第15章量子物理指导
爱因斯坦光量子理论
o
U0 ( 一定) U AK
伏安曲线
大学物理 第三次修订本
3
第15章 量子物理基础
(2)截止频率 对一定金属,只有入射光 的频率大于某一频率ν0时, 电子才能从该金属 表面逸出,这个频率叫 (红限)。
如果入射光的频率小于截止频率则无论入 射光强度多大,都没有光电子逸出。
大学物理 第三次修订本
第15章 量子物理基础
15.2 光电效应 爱因斯坦光量子理论
一、光电效应的实验规律
金属及其化合物在光照射下发射电子的现 象称为光电效应。逸出的电子为光电子,所测 电流为光电流。
光电效应现象是德国物理学家赫兹于1887 年研究电磁波的性质时偶然发现的。
当时赫兹只是注意到用紫外线照射在放电 电极上时,放电比较容易发生,却不知道这一 现象产生的原因。
大学物理 第三次修订本
9
第15章 量子物理基础
2.光电效应方程
按照光子假说, 并根据能量守恒定律, 当金 属中一个电子从入射光中吸收一个光子后,获 得能量 hv ,如果hv 大于该金属的电子逸出功 A ,这个电子就能从金属中逸出,并且有
h
A
1 2
mvm 2
—— 爱因斯坦光电效应方程
式中
1 2
大学物理 第三次修订本
13
第15章 量子物理基础
由爱因斯坦方程
h
A
1 2
mvm 2
利用
1 2
mvm 2
eU a
爱因斯坦方程写成 h A eUa
两边取微分,得 Ua h
e
通过计算可得 h 6.191034 J s
此值与公认值 h 6.62607551034 J s 较接近。
量子物理学的诞生波函数一维定态薛定谔方程
V(x)∞ ∞
束缚于金属内的自由电子只 能在金属内运动,而不能逃逸出 金属表面,可以近似地认为金属 内的自由电子在一维无限深势阱 内运动。
o
ax
势能曲线
10
大学物理 第三次修订本
第15章 量子物理基础
薛定谔方程
d2Ψ x
dx2
2mE 2
Ψ
x
0
,0 xa
令 k
2mE 2
则
d
2Ψ x
dx2
k
2Ψ
x
0
方程通解
个空间内连续。
5
大学物理 第三次修订本
第15章 量子物理基础
二、薛定谔方程
1926年薛定谔提出了适用于低速情况下的, 描述微 观粒子在外力场中运动的微分方程,称为薛定谔方程。
2m
2 x2
2 y 2
2 z 2
V
r, t
Ψ
r,
t
i
Ψ r,t
t
其中,V = V ( r, t ) 是粒子的势能。
薛定谔方程是量子力学的基本方程,是关于r 和 t 的线性偏微分方程。
7
大学物理 第三次修订本
第15章 量子物理基础
在微观粒子的各种定态问题中,将势能函数 V ( r ) 的具体形式
如,氢原子中的电子 一维线性谐振子
V r 1 e2
4π0 r
V x 1 m 2x2
2
代入薛定谔方程, 可以求得定态波函数, 同时也就
确定了概率密度的分布以及能量和角动量等。
8
大学物理 第三次修订本
而成的驻波。
波长n满足条件
a n , n 1, 2,
2
Ψn (x)
n 3 Ψn 2
CH15-7地电子自旋4个量子数(第6次)资料
z
2024/7/14
e 2me
Lz
e 2me
ml
ml B
摄谱仪
v0 +△v v0
v0 -△v
z L
e
磁
矩
μB — 玻尔磁子
11
第15章 量子物理基础
• 磁场作用下的原子附加能量
E
B
z
B
ml BB
其中 ml = 0, ±1, ± 2, …, ± l
• 能级分裂 l=1
(n 0,1, 2, )
说明 普朗克量子化假设 量子力学结果
En=nhv En=(n+1/2)hv
E0= 0 零点能 E0= hv/2
2024/7/14
2
第15章 量子物理基础
五.隧道效应(势垒贯穿)
势垒 Ⅰ区 U ( x ) = 0 x ≤ 0
Ⅱ区 U ( x ) = U0 0≤ x ≤ a
U0 ⅠⅡ Ⅲ
l 0、1、2、3、4、5
s、p、d、f、g、h
二.能量最小原理
原子处于正常状态时,每个电子都趋向占据可能的最低能级
主量子数 n
2024/7/14
决定
能级高低
影响
角量子数 l
19
第15章 量子物理基础
1s 2s 2p 3s 3p 3d 4s
1氢 H 1 2 氦 He 2
3 锂 Li 2 1 4 铍 Be 2 2
第15章 量子物理基础
四.一维谐振子
1.势能函数
U (x)
1 2
kx
2
1 2
m
2
x2
m — 振子质量, — 固有频率,x — 位移
2.定态薛定谔方程
15.6 波函数 一维定态薛定谔方程
2
2mE
2
2
, n 1, 2 ,
En n
π
2 2
,
n 1, 2 ,
2ma
n 为主量子数,表明粒子的能量是量子化的。
大学物理 第三次修订本
13
第15章 量子物理基础
波函数
nπ Ψ n x A sin a
2 a
x , n 1, 2 ,
i t Ψ (r , t ) Ψ (r )e
E
定态薛定谔方程
2m 2 2 2 Ψ( r ) 2 E V Ψ(r ) 0 x y z
2 2 2
若粒子在一维空间运动,则
d Ψ x
2
dx
2
2m
大学物理 第三次修订本
o
a
x
势能曲线
11
第15章 量子物理基础
薛定谔方程
d Ψ x
2
dx
2
2mE
2
Ψ x 0
d Ψ x
2
,0 xa
k Ψ x 0
2
令 k
2 mE
2
则
dx
2
方程通解
Ψ x A sin kx B cos kx
Ψ 利用边界条件 x = 0, 0 0 , 则 B = 0 。
物质波波函数是复数,它本身并不代表任 何可观测的物理量。 波函数是怎样描述微观粒子运动状态的?
大学物理 第三次修订本
3
第15章 量子物理基础
1926年德国物理学家玻恩提出了物质波的 统计解释:实物粒子的物质波是一种概率波, t 时刻粒子在空间 r 处附近的体积元 dV 中出现的 概率dW与该处波函数绝对值的平方成正比。
测不准关系
E t 2
理论上,计算平均寿命→估计能量的范围; 实验上,测量能级宽度→估计不稳态的寿命。
15.5 测不准关系
第15章 量子物理基础
例15.12 原子的线度为1010 m ,求原子中电子速度的不 确定量.
解:“电子在原子中”就意味着电子的位置不确定 量为 x 1010 m .根据测不准关系可得
解:
E
1.05 10 10 8
34
1.051026 J 6.6108eV
当原子从激发态向基态跃迁时,由于能级有一 定的宽度,则光谱线也有一定的宽度,称为自然宽 度.反过来,根据谱线的自然宽度可以确定原子在激 发态的平均寿命.
15.5 测不准关系
作业:P267 15.17、15.21
第15章 量子物理基础
海森堡严格的理论给出光子坐标与动量的测不 准关系为
xpx
2
ypy
2
zpz
2
h 1.05458871034 J s
2
或: xpx ypy zpz
15.5 测不准关系
第15章 量子物理基础
时间与能量的测不准关系:
E t 2
即:如果测量光子的时间精确到Δt ,则测得光
子能量的精度就不会好于ΔE 。
15.5 测不准关系
第15章 量子物理基础
3)对宏观粒子,因 h 很小,所以 xpx 0
可视为位置和动量能同时准确测量 .
例 1 一颗质量为10 g 的子弹,具有 200m s1 的
速率 . 若其动量的不确定范围为动量的 0.01% (这在
宏观范围是十分精确的 ) , 则该子弹位置的不确定量 范围为多大?
解 子弹的动量
p mv 2kg m s1
大学物理讲稿(第15章量子力学基础)
第15章 量子力学基础人们用经典物理解释黑体辐射、光电效应、氢原子光谱等实验规律时,遇到了不可克服的困难.经过不断的探索和研究,终于突破了经典物理的传统观念,建立起量子理论.量子理论和相对论是现代物理学的两大支柱.量子理论的诞生,对研究原子、电子、质子、光子等微观粒子的运动规律提供了正确的导向.从此使物理学发生了一次历史性的飞跃,促进了原子能、激光、超导、半导体等众多新技术的生产和发展.本章前部分,分别介绍黑体辐射、光电效应、氢原子光谱等实验规律以及为解释这些实验规律而提出的量子假设,即早期的量子论.本章的后部分简要介绍量子力学的基本概念及原理,并通过几个具体事例的讨论说明量子力学处理问题的一般方法.§15.1 黑体辐射与普朗克的量子假设一、黑体辐射的基本规律1 热辐射组成物体的分子中都包含着带电粒子,当分子作热运动时物体将会向外辐射电磁波,由于这种电磁波辐射与物体的温度有关,故称其为热辐射.实验表明,热辐射能谱是连续谱,发射的能量及其按波长的分布是随物体的温度而变化的.随着温度的升高,不仅辐射能在增大,而且辐射能的波长范围向短波区移动.物体在辐射电磁波的同时,也吸收投射到物体表面的电磁波.理论和实验表明,物体的辐射本领越大,其吸收本领也越大,反之亦然.当辐射和吸收达到平衡时,物体的温度不再变化而处于热平衡状态,这时的热辐射称为平衡热辐射.为描述物体热辐射能按波长的分布规律,引入单色辐射出射度(简称单色辐出度)这一物理量,其定义为:物体单位表面积在单位时间内发射的、波长在λ+λ→λd 范围内的辐射能dM λ与波长间隔d λ的比值,用M λ(T)表示,即λ=λλd dM T M )( (15.1) 而辐出度定义为⎰∞λλ=0d T M T M )()( (15.2) 2 黑体辐射的基本规律投射到物体表面的电磁波,可能被物体吸收,也可能被物体反射和透射.能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为绝对黑体,简称黑体.绝对黑体是一种理想模型,实验室中用不透明材料制成带有小孔的空腔物体可近似看作黑体.图15.1为用实验方法测得的黑体单色辐出度M B λ (T)按波长和温度分布的曲线.关于黑体辐射,有两个基本定律:一个是斯特藩—玻耳兹曼定律(M B (T )=σT 4 ,即黑体的辐出度与其热力学温度的四次方成正比 ,其中σ=5.6705×10-8 W•m -2 • K -4 称为斯特藩—玻耳兹曼常数);另一个是维恩位移定律(λm T=b,即黑体单色辐出度的最大值对应的波长λm 与其绝对温度T 成反比,其中b=2.8978×10-3m •K 为与温度无关的常数).这两个定律在现代科学技术中有广泛的应用.通常用于测量高温物体(如冶炼炉、钢水、太阳或其他发光体等)温度的光测高温法就是在这两个定律的基础上建立起来的,同时,这两个定律也是遥感技术和红外跟踪技术的理论依据.从理论上导出绝对黑体单色辐出度与波长和温度的函数关系,即M Bλ=f(λ, T) ,是19世纪末期理论物理学面临的重大课题.维恩(W.Wien,1864—1928年)假定带电谐振子的能量按频率的分布类似于麦克斯韦速率分布率,然后用经典统计物理学方法导出了黑体辐射的下述公式T c B e c T M λ-λλ=/)(251 (15.3) 其中 和 是两个由实验确定的参数.上式称为维恩公式.维恩公式只是在短波波段与实验曲线相符,而在长波波段明显偏离实验曲线,如图15.2所示.瑞利(J.W.S.Rayleigh,1842—1919年)和金斯(J.H.Jeans,1877—1946年)根据经典电动力学和经典统计物理学导出了另一个力图反映绝对黑体单色辐出度与波长和温度关系的函数 42λπ=λckT T M B )( (15.4) 式中c 是真空中的光速,k 是玻耳兹曼常数.上式称为瑞利—金斯公式.该公式在长波波段与实验相符,但在短波波段与实验曲线有明显差异,如图15.2所示.这在物理学史上曾称为“紫外灾难”.234167895οοοοοοοοοοοοοο瑞利—金斯线 维恩线 普朗克线 能量密度 m/μ波长图15.2二、普朗克的量子假设1900年普朗克(M.Planck,1858—1947年)在综合了维恩公式和瑞利—金斯公式各自的成功之处以后,得到黑体的单色辐出度为)()(/11252-λπ=λλkT hc B e hc T M (15.5) 这就是普朗克公式,式中h 为普朗克常数,1986年的推荐值为 h=6.6260755×10-34 J ·s.普朗克公式与实验结果的惊人符合预示了其中包含着深刻的物理思想.普朗克指出,如果作下述假定,就可以从理论上导出他的黑体辐射公式:物体若发射或吸收频率为ν的电磁辐射,只能以ε=hν为单位进行,这个最小能量单位就是能量子,物体所发射或吸收的电磁辐射能量总是这个能量子的整数倍,即),,,(Λ321=ν=ε=n nh n E (15.6)普朗克的能量子思想是与经典物理学理论不相容的,也正是这一新思想,使物理学发生了划时代的变化,宣告了量子物理的诞生.普朗克也因此荣获1918年的诺贝尔物理学奖.作业(P224):23§15.2 光电效应与爱因斯坦的光量子假设普朗克的量子假设提出后的最初几年中,并未受到人们的重视,甚至普朗克本人也总是试图回到经典物理的轨道上去.最早认识普朗克假设重要意义的是爱因斯坦,他在1905年发展了普朗克的思想,提出了光子假设,成功的解释了光电效应的实验规律.一、光电效应的实验规律金属在光的照射下,有电子从表面逸出,这种现象称为光电效应.光电效应中逸出金属表面的电子称为光电子.光电子在电场的作用下所形成的电流叫光电流.研究光电效应的实验装置如图15.3所示.在一个抽空的玻璃泡内装有金属电极K(阴极)和A(阳极),当用适当频率的光从石英窗口射入照在阴极K 上时,便有光电子自其表面逸出,经电场加速后为阳极A 所吸收,形成光电流.改变电位差U AK ,测得光电流 i ,可得光电效应的伏安特性曲线,如图15.4所示.实验研究表明,光电效应有如下规律:1)阴极K 在单位时间内所发射的光电子数与照射光的强度成正比.从图15.4可以看出,光电流i 开始时随 增大而增大,而后就趋于一个饱和值 ,它与单位时间内从阴极K 发射的光子数成正比.所以单位时间内从阴极K 发射的光电子数与照射光强成正比.2)存在截止频率.实验表明,对一定的金属阴极,当照射光频率小于某个最小值i s 时,不管光强多大,都没有光电子逸出,这个最小频率v 0称为该种金属的光电效应截止频率,也叫红限,对应的波长0λ称为截止波长.每一种金属都有自己的红限.3)光电子的初动能与照射光的强度无关,而与其频率成线性关系.在保持光照射不变的情况下,改变电位差U AK ,发现当U AK =0时,仍有光电流.这显然是因为光电子逸出时就具有一定的初动能.改变电位差极性,使U AK <0 ,当反向电位差增大到一定值时,光电流才降为零,如图15.4所示.此时反向电位差的绝对值称为遏止电压,用U a 表示.不难看出,遏止电压与光电子的初动能间有如下关系a eU m =υ2021 (15.7) 式中m 和e 分别是电子的静质量和电量, 0υ是光电子逸出金属表面的最大速率. 实验还表明,遏止电压U a 与光强I 无关,而与照射光的频率v 成线性关系,即 0V K U a -ν= (15.8)式中K 和V 0都是正值,其中K 为普适恒量,对一切金属材料都是相同的,而V 0=Kv 0对同一种金属为一恒量,但对于不同的金属具有不同的数值.将式(15.8)代入式(15.7)得 )(002021ν-ν=-ν=υeK eV eK m (15.9) 上式表明,光电子的初动能与入射光的频率成线性关系,与入射光强无关.4)光电子是即时发射的,滞后时间不超过10-9s.实验表明,只要入射光的频率大于该金属的红限,当光照射这种金属表面时,几乎立即产生光电子,而无论光强多大.二、爱因斯坦光子假设和光电效应方程对于上述实验事实,经典物理学理论无法解释.按照光的波动理论,光波的能量由光强决定,在光照射下,束缚在金属内的“自由电子”将从入射光波中吸收能量而逸出表面,因而逸出光电子的初动能应由光强决定,但光电效应中光电子的初动能与光强无关;另外,如果光波供给金属中“自由电子”逸出表面所需的足够能量,光电效应对各种频率的光都能发生,不应该存在红限,而且,光电子从光波中吸收能量应有一个积累过程,光强越弱,发射光子所需要的时间就越长,这都与光电效应的实验事实相矛盾.由此可见,光的波动理论无法解释光电效应的实验规律.为了克服光的波动理论所遇到的困难,从理论上解释光电效应,爱因斯坦发展了普朗克能量子的假设,于1905年提出了如下的光子假设:一束光就是一束以光速运动的粒子流,这些粒子称为光量子(简称光子);频率为v 的光子所具有的能量为hv ,它不能再分割,而只能整个的被吸收或产生出来.按照光子理论,当频率为v 的光照射金属表面时,金属中的电子将吸收光子,获得 的能量,此能量的一部分用于电子逸出金属表面所需要的功(此功称为逸出功A);另一部分则转变为逸出电子的初动能.据能量守恒定律有(15.10) 这就是爱因斯坦的光电效应方程.)(002021ν-ν=-ν=υ↓eK eV eK m 比较 00eK νeV A eK,h === (15.11)由实验可测量K 和V 0,算出普朗克常数h 和逸出功A,进而还可求出金属的红限v 0.按照光子理论,照射光的光强就是单位时间到达被照物单位垂直表面积的能量,它是由单位时间到达单位垂直面积的光子数N 决定的.因此光强越大,光子数越多,逸出的光电子数就越多.所以饱和光电流与光强成正比;由于每一个电子从光波中得到的能量只与单个光子的能量hv 有关,所以光电子的初动能与入射光的频率成线性关系,与光强无关.当光子的能量hv 小于逸出功A,即入射光的频率v 小于红限v 0时,电子就不能从金属表面逸出;另外,光子与电子作用时,光子一次性将能量 全部传给电子,因而不需要时间积累,即光电效应是瞬时的.这样光子理论便成功地解释了光电效应的实验规律,爱因斯坦也因此获得1921年的诺贝尔物理学奖.例题15.1 用波长为400nm 的紫光去照射某种金属,观察到光电效应,同时测得遏止电压为1.24V ,试求该金属的红限和逸出功.解:由光电效应方程得逸出功为1.87eV J 102.9919=⨯=-=-=-020eU λc h m υ21h νA 根据红限与逸出功的关系,得红限为Hz 1051410626610992143419⨯=⨯⨯==--...h A ν0 三、光(电磁波)的波粒二象性一个理论若被实验证实,它必定具有一定的正确性.光子论被黑体辐射、光电效应以及其他实验所证实,说明它具有一定的正确性.而早已被大量实验证实了的光的波动论以及其他经典物理理论的正确性,也是无可非议的.因此,在对光的本性的解释上,不应该在光子论和波动论之间进行取舍,而应该把它们同样地看作是光的本性的不同侧面的描述.这就是说,光具有波和粒子这两方面的特性,这称为光的波粒二象性.既是粒子,也是波,这在人们的经典观念中是很难接受的.实际上,光已不是经典意义下的波,也不是经典意义下的粒子,而是波和粒子的统一.光是由具有一定能量、动量和质量的粒子组成的,在它们运动的过程中,在空间某处发现它们的几率却遵从波动的规律.描述光的粒子特征的能量与描述其波动特征的频率之间的关系为(15.12)由狭义相对论能量—动量关系并考虑光子的静质量为零得光子动量与波长的关系为====Ph Pc/h c E/h c νc λ (15.13) 它们通过普朗克常数紧密联系起来.通过质能关系还可得光子的质量为c P ch c E m 22=ν==作业(P224):26§15.3 氢原子光谱与玻尔的量子论经典物理学不仅在说明电磁辐射与物质相互作用方面遇到了如前所述的困难,而且在说明原子光谱的线状结构及原子本身的稳定性方面也遇到了不可克服的困难.丹麦物理学家玻尔发展了普朗克的量子假设和爱因斯坦的光子假设等,创立了关于氢原子结构的半经典量子理论,相当成功的说明了氢原子光谱的实验规律.一、氢原子光谱的实验规律实验发现,各种元素的原子光谱都由分立的谱线所组成,并且谱线的分布具有确定的规律.氢原子是最简单的原子,其光谱也是最简单的.对氢原子光谱的研究是进一步学习原子、分子光谱的基础,而后者在研究原子、分子结构及物质分析等方面有重要的意义.在可见光范围内容易观察到氢原子光谱的四条谱线,这四条谱线分别用H α、H β、H γ和H δ表示,如图15.5所示.1885年巴耳末(J.JBalmer,1825—1898)发现可以用简单的整数关系表示这四条谱线的波长6543,,,=-=n ,2n n B λ222(15.14) 式中B 是常数,其值等于364.57nm.后来实验上还观察到相当于n 为其他正整数的谱线,这些谱线连同上面的四条谱线,统称为氢原子的巴耳末系.光谱学上经常用波数 表示光谱线,它被定义为波长的倒数,即λ=ν1~(15.15) 引入波数后,式(15.14)可改写为Λ,,,),(~54312122=-=n n R ν (15.16) 式中172m 100967761B 2R -⨯==./,称为里德伯(J.R.Rydberg,1854—1919)常数.在氢原子光谱中,除了可见光范围的巴耳末线系以外,在紫外区、红外区和远红外区分别有赖曼(T.Lyman)系、帕邢(F.Paschen)系、布拉开(F.S.Brackett)系和普丰德(A.H.Pfund)系.这些线系中谱线的波数也都可以用与式(15.16)相似的形式表示.将其综合起来可表为)(~2211n k R T(n)T(k)νkn -=-= (15.17) 式中k 和n 取一系列有顺序的正整数,k 取1、2、3、4、5分别对应于赖曼线系、巴耳末线系、帕邢线系、布拉开线系和普丰德线系;一旦k 值取定后,n 将从k+1 开始取k+1, k+2, k+3等分别代表同一线系中的不同谱线. T(n)=R/n 2称为氢的光谱项.式(15.17)称为里德伯—里兹并合原理.实验表明,并合原理不仅适用于氢原子光谱,也适用于其他元素的原子光谱,只是光谱项的表示式要复杂一些.并合原理所表示的原子光谱的规律性,是原子结构性质的反映,但经典物理学理论无法予以解释.按照原子的有核模型,根据经典电磁理论,绕核运动的电子将辐射与其运动频率相同的电磁波,因而原子系统的能量将逐渐减少.随着能量的减少,电子运动轨道半径将不断减小;与此同时,电子运动的频率(因而辐射频率)将连续增大.因此原子光谱应是连续的带状光谱,并且最终电子将落到原子核上,因此不可能存在稳定的原子.这些结论显然与实验事实相矛盾,从而表明依据经典理论无法说明原子光谱规律等.二、玻尔的量子论玻尔(N.H.D.Bohr,1885—1962)把卢瑟福关于原子的有核模型、普朗克量子假设、里德伯—里兹并合原理等结合起来,于1913年创立了氢原子结构的半经典量子理论,使人们对于原子结构的认识向前推进了一大步.玻尔理论的基本假设是1)原子只能处在一系列具有不连续能量的稳定状态,简称定态,相应于定态,核外电子在一系列不连续的稳定圆轨道上运动,但并不辐射电磁波;2)作定态轨道运动的电子的角动量L 的数值只能是)/(π2h η的整数倍,即(15.18)这称为角动量量子化条件,n 称为主量子数,m 是电子的质量;3)当原子从一个能量为E k 的定态跃迁到另一个能量为E n 的定态时,会发射或吸收一个频率为v kn 的光子(15.19) 上式称为辐射频率公式, v kn >0表示向外辐射光子, v kn <0表示吸收光子.玻尔还认为,电子在半径为r 的定态圆轨道上以速率υ绕核作圆周运动时,向心力就是库仑力,因而有2202re πεr υm ⋅=41 (15.20) 由式(15.18)和式(15.20)消去υ,即可得原子处于第n 个定态时电子轨道半径为),,,()Λ321(1===n r n πme h εn r 22202n (15.21)对应于n=1的轨道半径r 1是氢原子的最小轨道半径,称为玻尔半径,常用a 0表示,其值为m 10291772495111-⨯===.2200πme h εr a (15.22) 这个数值与用其他方法得到的数值相符合.氢原子的能量应等于电子的动能与势能之和,即re πεr e πεm υE 20202⋅-=⋅-=814121 处在量子数为n 的定态时,能量为),,,()(Λ321n 81812n n =-=⋅-=220420h εme n r e πεE (15.23)由此可见,由于电子轨道角动量不能连续变化,氢原子的能量也只能取一系列不连续的值,这称为能量量子化,这种量子化的能量值称为原子的能级.式(15.23)是氢原子能级公式.通常氢原子处于能量最低的状态,这个状态称为基态,对应于主量子数n=1, E 1=-13.6 eV . n>1的各个稳定状态的能量均大于基态的能量,称为激发态,或受激态.处于激发态的原子会自动地跃迁到能量较低的激发态或基态,同时释放出一个能量等于两个状态能量差的光子,这就是原子发光的原理.随着量子数n 的增大,能量E n 也增大,能量间隔减小. 当n →∞时,rn →∞, E n →0 ,能级趋于连续,原子趋于电离. E > 0时,原子处于电离状态,能量可连续变化.图15.6和图15.7分别是氢原子处于各定态的电子轨道图和氢原子的能级图.使原子或分子电离所需要的能量称为电离能.根据玻尔理论算出的氢原子基态能量值与实验测得的氢原子基态电离能值13.6eV 相符.下面用玻尔理论来研究氢原子光谱的规律.按照玻尔假设,当原子从较高能态E n 向较低能态E k (n>k)跃迁时,发射一个光子,其频率和波数为1n =2n =3n =4n =1r r =14r r =19r r =116r r =赖曼系巴耳末系帕邢系 图15.6 氢原子定态的轨道图hE E νk n nk -= (15.24) )~k n nk nk nk E E hcc νλν-===(11 (15.25) 将能量表示式(15.23)代入即可得氢原子光谱的波数公式)()(~k n nk c h εme ν0nk >-=22324118 (15.26) 显然式(15.26)与氢原子光谱的经验公式(15.17)是一致的,同时可得里德伯常数的理论值为173204m 10097373118-⨯=ε=.ch me R H 理论 (15.27) 这也与实验值符合得很好.这表示玻尔理论在解释氢原子光谱的规律性方面是十分成功的,同时也说明这个理论在一定程度上反映了原子内部的运动规律.三、玻尔理论的缺陷和意义玻尔的半经典量子理论在说明光谱线规律方面取得了前所未有的成功.但是它也有很大的局限性,如只能计算氢原子和类氢离子的光谱线,对其他稍微复杂的原子就无能为力了;另外,它完全没有涉及谱线强度、宽度及偏振性等.从理论体系上讲,这个理论的根本问题在于它以经典理论为基础,但又生硬的加上与经典理论不相容的若干重要假设,如定态不辐射和量子化条件等,因此它远不是一个完善的理论.但是玻尔的理论第一次使光谱实验得到了理论上的说明,第一次指出经典理论不能完全适用于原子内部运动过程,揭示出微观体系特有的量子化规律.因此它是原子物理发展史上一个重要的里程碑,对于以后建立量子力学理论起到了巨大的推动作用.另外,玻尔理论在一些基本概念上,如“定态”、“能级”、“能级跃迁决定辐射频率”等在量子力学中仍是非常重要的基本概念,虽然另有一些概念,如轨道等已被证实对微观粒子不再适用.作业(P224):27§15.4 微观粒子的波—粒二象性 不确定关系一、微观粒子的波—粒二象性1923~1924年间,德布罗意仔细地分析了光的微粒说和波动说的历史,深入的研究了光子假设.他认为,19世纪以来,在光的研究中人们只重视了光的波动性,而忽视了它的粒子性.但在实物粒子的研究中却又发生了相反的情况,只重视实物粒子的粒子性,而忽略了它的波动性.在这种思想的支配下,德布罗意大胆的提出了物质的波—粒二象性假设.他认为,质量为m,速度为υ的自由粒子,一方面可用能量E 和动量p 来描述它的粒子性;另一方面还可用频率v 和波长λ来描述它的波动性.它们之间的关系与光的波—粒二相性所描述的关系一样,即h/p λE/h,ν== (15.28)式(15.28)叫德布罗意公式.这种和实物粒子相联系的波称为德布罗意波,或叫物质波.德布罗意因这一开创性工作而获得了1929年的诺贝尔物理学奖.由于自由粒子的能量和动量均为常量,所以与自由粒子相联系的波的频率和波长均不变,这说明与自由粒子相联系的德布罗意波可用平面波描述.对于静质量为m 0,速度为υ的实物粒子,其德布罗意波长为220/c υυm h p h λ-==1 (15.30) 德布罗意关于物质波的假设,1927年首先由戴维孙(C.J.Davisson,1881—1958)和革末(L.H.Germer,1896—1971)通过电子衍射实验所证实.戴维孙和革末作电子束在晶体表面散射实验时,观察到了和X 射线在晶体表面衍射相似的电子衍射现象,从而证实了电子具有波动性.当时的实验中,采用50KV 的电压加速电子,波长约为0.005nm.由于波长非常短,实验难度很高,因此这一实验是极其卓越的.后来证实了不仅电子具有波动性,其他微观粒子,如原子、质子和中子等也都具有波动性.微观粒子的波动性在现代科学技术上已得到广泛的应用,利用电子的波动性,已制造出了高分辨率的电子显微镜;利用中子的波动性,制成了中子摄谱仪.既然微观粒子具有波动性,原子中绕核运动的电子无疑也具有波动性.不过处于原子定态中的电子的波动形式,与戴维孙和革末实验中由小孔衍射的电子束的波动形式是不同的,后者可认为是行波,而前者则应看为驻波.处于定态中的电子形成驻波的情形,与端点固定的振动弦线形成驻波的情形是相似的.原子中电子驻波可如图15.8形象地表示.由图可见,当电子波在离开原子核为r 的圆周上形成驻波时,圆周长必定等于电子波长的整数倍,即),,,(Λ3212==n n λπr (15.31)利用德布罗意关系便可得电子的轨道角动量应满足下面的关系),,,(Λη3212====n n λh πλn rP L (15.32) 这正是玻尔作为假设引入的量子化条件,在这里,考虑了微观粒子的波动性就自然的得出了量子化条件.例题15.2 计算经过电势差U=150V 和U=104V 加速的电子的德布罗意波长(在U<104V 时,可不考虑相对论效应).解:忽略相对论效应,经过电势差U 加速后,电子的动能和速率分别为202,21m eU eU υm =υ= 式中m 0为电子的静止质量.利用德布罗意关系可得德布罗意波长nm 11.225m 1102512121000UU U e m h υm h λ=⨯=⋅==-. 式中U 的单位是伏特. 1nm 0150V U 11.=λ→=,0.0123nm V 10U 242=λ→=由此可见,在这样的电压下,电子的德布罗意波长与X 射线的波长相近。
大学物理15量子力学基础4
?
l 0 ml 0 l 1
1 ms± 1个值 2 1 1 ml { 0 3个值 ms± 2 1
n=1 的电子,最多有 2 个 n=2 的电子,最多有 8 个
5个值 ms± 1 n=3 的电子,最多有 18 个 l 2 ml 0 2 1 2 n=n 的电子,最多有 ? 个 l n 1 ml { (2l+1)个值 ms± 1 2
―You are both young enough to allow yourselves some foolishness!‖
总结前面的讨论: 原子中电子的状态应由四个量子数来决定
me 4 1 En 2 2 2 8 0 h n
n
——主量子数
L l ( l 1)
LZ m
l 0, 1, 2, 3, 4, 5 s, p, d , f , g, h
44
3)电子的波函数和几率分布: 2 me r 2 d ( r 2 dR ) e2 )R R (E 2 dr dr 4 o r sin d (sin d ) sin2 m2 d d
1
LS
51 自旋角动量无经典对应,是一种相对论效应。
但是,经典物理学无法理解电子有内部结构。 自旋运动是一种内部“固有的”运动, 其本质目前还不清楚。
(用陀螺运动图象正象轨道运动图象一样 是借用了宏观图象,是很不确切的)
关于 乌伦贝克、哥德斯密特。 (泡利、洛仑兹 等的反对) (埃伦菲斯特的支持)
l l
电子自旋波函数 53
s
七、原子中电子壳层结构
在多电子的原子中四个量子数如何确定? 1.泡利不相容原理: 在原子系统内不可能有两个或两个以上的 电子具有相同的状态. 即:电子不可能有完全相同的四个量子数.
《新编基础物理学》第15章习题解答和分析
第15章 早期量子论15-1 某物体辐射频率为146.010Hz ⨯的黄光,问这种辐射的能量子的能量是多大? 分析 本题考察的是辐射能量与辐射频率的关系. 解: 根据普朗克能量子公式有:-3414196.6310 6.010 4.010(J)h εν-==⨯⨯⨯=⨯15-2 假设把白炽灯中的钨丝看做黑体,其点亮时的温度为K 2900. 求:(1) 电磁辐射中单色辐出度的极大值对应的波长; (2) 据此分析白炽灯发光效率低的原因.分析 维恩位移定律告诉我们,电磁辐射中单色辐出度的极大值对应的波长与温度的乘积等于一个常量.由此可以直接由维恩位移定律求解. 解 (1)由维恩位移定律,得-3-72.89810=9.9910(m)=999(nm)2900b T λ⨯==⨯(2)因为电磁辐射中单色辐出度的极大值对应的波长在红外区域,所以白炽灯的发光效率较低。
15-3 假定太阳和地球都可以看成黑体,如太阳表面温度T S =6000K ,地球表面各处温度相同,试求地球的表面温度(已知太阳的半径R 0=6.96×105km ,太阳到地球的距离r =1.496×108km )。
分析 本题是斯忒藩—玻尔兹曼定律的应用。
解: 由 40T M σ=太阳的辐射总功率为2428482002644 5.671060004(6.9610)4.4710(W)S S S P M R T R πσππ-===⨯⨯⨯⨯⨯=⨯地球接受到的功率为62226221117 6.3710() 4.4710()422 1.496102.0010(W)S E E E S P R P R P d d ππ⨯===⨯⨯⨯=⨯ 把地球看作黑体,则 24244E E E E E R T R M P πσπ==290(K)E T ===15-4 一波长nm 2001=λ的紫外光源和一波长nm 7002=λ的红外光源,两者的功率都是400W 。
15 量子物理基础—康普顿效应及光子理论的解释
4.5 1023 kgms 1
h/
tan (h ) /( h 0 ) 0
0.20 arctan 42.3 0.22
视为黑体,则 1)太阳表面的温度; 2)太阳的辐射功率; 3)由于热辐射而使太阳质量耗损1%经历的时间。 (已知太阳半径 RS=6.96×108m, 质量Ms=2 ×1030kg)
解:
1)根据维恩位移定律 mT b
T
b m
2.897103 m K 49010 9 m
5.9 103 K
大学物理 第三次修订本
15
第15章 量子物理基础
实验规律
(1) 对于原子量较小的散射物质,康普顿散射 较强,反之较弱。 (2)波长的改变量 -0 随散射角θ的增加而增加。
(3)对不同的散射物质,只要在同一个散射角下, 波长的改变量 - 0 都相同。
大学物理 第三次修订本
16
第15章 量子物理基础
(3)电子的初速度
19
第15章 量子物理基础 例2 钾的光电效应红限为0= 6.210-7m。求(1)电子 的逸出功;(2)在波长为3.0 10-7m的紫外线照射下, 遏止电压为多少?(3)电子的初速度为多少? 解 (1)逸出功
2eU a 2 1.6 10 2.14 vm ms 1 8.67 105 ms 1 11 m 9.11031 大学物理 第三次修订本
0.01M s c 11 t 10 年 P
大学物理 第三次修订本
5
2
第15章 量子物理基础 1、光电效应的实验
饱和电流∝光强度I
存在截止频率: > 0
瞬时性
1 2 mVm ekν eU 0 最大初动能与入射频率成线性关系: 2
15-2 光电效应 光的波粒二象性
光电效应 光的波粒二象性
U0
C s Z n Pt
O
ν0
ν
入射光强一定,改变入射光的频率, 当入射光强一定,改变入射光的频率,遏止电势 差与入射光频率具有线性关系. 差与入射光频率具有线性关系 遏止电势差的存在,表明光电子从金属表面逸出时, 遏止电势差的存在,表明光电子从金属表面逸出时, 有一最大初速,光电子初动能的最大为: 有一最大初速,光电子初动能的最大为:
E = hν = = 4.42×10 J = 2.76eV λ h E p = = = 1.47 ×10−27 kg ⋅ m ⋅ s−1 = 2.76eV / c λ c (2)Ek = E − W = (2.76 − 2.28)eV = 0.48eV ) hc −7 = 5.18 × 10 m = 518 nm (3) λ = ) E 第十五章 量子物理 10
U0
铯
锌 铂
遏止电势差与入射光频率 具有线性关系. 具有线性关系 瞬时性 当光照射到金属表面上时, 当光照射到金属表面上时, 几乎立即就有光电子逸出 电流饱和值 m 光强) im ∝ I (光强) 遏止电压 U 0 与光强无关
第十五章 量子物理
ν0
ν
I2 I1
i
i im2 im1
−U0
I 2 > I1
1 hν = m v 2 + W 2
铝 4.08 锌 4.31 铜 4.70 银 4.73
几种金属逸出功的近似值(eV) 几种金属逸出功的近似值 钠 2.46
光电子初动能 铂 6.35
16
第十五章 量子物理
物理学
第五版
量子理论解释: 量子理论解释 光电流
1515-2
光电效应 光的波粒二象性
马文蔚《物理学》(第6版)(下册)配套题库【名校考研真题+课后习题+章..
目 录第一部分 名校考研真题第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第二部分 课后习题第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第三部分 章节题库第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第四部分 模拟试题马文蔚等《物理学》配套模拟试题及详解第一部分 名校考研真题第9章 振 动一、选择题一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时开始计时,则其振动方程为( ).[电子科技大学2007研]A.B .C .D.E.二、填空题一物体作简谐振动,其振动方程为(国际单位制).则此简谐振动的周期为______;当t =0.6s 时,物体的速度为______.[南京航空航天大学2008研]三、计算题1.考虑n =2摩尔的理想气体氦气,置于一垂直放置的圆柱体所缸中,如图9-1所示.水平放置的活塞可以在气缸中无摩擦上下运动.活塞质量为,气缸截面积为.活塞被一无质量的弹簧与气缸上端连接,活塞向下运动时将氦气向下压缩,活塞上方为真空.系统开始阶段活塞与氦气处于平衡状态时,弹簧处于未形变状态,氦气压强为B【答案】1.2s ;-20.9cm/s【答案】、温度为、体积为.假定弹簧弹性常数,气体常数,对于单原子氦气,热容比.活塞在平衡位置作小幅谐振动,计算其谐振频率f.[南京大学2006研]图9-1解:对弹簧,由牛顿第二定律可得: ①由于振动很快,系统来不及与外界发生热量交换,视为绝热过程,因此有:由于活塞在平衡位置作小幅谐振动,因此V0与V之间的变化很小,利用泰勒展开得: ②将②式代入①式有: ③初始时活塞处于平衡状态,有: ④将④代入③有: 整理得: 解得振动频率为: 2.质量分别为和的两个物体A、B,固定在倔强系数为的弹簧两端,竖直地放在水平桌面上,如图9-2所示.用一力垂直地压在A上,并使其静止不动.然后突然撤去,问欲使B离开桌面至少应多大?[中科院–中科大2007研]图9-2解:欲使B刚好弹起,则A到达最高点时弹簧的伸长量至少应为.假设力F作用下弹簧的压缩量为(初始位置),弹簧无变形时A的坐标为0(平衡位置).运动方程为: 当时,,则方程的解为:利用对称性,在最高点有.整理可得:又,于是:3.如图9-3所示,已知轻弹簧的劲度系数为k,定滑轮可看作质量为M,半径为R的均质圆盘,物体的质量为m,试求:(1)系统的振动周期;(2)当将m托至弹簧原长并释放时,求m的运动方程(以向下为正方向).[南京理工大学2005研]图9-3 图9-4解:(1)受力分析如图9-4所示,设平衡位置为原点,向下为正,则将物体拉至处时:对m:对: (为角加速度)解得:即: 则系统振动圆频率: 振动周期: (2)设振动方程,其中,.初始条件,当时: 解得: 求得m的运动方程为: 第10章 波 动一、选择题一平面简谐波沿x 轴正方向传播,振幅为A ,频率为.设时刻的波形曲线如图10-1所示,则x=0处质点的振动方程为( ).[电子科技大学2006研]图10-1A.B .C .D.二、填空题1.一质点沿x 轴作简谐振动,它的振幅为A ,周期为T .时,质点位于x 轴负向离平衡最大位移的一半处且向负方向运动,则质点的振动方程为x =______.在一周期内质点从初始位置运动到正方向离平衡位置为最大位移的一半处的时间为______.[南京航空航天大学2007研]2.一平面简谐机械波在弹性媒质中传播,一媒质质元在通过平衡位置时,其振动动能与弹性势能______(填相同或不同).[湖南大学2007研]B 【答案】【答案】相同【答案】3.以波速u 向x 正方向传播的平面简谐波,振幅为A ,圆频率为,设位于坐标处的质点,t =0时,位移,且向y 负方向运动,则该质点的振动方程为______,该平面简谐波的波动方程(波函数)为______.[南京理工大学2005研]三、计算题1.火车以匀速行驶而过,铁路边探测器所测得的火车汽笛最高和最低频率分别为和,设声速为,求火车的行驶速度.[南京大学2006研]解:由多普勒效应可得: ① ②①、②两式相除,得:解得火车车速为:2.一列平面简谐纵波在均匀各向同性弹性介质中传播,求单位体积介质所具有的能量?(自设相关物理量).[北京师范大学2008研]解:波动方程:振动速度: 设介质的密度为,用dV 表示体元体积,则该体积元动能:体积应变: 则势能: 因为,所以: 则有: 所以,单位体积介质所具有的能量为:【答案】3.已知一平面简谐波的表达式为y=0.25cos(125t-0.37x)(SI).(1)分别求x1=10m,x2=25m两点处质点的振动方程.(2)求x1、x2两点间的振动相位差.(3)求x1点在t=4s时的振动位移.[浙江大学2008研]解:(1),(2)由,可得: 所以: (3)时的振动位移为:4.甲火车以43.2千米/小时的速度行驶,其上一乘客听到对面驶来的乙火车鸣笛声的频率为v1=512赫兹;当这一火车过后,听其鸣笛声的频率为v2=428赫兹.求乙火车上的人听到乙火车鸣笛的频率v0和乙火车对于地面的速度u.设空气中声波的速度为340米/秒.[中科院—中科大2009研]解:由题可得: 其中,v=340m/s,v0=43.2km/h=12m/s.解得:v0=468Hz,u=18.4m/s=66.3km/h5.如图10-2所示,一平面简谐波沿x轴正方向传播,已知振幅为A,频率为,波速为u.(1)若t=0时,原点O处质元正好由平衡位置向位移正方向运动,写出此波的波函数.(2)若该波在离原点处被竖直的墙面反射,欲使坐标原点处为波节,求满足的条件(设反射时无能量损失).[厦门大学2006研]图10-2解:(1)t=0时,y0=0,u0>0,所以初始相位,故波动方程为:(2)欲使波在x0处反射后到达y0处与原行波叠加产生波节,则原点O处两振动必须反相.即:所以有: ,k=0,1,2,…6.已知一平面余弦波振幅A=0.03m,波速u=1ms-1,波长,若以坐标原点O处质点恰好在平衡位置且向负方向运动时作为计时起点,求:(1)O点振动方程.(2)波动方程.(3)与原点相距处,t=1秒时,质点的位移、速度;(4)和两点间的相位差.[南京航空航天大学2006研]解:(1)设O点振动方程为:.其中,,由题意知:.于是: (2)波动方程为:.得:(3)与原点相距处,波动方程:得质点速度: 当t=1秒时: (4)相位差: 7.设入射波的表达式为,在处发生反射,反射点为一固定端,设反射时无能量损失,求:(1)反射波的表达式.(2)合成的驻波的表达式.(3)波腹和波节的位置.[湖南大学2007研]解:(1)反射波的表达式为: (2)驻波的表达式为:(3)由,可得波腹位置为:由,可得波节位置为:,8.图10-3所示为一沿x轴正方向传播的平面余弦行波在t=2s时刻的波形曲线,波速u=0.5m/s,求:(1)原点o的振动方程;(2)波动方程.[电子科技大学2007研]图10-3解:(1)由已知得:.可得振动方程:(2)波动方程为: 9.一横波沿绳子传播,其波的表达式为.(1)求此波的振幅、波速、频率和波长.(2)求绳子上各质点的最大振动速度和最大振动加速度.(3)求处和处二质点振动的相位差.[宁波大学2009研]解:(1)将波的表达式与标准形式比较,得:,(2) (3),二振动反相.第11章 光 学一、选择题1.在迈克耳孙干涉仪的一条光路中,放入一折射率为n 厚度为d 的透明介质片后,两光路光程差的改变量为( ).[暨南大学2010研]A.B.C.D.【解析】迈克尔孙干涉仪的原理为光的干涉,两束光进过G1平面镜被分为两束光,这两束光发生干涉.当在其中一条光路中放入折射率为n 的厚透明介质时,被放入介质的那条光路光程将发生变化,由于需要两次穿过新加入的透明介质,故光程差的改变量为:.2.自然光从空气入射到某介质表面上,当折射角为30°时,反射光是完全偏振光,则此介质的折射率为( ).[暨南大学2010研]A.B.C.D.3.若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹( ).[暨南大学2010研]C【答案】B【答案】当折射光线与反射光线垂直时反射完全偏振光,由折射公式得.【解析】A .中心暗斑变成亮斑B .间距不变C .变疏D .变密【解析】设牛顿环中某处的空气薄层厚度为e ,互相干涉的两束反射光的光程差为,若n 增大,则每个位置处的光程差增大,形成更大级数的干涉条纹,所以条纹变密.4.根据惠更斯——菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( ).[暨南大学2010研]A .振动的相干叠加B .振动振幅之和C .光强之和D .振动振幅平方之和5.在单缝夫琅和费衍射实验中,波长为l 的单色光垂直入射在宽度为a=4l 的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为( ).[暨南大学2010研]A .2个B .6个C .4个D .8个D【答案】A【答案】由惠更斯—菲涅耳原理,统一波阵面各点发出的子波,经传播而在空间某点相遇,发生的是相干叠加.【解析】C【答案】可近似将单缝所在平面看作波阵面,则每一半波带都沿单缝方向,设总半波带【解析】得N=4.6.一束白光垂直入射在光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是( ).[暨南大学2010研]A .紫光B .黄光C .红光D .绿光【解析】根据光栅公式,同一级条纹满足,可见光中红光波长最长,故偏离中央明纹最远.7.光强为I 0的自然光依次垂直通过两个偏振片,且此两偏振片的偏振化方向夹角a=45°,若不考虑偏振片的反射和吸收,则透射偏振光的强度I 是( ).[暨南大学2010研]A.B.C.D.由此可得,8.一光波分别通过两种不同介质的光程相同,则( ).[暨南大学2011研]数为N ,则C【答案】A【答案】自然光经过任一偏振片后光强减半,再经过另一个偏振片,根据马吕斯定律【解析】A .光波通过这两种介质的时间不相同B .光波通过这两种介质的时间相同C .光波通过这两种介质后的位相不相同D .光波通过这两种介质后的位相相同9.在迈克耳孙干涉仪的一臂中放入一折射率为厚度为的透明介质片,同时在另一臂中放入一折射率为厚度为的透明介质片,设没有放两透明介质片时两臂的光程差为 则放入两透明介质片后两臂的光程差为( ).[暨南大学2011研]A.;B .C.D.10.关于光学仪器的分辨本领,下述表述错误的是( ).[暨南大学2011研]A .分辨本领受到衍射极限的限制B .分辨本领和光学仪器的通光口径有关C .分辨本领和照明光的波长有关D .分辨本领和照明光的强度有关B【答案】光程差公式为 L =nd ,在不同介质中光速不同,v =c/n,故传播时间为 t =d/v =L/c ,对不同的介质相同.出射光的位相与入射光有关,故不能确定.【解析】B【答案】放入介质片后,相应光路中的光两次经过此介质,光程变化为2nd ,所以放入两个介质片后,两臂的光程差变化为2(n2-n1)d【解析】D【答案】光学仪器的分辨率,与由衍射导致的像点的展宽有关,而衍射条纹与通光孔径【解析】11.自然光从空气入射到某透明介质表面上,则( ).[暨南大学2011研]A .反射光一定是完全偏振光B .反射光一定是部分偏振光C .折射光一定是部分偏振光D .折射光一定是完全偏振光12.眼镜片上的增透膜是根据光的以下什么现象做成的( ).[暨南大学2011研]A .光的干涉B .光的衍射C .光的布儒斯特定律D .光的马吕斯定律13.光强度( ).[暨南大学2011研]A .和光波的振幅成正比B .和光波的振幅的平方成正比C .和光波的位相成正比D .和光波的位相的平方成正比和波长有关,与光强无关.C【答案】根据菲涅耳反射折射公式,自然光入射产生的反射和折射光都将变成部分偏振光.但当入射角为布鲁斯特角时,反射光为完全偏振光.【解析】A【答案】增透膜的原理是通过在镜片表面镀膜,使得某波长的光在膜前后表面反射光之间光程差是半波长的奇数倍,从而使反射光相干抵消,增加透射.【解析】B【答案】光强度是单位面积单位时间内辐射光的平均能量,此平均能量与电场分量或磁场分量的振幅的平方成正比,而由于是时间平均效果,与位相无关.【解析】14.一束白光垂直入射在单缝上,在第一级夫琅和费衍射明纹中,靠近中央明纹的颜色是( ).[暨南大学2011研]A .紫光B .黄光C .红光D .绿光【解析】单缝衍射明纹满足,故条纹到中央明纹的距离与波长正相关,所以紫光一级明纹最靠近中间.15.光强为I0的自然光依次垂直通过三个偏振片,且第一和第三偏振片的偏振化方向夹角a=90°,第二和第三偏振片的偏振化方向夹角a=45°,若不考虑偏振片的反射和吸收,则从第三偏振片透射出的光强I 是( ).[暨南大学2011研]A.B.C.D.二、填空题1.一个平凸透镜的顶点和一平板玻璃接触,用单设光垂直照射,观察反射光形成的牛顿环,测得中央暗斑外第k 个暗环半径为r 1.现将透镜和玻璃板之间的空气换成某种液体(其折射率小于玻璃的折射率),第k 个暗环的半径变为变为r 2,由此可知该液体的折射率为______.[南京航空航天大学2008研]A【答案】C【答案】自然光经过第一个偏振片,光强减半.第一偏振片的偏振方向与第二个,第二个与第三个,夹角都是45°,根据马吕斯定律,【解析】2.自然光入射到空气和某玻璃的分界面上,当入射角为60°时,反射光为完全偏振光,则该玻璃的折射率为______;一束强度为的自然光垂直入射于两种平行放置且透光轴方向夹角为60°的偏振片上,则透射光强度为______.[南京理工大学2005研]三、计算题1.一平凸透镜置于一平板玻璃上,波长为6700Å的红光垂直从上方入射,由透镜凸表面和平板玻璃表面反射的光形成牛顿环干涉条纹.透镜和平玻璃的接触点处为暗纹,测得第12条暗纹的半径为11mm ,求透镜的曲率半径R .[暨南大学2010研]解:牛顿环上r半径处空气层的厚度为第12条暗纹处与第一条暗纹处光程差相差11个波长,可得透镜的曲率半径为 2.(5分)将麦克耳孙干涉仪的一臂稍微调长(移动镜面),观察到有150条暗纹移过视场.若所用光的波长为480nm ,求镜面移动的距离.[暨南大学2010研]解:在迈克尔孙干涉仪中,沿两条光路的光发生干涉,它们之间光程差每变化一个波长,则有一条暗纹移过视场.设镜面移动距离为d,则得.3.在杨氏双缝实验中,两缝相距2mm ,用l =750nm 和l¢=900nm 的混合光照明,若屏幕到缝的距离为2m ,问两种波长的光的干涉明纹重合的位置到中央明纹中线的最小距离为多少?[暨南大学2010研]解:双缝干涉第k级干涉明纹满足,【答案】【答案】要想使不同波长的两束光条纹重合,需要某级条纹距离相同,即可得,k最小值为6,故4.如何利用偏振片和波晶片(1/4波片、半波片等)将一束自然光转化为圆偏振光?又如何利用波晶片将一线偏振光的偏振方向旋转90度?[暨南大学2010研]解:(1)首先将自然光通过偏振片,变成线偏光.然后使线偏光通过1/4波片,保证线偏振方向与波片光轴方向呈45°角,从而出射的o光和e光方向相同,振幅相等,相位差,从而变成圆偏振光.(2)首先将线偏光通过一个1/4波片,变成圆偏光,再经过一个与原偏振方向垂直的偏振片,变成新方向的线偏光.5.白光垂直照射到一厚度为370nm的肥皂膜(膜的两侧都为空气)上,设肥皂的折射率为1.32,试问该膜的正面呈现什么颜色?[暨南大学2011研]解:肥皂膜前后表面反射光的光程差为青色光的波长范围是476-495 nm,所以L正好是青色光波长的二倍;红色光的波长范围是 620-750 nm,所以L正好是红色光波长的3/2倍.所以前后表面反射的红光相干相消,青光相干相长,所以呈青色.6.用波长500nm的单色光垂直照射到宽0.5mm的单缝上,在缝后置一焦距为0.5m的凸透镜,用一屏来观察夫琅和费衍射条纹,求在屏上中央明纹的宽度和第一级明纹的宽度?并定性解释级次越高,明纹的强度越低的原因.[暨南大学2011研]解:(1)单缝夫琅禾费衍射产生暗纹条件为中央和第一级明纹处衍射角很小,可以近似.所以各暗纹距离中央的位置为所以中央明纹和第一级明纹的宽度分别为(2)明纹级次越高,说明单缝两个位置单色光距明纹处的光程差越大,相位差越大.根据光振幅矢量性,相同幅值的相干光相位差越大,合成振幅越小,从而光强越低.7.请解释为什么劈尖干涉条纹是等间距的直条纹而牛顿环是非等间距的圆条纹?如果看到牛顿环的中央是暗纹,解释之?[暨南大学2011研]解:(1)根据干涉原理,不论是劈尖干涉条纹还是牛顿环条纹,相邻条纹处干涉光光程差的差为.因为劈尖上到顶点的距离和厚度成正比,而厚度和光程差成正比,所以会形成等间距的直条纹;而牛顿环空气层厚度与光程差成正比,但由于棱镜下表面是球形,使得厚度与到中心的水平距离不成正比,所以形成非等间距的圆条纹.(2)中央处空气层厚度为0,棱镜底面与平面玻璃表面发射光的光程差为0.但光由光疏介质(空气)进入光密介质(平面玻璃)进行反射时会产生半波损失,使得两束相干光完全相消,出现中央暗纹.8.杨氏双缝实验中,在两缝S1和S2前分别放置两偏振片P1和P2,在两缝S1和S2后放置一偏振片P3,如图11-1所示,照明光为一自然光.问 (1) 当P1和P2偏振化方向相同,P1和P3偏振片的偏振化方向夹角为45°,屏上是否会出现干涉条纹?为什么?(2)当P1和P2偏振化方向垂直,P1和P3偏振片的偏振化方向夹角为45°,屏上是否会出现干涉条纹?为什么?[暨南大学2011研]图11-1解:(1)会出现干涉条纹.因为经过两个偏振片的光具有相同的偏振方向,都沿P3的方向偏振,所以同频率的光会产生相干叠加,出现干涉条纹.(2)会出现干涉条纹.因为虽然经过第一个偏振片的两束光具有垂直的偏振方向,但由于两束光的偏振方向都与P3偏振化方向呈45°角,根据马吕斯定律,经过P3后的两束光偏振方向相同,且振幅相等.所以依然会产生干涉条纹.9.(1)迈克尔逊干涉仪的M2镜前,当插入一薄玻璃片时,可以观察到有150条干涉条纹向一方移过.若玻璃片的折射率为n=1.632,所用单色光的波长为500nm,试求玻璃片的厚度.(2)用钠光灯(,)照明迈克尔逊干涉仪,首先调整干涉仪得到最清晰的干涉条纹,然后移动M1,干涉图样逐渐变得模糊,到第一次干涉现象消失时,M1由原来位置移动了多少距离?[南京大学2006研]解:(1)插入玻璃片后,光程差改变量为,则:解得玻璃片厚度: (2)干涉条纹消失,即、两个波长照射下的亮纹和暗纹重合,即:解得: 10.试按下列要求设计光栅:当白光垂直照射时,在30°衍射方向上观察到波长为600nm 的第二级主极大,且能分辨Δλ=0.05nm的两条谱线,同时该处不出现其他谱线的主极大.[浙江大学2008研]解:由光栅方程: .则:当时,可得: 当,.因为时,主极大,即缺级,因此有:所以有: 11.如图11-2所示,有一缝宽分别为a和2a、两缝中心相距为d的双缝衍射屏,今在缝宽为2a的左半缝前覆盖一个宽度为a的相移片.导出正入射时其夫琅禾费衍射强度分布公式.[山东大学1997研]图11-2解:x方向振幅: y方向振幅: 光强: 12.如图11-3所示,在偏振化方向夹角为60°的两偏振片和之间插入一个四分之一波片C,其光轴与两偏振片偏振化方向的夹角均为30°.一强度为的自然光先后通过偏振片、四分之一波片C和偏振片,求出射的光强度.[厦门大学2006研]图11-3解:经过P1后: ,经过四分之一波片后: ,得出射光振幅: 出射光光强: 第12章 气体动理论一、选择题若为气体分子速率分布函数,则的物理意义是( ).[电子科技大学2005研]A .速率区间内的分子数B .分子的平均速率C .速率区间内的分子数占总分子数的百分比D .速率分布在附近的单位速率区间中的分子数二、填空题1.三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而最概然速率之比为,则单位体积内的内能之比为______.[南京航空航天大学2007研]2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为______.[北京工业大学2004研]3.由绝热材料包围的窗口被隔板隔为两半,左边是理想气体,右边真空,如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度______(填升高、降低或不变),气体的熵______(填增加、减小或不变).[湖南大学2007研]4.27℃的1mol 氧气分子的最概然速率为______,其物理意义为______,分子的平均平动动能为______,1mol 理想氧气的内能为______.[南京理工大学2005研]三、计算题B【答案】1∶4∶9【答案】【答案】不变;增加【答案】【答案】1.设气体分子的速率分布满足麦克斯韦分布律.(1)求气体分子速率与最可几速率相差不超过0.5%的分子占全部分子的百分之几?(2)设氦气的温度为300K,求速率在3000~3010m/s之间的分子数与速率在1500~1510m/s之间的分子数之比.(3)某种气体的温度为100K和400K时的最可几速率分别为和.在100K时与相差不超过1m/s的分子数为总数的a%,求400K时与相差不超过1m/s的分子数占总数的百分比.[南京大学2006研]解:(1)设气体分子速率与最可几速率相差不超过0.5%的分子数为,全部分子数为,则:(2)设速率在3000~3010m/s之间的分子数为,速率在1500~1510m/s之间的分子数为,则:(3)2.1摩尔双原子理想气体的某一过程的摩尔热容量,其中为定容摩尔热容量,R 为气体的普适恒量.(1)导出此过程的过程方程;(2)设初态为(,),求沿此过程膨胀到时气体的内能变化,对外做功及吸热(或放热).[北京师范大学2006研]解:(1)理想气体的状态方程为,其微分形式为:由热力学第一定律,则:由上述两式消去,得: 则由的积分可得:上式即为双原子分子理想气体的过程方程.(2)初态,其中;末态.由过程方程,可知:所以,末态为.①气体内能的变化:②对外做功: ③吸收的热量:负号表示与题设相反,即此过程向外放热 .3.0.2g氢气盛于3.0 L的容器中,测得压强为8.31×104Pa,则分子的最概然速率、平均速率和方均根速率各为多大?[浙江大学2008研]解:气体状态方程: 最概然速率:平均速率:方均根速率: 4.设有N个气体分子组成的系统,每个分子质量为m,分子的速率分布函数为求:(1)常数a.(2)分子的平均速率.(3)若分子只有平动,且忽略分子间的相互作用力,求系统的内能E.[厦门大学2006研]解:(1)由归一化条件可得:解得: (2)N个分子的平均速度:=(3)由,得:5.许多星球的温度达到108K,在这温度下原子已经不存在了,而氢核(质子)是存在的,若把氢核视为理想气体,求:(1)氢核的方均根速率是多少?(2)氢核的平均平均平动动能是多少电子伏特?[宁波大学2009研](普适气体常量,玻尔兹曼常量)解:(1)由于,而氢核,所以有:(2)第13章 热力学基础一、选择题在一定量的理想气体向真空作绝热自由膨胀,体积由增至,在此过程中气体的( ).[电子科技大学2007研]A.内能不变,熵增加B.内能不变,熵减少C.内能不变,熵不变D.内能增加,熵增加二、填空题热力学第二定律表明在自然界中与热现象有关的实际宏观过程都是不可逆的.开尔文表述指出了______的过程是不可逆的,而克劳修斯表述指出了______的过程是不可逆的.[北京工业大学2004研]三、计算题1.假设地球大气为干燥空气,导热性能不好.气流上升缓慢,可以视为准静态过程.试导出大气的垂直温度梯度dT/dz,并估算其量值的大小.[南京大学2005研]解:对于绝热过程有: 对上式两边同时求导,得:于是有: 对于大气层,气压强变化满足,再结合理想气体状态方程,得:A【答案】功变热;热传导【答案】。
第十五章 量子物理 习题解答
n=1: E1 = −13.6ev
n=2:
E2
=
E1 22
=
−3.4ev
≈
−5.44 ×10−19
J
n=4 n=3
n=3:
E3
=
E1 32
=
−1.51ev
≈
−2.416 ×10−19
J
n=4:
E4
=
E1 42
=
−0.85ev
≈
−1.36 ×10−19
J
n=2
跃迁谱线波长 λ = c = hc ,则虚线光谱的波长分别为 ν ∆E
ν1 −ν 0 = Ua1 = 2 ,整理后的答案 C。 ν 2 −ν 0 Ua2
15.4 光电效应和康普顿效应都包含有光子和电子的相互作用过程。对此,下面几种说法中 正确的是【D】
(A)两种效应中电子和光子组成的系统都服从动量守恒定律和能量守恒定律; (B)两种效应都相当于电子和光子的弹性碰撞过程; (C)两种效应都属于电子吸收光子的效应; (D)光电效应是吸收光子的过程,而康普顿效应则相当于光子和电子的弹性碰撞过程。 分析:光电效应与康普顿效应的物理本质是相同的,都是个别光子与个别电子的相互作用。 但二者有明显差别。其一,入射光的波长不同。入射光若为可见光或紫外光,表现为光电效应; 若入射光是 X 光,则表现为康普顿效应。其二,光子和电子相互作用的微观机制不同。在光电
=
3 2
kT
,
动量
p2
= ( mv )2
=
1 mv2 ⋅ 2m = 2
Ek
⋅ 2m ,德布罗意波长 λ
=
h p
=
h Ek ⋅ 2m
注意:动能 Ek = p2 2m 同样适用于非相对论性的微观粒子(低速运动)。
大学物理-15-1黑体辐射普朗克能量子假设 21页
E1m 2A 21m (2π)2A 20.22 J 7
2
2
第十五章 量子物理
17
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
Enh n E 7.131029
h
基元能量 h3 .1 8 1 0 3J 1
(2) Enh
A22π2E m2 2πn2m h
6 000 K
3 000 K
1
m
000
/nm
2 000
第十五章 量子物理
8
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
2 维恩位移定律
mT b
峰值波长
M (T)/1 (10W 4 m 3)
可
1.0
见
光
区
0.5 6 000 K
常量 b2.89 18 3 0m K 3 000 K
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
一 黑体 黑体辐射
1 热辐射的基本概念
(1)单色辐射出射度 单位时间内从物
体单位表面积发出的频率在 附近单位频率
区间内的电磁波的能量.
M (T) 单位: Wm-2H-z1
M(T) 单位: Wm-3
第十五章 量子物理
2
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
0
1
m
000
/nm
2 000
第十五章 量子物理
9
物理学
第五版
15-1 黑体辐射 普朗克能量子假设
例1(1)温度为 20 C 的黑体,其单色辐 出度的峰值所对应的波长是多少?(2)太阳的
大学物理学(下册)第15章 量子物理基础
5、爱因斯坦的光子假说和光电效应方程
1).爱因斯坦光子假设 ①.光是一束以光速c运动的粒子流,这些粒子称为光子;
②.光子的能量: h
③.光的强度: SNh
2).爱因斯坦光电效应方程
爱因斯坦认为:在光电效应中,金属中的电子吸收
一个光子的能量h,一部分消耗在使金属中电子挣脱原子
2020/12/10
2. 普朗克理论与经典理论不同
经典理论的基本观点
普朗克能量子假设
(1)电磁波辐射来源于 带电粒子的振动,电磁波 频率与带电粒子振动频率 相同。 (2)振子辐射电磁波含 各种波长,是连续的,辐 射能量也是连续的。
对于频率为的振子,
振子辐射的能量不是 连续的,而是分立的, 它的取值是某一最小 能量 的整数倍
出的、在波长 附近单位波长间隔内的能量。称为单色辐
射出射度或单色辐出度。
M(T)
dM(T)
d
单位: W / m 3
2020/12/10
温度为 T 的物体,在单位时间内,从单位面积上所辐射
出的各种波长的电磁波的能量总和。称为辐射出射度或辐
出度。
M(T) 0M(T)d
单位: W / m 2
太阳和钨丝的单色 辐出度曲线
即:光电子的最大初动能与入射光的强度成正比关系,而 与光的频率无关。与实验结果不符。
2020/12/10
红限问题
按上述理论,无论何种频率的入射光,只要其强 度足够大,就能使电子具有足够的能量逸出金属,不 存在红限问题。与实验结果不符。
驰豫时间
按上述理论,如果入射光强很弱,则电子逸出金 属所需的能量,需要有一定的时间来积累。与实验结 果不符。
光的波动性用光波的波长 和频率 描述,光
第15章 量子物理基础------玻尔理论
px x h
经严格证明此式应为:
px x 2
py y 2
pz z 2
这就是著名的海森伯测不准关系式
测不准关系式的理解
1. 用经典物理学量——动量、坐标来描写微观粒子 行为时将会受到一定的限制 。 2. 可以用来判别对于实物粒子其行为究竟应该用经典 力学来描写还是用量子力学来描写。 3. 对于微观粒子的能量 E 及它在能态上停留的平均 时间Δt 之间也有下面的测不准关系:
e2 v2 m 2 2 4 0 rn rn 1
h L mvrn n 2
2 2
0h rn n ( ) 2 m e
0 0h r1 0.53 A 2 me 2
第一玻尔轨道半径
rn n r1
2
(2)能量量子化和原子能级
1 e 2 E n mv n 2 4 0 rn
32
o 1 ~ 6563 A 32
连 续
H
0
青H
0
深绿H
0
3645.7 A 4340.1 A 4860.7 A
二、玻尔理论的局限性
1. 把电子看作是一经典粒子,推导中应用了牛顿 定律,使用了轨道的概念, 所以玻尔理论不是彻 底的量子论。 2.角动量量子化的假设以及电子在稳定轨道上运动 时不辐射电磁波的是十分生硬的。 3. 无法解释光谱线的精细结构。 4. 不能预言光谱线的强度。
2、频率假设 原子从一较大能量En的定态向另一较低能量Ek的定 态跃迁时,辐射一个光子
h En Ek
跃迁频率条件
原子从较低能量Ek的定态向较大能量En的定态 跃迁时,吸收一个光子
大学物理课本答案习题 第十五章习题解答
习题十五15-1 某物体辐射频率为146.010Hz ⨯的黄光,问这种辐射的能量子的能量是多大? 解: 根据普朗克能量子公式有:-3414196.6310 6.010 4.010(J)h εν-==⨯⨯⨯=⨯15-2 假设把白炽灯中的钨丝看做黑体,其点亮时的温度为K 2900. 求:(1) 电磁辐射中单色辐出度的极大值对应的波长; (2) 据此分析白炽灯发光效率低的原因. 解 (1)由维恩位移定律,得-3-72.89810=9.9910(m)=999(nm)2900b T λ⨯==⨯(2)因为电磁辐射中单色辐出度的极大值对应的波长在红外区域,所以白炽灯的发光效率较低。
15-3 假定太阳和地球都可以看成黑体,如太阳表面温度T S =6000K ,地球表面各处温度相同,试求地球的表面温度(已知太阳的半径R 0=6.96×105km ,太阳到地球的距离r =1.496×108km )。
解: 由 40T M σ=太阳的辐射总功率为2428482002644 5.671060004(6.9610)4.4710(W)S S S P M R T R πσππ-===⨯⨯⨯⨯⨯=⨯地球接受到的功率为62226221117 6.3710() 4.4710()422 1.496102.0010(W)S E E E S P R P R P d d ππ⨯===⨯⨯⨯=⨯ 把地球看作黑体,则 24244E E E E E R T R M P πσπ==290(K)E T ===15-4 一波长nm 2001=λ的紫外光源和一波长nm 7002=λ的红外光源,两者的功率都是400W 。
问:(1)哪个光源单位时间内产生的光子多?(2)单位时间内产生的光子数等于多少? 解: (1)光子的能量λνchh E ==设光源单位时间内产生的光子数为n ,则光源的功率hcw n nhcnE w λλ===, 可见w 相同时,λ越大,n 越大,而12λλ>,所以红外光源产生的光子数多。
氢原子玻尔理论中角动量量子化条件
普朗克黑体辐射公式
M (T )
2πhc2
5
1 ehc/ kT
1
或
M
(T
)
2πh 3
c2 (eh / kT 1)
普朗克的量子假设突破了经典物理学的观 念,第一次提出了微观粒子具有分立的能量值, 既微观粒子的能量是量子化的。
7h 6h 5h 4h 3h 2h 1h
2. 维恩位移定律 当黑体的热力学温度升高时,峰值波长向
短波方向移动。
mT b
式中 b 2.897103m K,为常数。
3 、维恩公式:
维恩假设:黑体的辐射可看成是由许多 具有带电的简谐振子(分子,原子的振动) 所发射,辐射能按频率(波长)分布的规律 类似于麦克斯韦分子速度分布律,于 1896 年得出绝对黑体的单色辐出度与波长、温度 关系的一个半经验公式。
解 振子的振动频率为
1 k 1 10 0.503s1
2π m 2π
振子的能量
1 kA2 1 10 (4102 )2 8103 J
2
2
量子数
n
h
8 103 6.631034 0.503
2.401031
量子数变化1,能量变化 h ,
能量变化率
h nh
1 n
1 2.4 1031
4.17 1022
nh
n
h
0.227 ቤተ መጻሕፍቲ ባይዱ.631034 480
7.131029
宏观振子的量子数非常大, 基元能量非常小:
h 3.181031J
例4 一个质量为m =1kg 的球,挂在劲度系数 k =10N/m的弹簧下,作振幅 A=0.04m的谐振动, 求振子能量的量子数。如果量子数改变,能量 变化率是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第15章 量子物理基础内容提要1.黑体辐射基本定律和普朗克量子假设黑体:能完全吸收入射辐射的物体,有最大的发射本领。
黑体辐射的两条实验规律:(1) 斯忒藩一玻尔兹曼定律:4)(T T M σ= 式中4281067.5---⋅⋅⨯=k m W σ称为斯忒藩一玻尔兹曼常数。
(2) 维思位移定律: b T m =λ式中k m b ⋅⨯=-310898.2,称为维恩常数,公式表明峰值波长λm 随温度升高向短波方向移动(3) 普朗克量子假设黑体是由带电谐振子组成,这些谐振子辐射电磁波并和周围的电磁场交换能量;谐振子的能量是最小能量νεh =的整数倍。
νεh =称为能量子,s J h ⋅⨯=-341063.6称为普朗克常量。
2.光电效应的实验规律实验发现,光电效应表现出四条规律:(1) 入射光的频率一定时,饱和光电流与光强成正比;(2) 光电子的最大初动能与入射光的频率成线性关系,与入射光的强度无关; (3) 光电效应存在一个红限0ν,如果入射光的频率0νν<,便不会产生光电效应 (4) 光电流与光照射几乎是同时发生的,延迟时间在10-9s 以下。
3.光量子假设与爱因斯坦方程(1) 爱因斯坦认为:光是由以光速运动的光量子组成,在频率为ν的光波中,光子的能量νεh =光子的静质量为零,动量为λhp =(2) 入射的光子被电子吸收使电子能量增加νh ,电子把一部分能量用于脱离金属表面时所需要的逸出功,另一部分为逸出电子的初动能。
即A mv h m +=221ν4.康普顿效应康普顿效应的实验规律(1) 散射线中除了和原波长0λ相同的谱线外,还有一种波长0λλ>。
(2) 波长差0λλλ-=∆随散射角θ的增大而增加。
其增加量为2sin 2200θλλλc m h =-=∆ (3) 0λλλ-=∆与散射物质无关,但散射光中原波长0λ的强度随散射物的原子序数增加而增大,而λ的光强则相对减小。
利用光量子理论对康普顿效应能给予很好的解释。
康普顿效应进一步证实了光的量子性。
4.光的波粒二象性光既具有波动性又具有粒子性。
光的波动性可以用波长λ和频率ν描述,光的粒子性可以光子的质量、能量和动量描述,其关系可以表示为:光子能量νεh = 光子动量 λhP =光子质量 2c h m ν=光子的静质量为零。
5.玻尔的氢原子理论(1) 氢原子光谱的实验规律实验发现,氢原子光谱系的波数可以写成)11(1~22nm R -==λν对应于不同的m 和n 值,可以得到不同的线系,如: m=1,n=2,3,4,……为赖曼系 m=2,n=3,4,……巴尔末系 m=3,n=4,5……帕邢系 (2) 玻尔的基本假设(a) 定态假设: 原子中的电子只能在一些半径不连续的轨道上作圆周运动。
在这些轨道上,电子虽作加速运动,但不辐射能量,因而处于稳定状态,称为定态。
(b) 轨道角动量量子化假设: 电子在定态轨道上运动时,其角动量只能取π2h的整数倍,即,3,2,1.2===n hnmvr L π(c) 频率条件假设: 电子从某一定态向另一定态跃迁时,将发射(或吸收)光子,其频率表示为m n E E h -=ν(3) 氢原子的轨道半径和能级,3,2,1.22021==n me h n r πεeV n n me E n 22220246.13132-=-= επ 6. 德布罗意假设德布罗意通过分析经典力学和光学的某些对应关系,提出了实物粒子具有波动性的假设。
他认为一切实物粒子都具有波动性。
对于静质量为、速度为v 的实物粒子,其波长为2201cv v m h p h -==λ7. 波函数描述微观粒子运动状态的函数),(t r ψ。
从统计的角度来讲,波函数模的平方代表着微观粒子在空间某点出现的概率,因此,波函数也称为概率波。
波函数遵从归一化条件,即1),(),(=⎰⎰⎰*dV t t Vr r ψψ波函数必须满足单值、有限、连续三个标准化条件。
8. 不确定关系由于微观粒子具有波动性,其位置和动量不能同时被精确确定。
其不确定量x ∆和xp ∆的乘积不小于某一常量,即2≥∆∆x p x 上式表明,如果用经典的坐标和动量来描述微观粒子的运动,则必然存在这种不确定关系。
一个量测得越精确,另一个量测得越不精确。
能量和时间也有类似的测不准关系2≥∆∆t E 9. 薛定谔方程波函数随时间变化所满足的方程,其形式为),(ˆ),(t r H tt r i ψψ=∂∂对于定态即势函数不随时间而变化,其波函数满足的方程)()(ˆr E r Hψψ= 称为定态薛定谔方程。
式中)()(2ˆ2222222r U zy x m H+∂∂+∂∂+∂∂-= 称为哈密顿算符,E 为微观粒子的能量,m 为粒子的质量。
10.一维无限深势阱势能函数⎩⎨⎧≥≤∞<<=),0()0(0)(L x x L x x U能量22222mL nE n π= n=1,2,3……波函数⎪⎩⎪⎨⎧==)(0)()(sin 2)(阱外阱内x x L n L x nnψπψ粒子在势阱中各点的概率密度x an L x x P n n πψ22sin 2)()(== 11.氢原子 氢原子的势函数20()4e U r rπε=-解定态薛定谔方程的结果 能量量子化44222222200,1,2,3832n me me E n h n nεπε==-= 角动量量子化,0,1,2,,1L l n ==-角动量空间量子化,0,1,2,,z l l L m m l ==±±±电子自旋角动量)1(+=s s S原子中电子运动由四个量子数决定:(1) 主量子数n =1,2,3……,它确定原子中电子的能量 (2) 角量子数l =0,1,2,3……n-1,它确定电子轨道角动量的值。
(3) 轨道磁量子数l m =l ±±±,,2,1,0 。
它确定轨道角动量在空间任一方向上分量的量子化。
(4) 自旋磁量子数s m =21±。
它决定电子自旋角动量在空间任一方向上分量的量子化。
12.原子的电子壳层结构多电子原子核外电子的分层排布遵循两条基本原理: (1) 泡利不相容原理不可能有两个或两个以上的电子占据四个量子数完全相同的量子态。
(2) 能量最低原理原子系统处于正常态时,每个电子趋向于占据可能的最低能级。
原子中主量子数为n 的壳层最多能容纳电子数为22n 。
l 支壳层中最多可容纳的电子数为2(2l +1)。
解题指导与示例量子物理基础这一部分涉及题目属于基本的,只要掌握了基本的内容,一般都能正确解答,所以可以通过示例理解、掌握其方法。
重要放在学习基本的内容,基本现象,基本规律的学习方面。
例15-1假设太阳的表面温度为5700K ,计算太阳每秒损失的静质量,设太阳直径为m 9104.1⨯。
解:根据斯忒藩-玻尔兹曼定律:40T E σ=可以得到太阳的总发射本领(单位时间内、单位面积上所辐射的能量)2748401099.557001067.5--⨯=⨯⨯==Wm T E σ所以太阳表面每秒辐射的总能量为s J R E S E E /1069.3)104.1(1099.5)4(26297200⨯=⨯⨯⨯⨯=⋅==ππ由爱因斯坦质能关系:20c m E = 太阳每秒损失的静质量为19282620101.4)103(1069.3-⨯=⨯⨯==kgs c E m 例15-2已知铯的红限为Hz 140108.4⨯=ν,逸出功eV A 9.1=,用钠黄光nm 3.589=λ照射铯。
试求:(1) 黄光光子的能量、质量和动量; (2) 铯在光电效应中释放的光电子的初速度;(3) 铯的遏止电压多大?若改用nm 0.500'=λ的光照射,其遏止电压又为多少?解:(1) J chh E 19104.3-⨯===λνsm kg ch p kg ch m /101.1108.327362⋅⨯==⨯==--νν(2) s m A h mv /108.8)(25⨯=-=ν (3)遏止电压满足221mv eU =V emv U 19.222==由 A eU ch+=λ波长变化后 A eU ch +=''λ有 V e hc U U 56.2)11(''=-+=λλ例15-3在与波长为0.01nm 的X 射线束成某个角度ϕ的方向,康普顿效应引起的波长改变为0.0024nm ,试求角及这时传递给反冲电子的能量。
解:由康普顿散射公式)cos 1(0θλ-=∆cm h得 000243.00024.01/1cos 0≈-=∆-=c m h λϕ090=ϕ设传给反冲电子的能量为E x ,根据能量守恒定律2200mc h c m h +=+νν)11(0202λλνν-=-=-=hc h h c m mc E KeVJ hc 41510101083400104.21085.310)1.0024.0(101.010024.010310626.6)(⨯=⨯=⨯+⨯⨯⨯⨯⨯⨯⨯=-=-----λλλλ例15-4 已知氢原子光谱的某一线系的极限波长为364.7nm ,其中有一谱线的波长为656.5nm ,试由玻尔理论求出与该波长相对应的原子初态与末态的能级以及电子的轨道半径。
解:用m, n 分别表示始末态的量子数,极限波长应为从量子数∞=n 跃迁到主量子数m 时所辐射的光波长。
即222)11(1m R m R =∞-=∞λ 210097.110674.379=⨯⨯⨯==-∞λR m该谱线系为巴耳末系。
由)11(122n m R n-=λ 310)647.3565.6(10647.310565.610097.19997=⨯-⨯⨯⨯⨯⨯=-=---∞∞λλλλn n R n 由⎪⎩⎪⎨⎧=-=)(053.0)(6.1322nm n r eV n E nn得初态n=3nm r eV E 477.0,51.133=-=末态n=2nm r eV E 212.0,4.322=-=例15-5 设电子的初速度为零,不考虑相对论效应求电子经100V 电压加速后的德布罗意波长;若考虑相对论效应,试证明当电势差为U 时,电子的德布罗意波长为)2(20c m eU eU hc +=λ解:不考虑相对论效应,电子经电势差U 加速后的动能为eU m p E k ==022得电子的动量为eU m p 02=电子的德不罗意波长为nm eUm hph 103.01001060.11011.921063.621931340=⨯⨯⨯⨯⨯⨯===---λ考虑到相对论效应时,由相对论能量与动量关系420222c m c p E += 并利用eU c m E +=222024202)2(c c m eU eU c c m E p +=-=)2(20c m eU eU hc p h +==λ例15-6一光子的波长为300nm ,如果测得610/-=∆λλ,求光子位置的不确定量。