八年级数学《位置的确定》单元测试题及答案(北师大版)
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (2)
第三章位置与坐标单元测试一、选择题(每题3分,共30分)1.下列关于确定一个点的位置的说法中,能具体确定点的位置的是()A.东北方向B.东经35°10′,北纬12°C.距点A100米D.偏南40°,8000米2.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在的象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定3.如图1,△ABC与△DFE关于y轴对称,若点A的坐标为(-4,6),则点D的坐标为()图1A.(-4,6) B.(4,6) C.(-2,1) D.(6,2)4.若A(a,b),B(a,d)表示两个不同的点,且a≠0,则这两个点在()A.平行于x轴的直线上B.第一、三象限的角平分线上C.平行于y轴的直线上D.第二、四象限的角平分线上5.甲、乙两名同学用围棋子做游戏,如图2所示,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也组成轴对称图形,则下列下子方法不正确的是[说明:棋子的位置用数对表示,如点A在(6,3)]()图2A .黑(3,7),白(5,3)B .黑(4,7),白(6,2)C .黑(2,7),白(5,3)D .黑(3,7),白(2,6)6.以下是甲、乙、丙三人看地图时对四个地标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆;乙:从学校向西直走300米,再向北直走200米可到博物馆;丙:博物馆在体育馆正西方向200米处.根据三人的描述,若从图书馆出发,其终点是体育馆,则下列描述正确的是( )A .向南直走300米,再向西直走200米;B .向南直走300米,再向西直走600米;C .向南直走700米,再向西直走200米;D .向南直走700米,再向西直走600米;7.若点P (-m ,3)与点Q (-5,n )关于y 轴对称,则m ,n 的值分别为( )A .-5,3B .5,3C .5,-3D .-3,58.有甲、乙、丙三个人,他们所处的位置不同,甲说:“以我为坐标原点,乙的位置是(2,3).”丙说:“以我为坐标原点,乙的位置是(-3,-2).”则以乙为坐标原点,甲、丙的坐标分别是(已知三人所建立的直角坐标系中x 轴、y 轴的方向相同,且单位长度一致)( )A .(-3,-2),(2,-3)B .(-3,2),(2,3)C .(-2,-3),(3,2)D .(-2,-3),(-2,-3)9.已知点A (1,0),B (0,2),点P 在x 轴上,且△P AB 的面积为5,则点P 的坐标为( )图3A .(-4,0)B .(6,0)C .(-4,0)或(6,0)D .无法确定10.如图3所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是( )A .(2019,0)B .(2019,-1)C .(2019,1)D .(2018,0)二、填空题(每题3分,共18分)11.若m>0,n<0,则点P(m,n)关于x轴的对称点在第________象限.12.已知A(2x-1,3x+2)是第一、三象限角平分线上的点,则点A的坐标是________.13.在同一直角坐标系中,一同学误将点A的横、纵坐标的次序颠倒,写成A(a,b);另一同学误将点B的坐标写成关于y轴对称的点的坐标,写成B(-b,-a),则A,B两点原来的位置关系是__________.14.在平面直角坐标系中,已知点A(-3,0),B(3,0),点C在坐标轴上,且AC+BC =10,写出满足条件的所有点C的坐标:________.15.已知等边三角形ABC的两个顶点的坐标分别为A(-4,0),B(2,0),则点C的坐标为____________,△ABC的面积为________.16.如图4是某同学在课下设计的一款软件,蓝精灵从点O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,到达A2n后,要向________方向跳________个单位长度落到A2n+1.图4三、解答题(共52分)17.(6分)如图5,△ABC中,AB=AC=13,BC=24,请你建立适当的平面直角坐标系,并直接写出A,B,C三点的坐标.图518.(6分)(1)若点M(5+a,a-3)在第二、四象限角平分线上,求a的值;(2)已知点N的坐标为(2-a,3a+6),且点N到两坐标轴的距离相等,求点N的坐标.19.(6分)在平面直角坐标系中,将坐标是(-5,0),(-4,-2),(-3,0),(-2,-2),(-1,0)的点用线段依次连接起来形成一个图案Ⅰ.(1)作出该图案关于y轴对称的图案Ⅱ;(2)将所得到的图案Ⅱ沿x轴向上翻折180°后得到一个新图案Ⅲ,试写出它的各顶点的坐标;(3)观察图案Ⅰ与图案Ⅲ,比较各顶点的坐标和图案位置,你能得到什么结论?20.(6分)已知在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点.请回答下列问题:(1)在坐标系内描出点A,B,C的位置.(2)求出以A,B,C三点为顶点的三角形的面积.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.图621.(6分)已知点P(2m+4,m-1).根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过点A(2,-3)且与x轴平行的直线上.22.(6分)如图7,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,若将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.图723.(8分)如图8,正方形ABFG和正方形CDEF的顶点在边长为1的正方形网格的格点上.(1)建立平面直角坐标系,使点B,C的坐标分别为(0,0)和(5,0),并写出点A,D,E,F,G的坐标;(2)连接BE和CG相交于点H,BE和CG相等吗?并计算∠BHC的度数.图824.(8分)如图9,在平面直角坐标系中,直线l过点M(3,0)且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.图9参考答案1.B 2.B 3.B 4.C 5.C 6.A 7.A 8.C 9.C10.B 11.一 12.(-7,-7)13.关于x 轴对称14.(-5,0),(5,0),(0,4),(0,-4)15.(-1,3 3)或(-1,-3 3) 9 3[解析] 当点C 在第二象限时,作CH ⊥AB 于点H .因为A (-4,0),B (2,0),所以AB =6.因为△ABC 是等边三角形,所以AH =BH =3.由勾股定理得CH =3 3,所以C (-1,33);同理,当点C 在第三象限时,C (-1,-3 3).所以△ABC 的面积为12×6×3 3=9 3. 16.(9,6) 正东 (2n +1) [解析] 因为蓝精灵从点O 第一跳落到A 1(1,0),第二跳落到A 2(1,2),第三跳落到A 3(4,2),第四跳落到A 4(4,6),所以蓝精灵先向正东跳动,再向正北跳动,每次跳动的距离为前一次的距离加1,即可求出.第五跳落到A 5(9,6).到达A 2n 后,要向正东方向跳(2n +1)个单位长度落到A 2n +1.17.解:答案不唯一,如以BC 所在直线为x 轴,过点B 作BC 的垂线为y 轴建立平面直角坐标系,由图可知,点A (12,5),B (0,0),C (24,0).18.解:(1)由题意可得5+a +a -3=0,解得a =-1.(2)由题意可得|2-a |=|3a +6|,即2-a =3a +6或2-a =-(3a +6),解得a =-1或a =-4,所以点N 的坐标为(3,3)或(6,-6).19.解:图案Ⅰ如图.(1)作出图案Ⅱ如图.(2)作出图案Ⅲ如图.图案Ⅲ各个顶点的坐标分别为(5,0),(4,2),(3,0),(2,2),(1,0).(3)观察图案Ⅰ与图案Ⅲ,不难发现:①从各顶点坐标看,横、纵坐标均互为相反数;②从图案的位置上看,图案Ⅰ在第三象限,图案Ⅲ在第一象限,二者关于坐标原点对称.20.解:(1)描点如图.(2)如图,依题意,得AB ∥x 轴,且AB =3-(-2)=5,所以S △ABC =12×5×2=5. (3)存在.因为AB =5,S △ABP =10,所以点P 到AB 的距离为4.又因为点P 在y 轴上,所以点P 的坐标为(0,5)或(0,-3).21.解:(1)由题意,得2m +4=0,解得m =-2,则m -1=-3,所以点P 的坐标为(0,-3).(2)由题意,得m -1=0,解得m =1,则2m +4=6,所以点P 的坐标为(6,0).(3)由题意,得m -1=(2m +4)+3,解得m =-8,则2m +4=-12,m -1=-9, 所以点P 的坐标为(-12,-9).(4)由题意,得m -1=-3,解得m =-2,则2m +4=0,所以点P 的坐标为(0,-3).22.解:由题意,可知折痕AD所在的直线是四边形OAED的对称轴.在Rt△ABE中,AE=OA=10,AB=8,所以BE=AE2-AB2=102-82=6,所以CE=4,所以E(4,8).在Rt△DCE中,DC2+CE2=DE2,又DE=OD,所以(8-OD)2+42=OD2,所以OD=5,所以D(0,5).23.解:(1)按已知条件建立平面直角坐标系(如图),A(-3,4),D(8,1),E(7,4),F(4,3),G(1,7).(2)连接BE和CG相交于点H,由题意,得BE=72+42=65,CG=72+42=65,所以BE=CG.借助全等及三角形内角和等性质可得∠BHC的度数:∠BHC=90°.24.解:(1)△A2B2C2的三个顶点的坐标分别是A2(4,0),B2(5,0),C2(5,2).(2)①如图①,当0<a≤3时,因为点P与点P1关于y轴对称,P(-a,0),所以P1(a,0).11 因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a 2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.②如图②,当a >3时,因为点P 与点P 1关于y 轴对称,P (-a ,0),所以P 1(a ,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a 2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.综上所述,PP 2的长为6.。
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (34)
第三章位置与坐标1确定位置1.如果影剧院的座位8排5座用(8,5)表示,那么(4,6)表示()A.6排4座B.4排6座C.4排4座D.6排6座2.下列表述中,位置确定的是()A.北偏东30°B.东经118°,北纬24°C.淮海路以北,中山路以南D.银座电影院第2排3.小明向班级同学介绍自己家的位置时,最恰当的表述是()A.在学校的东边B.在东南方向800米处C.距学校800米处D.在学校东南方向800米处4.生态园位于县城东北方向5公里处,下图表示准确的是()5.如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示,纵线用英文字母表示.这样,棋子①的位置可记为(C,4),棋子②的位置可记为(E,3),则棋子⑨的位置可记为________.6.如图是游乐园的一角.(1)如果用(3,2)表示跳跳床的位置,那么跷跷板用数对________表示,碰碰车用数对________表示,摩天轮用数对________表示;(2)已知秋千在大门以东400m,再往北300m处,请你在图中标出秋千的位置.2平面直角坐标系第1课时平面直角坐标系1.下列选项中,平面直角坐标系的画法正确的是()2.在平面直角坐标系中,点(6,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,笑脸盖住的点的坐标可能为()A.(5,2) B.(3,-4) C.(-4,-6) D.(-1,3)4.已知点A的坐标为(-2,-3),则点A到x轴的距离为________,到原点的距离为________.5.在如图所示的平面直角坐标系xOy中.(1)分别标出点A(4,2),B(0,6),C(-1,3),D(-2,-3),E(2,-4),F(3,0)的位置;(2)写出点M,N,P的坐标.第2课时平面直角坐标系中点的坐标特点1.下列各点在第四象限的是()A.(-1,2) B.(3,-5) C.(-2,-3) D.(2,3)2.下列各点中,在y轴上的是()A.(0,3) B.(-3,0) C.(-1,2) D.(-2,-3)3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.若点P(m+1,m+3)在直角坐标系的x轴上,则点P的坐标为()A.(0,2) B.(-2,0) C.(4,0) D.(0,-2)5.已知M(1,-2),N(-3,-2),则直线MN与x轴、y轴的位置关系分别为() A.相交、相交B.平行、平行C.垂直、平行D.平行、垂直6.已知A(0,1),B(2,0),C(4,3).(1)在如图所示的平面直角坐标系中描出各点,画出△ABC;(2)求△ABC的面积.第3课时建立平面直角坐标系描述图形的位置1.如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3)2.如图,已知等腰三角形ABC.若要建立直角坐标系求各顶点的坐标,则你认为最合理的方法是()A.以BC的中点O为坐标原点,BC所在的直线为x轴,AO所在的直线为y轴B.以B点为坐标原点,BC所在的直线为x轴,过B点作x轴的垂线为y轴C.以A点为坐标原点,平行于BC的直线为x轴,过A点作x轴的垂线为y轴D.以C点为坐标原点,平行于BA的直线为x轴,过C点作x轴的垂线为y轴3.中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,如果所在位置的坐标为(-3,1),所在位置的坐标为(2,-1),那么所在位置的坐标为()A.(0,1) B.(4,0) C.(-1,0) D.(0,-1)4.如图,长方形ABCD的长AD=6,宽AB=4.请建立适当的直角坐标系使得C点的坐标为(-3,2),并且求出其他顶点的坐标.3轴对称与坐标变化1.点P(3,-5)关于y轴对称的点的坐标为()A.(-3,-5) B.(5,3) C.(-3,5) D.(3,5)2.已知点P(a,3)和点Q(4,-3)关于x轴对称,则a的值为()A.-4 B.-3 C.3 D.43.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-54.将△ABC各顶点的横坐标都乘以-1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项中正确表示这种变换的是()5.已知点M(a,-1)和点N(2,b)不重合.当M、N关于________对称时,a=-2,b =-1.6.如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.参考答案1确定位置1.B 2.B 3.D 4.B 5.(D,6)6.解:(1)(2,4)(5,1)(5,4)(2)秋千的位置如图所示.2平面直角坐标系第1课时平面直角坐标系1.B 2.D 3.D 4.3135.解:(1)如图所示.(2)M(5,1),N(-3,-4),P(0,-2).第2课时平面直角坐标系中点的坐标特点1.B 2.A 3.B 4.B 5.D6.解:(1)如图,△ABC即为所求.(2)如图,过点C 向x 轴、y 轴作垂线,垂足分别为D 、E .则S 四边形DOEC =3×4=12,S △BCD =12×2×3=3,S △ACE =12×2×4=4,S △AOB =12×2×1=1,∴S △ABC =S 四边形DOEC -S △ACE -S △BCD-S △AOB =12-4-3-1=4. 第3课时 建立平面直角坐标系描述图形的位置1.B 2.A 3.D4.解:建立平面直角坐标系如图所示.A 点的坐标为(3,-2),B 点的坐标为(3,2),D 点的坐标为(-3,-2).3 轴对称与坐标变化1.A 2.D 3.C 4.A 5.y 轴6.解:(1)△A 1B 1C 1如图所示.(2)点C 1的坐标为(4,3).(3)S △ABC =3×5-12×3×2-12×3×1-12×2×5=112.。
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (2)
第三章位置与坐标单元测试一、选择题(每题3分,共30分)1.下列关于确定一个点的位置的说法中,能具体确定点的位置的是()A.东北方向B.东经35°10′,北纬12°C.距点A100米D.偏南40°,8000米2.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在的象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定3.如图1,△ABC与△DFE关于y轴对称,若点A的坐标为(-4,6),则点D的坐标为()图1A.(-4,6) B.(4,6) C.(-2,1) D.(6,2)4.若A(a,b),B(a,d)表示两个不同的点,且a≠0,则这两个点在()A.平行于x轴的直线上B.第一、三象限的角平分线上C.平行于y轴的直线上D.第二、四象限的角平分线上5.甲、乙两名同学用围棋子做游戏,如图2所示,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也组成轴对称图形,则下列下子方法不正确的是[说明:棋子的位置用数对表示,如点A在(6,3)]()图2A .黑(3,7),白(5,3)B .黑(4,7),白(6,2)C .黑(2,7),白(5,3)D .黑(3,7),白(2,6)6.以下是甲、乙、丙三人看地图时对四个地标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆;乙:从学校向西直走300米,再向北直走200米可到博物馆;丙:博物馆在体育馆正西方向200米处.根据三人的描述,若从图书馆出发,其终点是体育馆,则下列描述正确的是( )A .向南直走300米,再向西直走200米;B .向南直走300米,再向西直走600米;C .向南直走700米,再向西直走200米;D .向南直走700米,再向西直走600米;7.若点P (-m ,3)与点Q (-5,n )关于y 轴对称,则m ,n 的值分别为( )A .-5,3B .5,3C .5,-3D .-3,58.有甲、乙、丙三个人,他们所处的位置不同,甲说:“以我为坐标原点,乙的位置是(2,3).”丙说:“以我为坐标原点,乙的位置是(-3,-2).”则以乙为坐标原点,甲、丙的坐标分别是(已知三人所建立的直角坐标系中x 轴、y 轴的方向相同,且单位长度一致)( )A .(-3,-2),(2,-3)B .(-3,2),(2,3)C .(-2,-3),(3,2)D .(-2,-3),(-2,-3)9.已知点A (1,0),B (0,2),点P 在x 轴上,且△P AB 的面积为5,则点P 的坐标为( )图3A .(-4,0)B .(6,0)C .(-4,0)或(6,0)D .无法确定10.如图3所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是( )A .(2019,0)B .(2019,-1)C .(2019,1)D .(2018,0)二、填空题(每题3分,共18分)11.若m>0,n<0,则点P(m,n)关于x轴的对称点在第________象限.12.已知A(2x-1,3x+2)是第一、三象限角平分线上的点,则点A的坐标是________.13.在同一直角坐标系中,一同学误将点A的横、纵坐标的次序颠倒,写成A(a,b);另一同学误将点B的坐标写成关于y轴对称的点的坐标,写成B(-b,-a),则A,B两点原来的位置关系是__________.14.在平面直角坐标系中,已知点A(-3,0),B(3,0),点C在坐标轴上,且AC+BC =10,写出满足条件的所有点C的坐标:________.15.已知等边三角形ABC的两个顶点的坐标分别为A(-4,0),B(2,0),则点C的坐标为____________,△ABC的面积为________.16.如图4是某同学在课下设计的一款软件,蓝精灵从点O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,到达A2n后,要向________方向跳________个单位长度落到A2n+1.图4三、解答题(共52分)17.(6分)如图5,△ABC中,AB=AC=13,BC=24,请你建立适当的平面直角坐标系,并直接写出A,B,C三点的坐标.图518.(6分)(1)若点M(5+a,a-3)在第二、四象限角平分线上,求a的值;(2)已知点N的坐标为(2-a,3a+6),且点N到两坐标轴的距离相等,求点N的坐标.19.(6分)在平面直角坐标系中,将坐标是(-5,0),(-4,-2),(-3,0),(-2,-2),(-1,0)的点用线段依次连接起来形成一个图案Ⅰ.(1)作出该图案关于y轴对称的图案Ⅱ;(2)将所得到的图案Ⅱ沿x轴向上翻折180°后得到一个新图案Ⅲ,试写出它的各顶点的坐标;(3)观察图案Ⅰ与图案Ⅲ,比较各顶点的坐标和图案位置,你能得到什么结论?20.(6分)已知在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点.请回答下列问题:(1)在坐标系内描出点A,B,C的位置.(2)求出以A,B,C三点为顶点的三角形的面积.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.图621.(6分)已知点P(2m+4,m-1).根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过点A(2,-3)且与x轴平行的直线上.22.(6分)如图7,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,若将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.图723.(8分)如图8,正方形ABFG和正方形CDEF的顶点在边长为1的正方形网格的格点上.(1)建立平面直角坐标系,使点B,C的坐标分别为(0,0)和(5,0),并写出点A,D,E,F,G的坐标;(2)连接BE和CG相交于点H,BE和CG相等吗?并计算∠BHC的度数.图824.(8分)如图9,在平面直角坐标系中,直线l过点M(3,0)且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.图9参考答案1.B 2.B 3.B 4.C 5.C 6.A 7.A 8.C 9.C10.B 11.一 12.(-7,-7)13.关于x 轴对称14.(-5,0),(5,0),(0,4),(0,-4)15.(-1,3 3)或(-1,-3 3) 9 3[解析] 当点C 在第二象限时,作CH ⊥AB 于点H .因为A (-4,0),B (2,0),所以AB =6.因为△ABC 是等边三角形,所以AH =BH =3.由勾股定理得CH =3 3,所以C (-1,33);同理,当点C 在第三象限时,C (-1,-3 3).所以△ABC 的面积为12×6×3 3=9 3. 16.(9,6) 正东 (2n +1) [解析] 因为蓝精灵从点O 第一跳落到A 1(1,0),第二跳落到A 2(1,2),第三跳落到A 3(4,2),第四跳落到A 4(4,6),所以蓝精灵先向正东跳动,再向正北跳动,每次跳动的距离为前一次的距离加1,即可求出.第五跳落到A 5(9,6).到达A 2n 后,要向正东方向跳(2n +1)个单位长度落到A 2n +1.17.解:答案不唯一,如以BC 所在直线为x 轴,过点B 作BC 的垂线为y 轴建立平面直角坐标系,由图可知,点A (12,5),B (0,0),C (24,0).18.解:(1)由题意可得5+a +a -3=0,解得a =-1.(2)由题意可得|2-a |=|3a +6|,即2-a =3a +6或2-a =-(3a +6),解得a =-1或a =-4,所以点N 的坐标为(3,3)或(6,-6).19.解:图案Ⅰ如图.(1)作出图案Ⅱ如图.(2)作出图案Ⅲ如图.图案Ⅲ各个顶点的坐标分别为(5,0),(4,2),(3,0),(2,2),(1,0).(3)观察图案Ⅰ与图案Ⅲ,不难发现:①从各顶点坐标看,横、纵坐标均互为相反数;②从图案的位置上看,图案Ⅰ在第三象限,图案Ⅲ在第一象限,二者关于坐标原点对称.20.解:(1)描点如图.(2)如图,依题意,得AB ∥x 轴,且AB =3-(-2)=5,所以S △ABC =12×5×2=5. (3)存在.因为AB =5,S △ABP =10,所以点P 到AB 的距离为4.又因为点P 在y 轴上,所以点P 的坐标为(0,5)或(0,-3).21.解:(1)由题意,得2m +4=0,解得m =-2,则m -1=-3,所以点P 的坐标为(0,-3).(2)由题意,得m -1=0,解得m =1,则2m +4=6,所以点P 的坐标为(6,0).(3)由题意,得m -1=(2m +4)+3,解得m =-8,则2m +4=-12,m -1=-9, 所以点P 的坐标为(-12,-9).(4)由题意,得m -1=-3,解得m =-2,则2m +4=0,所以点P 的坐标为(0,-3).22.解:由题意,可知折痕AD所在的直线是四边形OAED的对称轴.在Rt△ABE中,AE=OA=10,AB=8,所以BE=AE2-AB2=102-82=6,所以CE=4,所以E(4,8).在Rt△DCE中,DC2+CE2=DE2,又DE=OD,所以(8-OD)2+42=OD2,所以OD=5,所以D(0,5).23.解:(1)按已知条件建立平面直角坐标系(如图),A(-3,4),D(8,1),E(7,4),F(4,3),G(1,7).(2)连接BE和CG相交于点H,由题意,得BE=72+42=65,CG=72+42=65,所以BE=CG.借助全等及三角形内角和等性质可得∠BHC的度数:∠BHC=90°.24.解:(1)△A2B2C2的三个顶点的坐标分别是A2(4,0),B2(5,0),C2(5,2).(2)①如图①,当0<a≤3时,因为点P与点P1关于y轴对称,P(-a,0),所以P1(a,0).11 因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a 2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.②如图②,当a >3时,因为点P 与点P 1关于y 轴对称,P (-a ,0),所以P 1(a ,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a 2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.综上所述,PP 2的长为6.。
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (1)
第五章《位置的确定》单元测试题(时间:90分钟 满分:120分)一、精心选一选,慧眼识金(每小题3分,共30分)1.2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是( )A.北纬31oB.东径103.5oC.金华的西北方 向上D.北纬31o ,东径103.5o2.如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A .点AB .点BC .点CD .点D3.已知点P(a,b),其中a 、b 满足 ab >0,a +b<0,则点P 在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 下列说法错误的是( )A.平行于x 轴的直线上的所有点的纵坐标相同 B.平行于y 轴的直线上的所有点的横坐标相同 C.若点P (a ,b )在x 轴上,则0a = D.(3-,4)与(4,3-)表示两个不同的点5.如果点M 到x 轴和y 轴的距离相等,则点M 的横、纵坐标的关系是( ) A.相等 B.互为相反数 C.互为倒数 D.相等或互为相反数6.如果点P(-m ,3)与点P 1(-5, n )关于y 轴对称,则m ,n 的值分别为( )A.m = -5,n =3B.m = 5,n =3C.m = 5,n = -3D.m = -3,n =5 7.如图,与(1)中三角形相比,(2)中的三 角形发生的变化是( ) A.向左平移3个单位长度 B.向右平移1个单位长度 C. 向上平移3个单位长度 D. 向下平移1个单位长度8.平面直角坐标系中,一个三角形的三个顶点的横坐标保持不变,纵坐标均增加3个单位,则所得的图形与原图形相比( )A.形状不变,大小扩大了3倍 B.形状不变,向右平移了3个单位 C.形状不变,向上平移了3个单位 D.三角形被纵向拉伸为原来的3倍第2题图第7题图(2)9.如图是中国象棋的一盘残局,如果用(4,0)表示“帅”的位置,用(3,9)表示“将”的位置,那么 “炮” 的位置应表示为( ) A. (7,8) B. (8,7) C.(8,8) D.(8,9) 10.已知点A(2,0)、点B(-21,0) 、点C(0,1),以A 、B 、C 三点为顶点画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限二、耐心填一填,一锤定音 (每小题4分,共40分)11.在电影票上,如果将“8排4号”记作(8,4),那么(10,15)表示_____. 12.如果0a <,0b >,则点Q(b a b a -+-,)在第____象限.13.已知x 轴上点P 到y 轴的距离是3,则点P 坐标是______.14.一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_____. 15.如图,要把线段AB 平移,使得点A 到 达点A'(4,2),点B 到达点B',那么 点B'的坐标是_____. 16.已知点A(4,x),B(y ,-3),若AB ∥x 轴,且线段AB 的长为5,则xy=____. 17.已知点A(a,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是_____. 18.已知点M 在y 轴上,点P (3,-2),若线段MP 的长为5,则点M 的坐标是____.三、认真解一解,牵手成功 (第21题6分,22题、23题、24题各8分,25题、26题各10分,共50分)21. 写出如图所示的直角坐标系中“小鱼”上所标各点的坐标并回答下列问题: (1)点B 、E 的位置有什么特点?(2)从点B 与点E 、点C 与点D 的位置看,它们的坐标有什么特点?22点A 在第一象限,当m 为何值时,点A (m+2,3m-5)到x 轴的距离是它到y 轴距离的一半.第9题 Eyx 1 1 A B C D 第21题 O23.有一天,老师给小芳提了两个问题: (1)顺次连接以下几个点(3,3);(3,0);(9,0);(9,3);(10,3);(6,5);(2,3);(3,3); (9,3) ,会得到一个什么漂亮的图案吗?(2)若把这个图案向下平移6个单位长度,如何画出平移后的图案呢? 聪明的同学们,你能帮助小芳解决这个问题吗?24.已知三角形三个顶点坐标,求三角形面积通常有三种方法:方法一:直接法.计算三角形一边的长,并求出该边上的高.方法二:补形法.将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差. 方法三:分割法.选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形. 现给出三点坐标:A (2,-1),B (4,3),C (1,2),请你选择一种方法计算△ABC 的面积.25.若点A(-2,1)、B(4,-1)都在平面内,则可画出几个以A 、B 为两个顶点的正方形,分别写出这几个正方形的另外两个顶点的坐标.26.请在如图所示的直角坐标系中,运用线段设计一个你喜欢的简单图案,然后进行如下变化:(1)纵坐标不变,横坐标都减去4,所 得图案与原图案相比有什么变化; (2)纵坐标不变,横坐标都乘以21,所得图案与原图案相比有什么变化;(3)横坐标不变,纵坐标乘以-1, 请将变化的图案在直角坐标系中描出来,并说明变化后的结果.第24题备选题1.点P(m +3, m +2)在直角坐标系的x 轴上,则点P 坐标为( ) A.(0,-1) B.( 1,0) C.( 3,0) D.(0,-5)2. 如图,已知△ABC 的顶点B 的坐标是(2,1),将 △ABC 向左平移两个单位后,点B 平移到B 1,则 B 1的坐标是( ).A.(4, 1)B. (1,0)C.(-1,1)D. ( 0,1)3. 已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为______.4.如图,在平面直角坐标系中,R t △OAB 的顶点A 的坐标为(3,1),若将△OAB 逆时针旋转600后,B 点到达B /点,则B /点的坐标是_____.5.已知点A(a,3)、B(-4,b),试根据下列条 件求出a 、b 的值.(1)A 、B 两点关于y 轴对称; (2) A 、B 两点关于x 轴对称; (3)AB ∥x 轴; (4) A 、B 两点在第二、四象限两坐标轴夹角的平分线上.6.请在平面直角坐标系中标出A(0,4),B(-3,0),C(3,0)三点,再以A 、B 、C 为顶点画平行四边形,并根据A 、B 、C 三点的坐标,写出第四个顶点D 的坐标.(第6题) yxABC O备选2题yAxO B备选4题 (第23题备选6题参考答案与提示一、选择题1.D2.B3.C4.C5.D6.A7.A8.C9.B 10.C 二、填空题11.10排15号 12.四 13.(3,0)或(-3,0) 14.(3,2)15.(7,4) 16.3或-27 17.4或-4 18.(0,2)或(0,-6) 19.M(-1,-3),N(1,-3) 20.(-8,0)三、解答题21.略解:A(-2,0),B(0,-2),C(2,-1),D(2,1),E(0,2). (1)点B 、E 关于原点对称,也关于x 轴对称.(2)点B 与点E 、点C 与点D 的横坐标相等,纵坐标互为相反数. 22.略解:由题意,得3m-5=21(m+2).解得m=6. 23.略解:(1)图略.象一座漂亮的房子.(2)将图案向下平移6个单位长度后,各对应点的坐标依次为(3,-3),(3,-6),( 9,-6),(9,-3),(10,-3),(6,-1),(2,-3), (3,-3),(9,-3),顺次连接以上各点,即得平移后的图案.24.略解:本题宜用补形法.过点A 作x 轴的平行线,过点C 作y 轴的平行线,两条平行线交于点E.过点B 分别作x 轴、y 轴的 平行线,分别交EC 的延长线于点D,交EA 的延长线于点F.则 S △ABC =S 矩形BDEF -S △BDC -S △CEA -S △BFA =12-1.5-1.5-4=5.(本题也可先由勾股定理的逆定理,判别出△ABC 为直角三角形,再求面积) 25.以A 、B 为两个顶点的正方形可画出三个,画图略.以BC 为一条对角线时,另两个顶点分别为(2,3),(0,-3),以BC 为一条边时,若另两顶点在直线BC 的上方,则其坐标分别为(0,7),(6,5); 若另两顶点在直线BC 的下方,则其坐标分别为(-4,-5),(2,-7).26.略解:本题为开放性问题,只要所设计的图案符合要求且合理即可. (1)与原图案相比,形状大小不变,向左平移4个单位长度. (2)将原图案横向压缩为原来的21. (3)所得图案与原图案关于x 轴对称,画图略.备选题答案: 1.B 2.D 3.(-3,2) 4.(23,23) 5.略解:(1)a=4,b=3.(2)a=-4,b=-3.(3)因为 AB ∥x 轴,所以点A,B 的纵坐标相同,横坐标不等,所以b=3, a ≠-4.(4)因为A,B 点在第二、四两条坐标轴夹角的平分线上,所以每个点的横、纵坐标互为相反数,所a=-3,b=4.6.略解:画图略.符合条件的平行四边形有三个.以AC 为一条对角线的平行四边形的顶点D 1(6,4),以AB 为一条对角线的平行四边形的顶点D 2(-6,4), 以BC 为一条对角线的平行四边形的顶点D 3 (0,-4).。
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (2)
第三章位置与坐标单元测试一、选择题(每题3分,共30分)1.下列关于确定一个点的位置的说法中,能具体确定点的位置的是()A.东北方向B.东经35°10′,北纬12°C.距点A100米D.偏南40°,8000米2.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在的象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定3.如图1,△ABC与△DFE关于y轴对称,若点A的坐标为(-4,6),则点D的坐标为()图1A.(-4,6) B.(4,6) C.(-2,1) D.(6,2)4.若A(a,b),B(a,d)表示两个不同的点,且a≠0,则这两个点在()A.平行于x轴的直线上B.第一、三象限的角平分线上C.平行于y轴的直线上D.第二、四象限的角平分线上5.甲、乙两名同学用围棋子做游戏,如图2所示,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也组成轴对称图形,则下列下子方法不正确的是[说明:棋子的位置用数对表示,如点A在(6,3)]()图2A .黑(3,7),白(5,3)B .黑(4,7),白(6,2)C .黑(2,7),白(5,3)D .黑(3,7),白(2,6)6.以下是甲、乙、丙三人看地图时对四个地标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆;乙:从学校向西直走300米,再向北直走200米可到博物馆;丙:博物馆在体育馆正西方向200米处.根据三人的描述,若从图书馆出发,其终点是体育馆,则下列描述正确的是( )A .向南直走300米,再向西直走200米;B .向南直走300米,再向西直走600米;C .向南直走700米,再向西直走200米;D .向南直走700米,再向西直走600米;7.若点P (-m ,3)与点Q (-5,n )关于y 轴对称,则m ,n 的值分别为( )A .-5,3B .5,3C .5,-3D .-3,58.有甲、乙、丙三个人,他们所处的位置不同,甲说:“以我为坐标原点,乙的位置是(2,3).”丙说:“以我为坐标原点,乙的位置是(-3,-2).”则以乙为坐标原点,甲、丙的坐标分别是(已知三人所建立的直角坐标系中x 轴、y 轴的方向相同,且单位长度一致)( )A .(-3,-2),(2,-3)B .(-3,2),(2,3)C .(-2,-3),(3,2)D .(-2,-3),(-2,-3)9.已知点A (1,0),B (0,2),点P 在x 轴上,且△P AB 的面积为5,则点P 的坐标为( )图3A .(-4,0)B .(6,0)C .(-4,0)或(6,0)D .无法确定10.如图3所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是( )A .(2019,0)B .(2019,-1)C .(2019,1)D .(2018,0)二、填空题(每题3分,共18分)11.若m>0,n<0,则点P(m,n)关于x轴的对称点在第________象限.12.已知A(2x-1,3x+2)是第一、三象限角平分线上的点,则点A的坐标是________.13.在同一直角坐标系中,一同学误将点A的横、纵坐标的次序颠倒,写成A(a,b);另一同学误将点B的坐标写成关于y轴对称的点的坐标,写成B(-b,-a),则A,B两点原来的位置关系是__________.14.在平面直角坐标系中,已知点A(-3,0),B(3,0),点C在坐标轴上,且AC+BC =10,写出满足条件的所有点C的坐标:________.15.已知等边三角形ABC的两个顶点的坐标分别为A(-4,0),B(2,0),则点C的坐标为____________,△ABC的面积为________.16.如图4是某同学在课下设计的一款软件,蓝精灵从点O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,到达A2n后,要向________方向跳________个单位长度落到A2n+1.图4三、解答题(共52分)17.(6分)如图5,△ABC中,AB=AC=13,BC=24,请你建立适当的平面直角坐标系,并直接写出A,B,C三点的坐标.图518.(6分)(1)若点M(5+a,a-3)在第二、四象限角平分线上,求a的值;(2)已知点N的坐标为(2-a,3a+6),且点N到两坐标轴的距离相等,求点N的坐标.19.(6分)在平面直角坐标系中,将坐标是(-5,0),(-4,-2),(-3,0),(-2,-2),(-1,0)的点用线段依次连接起来形成一个图案Ⅰ.(1)作出该图案关于y轴对称的图案Ⅱ;(2)将所得到的图案Ⅱ沿x轴向上翻折180°后得到一个新图案Ⅲ,试写出它的各顶点的坐标;(3)观察图案Ⅰ与图案Ⅲ,比较各顶点的坐标和图案位置,你能得到什么结论?20.(6分)已知在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点.请回答下列问题:(1)在坐标系内描出点A,B,C的位置.(2)求出以A,B,C三点为顶点的三角形的面积.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.图621.(6分)已知点P(2m+4,m-1).根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过点A(2,-3)且与x轴平行的直线上.22.(6分)如图7,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,若将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.图723.(8分)如图8,正方形ABFG和正方形CDEF的顶点在边长为1的正方形网格的格点上.(1)建立平面直角坐标系,使点B,C的坐标分别为(0,0)和(5,0),并写出点A,D,E,F,G的坐标;(2)连接BE和CG相交于点H,BE和CG相等吗?并计算∠BHC的度数.图824.(8分)如图9,在平面直角坐标系中,直线l过点M(3,0)且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.图9参考答案1.B 2.B 3.B 4.C 5.C 6.A 7.A 8.C 9.C10.B 11.一 12.(-7,-7)13.关于x 轴对称14.(-5,0),(5,0),(0,4),(0,-4)15.(-1,3 3)或(-1,-3 3) 9 3[解析] 当点C 在第二象限时,作CH ⊥AB 于点H .因为A (-4,0),B (2,0),所以AB =6.因为△ABC 是等边三角形,所以AH =BH =3.由勾股定理得CH =3 3,所以C (-1,33);同理,当点C 在第三象限时,C (-1,-3 3).所以△ABC 的面积为12×6×3 3=9 3. 16.(9,6) 正东 (2n +1) [解析] 因为蓝精灵从点O 第一跳落到A 1(1,0),第二跳落到A 2(1,2),第三跳落到A 3(4,2),第四跳落到A 4(4,6),所以蓝精灵先向正东跳动,再向正北跳动,每次跳动的距离为前一次的距离加1,即可求出.第五跳落到A 5(9,6).到达A 2n 后,要向正东方向跳(2n +1)个单位长度落到A 2n +1.17.解:答案不唯一,如以BC 所在直线为x 轴,过点B 作BC 的垂线为y 轴建立平面直角坐标系,由图可知,点A (12,5),B (0,0),C (24,0).18.解:(1)由题意可得5+a +a -3=0,解得a =-1.(2)由题意可得|2-a |=|3a +6|,即2-a =3a +6或2-a =-(3a +6),解得a =-1或a =-4,所以点N 的坐标为(3,3)或(6,-6).19.解:图案Ⅰ如图.(1)作出图案Ⅱ如图.(2)作出图案Ⅲ如图.图案Ⅲ各个顶点的坐标分别为(5,0),(4,2),(3,0),(2,2),(1,0).(3)观察图案Ⅰ与图案Ⅲ,不难发现:①从各顶点坐标看,横、纵坐标均互为相反数;②从图案的位置上看,图案Ⅰ在第三象限,图案Ⅲ在第一象限,二者关于坐标原点对称.20.解:(1)描点如图.(2)如图,依题意,得AB ∥x 轴,且AB =3-(-2)=5,所以S △ABC =12×5×2=5. (3)存在.因为AB =5,S △ABP =10,所以点P 到AB 的距离为4.又因为点P 在y 轴上,所以点P 的坐标为(0,5)或(0,-3).21.解:(1)由题意,得2m +4=0,解得m =-2,则m -1=-3,所以点P 的坐标为(0,-3).(2)由题意,得m -1=0,解得m =1,则2m +4=6,所以点P 的坐标为(6,0).(3)由题意,得m -1=(2m +4)+3,解得m =-8,则2m +4=-12,m -1=-9, 所以点P 的坐标为(-12,-9).(4)由题意,得m -1=-3,解得m =-2,则2m +4=0,所以点P 的坐标为(0,-3).22.解:由题意,可知折痕AD所在的直线是四边形OAED的对称轴.在Rt△ABE中,AE=OA=10,AB=8,所以BE=AE2-AB2=102-82=6,所以CE=4,所以E(4,8).在Rt△DCE中,DC2+CE2=DE2,又DE=OD,所以(8-OD)2+42=OD2,所以OD=5,所以D(0,5).23.解:(1)按已知条件建立平面直角坐标系(如图),A(-3,4),D(8,1),E(7,4),F(4,3),G(1,7).(2)连接BE和CG相交于点H,由题意,得BE=72+42=65,CG=72+42=65,所以BE=CG.借助全等及三角形内角和等性质可得∠BHC的度数:∠BHC=90°.24.解:(1)△A2B2C2的三个顶点的坐标分别是A2(4,0),B2(5,0),C2(5,2).(2)①如图①,当0<a≤3时,因为点P与点P1关于y轴对称,P(-a,0),所以P1(a,0).11 因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a 2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.②如图②,当a >3时,因为点P 与点P 1关于y 轴对称,P (-a ,0),所以P 1(a ,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a 2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.综上所述,PP 2的长为6.。
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (43)
第三章位置的确定拔高训练一、学科内综合题(每题20分,共40分)1.A、B、C、D、E各点的坐标如图所示,确定△ABE、△EBD、△ABC的面积,你是怎样做的?你发现了什么规律?2.设m是实数,那么平面上的点P(3m2-5m+2,1-m)不可能在第几象限?二、应用题(20分)3.下图是一种活动门的示意图,平时不用的时候推到一边去,•晚上用的时候拉过来锁上,节约空间,非常方便,它是由一个个菱形组成的,图中菱形的两对角线之比为2:3,请用适当的方法表示菱形的各顶点的位置.三、创新题(20分)4.矩形的两条边长分别为4、6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3),与同伴交流,你们的答案相同吗?四、中考题(20分)5.已知两点P1(-2,3),P2(4,-5),求P1、P2两点的距离.答案:一、1.分析:由坐标求出线段的长.(可利用勾股定理)解:A、B、C、D、E各点的坐标分别为A(0,6),B(0,3),C(6,1),D(-2,-2),E(-•8,0).△ABE的面积为12(8×6-8×3)=12.△EBD的面积为8×5-12×8×3-12×2×5-12×6•×2=17.△ABC的面积为12(6×5-2×6)=9.•规则为可以将每个三角形的面积看成边与坐标轴平行的矩形的一半.2.分析:要判断点P不经过第几象限,需讨论点P的横、纵坐标符号的可能性.解:∵3m2-5m+2=(m-1)(3m-2),∴当m≤23时,3m2-5m+2≥0.此时1-m>0,点P•在第一象限或y轴上,当23<m<1时,3m2-5m+2<0.此时1-m>0,点P在第二象限.当m≥1时,3m2-5m+2≥0,此时1-m≤0,点P在第四象限或坐标原点.综观以上结论,可知点P不可能在第三象限.点拨:象限与其中点的坐标符号的关系要记清楚,此为易考点.二、3.分析:用横、竖两线交点的方法确定点的位置.解:如图:JH=4,AI=6,∴JH:AI=2:3.这些点的位置为A (3,1),B (7,1),C (11,1),D (13,4),E (11,7),F (9,4),G (7,7),H (5,4),I (3,7),J (1,4).1312111098765432101234567J IDH G FECBA点拨:此题有多种方法. 三、4.分析:在平面直角坐标系中先找出点(-2,-3),然后选取其他的点,使其成为一个矩形,但由于只确定一个点,所以答案有无数个.解:如图,建立直角坐标系,则四个点的坐标分别为 A (-2,3),B (-2,-3),C (2,-3),D (2,3),答案有无数个.点拨:选点时,尽可能使点之间有规律,易于点的坐标的表示. 四、5.分析:如图D-5-11,欲求P 1与P 2之间的距离,就是要求线段P 1P2的长,过P 1作x 轴的垂线,过P 2作y 轴的垂线,设两条线段交于A 点,则△P 1AP 2是直角三角形.根据勾股定理,得P 1P 2解:如图所示,过P 1、P 2分别作x 轴、y 轴的垂线相交于A 点. 则A 点的坐标为A (-2,•-5),∴P 1A=│-5-3│=8,P2A=│-2-4│=6,∴P 1P 2.点拨:此题能顺利求出P1P2的长的关键是过P1、P2两点分别作x轴、y轴的垂线,构造出Rt△P1AP2,然后利用勾股定理求解.。
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (2)
yxCB A第五章位置的确定测试卷一、 选择题:1.若一条直线垂直于y 轴,则这条直线上的点的纵坐标 ( ) (A )一定等于零; (B )一定小于零 (C )一定大于零; (D )都相等2.点A 、B 关于x 轴的对称,点B 、C 关于原点对称,已知点C 的坐标为(5,-2),则点A 的坐标为( ) (A )(5,2) (B )(-5,2) (C )(-5,-2) (D )(-2,-5)3.已知等边△ABC 的边长为2,若以BC 的中点为原点,以BC 边所在直线为x 轴建立直角坐标系,则点A 的坐标为( ) (A )(0,3) (B )(0,3-)(C )(0,3)或(0,3-) (D )(3,0)或(3-,0)4.在直角坐标系中,将某一个图形向左平移4个单位,则下列说法正确的是( ) (A)图形上所有点的横坐标不变,纵坐标减少4 (B)图形上所有点的横坐标不变,纵坐标增加4(C)图形上所有点的纵坐标不变,横坐标减少4 (D)图形上所有点的纵坐标不变,横坐标增加4二、 填空题:1.如图,点A 的坐标为(—4,2),如果点A 、点B 分别以每秒1个单位的速度沿AC 、BO 方向运动,当A 运动到C 点时,两点同时沿原路返回,则第2秒时B 点坐标为______,第3.5秒时A 点坐标为________,第5.5秒时A 点坐标为__________.2.已知点P 在第二象限,且过点P 分别向x 轴,y 轴作垂线,垂足对应的数分别为3和4,则点P 的坐标为________.3.已知点A)4,- (2m m 在x 轴的负半轴上,则m 的值为_______. 4.在直角坐标系中,坐标轴上到点A (6,8)的距离等于10的点为_______.三、 计算与表示: 1. 已知:△ABC 在直角坐标系中的位置如图所示,且ABC S ∆=48, ∠ABC=45°,BC=12.求△ABC 的三个顶点的坐标.2.如图是一个直角边长为2的等腰直角三角形,建立适当的直角坐标系,写出各个顶点的坐标。
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (42)
八年级数学第三章测试题一、细心填一填:(每小题1.5分,共42分)1.如果将电影票上“6排3号”简记为(6,3),那么“10排10号”可表示为;(7,1)表示的含义是。
2.点(-4,0)在轴上,距坐标原点个单位长度。
3.点P在y轴上且距原点2个单位长度,则点P的坐标是。
4.已知点M(a,3-a)是第二象限的点,则a的取值范围是。
5.点A、点B同在平行于x轴的直线上,则点A与点B的坐标相等。
6.点M(-3,4)与点N(-3,-4)关于对称。
7.点A(3,b)与点B(a,-2)关于原点对称则a= ,b= 。
8.若点P(x,y)在第二象限角平分线上,则x与y的关系是。
9.已知点P(-3,2)则点P到x轴的距离为到y轴的距离为。
10.已知点A(x,4)到原点的距离为5,则点A的坐标为。
11.点A(a,b)和B关于x轴对称,而点B与点C(2,3)关于y轴对称,那么,a= _______ ,b=_______ , 点A和C的位置关系是________________。
12.已知A在灯塔B的北偏东30°的方向上,则灯塔B在小岛A的________的方向上。
13. 在矩形ABCD中,A点的坐标为(1,3),B点坐标为(1,-2),C点坐标为(-4,-2),则D点的坐标是。
14. 在直角坐标系中,A(1,0),B(-1,0),△ABC为等腰三角形,则C点的坐标是_______。
15.已知两点E(x1,y1)、F(x2,y2),如果x1+x2=2x1,y1+y2=0,则E、F两点关于________ 。
16.若A(-9,12),另一点P在x轴上,P到y轴的距离等于A到原点的距离,则P点坐标为________ 。
17.线段AB端点坐标A(a,b),B(c,d),其坐标的横坐标不变,纵坐标分别加上m(m>0),得到相应的点的坐标A′_______,B′_______ 。
则线段A′B′与AB相比的变化为:其长度_______,位置_______ 。
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (39)
第五章位置的确定回顾与思考◆基础训练一、填空题1.确定平面内某一点的位置一般需要______个数据.2.点A(3,-4)•到y•轴的距离为______,•到x•轴的距离为______,•到原点距离为_______.3.与点A(3,4)关于x轴对称的点的坐标为_______,•关于y•轴对称的点的坐标为_______,关于原点对称的点的坐标为______.4.点C的坐标为(4,-3),若将点C向上平移3个单位,则平移后的点C坐标为______.5.在平面直角坐标系中,A,B,C三点的坐标分别为(0,0),(0,-5),(-2,-2),•以这三点为平行四边形的三个顶点,则第四个顶点不可能在第_______象限.二、选择题6.平行于x轴的直线上的任意两点的坐标之间的关系是().A.横坐标相等 B.纵坐标相等C.横坐标和纵坐标都相等 D.以上结论都不对7.下列关于A,B两点的说法中,正确的个数是().①如果点A与点B关于y轴对称,则它们的纵坐标相同;②如果点A与点B的纵坐标相同,则它们关于y轴对称;③如果点A与点B的横坐标相同,则它们关于x轴对称;④如果点A与点B关于x轴对称,则它们的横坐标相同.A.1个 B.2个 C.3个 D.4个8.图5-26是沈阳市地区简图的一部分,图中“故宫”、•“鼓楼”所在的区域分别是().A.D7,E6 B.D6,E7C.E7,D6 D.E6,D79.如果一个图形上各点的横坐标保持不变,而纵坐标分别都变化为原来的12,那么所得的图形与原图形相比().A.形状不变,图形缩小为原来的一半 B.形状不变,图形放大为原来的2倍C.整个图形被横向压缩为原来的一半 D.整个图形被纵向压缩为原来的一半10.在海战中,欲确定每艘战舰的位置,需要知道每艘战舰相对我方潜艇的().A.距离 B.方位角 C.方向角和距离 D.以上都不对三、解答题11.在直角坐标系中描出下列各组点,并将各组内的点用线段依次连结起来.(1)(2,6),(4,6),(4,8),(2,8);(2)(3,3),(3,6);(3)(3,5),(1,6);(4)(3,5),(5,6);(5)(3,3),(2,0);(6)(3,3),(4,0).观察所得的图形,你觉得它像什么?12.建立一个平面直角坐标系,在坐标系中描出与x轴、y轴的距离都等于4的点,并写出这些点之间的对称关系.◆能力提高13.三角形ABC为等腰直角三角形,其中∠A=90°,BC长为6.(1)建立适当的直角坐标系,并写出各个顶点的坐标;(2)将(1)中各顶点的横坐标都加2,纵坐标保持不变,与原图案相比,所得的图案有什么变化?(3)将(1)中各顶点的横坐标不变,将纵坐标都乘-1,与原图案相比,•所得的图案有什么变化?(4)将(1)中各顶点的横坐标都乘-2,纵坐标保持不变,与原图案相比,•所得的图案有什么变化?答案:1.2 2.3 4 5 3.(3,-4) (-3,4) (-3,-4) 4.(4,0) 5.一6.B 7.B •8.C 9.D 10.C11.如图,所得的图形像机器人.12.如图,点A 与点B 、点C 与点D 关于y 轴对称,点A 与点D 、点B 与点C 关于x 轴对称,点A 与点C 、点B 与点D 关于原点对称.答案不唯一,只要合理就可以.13.(1)以BC 边所在的直线为x 轴,BC 的中垂线(垂足为O )为y 轴,建立直角坐标系(如图).因为BC 的长为6,所以AO=12BC=3,所以A (0,3),B (-3,0),C (3,0). (2)整个图案向右平移了2个单位长度,如图△A 2B 2C 2.(3)与原图案关于x 轴对称,如图△A3BC .(4)与原图形相比所得的图案在位置上关于y 轴对称,横向拉长了2倍,如图△AB 4C 4.。
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (12)
第5章 全章标准检测卷(70分 50分钟)一、填空题:(每小题3分,共18分)1.若电影票上的标记6排27座记为(6,27),那么(27,6)是第______排______座.2.如果P(2x+1,5)在y 轴上,则x=_______.3.点P(m,-2),与Q(5,n)关于原点对称,则m=______,n=______.4.将-2)的横坐标乘以-1,得B 点坐标,则点A 、B 关于______成轴对称. 5.已知点P(x,y)在第三象限,且│x │=1,│y │=2,则点P 的坐标为_____,点P 到x 轴的距离是_____,点P 到y 轴的距离是______.6.将图甲中的鱼变化成图乙中的鱼,变化规律是______,将图甲中的鱼变化成图丙中的鱼,变化规律是_______.l甲l乙二、选择题:(每小题3分,共18分)7.一个矩形,两边分别是8、4,如图建立直角坐标系,下面哪个点不在矩形上( ) A.(8,0) B.(8,4) C.(4,8) D.(0,4)xy848.将平面直角坐标系内某个图形各个点的横坐标都乘以-1,纵坐标不变,所得图形与原图形的关系是( )A.关于x 轴对称B.关于y 轴对称;C.关于原点对称D.重合 9.已知P(m+3,2m+4)在y 轴上,那么点P 的坐标是( )l丙A.(-2,0)B.(0,-2)C.(1,0)D.(0,1)10.已知点P关于x轴的对称点P1的坐标是(2,3),则P点关于原点的对称点P2的坐标是( )A.(-2,3)B.(2,-3)C.(-2,-3)D.(3,2)11.如图,四边形OABC是平行四边形,O是坐标原点,A、C坐标分别是(1,2),(3,0)则B点坐标是( )A.(4,2)B.(4,3)C.(3,2)D.无法确定12.已知点A(3,0),B(0,4),则AB的长是( )A.5B.6C.7D.25三、解答题:(共34分)13.(14分)用两种方法建立平面直角坐标系表示边长为2的等边三角形各顶点坐标.14.(10分)如图所示,在直角坐标系中,图(1)中的图案“A ”经过变换分别变成图(2)-图(6)中的相应图案(虚线对应原图案)试写出图(2)-图(6)中各点坐标在每次变换前后发生了什么变化?对应点的坐标之间有什么关系.(1)(2)(3)(4)O xyCA B(5)(6)15.(10分)在直角坐标系中,将坐标是:(2,0),(2,2),(0,2),(0,3),(2,5),(3,5),(2,2),(5,3),(5,2),(3,0),(2,0)的点用线段依次连接起来形成一个图案, 并回答下列问题:(1)每个点的横坐标保持不变,纵坐标变成原来的12,再将所得的各个点用线段依次连接起来,所得的图案与原图案相比有什么变化?(2)纵坐标不变,横坐标分别加3呢?(以下不用画图)(3)横坐标不变,纵坐标分别加3呢?(4)纵坐标保持不变,横坐标分别乘-1呢?(5)纵、横坐标分别变成原来的2倍呢?全章标准检测卷答案:一、1.27,6 2.-123.-5,24.y轴5.(-1,-2),2,16.纵坐标不变,横坐标加3,横坐标不变,纵坐标乘-1.二、7.C 8.B 9.B 10.A 11.A 12.A三、13.略14.图(2)与图(1)比,纵坐标不变,横坐标乘以2.图(3)与图(1)比,纵坐标不变,横坐标加3.图(4)与图(2)比,横坐标不变,纵坐标乘以-1.图(5)与图(1)比,横坐标不变,纵坐标乘以2.图(6)与图(1)比,横纵坐标均乘以2.15.图略.(1)被纵向缩小为原图的12.(2)向右平移3个单位.(3)向上平移3 个单位.(4)关于y轴对称;(5)整体为原来的4倍.。
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (30)
第三章位置与坐标单元测试班级:______________姓名:______________满分100分得分:___________一、选择题(每小题2分,共20分)1.在平面内,确定一个点的位置一般需要的数据个数是()A.1B.2C.3D.42.如图,已知校门的坐标是(1,1),那么下列对于实验楼位置的叙述正确的个数为()①实验楼的坐标是 3 ②实验楼的坐标是(3,3)③实验楼的坐标为(4,4)④实验楼在校门的东北方向上,距校门2002米A.1个B.2个C.3个D.4个3.下列语句,其中正确的有()①点(3,2)与(2,3)是同一个点②点(0,-2)在x轴上③点(0,0)是坐标原点A.0个B.1个C.2个D.3个4.已知点M到x轴的距离为3,到y轴的距离为2,则M点的坐标为()A.(3,2)B.(-3,-2)C.(3,-2)D.(2,3)(2,-3),(-2,3),(-2,-3)5.在以下四点中,哪一点与点(-3,4)的连接线段与x轴和y轴都不相交()A.(-2,3)B.(2,-3)C.(2,3)D.(-2,-3)6.点P (-1,3)关于原点对称的点的坐标是 ( ) A.(-1,-3) B.(1,-3) C.(1,3)D.(-3,1)7.如果直线AB 平行于y 轴,则点A 、B 的坐标之间的关系是( ) A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等8.平面直角坐标系内有一点A (a ,b ),若ab =0,则点A 的位置在( ) A.原点 B.x 轴上 C.y 轴上D.坐标轴上9.A (-3,2)关于原点的对称点是B ,B 关于x 轴的对称点是C ,则点C 的坐标是( ) A.(3,2) B.(-3,2) C.(3,-2)D.(-2,3)10.一个平行四边形三个顶点的坐标分别是(0,0)、(2,0)、(1,2),第四个顶点在x 轴下方,则第四个顶点的坐标为( )A.(-1,-2)B.(1,-2)C.(3,2)D.(-1,2)二、填空题(每小题3分,共24分)11.已知点A (a -1,a +1)在x 轴上,则a 等于______.12.已知P (-3,2),P ′点是P 点关于原点O 的对称点,则P ′点的坐标为______. 13.若一个点的坐标是(-3,4),则这个点关于x 轴的对称点的坐标是______.14.已知△ABC 三顶点坐标分别是A (-7,0)、B (1,0)、C (-5,4),那么△ABC 的面积等于______.15.若3 a +(b +2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为______. 16.以点(4,0)为圆心,以5为半径的圆与y 轴交点的坐标为______. 17.点A (7,-3)关于y 轴的对称点是B ,则线段AB 的长是______.18.已知等边△ABC 的两个顶点坐标为A (-4,0)、B (2,0),则点C 的坐标为______,△ABC的面积为______.三、解答题(每小题8分,共56分)19.在下图中,确定点A、B、C、D、E、F、G的坐标.请说明点B和点F有什么关系?20.在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来:(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);(2)(0,0),(4,-3),(8,0),(4,3),(0,0);(3)(2,0)观察所得到的图形,你觉得它像什么?21.某地为了城市发展,在现有的四个城市A、B、C、D附近新建机场E.试建立适当的直角坐标系,写出点A、B、C、D、E的坐标.22.下图是一种活动门窗防护网的示意图.它是由一个个菱形组成的,图中菱形的一个角是60°,菱形的边长是2,请在适当的直角坐标系中表示菱形各顶点的位置.23.已知菱形两条对角线的长分别为6和8,建立适当的直角坐标系,写出各顶点的坐标.你的答案是惟一的吗?24.(1)将下图中的各个点的纵坐标不变,横坐标都乘以-1,与原图案相比,所得图案有什么变化?(2)将下图中的各个点的横坐标不变,纵坐标都乘以-1,与原图案相比,所得图案有什么变化?(3)将下图中的各个点的横坐标都乘以-2,纵坐标都乘以-2,与原图案相比,所得图案有什么变化?25.李明设计的广告模板草图如图所示(单位:米).李明想通过电话征求陈伟的意见.假如你是李明,你将如何把这个图形告知陈伟呢?参考答案单元测试一、1.B 2.B 3.B 4.D 5.A 6.B 7.A 8.D 9.A 10.B二、11.-1 12.(3,-2) 13.(-3,-4)14. 16 15.(-3,-2) 16.(0,3),(0,-3) 17. 14 18.(-1,33)或(-1,-33),93三、19.~25.略。
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (20)
小华小军小刚第三章 位置与坐标单元检测题一、选择题(每小题3分,共30分)1.在平面直角坐标系中,点P (-1,2)的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2. 点P (13++m m ,)在直角坐标系的x 轴上,则点P 的坐标为( ) A .(0,-2) B .(2,0) C .(4,0) D .(0,-4) 3. 课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4, 5)C .(3,4)D .(4,3)4. 如图,平行四边形ABCD ,边AD ∥X 轴,下列说法正确的是( ) A .A 与D 的横坐标相同。
B .C 与D 的横坐标相同。
C .B 与C 的纵坐标相同。
D .B 与D 的纵坐标相同。
5. 点M (1,2)关于x 轴对称的点坐标为( )A. (-1,2)B. (1,-2)C. (2,-1)D. (-1,-2) 6. 若x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( ) A .(3,0) B .(3,0)或(–3,0)C .(0,3)D .(0,3)或(0,–3) 7.若点M (a ,b )在第二象限,则点N (-b ,b -a )必在( )A .第一象限B .第二象限 C.第三象限 D.第四象限8. 已知平面内的一点P ,它的横坐标与纵坐标互为相反数,且与原点的距离是2,则点P 的坐标是( ) A .(-1,1)B .(1,-1)C . )2,2(-或)2,2(-D .)2,2(-9. 坐标半面上,在第二象限内有一点P ,且P 点到x 轴的距离是4,到y 轴的距离是5,则P 点坐标为( ) A . (-5,4) B. (-4,5)C. (4,5)D. (5,-4)10.已知正△ABC 的边长为2,以BC 的中点为原点,BC 所在的直线为x 轴,则点A 的坐标为( ).A .0)或(,0) B .(0或(0) C .(0D .(0二、填空题(每空2分,共30分)11. 如果将电影票上“6排3号”简记为(6,3),那么(7,1)表示的含义是 。
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (30)
第三章位置与坐标单元测试班级:______________姓名:______________满分100分得分:___________一、选择题(每小题2分,共20分)1.在平面内,确定一个点的位置一般需要的数据个数是()A.1B.2C.3D.42.如图,已知校门的坐标是(1,1),那么下列对于实验楼位置的叙述正确的个数为()①实验楼的坐标是 3 ②实验楼的坐标是(3,3)③实验楼的坐标为(4,4)④实验楼在校门的东北方向上,距校门2002米A.1个B.2个C.3个D.4个3.下列语句,其中正确的有()①点(3,2)与(2,3)是同一个点②点(0,-2)在x轴上③点(0,0)是坐标原点A.0个B.1个C.2个D.3个4.已知点M到x轴的距离为3,到y轴的距离为2,则M点的坐标为()A.(3,2)B.(-3,-2)C.(3,-2)D.(2,3)(2,-3),(-2,3),(-2,-3)5.在以下四点中,哪一点与点(-3,4)的连接线段与x轴和y轴都不相交()A.(-2,3)B.(2,-3)C.(2,3)D.(-2,-3)6.点P (-1,3)关于原点对称的点的坐标是 ( ) A.(-1,-3) B.(1,-3) C.(1,3)D.(-3,1)7.如果直线AB 平行于y 轴,则点A 、B 的坐标之间的关系是( ) A.横坐标相等B.纵坐标相等C.横坐标的绝对值相等D.纵坐标的绝对值相等8.平面直角坐标系内有一点A (a ,b ),若ab =0,则点A 的位置在( ) A.原点 B.x 轴上 C.y 轴上D.坐标轴上9.A (-3,2)关于原点的对称点是B ,B 关于x 轴的对称点是C ,则点C 的坐标是( ) A.(3,2) B.(-3,2) C.(3,-2)D.(-2,3)10.一个平行四边形三个顶点的坐标分别是(0,0)、(2,0)、(1,2),第四个顶点在x 轴下方,则第四个顶点的坐标为( )A.(-1,-2)B.(1,-2)C.(3,2)D.(-1,2)二、填空题(每小题3分,共24分)11.已知点A (a -1,a +1)在x 轴上,则a 等于______.12.已知P (-3,2),P ′点是P 点关于原点O 的对称点,则P ′点的坐标为______. 13.若一个点的坐标是(-3,4),则这个点关于x 轴的对称点的坐标是______.14.已知△ABC 三顶点坐标分别是A (-7,0)、B (1,0)、C (-5,4),那么△ABC 的面积等于______.15.若3 a +(b +2)2=0,则点M (a ,b )关于y 轴的对称点的坐标为______. 16.以点(4,0)为圆心,以5为半径的圆与y 轴交点的坐标为______. 17.点A (7,-3)关于y 轴的对称点是B ,则线段AB 的长是______.18.已知等边△ABC 的两个顶点坐标为A (-4,0)、B (2,0),则点C 的坐标为______,△ABC的面积为______.三、解答题(每小题8分,共56分)19.在下图中,确定点A、B、C、D、E、F、G的坐标.请说明点B和点F有什么关系?20.在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来:(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);(2)(0,0),(4,-3),(8,0),(4,3),(0,0);(3)(2,0)观察所得到的图形,你觉得它像什么?21.某地为了城市发展,在现有的四个城市A、B、C、D附近新建机场E.试建立适当的直角坐标系,写出点A、B、C、D、E的坐标.22.下图是一种活动门窗防护网的示意图.它是由一个个菱形组成的,图中菱形的一个角是60°,菱形的边长是2,请在适当的直角坐标系中表示菱形各顶点的位置.23.已知菱形两条对角线的长分别为6和8,建立适当的直角坐标系,写出各顶点的坐标.你的答案是惟一的吗?24.(1)将下图中的各个点的纵坐标不变,横坐标都乘以-1,与原图案相比,所得图案有什么变化?(2)将下图中的各个点的横坐标不变,纵坐标都乘以-1,与原图案相比,所得图案有什么变化?(3)将下图中的各个点的横坐标都乘以-2,纵坐标都乘以-2,与原图案相比,所得图案有什么变化?25.李明设计的广告模板草图如图所示(单位:米).李明想通过电话征求陈伟的意见.假如你是李明,你将如何把这个图形告知陈伟呢?参考答案单元测试一、1.B 2.B 3.B 4.D 5.A 6.B 7.A 8.D 9.A 10.B二、11.-1 12.(3,-2) 13.(-3,-4)14. 16 15.(-3,-2) 16.(0,3),(0,-3) 17. 14 18.(-1,33)或(-1,-33),93三、19.~25.略。
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (2)
第三章位置与坐标单元测试一、选择题(每题3分,共30分)1.下列关于确定一个点的位置的说法中,能具体确定点的位置的是()A.东北方向B.东经35°10′,北纬12°C.距点A100米D.偏南40°,8000米2.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在的象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定3.如图1,△ABC与△DFE关于y轴对称,若点A的坐标为(-4,6),则点D的坐标为()图1A.(-4,6) B.(4,6) C.(-2,1) D.(6,2)4.若A(a,b),B(a,d)表示两个不同的点,且a≠0,则这两个点在()A.平行于x轴的直线上B.第一、三象限的角平分线上C.平行于y轴的直线上D.第二、四象限的角平分线上5.甲、乙两名同学用围棋子做游戏,如图2所示,现轮到黑棋下子,黑棋下一子后白棋下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也组成轴对称图形,则下列下子方法不正确的是[说明:棋子的位置用数对表示,如点A在(6,3)]()图2A .黑(3,7),白(5,3)B .黑(4,7),白(6,2)C .黑(2,7),白(5,3)D .黑(3,7),白(2,6)6.以下是甲、乙、丙三人看地图时对四个地标的描述:甲:从学校向北直走500米,再向东直走100米可到图书馆;乙:从学校向西直走300米,再向北直走200米可到博物馆;丙:博物馆在体育馆正西方向200米处.根据三人的描述,若从图书馆出发,其终点是体育馆,则下列描述正确的是( )A .向南直走300米,再向西直走200米;B .向南直走300米,再向西直走600米;C .向南直走700米,再向西直走200米;D .向南直走700米,再向西直走600米;7.若点P (-m ,3)与点Q (-5,n )关于y 轴对称,则m ,n 的值分别为( )A .-5,3B .5,3C .5,-3D .-3,58.有甲、乙、丙三个人,他们所处的位置不同,甲说:“以我为坐标原点,乙的位置是(2,3).”丙说:“以我为坐标原点,乙的位置是(-3,-2).”则以乙为坐标原点,甲、丙的坐标分别是(已知三人所建立的直角坐标系中x 轴、y 轴的方向相同,且单位长度一致)( )A .(-3,-2),(2,-3)B .(-3,2),(2,3)C .(-2,-3),(3,2)D .(-2,-3),(-2,-3)9.已知点A (1,0),B (0,2),点P 在x 轴上,且△P AB 的面积为5,则点P 的坐标为( )图3A .(-4,0)B .(6,0)C .(-4,0)或(6,0)D .无法确定10.如图3所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是( )A .(2019,0)B .(2019,-1)C .(2019,1)D .(2018,0)二、填空题(每题3分,共18分)11.若m>0,n<0,则点P(m,n)关于x轴的对称点在第________象限.12.已知A(2x-1,3x+2)是第一、三象限角平分线上的点,则点A的坐标是________.13.在同一直角坐标系中,一同学误将点A的横、纵坐标的次序颠倒,写成A(a,b);另一同学误将点B的坐标写成关于y轴对称的点的坐标,写成B(-b,-a),则A,B两点原来的位置关系是__________.14.在平面直角坐标系中,已知点A(-3,0),B(3,0),点C在坐标轴上,且AC+BC =10,写出满足条件的所有点C的坐标:________.15.已知等边三角形ABC的两个顶点的坐标分别为A(-4,0),B(2,0),则点C的坐标为____________,△ABC的面积为________.16.如图4是某同学在课下设计的一款软件,蓝精灵从点O第一跳落到A1(1,0),第二跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5________,到达A2n后,要向________方向跳________个单位长度落到A2n+1.图4三、解答题(共52分)17.(6分)如图5,△ABC中,AB=AC=13,BC=24,请你建立适当的平面直角坐标系,并直接写出A,B,C三点的坐标.图518.(6分)(1)若点M(5+a,a-3)在第二、四象限角平分线上,求a的值;(2)已知点N的坐标为(2-a,3a+6),且点N到两坐标轴的距离相等,求点N的坐标.19.(6分)在平面直角坐标系中,将坐标是(-5,0),(-4,-2),(-3,0),(-2,-2),(-1,0)的点用线段依次连接起来形成一个图案Ⅰ.(1)作出该图案关于y轴对称的图案Ⅱ;(2)将所得到的图案Ⅱ沿x轴向上翻折180°后得到一个新图案Ⅲ,试写出它的各顶点的坐标;(3)观察图案Ⅰ与图案Ⅲ,比较各顶点的坐标和图案位置,你能得到什么结论?20.(6分)已知在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点.请回答下列问题:(1)在坐标系内描出点A,B,C的位置.(2)求出以A,B,C三点为顶点的三角形的面积.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.图621.(6分)已知点P(2m+4,m-1).根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3;(4)点P在过点A(2,-3)且与x轴平行的直线上.22.(6分)如图7,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,若将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.图723.(8分)如图8,正方形ABFG和正方形CDEF的顶点在边长为1的正方形网格的格点上.(1)建立平面直角坐标系,使点B,C的坐标分别为(0,0)和(5,0),并写出点A,D,E,F,G的坐标;(2)连接BE和CG相交于点H,BE和CG相等吗?并计算∠BHC的度数.图824.(8分)如图9,在平面直角坐标系中,直线l过点M(3,0)且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.图9参考答案1.B 2.B 3.B 4.C 5.C 6.A 7.A 8.C 9.C10.B 11.一 12.(-7,-7)13.关于x 轴对称14.(-5,0),(5,0),(0,4),(0,-4)15.(-1,3 3)或(-1,-3 3) 9 3[解析] 当点C 在第二象限时,作CH ⊥AB 于点H .因为A (-4,0),B (2,0),所以AB =6.因为△ABC 是等边三角形,所以AH =BH =3.由勾股定理得CH =3 3,所以C (-1,33);同理,当点C 在第三象限时,C (-1,-3 3).所以△ABC 的面积为12×6×3 3=9 3. 16.(9,6) 正东 (2n +1) [解析] 因为蓝精灵从点O 第一跳落到A 1(1,0),第二跳落到A 2(1,2),第三跳落到A 3(4,2),第四跳落到A 4(4,6),所以蓝精灵先向正东跳动,再向正北跳动,每次跳动的距离为前一次的距离加1,即可求出.第五跳落到A 5(9,6).到达A 2n 后,要向正东方向跳(2n +1)个单位长度落到A 2n +1.17.解:答案不唯一,如以BC 所在直线为x 轴,过点B 作BC 的垂线为y 轴建立平面直角坐标系,由图可知,点A (12,5),B (0,0),C (24,0).18.解:(1)由题意可得5+a +a -3=0,解得a =-1.(2)由题意可得|2-a |=|3a +6|,即2-a =3a +6或2-a =-(3a +6),解得a =-1或a =-4,所以点N 的坐标为(3,3)或(6,-6).19.解:图案Ⅰ如图.(1)作出图案Ⅱ如图.(2)作出图案Ⅲ如图.图案Ⅲ各个顶点的坐标分别为(5,0),(4,2),(3,0),(2,2),(1,0).(3)观察图案Ⅰ与图案Ⅲ,不难发现:①从各顶点坐标看,横、纵坐标均互为相反数;②从图案的位置上看,图案Ⅰ在第三象限,图案Ⅲ在第一象限,二者关于坐标原点对称.20.解:(1)描点如图.(2)如图,依题意,得AB ∥x 轴,且AB =3-(-2)=5,所以S △ABC =12×5×2=5. (3)存在.因为AB =5,S △ABP =10,所以点P 到AB 的距离为4.又因为点P 在y 轴上,所以点P 的坐标为(0,5)或(0,-3).21.解:(1)由题意,得2m +4=0,解得m =-2,则m -1=-3,所以点P 的坐标为(0,-3).(2)由题意,得m -1=0,解得m =1,则2m +4=6,所以点P 的坐标为(6,0).(3)由题意,得m -1=(2m +4)+3,解得m =-8,则2m +4=-12,m -1=-9, 所以点P 的坐标为(-12,-9).(4)由题意,得m -1=-3,解得m =-2,则2m +4=0,所以点P 的坐标为(0,-3).22.解:由题意,可知折痕AD所在的直线是四边形OAED的对称轴.在Rt△ABE中,AE=OA=10,AB=8,所以BE=AE2-AB2=102-82=6,所以CE=4,所以E(4,8).在Rt△DCE中,DC2+CE2=DE2,又DE=OD,所以(8-OD)2+42=OD2,所以OD=5,所以D(0,5).23.解:(1)按已知条件建立平面直角坐标系(如图),A(-3,4),D(8,1),E(7,4),F(4,3),G(1,7).(2)连接BE和CG相交于点H,由题意,得BE=72+42=65,CG=72+42=65,所以BE=CG.借助全等及三角形内角和等性质可得∠BHC的度数:∠BHC=90°.24.解:(1)△A2B2C2的三个顶点的坐标分别是A2(4,0),B2(5,0),C2(5,2).(2)①如图①,当0<a≤3时,因为点P与点P1关于y轴对称,P(-a,0),所以P1(a,0).11 因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a 2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.②如图②,当a >3时,因为点P 与点P 1关于y 轴对称,P (-a ,0),所以P 1(a ,0).因为点P 1与点P 2关于直线x =3对称,设P 2(x ,0),可得x +a 2=3,即x =6-a ,所以P 2(6-a ,0),则PP 2=6-a -(-a )=6-a +a =6.综上所述,PP 2的长为6.。
北师大版八年级上第三章《位置的确定》单元测试题(含答案) (4)
第五章 位置的确定测试题一、选择题1、在平面内,确定一个点的位置一般需要的数据个数是( ) A .1B .2C .3D .42、点M 在x 轴的上侧,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( )A. (5,3)B. (-5,3)或(5,3)C. (3,5)D. (-3,5)或(3,5) 3、若0=xy,则点P (x,y )的位置是( ) A. 在数轴上 B. 在去掉原点的横轴上 C. 在纵轴上 D. 在去掉原点的纵轴上 4、点P (13++m m ,)在直角坐标系的x 轴上,则点P 的坐标为( ) A .(0,-2) B .(2,0) C .(4,0) D .(0,-4) 5、点P (-1,3)关于原点对称的点的坐标是 ( ) A .(-1,-3)B .(1,-3)C .(1,3)D .(-3,1)6、如果直线AB 平行于y 轴,则点A 、B 的坐标之间的关系是( ) A .横坐标相等B .纵坐标相等C .横坐标的绝对值相等D .纵坐标的绝对值相等7、A (-3,2)关于原点的对称点是B ,B 关于x 轴的对称点是C ,则点C 的坐标是( ) A .(3,2)B .(-3,2)C .(3,-2)D .(-2,3)8、直角坐标系中,一个图案上各个点的横坐标和纵坐标分别乘以正数a (a >1),那么所得的图案与原来图案相比( ) A.形状不变,大小扩大到原来的a 2倍 B. 图案向右平移了a 个单位C. 图案向上平移了a 个单位D. 图案沿纵向拉长为a 倍 9、平面直角坐标系内有一点A (a ,b ),若ab =0,则点A 的位置在( ) A .原点B .x 轴上C .y 轴上D .坐标轴上10、一个平行四边形三个顶点的坐标分别是(0,0)、(2,0)、(1,2),第四个顶点在x 轴下方,则第四个顶点的坐标为( ) A .(-1,-2)B .(1,-2)C .(3,2)D .(-1,2)11、图是深圳市南山区地图的一角,用刻度尺、量角器测量可知,深圳大学( ) 大约在南山区政府(★)的什么方向上A.南偏东80°B.南偏东10°C.北偏西80°D.北偏西10°12、矩形ABCD中的顶点A、B、C、D按顺时针方向排列,若在平面直角坐标系内, B、D 两点对应的坐标分别是(2, 0), (0, 0),且A、C两点关于x轴对称.则C 点对应的坐标是(A)(1, -2)(B) (-1, 1)(C) (1, 1) (D) (2, -2)二、填空题13、已知点A(a-1,a+1)在x轴上,则a等于______.14、已知P(-3,2),P′点是P点关于原点O的对称点,则P′点的坐标为______.15、已知点P(-4,5),点A与点P关于y轴对称,则点A的坐标是.16、以点(4,0)为圆心,以5为半径的圆与y轴交点的坐标为______.17、已知小岛A在灯塔B的北偏东30°的方向上,则灯塔B在小岛A的________ 的方向上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
孩子的未来绝对是您家庭的未来!
八年级数学《位置的确定》单元测试题
姓名:__________ 分数:__________
一、精心选一选(每小题2分,共20分)
1.点),(n m P 是第三象限的点,则 ( )
(A )b a +>0 (B )b a +<0 (C )ab >0 (D )ab <0
2.若点P 的坐标为)0,(a ,且a <0,则点P 位于 ( )
(A )x 正半轴 (B )x 负半轴 (C )y 轴正半轴 (D )y 轴负半轴
3.若点A 的坐标为(3,-2),点B 的坐标是(-3, -2),则点A 与点B 的位置关系是
( )
(A )关于原点对称 (B )关于x 轴对称 (C )关于y 轴对称 (D )无法判断
4.点M (-2,5)关于x 轴的对称点是N ,则线段MN 的长是 ( )
(A )1 (B )4 (C )5 (D )2
5.一只七星瓢虫自点(-2,4)先水平向右爬行3个单位,然后又竖直向下爬行2个单
位,则此时这只七星瓢虫的位置是 ( )
(A )(-5,2) (B )(1,4) (C )(2,1) (D )(1,2)
6.以点(0,2)为圆心,以3为半径画一个圆,则这个圆与x 轴的交点是 ( )
(A )(0,-1)和(0,5) (B )(-1,0)和(5,0)
(C )(-1,0)和(5,0) (D )(0,-1)和(0,5)
7.若点P ),(b a 在第四象限,则Q ),1(b a -+在 ( )
(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限
8.如图1所示,线段AB 的中点为C ,若点A 、B
(1,2)和(5,4),则点C 的坐标是 ( )
(A )(3,3.5) (B )(3,2) (C )(2,3) (D )(3,3)
9.如图2,在直角坐标系中,△AOB 的顶点O 和B 的坐标分别是
O (0,0),B (4,0),且∠OAB =90°,AO =AB 于x 轴的对称点的坐标是 ( )
(A )(3,3) (B )(-3,3)
(C )(3,-3) (D )(-3,-3)
10.某班教室中有7排5列座位,根据下面4个同学的描述,
指出“5号”小涛的位置.1号同学说:“小涛在我的右后方”;2号同学说:“小涛在我
的左后方”;3号同学说:“小涛在我的左前方”;4号同学说:“小涛离1号同学和3
X y
孩子的未来绝对是您家庭的未来!
号同学的距离一样近”.那么,小涛的位置应该是 ( )
(A )甲 (B )乙 (C )丙 (D )丁
二、耐心填一填(每小题3分,共30分)
11.若点P 的坐标为(-3,4),则点P 到x 轴的距离是_____,到y 轴的距离是_____,到原点的距离是_____. 12.过两点A (-2,4)和B (3,4)作直线AB ,则AB_____
13.如图3,Rt △AOB 的斜边长为4,一直角边OB 长为3的坐标是
_____,点B 的坐标是_____.
14.点A )2,(a 和点B ),3(b 关于x 轴对称,则ab =_____.
15.商店在学校的东南方向,则学校在商店的_________.
16.点P 的坐标是(-2,12 a ),则点P 一定在第_______象限. 17.若点A 的坐标是(-2,3),点B 与点A 关于原点对称,点C 与点B 关于y 轴对称,
则点C 的坐标是_____.
18.一个矩形的两边长分别是3和4,已知它在直角坐标系中的三个顶点的坐标分别是
(0,0),(4,0),(0,-3),则此矩形第四个顶点的坐标是_____.
19.将点P (2,1)绕原点O 按顺时针方向旋转90°到点Q ,则点Q 的坐标是_____.
20.如图4,∠OMA =90°,∠AOM =30°,AM =20米,OM =203站在O 点观察点A ,则点A 的位置可描述为:在北偏东_____的方向上,距离点O_____米.
三、用心做一做(共50分) 21.(5分)已知点P(b a ,)在第二象限,且|a |=3,|b |=8,求点P 的坐标.
22.(5分)如图5,在矩形ABCD 中,AB =4,AD =8;等腰梯形的上底是下底的一
半,高为4.建立适当的直角坐标系,写出各个顶点的坐标.
图4 北图5 D
孩子的未来绝对是您家庭的未来!
23.(5分)在平面直角坐标系中,描出下列各点:A (-2,-1),B (4,-1),C (3,
2),(0,2),并计算四边形ABCD 的面积.
24.(10分)如图6,每个小方格都是边长为1的正方形,在平面直角坐标系中.
(1)写出图中从原点O 出发,按箭头所指方向先后经过A 、B 、C 、D 、E 多点的坐标; (2)按图中所示规律,标出下一个点F
25.在平面直角坐标系中,连接下列各点:(
-5,2),(-1,4),(-5,6),(-3,4).
(1)不改变这些点的纵坐标,将它们的横坐标都乘以-1,写出新的点的坐标;
(2)在同一坐标系中描出这些新的点,并连成图形;
(3)新图形与原图形是什么关系?
26.(10分)如图7,在中国象棋棋盘上,马从左下角的O 点出
发,走“日”字,每个交叉点只经过一次.问能不能走遍全棋盘,且最后走到右下角的交叉点A 点? 图6
孩子的未来绝对是您家庭的未来!
八年级数学《位置的确定》单元测试题参考答案 一、1.C 2.B 3.C 4.A 5.D 6.B 7.A 8.D 9.C 10.B
二、11. 4 3 5 12.平行于 13.)7,0( (3,0) 14. -6 15.西北方向 16. 二
17.(-2,-) 18.(4,-3) 19.(1,-2) 20. 60 20
三、21.由题意,得a <0,b >0;又|a |=3,得a = ±3,|b |=8,得=b ±8,故8,3=-=b a ,故
点P 的坐标是(-3,8).
22.略(答案不唯一.随着建立的坐标系的不同而不同).
23.图略.四边形ABCD 的面积是13.5.
24.(1)A(1,0),B(1,2),C(-2,2),D(-2, -2),E(3,2);
(2)F (3,4).
25.(1)(5,2),(1,4),(5,6),(3,4);
(2)略;(3)新图形与原图形关于y 轴对称.
26.建立如图1所示的平面直角坐标系,设每一格的长度为1个单位,我们把横坐标与纵坐标 的和为偶数的点称为“偶点”,把横坐标与纵坐标的和为奇数的点称为“奇点”.可以发现 马走时总是从偶点跳到奇点,从奇点跳到偶点.奇数步走到偶点,偶数步走到奇点.因为每 个交叉点只经过一次,故马一共需跳9×10=90步,是偶数步,最后只能跳到奇点,但A 点是偶点,所以马不能走遍全棋盘,且最后走到右下角的A 点.
图7。