导线中通以电流I,线框中的互感电动势 (3)若线框中通以电流I,长直导线中的互感电动势
I I0 sin t
a
cb
C
r

d a
d
0Iv cos 2r
dr
sin
方向: ABC
i AB AC
0Ivb ln d a 2a d
例题:长为L,质量为m的均匀金属细棒,以o为中心在 垂直图面向里的均匀磁场中转动,棒的另一端在半径为L 的金属环上滑动,设t=0时,角速度为ω0,忽略金属的 电阻。
求:1.当角速度为ω时动生电动势大小 2.棒的角速度随时间变化的表达式
B

ω
L
1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业79.一半径r=10cm的圆形闭合导线回路置于均匀磁 场B ( B=0.80T)中,B与回路平面正交。若圆形回路的半径 从t=0开始以恒定的速率(dr/dt=-80cm/s)收缩,则在t=0时 刻闭合回路的感应电动势的大小是多少?如要求感应电动 势保持这一数值,则闭合回路面积应以怎样的恒定速率收 缩?
作业84.无限长直导线载有电流I,其旁放置一段长度为l与 载流导线在同一平面内且成的导线。计算当该导线在平面上 以垂直于载流导线的速度v平移到该导线的中点距载流导线 为a时,其上的动生电动势,并说明其方向。
a I
60°
l
孙秋华
Harbin Engineering University
Ⅱ 感生电动势的计算 利用法拉第电磁感应定律
1. 求长度为L的金属杆在均匀磁场B中绕平行于磁场方向的定 轴转动时的动生电动势。已知杆相对于均匀磁场B的方位 角为,杆的角速度为 ,转向如图所示。
B


孙秋华
L
Harbin Engineering University
解: ab
( v B ) dl
b 0
vBdl sin
另外一边产生的动生电动势与2大小相等绕向相同
孙秋华
Harbin Engineering University
2 3 ac 1 2 2 [ ln ] 2π a 3 a
其方向为顺时针
0 Iv l
C I D a A
孙秋华
Harbin Engineering University
6.理解涡旋电场和位移电流的概念。理解变化磁场引起电 场和变化电场引起磁场的两个基本规律,是电磁感应定 律和安培环路定律相应的推广。掌握麦克斯韦方程组的 积分形式。掌握电磁波的性质及波印廷矢量
孙秋华
Harbin Engineering University
电磁感应习题课
一、基本概念
dI n 1.电流密度矢量 : j ds
6.位移电流密度: D jd t 7.麦克斯韦方程组:
s
d 5.位移电流: I d dt
D ds
D ds q0
s
B dS 0
s
E dl t B dS L s
8. 玻印廷矢量: E H S
作业81.电量Q均匀分布在半径为a、长为L (L>>a) 的绝缘 薄壁长圆筒表面上,圆筒以角速度绕中心轴线旋转。一半 径为2a、电阻为R的单匝圆形线圈套在圆筒上(如图所示)。 若圆筒转速按照= 0(1-t/t0)的规律( 0和t0是已知常数) 随时间线性地减少,求圆形线圈中感应电流的大小和方向。
D
孙秋华
Harbin Engineering University
1
2.选坐标 3.找微元dl
vl 0 I vlB 2 πa
C I o a A
dl
vB
D x
v
4.确定微元处v 和B
0 I B 2x
d 2 (v B) d l vB cos60 d l
a、规定正方向abcda
b、计算 t 时刻的磁通量
0 I (t ) (t ) vtdx l 2x 0 I (t ) l0 l vt ln 2 l0 0 I 0 cos t l0 l (t ) vt ln 2 l0
l0 l
0
孙秋华
v
a
I o d
b
l2 c l
2.电源电动势: E dl K


3.涡旋电场:由变化磁场而激发的电场。 4.磁场的能量及能量密度 a.能量密度: wm
1 BH 2
b.磁场能量: m wm dV 1 BH dV W 2 V V
孙秋华
Harbin Engineering University
解:选 abcd 回路的绕行方向顺时针为正,则有
d B dS BS abmn dt dB S abmn 3.68mV 方向:逆时针 dt
c
B m ab oo ba R n
d
孙秋华
Harbin Engineering University
0
L
B
b
(v B )
l sin dl sin
0
L

v
a
1 BL2 sin 2 2
电动势的方向从a
孙秋华
b
Harbin Engineering University
例2.一无限长竖直导线上通有稳定电流I,电流方向向上。 导线旁有一与导线共面、长为L的金属棒,绕其一端O在该 平面内顺时针匀速转动,如图。转动角速度为,O点到导 线的垂直距离为r0 (r0>L)。试求金属棒转到与水平面成角 时,棒内感应电动势的大小和方向。 B
例5.如图所示,长直导线中电流为I,矩形线圈abcd与长直 导线共面,且ab//dc,dc边固定,ab边沿da及cb以速度v无 摩擦地匀速平动。t=0时,ab边与cd边重合。设线圈自感忽 略不计。(1)如I=I0,求ab中的感应电动势。(2)如 I=I0cost,求ab边运动到图示位置线圈中的总感应电动势。
v
I D
a
A
孙秋华
Harbin Engineering University
解: 1.规定导线的正方向AC D A

ACDA
(v B ) dl
I
C D a A
1 2 3
C 1 (v B) dl A D 2 (v B) dl C A 3 (v B) dl
孙秋华
Harbin Engineering University
作业80.一导线弯成如图形状,放在均匀磁场B中,B的 方向垂直图面向里。 bcd 600 , bc cd a. 使导线绕轴oo´ 旋转,如图转速为每分钟n转。计算oo’
B
c
o
b
d

孙秋华
Harbin Engineering University
H dl I 0 t D dS L s
孙秋华Leabharlann Harbin Engineering University
二、基本定律
d m 1.法拉第电磁感应定律: dt 2.楞次定律:(略)
三.基本运算: 1)动生电动势:
负号表明方向
即导体在磁场中切割磁力线时,才能产生动生电动势。该 导体相当于一个电源,在其内部它由低电势指向高电势, 此时的非静电力为: K V B E
d m dt
dI L dt
M
21
L I
12 21 I2 I1
m
1 BH 2
Wm

m
dV
Wm
S EH
V D jD t
1 LI 2 2
Harbin Engineering University
四、典型例题:
Ⅰ动生电动势的计算 b ab Ek dl a
Harbin Engineering University
教学要求
1.掌握电流密度矢量和电动势的概念 2.熟练掌握法拉第电磁感应定律,能根据定律解决实际问 题。 3.能熟练掌握动生电动势的计算。 4.正确理解自感和互感现象,会计算自感和互感及自感电 动势和互感电动势。
5.掌握磁场的能量和场能密度的计算。
L


I
r0
o
孙秋华
Harbin Engineering University
解: (v B ) dl
a o
B

r0 L cos

dl

r0
0 I l dl 2x
I r0

x
o
其中 : x r0 l cos dx dl cos
r0 L cos
则: ab
孙秋华
(v B) dl
b a
Harbin Engineering University
2)感生电动势:闭合回路不动,由于穿过回路的磁通量发 生变化而产生的电动势。
非静电力为: K E涡旋 E B 所以: i E涡 dl t dS
l0
x
Harbin Engineering University
3.计算回路中的电动势
i
d N dt
0 I 0 sin t l0 l 0 I 0v cos t l0 l (t ) vt ln ln 2 l0 2 l0
孙秋华
Harbin Engineering University
电 磁 感 应
其它计算
孙秋华
AB
电动势
L
s (v B ) dl
B A
B ds 0
i
dI 1 M dt
B E dl ds t L s D H dl I 0 ds t L s
解:1.规定回路的正方向 2.计算任意时刻的磁通量 a. 考察曲面及曲面上 B的分布 b. 选坐标 c. 选微元 d.计算微元中的磁通量 f. 求出任意时刻通过该矩形平面的磁通量 3.计算回路中的电动势
i
孙秋华
d N dt
Harbin Engineering University
例4.均匀磁场B被限制在半径R=10cm的无限长圆柱空间内,
相关文档
最新文档