北京市海淀区2018届中考复习《分式及其运算》专题练习含解析

合集下载

精品解析:北京市2018年中考数学试卷(解析版)

精品解析:北京市2018年中考数学试卷(解析版)

北京市2018年中考数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列几何体中,是圆柱的为A. B. C. D.【答案】A【解析】分析:根据几何体的特征进行判断即可.详解:A选项为圆柱,B选项为圆锥,C选项为四棱柱,D选项为四棱锥.故选A.点睛:考查立体图形的认识,掌握立体图形的特征是解题的关键.2.实数,,在数轴上的对应点的位置如图所示,则正确的结论是A. B. C. D.【答案】B【解析】分析:观察数轴得到实数,,的取值范围,根据实数的运算法则进行判断即可.详解:∵,∴,故A选项错误;数轴上表示的点在表示的点的左侧,故B选项正确;∵,,∴,故C选项错误;∵,,,∴,故D选项错误.故选B.点睛:主要考查数轴、绝对值以及实数及其运算.观察数轴是解题的关键.3.方程组的解为A. B. C. D.【解析】分析:根据方程组解的概念,将4组解分别代入原方程组,一一进行判断即可.详解:将4组解分别代入原方程组,只有D选项同时满足两个方程,故选D.点睛:考查方程组的解的概念,能同时满足方程组中每个方程的未知数的值,叫做方程组的解.4.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为,则FAST的反射面积总面积约为A. B. C. D.【答案】C【解析】分析:科学记数法的表示形式为的形式,其中为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.详解:,故选C.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.5.若正多边形的一个外角是,则该正多边形的内角和为A. B. C. D.【答案】C【解析】分析:根据正多边形的外角度数求出多边形的边数,根据多边形的内角和公式即可求出多边形的内角和. 详解:由题意,正多边形的边数为,其内角和为.故选C.点睛:考查多边形的内角和与外角和公式,熟练掌握公式是解题的关键.6.如果,那么代数式的值为A. B. C. D.【答案】A分析:根据分式混合运算的法则进行化简,再把整体代入即可.详解:原式,∵,∴原式.故选A.点睛:考查分式的化简求值,熟练掌握分式混合运算的法则是解题的关键.7.跳台滑雪是冬季奥运会比赛项目之一.运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度(单位:)与水平距离(单位:)近似满足函数关系().下图记录了某运动员起跳后的与的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为A. B. C. D.【答案】B【解析】分析:根据抛物线的对称性即可判断出对称轴的范围.详解:设对称轴为,由(,)和(,)可知,,由(,)和(,)可知,,∴,点睛:考查抛物线的对称性,熟练运用抛物线的对称性质是解题的关键.8.右图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为轴、轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(,)时,表示左安门的点的坐标为(5,);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(,)时,表示左安门的点的坐标为(10,);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(,)时,表示左安门的点的坐标为(,);④当表示天安门的点的坐标为(,),表示广安门的点的坐标为(,)时,表示左安门的点的坐标为(,).上述结论中,所有正确结论的序号是A. ①②③B. ②③④C. ①④D. ①②③④【答案】D【解析】分析:根据天安门的坐标和点的平移规律,一一进行判断即可.详解:显然①②正确;③是在②的基础上,将所有点向右平移个单位,再向上平移个单位得到,故③正确;④是在“当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(,)时,表示左安门的点的坐标为(,)”的基础上,将所有点向右平移个单位,再向上平移个单位得到,故④正确.点睛:考查平面直角坐标系,点坐标的确定,点的平移,熟练掌握点的平移规律是解题的关键.二、填空题(本题共16分,每小题2分)9.下图所示的网格是正方形网格,________.(填“”,“”或“”)【答案】>【解析】分析:构造等腰直角三角形,根据等腰直角三角形的性质即可进行比较大小.详解:如下图所示,是等腰直角三角形,∴,∴.故答案为:另:此题也可直接测量得到结果.点睛:考查等腰直角三角形的性质,构造等腰直角三角形是解题的关键.10.若在实数范围内有意义,则实数的取值范围是_______.【答案】【解析】分析:根据二次根式有意义的条件,即可求出实数的取值范围.详解:被开方数为非负数,故.故答案为:.点睛:考查二次根式有意义的条件,被开方数大于等于零.11.用一组,,的值说明命题“若,则”是错误的,这组值可以是_____,______,_______.【答案】(1). 2(2). 3(3). -1【解析】分析:根据不等式的性质3,举出例子即可.详解:根据不等式的性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.满足,即可,例如:,3,.故答案为:,3,.点睛:考查不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.12.如图,点,,,在上,,,,则________.【答案】70°【解析】分析:根据=,得到,根据同弧所对的圆周角相等即可得到,根据三角形的内角和即可求出.详解:∵=,∴,∴,∵,∴.故答案为:点睛:考查圆周角定理和三角形的内角和定理,熟练掌握圆周角定理是解题的关键.13.如图,在矩形中,是边的中点,连接交对角线于点,若,,则的长为________.【答案】【解析】分析:根据勾股定理求出,根据∥,得到,即可求出的长.详解:∵四边形是矩形,∴,∥,,在中,,∴,∵是中点,∴,∵∥,∴,∴.故答案为:.点睛:考查矩形的性质,勾股定理,相似三角形的性质及判定,熟练掌握相似三角形的判定方法和性质是解题的关键.14.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【答案】C【解析】分析:样本容量相同,观察统计表,可以看出C 线路上的公交车用时超过分钟的频数最小,即可得出结论.详解:样本容量相同,C 线路上的公交车用时超过分钟的频数最小,所以其频率也最小,故答案为:C.点睛:考查用频率估计概率,读懂统计表是解题的关键.15.某公园划船项目收费标准如下:某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.【答案】380【解析】分析:分析题意,可知,八人船最划算,其次是六人船,计算出最总费用最低的租船方案即可.详解:租用四人船、六人船、八人船各1艘,租船的总费用为(元)故答案为:380.点睛:考查统筹规划,对船型进行分析,找出总费用最低的租船方案即可.16.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第________.【答案】3【解析】分析:左边图中,根据中国创新综合排名全球第22,找出对应创新产出排名,再从右图进行分析即可.详解:从左图可知,创新综合排名全球第22,对应创新产出排名全球第11;从右图可知,创新产出排名全球第11,对应创新效率排名全球第3.故答案为:3.点睛:考查函数图象获取信息,读懂图象是解题的关键.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点.求作:,使得.作法:如图,①在直线上取一点,作射线,以点为圆心,长为半径画弧,交的延长线于点;②在直线上取一点(不与点重合),作射线,以点为圆心,长为半径画弧,交的延长线于点;③作直线.所以直线就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵_______,_______,∴(____________)(填推理的依据).【答案】(1)作图见解析(2),,三角形中位线平行于三角形的第三边.【解析】分析:根据作图过程,补全图形即可.详解:(1)尺规作图如下图所示:(2),,三角形中位线平行于三角形的第三边.点睛:考查尺规作图,三角形中位线定理,熟练掌握三角形的中位线定理是解题的关键.18.计算:.【答案】【解析】分析:按照实数的运算顺序进行运算即可.详解:原式.点睛:本题考查实数的运算,主要考查零次幂,绝对值,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.19.解不等式组:.【答案】.【解析】分析:分别解不等式,找出解集的公共部分即可.详解:由①得,,由②得,,∴不等式的解集为.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.20.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【答案】(1)方程有两个不相等的实数根;(2)b=2,a=1时,x1=x2=﹣1.【解析】分析:(1)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(1)解:由题意:.∵,∴原方程有两个不相等的实数根.(2)答案不唯一,满足()即可,例如:解:令,,则原方程为,解得:.点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.21.如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.(1)求证:四边形是菱形;(2)若,,求的长.【答案】(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵∥,∴∵平分∴,∴∴又∵∴又∵∥,∴四边形是平行四边形又∵∴是菱形(2)解:∵四边形是菱形,对角线、交于点.∴.,,∴.在中,.∴.∵,∴.在中,.为中点.∴.点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.22.如图,是的直径,过外一点作的两条切线,,切点分别为,,连接,.(1)求证:;(2)连接,,若,,,求的长.【答案】(1)证明见解析;(2).【解析】分析:(1)根据切线的性质定理得到,平分.根据等腰三角形的性质即可得到于,即.(2)连接、.根据等腰三角形的性质和平角的性质得到.进而得到.在中,解直角三角形即可.详解:(1)证明:∵、与相切于、.∴,平分.在等腰中,,平分.∴于,即.(2)解:连接、.∵∴∴同理:∴.在等腰中,.∴.∵与相切于.∴.∴.在中,,∴.点睛:本题考查了切线的性质和判定,圆周角定理,解直角三角形等,题目比较典型,综合性比较强,难度适中.23.在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点.(1)求的值;(2)横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.①当时,直接写出区域内的整点个数;②若区域内恰有4个整点,结合函数图象,求的取值范围.【答案】(1)4;(2)①3个.(1,0),(2,0),(3,0).②或.【解析】分析:(1)根据点(4,1)在()的图象上,即可求出的值;(2)①当时,根据整点的概念,直接写出区域内的整点个数即可.②分.当直线过(4,0)时,.当直线过(5,0)时,.当直线过(1,2)时,.当直线过(1,3)时四种情况进行讨论即可.详解:(1)解:∵点(4,1)在()的图象上.∴,∴.(2)① 3个.(1,0),(2,0),(3,0).②.当直线过(4,0)时:,解得.当直线过(5,0)时:,解得.当直线过(1,2)时:,解得.当直线过(1,3)时:,解得∴综上所述:或.点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.24.如图,是与弦所围成的图形的内部的一定点,是弦上一动点,连接并延长交于点,连接.已知,设,两点间的距离为,,两点间的距离为,,两点间的距离为.小腾根据学习函数的经验,分别对函数,随自变量的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量的值进行取点、画图、测量,分别得到了,与的几组对应值;(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点(,),(,),并画出函数,的图象;(3)结合函数图象,解决问题:当为等腰三角形时,的长度约为____.【答案】(1)3.00;(2)作图见解析;(3)或或.【解析】分析:(1)当时,即为圆的半径.(2)根据(1)中的图表,描点,连线即可.(3)根据等腰三角形的性质,结合函数图象进行回答即可.详解:(1)(2)如下图所示:如下图所示,函数图象的交点的横坐标即为所求.点睛:考查动点产生的函数图象问题,函数探究,圆的性质,等腰三角形的性质等,熟练掌握函数图象以及性质是解题的关键.25.某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.,,,,,);.A课程成绩在这一组是:70 71 71 71 76 76 77 78 79 79 79.A,B两门课程成绩的平均数、中位数、众数如下:根据以上信息,回答下列问题:(1)写出表中的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是________(填“A”或“B”),理由是_______;(3)假设该年级学生都参加此次测试,估计A课程成绩超过分的人数.【答案】(1)78.75;(2)B;(3)180人.【解析】分析:(1)根据中位数的概念直接进行计算即可.(2)根据成绩和中位数的关系即可知道排名更靠前的课程.(3)用总人数300乘以抽取的学生中A课程成绩超过分的比例即可.详解:(1)(2)B.该学生A课程分数低于中位数,排名在中间位置之后,而B课程分数高于中位数,排名在中间位置之前.(3)解:抽取的60名学生中.A课程成绩超过的人数为36人.∴(人)答:该年级学生都参加测试.估计A课程分数超过的人数为180人.点睛:考查频数分布直方图,中位数,用样本估计总体,熟练掌握中位数的计算方法和意义是解题的关键.26.在平面直角坐标系中,直线与轴、轴分别交于点,,抛物线经过点,将点向右平移5个单位长度,得到点.(1)求点的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段恰有一个公共点,结合函数图象,求的取值范围.【答案】(1)(5,4);(2)x=1;(3)或或.【解析】分析:(1)根据直线与轴、轴交于、.即可求出(,0),(0,4),根据点的平移即可求出点的坐标;(2)根据抛物线过(,),代入即可求得,根据抛物线的对称轴方程即可求出抛物线的对称轴;(3)分①当抛物线过点时.②当抛物线过点时.③当抛物线顶点在上时.三种情况进行讨论即可. 详解:(1)解:∵直线与轴、轴交于、.∴(,0),(0,4)∴(5,4)(2)解:抛物线过(,)∴.∴∴对称轴为.(3)解:①当抛物线过点时.,解得.②当抛物线过点时.,解得.③当抛物线顶点在上时.此时顶点为(1,4)∴,解得.∴综上所述或或.点睛:属于二次函数的综合题,考查了一次函数与坐标轴的交点,点的平移,抛物线对称轴,抛物线与线段交点问题,注意分类讨论思想在解题中的应用.27.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE 的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.【答案】(1)证明见解析;(2)BH=AE,理由见解析.【解析】分析:(1)连接.根据对称的性质可得..证明,根据全等三角形的性质得到.进而证明≌,即可证明.(2)在上取点使得,连接.证明≌,根据等腰直角三角形的性质即可得到线段与的数量关系.详解:(1)证明:连接.∵,关于对称.∴..在和中.∴∴.∵四边形是正方形∴.∴∴∴∵.∴在和.∴≌∴.(2).证明:在上取点使得,连接.∵四这形是正方形.∴..∵≌∴同理:∴∵∴∴∴∴.∵∴∵∴∴∵.∴在和中∴≌∴在中,,.∴∴.点睛:本题是四边形的综合题,考查了正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定等知识此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.28.对于平面直角坐标系中的图形,,给出如下定义:为图形上任意一点,为图形上任意一点,如果,两点间的距离有最小值,那么称这个最小值为图形,间的“闭距离”,记作(,).已知点(,6),(,),(6,).(1)求(点,);(2)记函数(,)的图象为图形,若(,),直接写出的取值范围;(3)的圆心为(t,0),半径为1.若(,),直接写出t的取值范围.【答案】(1)2;(2)或;(3)或或.【解析】分析:(1)画出图形,根据“闭距离”的概念结合图形进行求解即可.(2)分和两种情况,画出示意图,即可解决问题.(3)画出图形,直接写出t的取值范围.详解:(1)如下图所示:∵(,),(6,)∴(0,)∴(,)(2)或(3)或或.点睛:属于新定义问题,考查点到直线的距离,圆的切线的性质,认真分析材料,读懂“闭距离”的概念是解题的关键.2018年四川省广元市中考数学试卷一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+93.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣34.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.85.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A .B .C .D .6.一元一次不等式组的最大整数解是( )A .﹣1B .0C .1D .27.如图,⊙O 是正五边形ABCDE 的外接圆,点P 是的一点,则∠CPD 的度数是( )A .30°B .36°C .45°D .72°8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s (米)和所用时间t (分钟)的关系图.则下列说法中错误的是( )A .小明吃早餐用时5分钟B .小华到学校的平均速度是240米/分C .小明跑步的平均速度是100米/分D .小华到学校的时间是7:559.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C.D.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为克.12.一个多边形的每一个外角都是18°,这个多边形的边数为.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为cm.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x 轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有(只填序号)三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.17.(7分)先化简,再求值:÷(﹣),其中a=+2.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:(1)该班学生的总人数为人;(2)由表中的数据可知:a=,b=;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b 与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.2018年四川省广元市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.【分析】根据绝对值的定义回答即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值得定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解答此题的关键.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+9【分析】根据幂的乘方、同底数幂的乘法、平方差公式和完全平方公式分别求出每个式子的值,再判断即可.【解答】解:A、结果是a6,故本选项不符合题意;B、结果是4x2﹣1,故本选项不符合题意;C、结果是a10,故本选项不符合题意;D、结果是a2﹣6a+9,故本选项符合题意;故选:D.【点评】本题考查了幂的乘方、同底数幂的乘法、平方差公式和完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.3.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣3【分析】将x=4代入方程中即可求出a的值.【解答】解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,。

2018年中考数学真题专项训练分式与分式方程(解析版)

2018年中考数学真题专项训练分式与分式方程(解析版)

分式与分式方程一、选择题1. (2018•江西•3分)计算的结果为A.bB.C.D.a【解析】本题考察代数式的乘法运算,容易,注意 ,约分后为b【答案】A★4. (2018•四川成都•3分)分式方程的解是()A. x=1B.C.D.【答案】A【考点】解分式方程【解析】【解答】解:方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2)x2-x-2+x=x2-2x解之:x=1经检验:x=1是原方程的根。

故答案为:A【分析】方程两边同时乘以x(x-2),将分式方程转化为整式方程,再解整式方程,然后检验即可求解。

8.(2018·山东临沂·3分)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A. =B. =C. =D. =【分析】设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程.【解答】解:设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据题意,得: =,故选:A.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,确定相等关系.9.(2018·山东威海·3分)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1 C.a2D.﹣1【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.10.(2018•北京•2分)如果23a b-=,那么代数式22()2a b aba a b+-⋅-的值为A.3B.23C.33D.43【答案】A【解析】原式()2222222a ba b ab a a a ba ab a a b-+--=⋅=⋅=--,∵23a b-=,∴原式3=.【考点】分式化简求值,整体代入.11.(2018•甘肃白银,定西,武威•3分)若分式的值为0,则的值是()A. 2或-2B. 2C. -2D. 0【答案】A【解析】【分析】分式值为零的条件是:分子为零,分母不为零.【解答】根据分式有意义的条件得:解得:故选A.【点评】考查分式值为零的条件,分式值为零的条件是:分子为零,分母不为零.13. (2018•株洲市•3分)关于x的分式方程解为,则常数a的值为( )A. B. C. D.【答案】D详解:把x=4代入方程,得,解得a=10.故选:D.点睛:此题考查了分式方程的解,分式方程注意分母不能为0.14. (2018·天津·3分)计算的结果为()A. 1B. 3C.D.【答案】C【解析】分析:根据同分母的分式的运算法则进行计算即可求出答案.详解:原式=.故选:C.点睛:本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.15. (2018年江苏省宿迁)函数中,自变量x的取值范围是()。

中考数学《整式》《分式》考点分析及专题训练

中考数学《整式》《分式》考点分析及专题训练

中考数学《整式》《分式》考点分析及专题训练整式1、定义(1)单项式:用数或字母的乘积表示的式子叫做单项式。

单独的一个数或一个字母也是单项式。

单项式中的数字因数叫做这个单项式的系数。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

(2)多项式:几个单项式的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式里,次数最高项的次数,叫做这个多项式的次数。

单项式与多项式统称整式。

(3)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

(4)合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。

2、整式的运算(1)整式的加减:几个整式相加减,如有括号就先去括号,然后再合并同类项。

去括号法则:同号得正,异号得负。

即括号外的因数的符号决定了括号内的符号是否改变:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

(2)整式的乘除运算①同底数幂的乘法:a m·a n=a m+n。

同底数幂相乘,底数不变,指数相加。

②幂的乘方:(a m)n=a mn。

幂的乘方,底数不变,指数相乘。

③积的乘方:(ab)n=a n b n。

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

④单项式与单项式的乘法:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

⑤单项式与多项式的乘法:p(a+b+c)=pa+pb+pc。

单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

⑥多项式与多项式的乘法:(a+b)(p+q)=ap+aq+bp+bq。

多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

平方差公式:(a+b)(a-b)=a2-b2。

北京市东城区普通中学2018年1月初三数学中考复习 分式的乘除 专题练习题 含答案

北京市东城区普通中学2018年1月初三数学中考复习 分式的乘除  专题练习题   含答案

北京市东城区普通中学2018年1月初三数学中考复习分式的乘除 专题练习题1.计算3b 2a ·(-a 6b)的结果为( ) A .-b 2 B.b 2 C.b 4a D .-b 4a2.计算-3x 4y 2÷(-x 2y)的结果是( ) A .-2y 3 B.2y 3 C .-32y D.32y3.化简2x 2-1÷1x -1的结果是( ) A.2x +1 B.2x C.2x -1D .2(x +1) 4.计算(-b 2a )3的结果是( ) A .-b 32a 3 B .-b 36a 3 C .-b 38a 3 D.b 38a 3 5.下列计算结果正确的有( )①3x x 2·x 3x =1x ; ②8a 2b 2·(-3a 4b 2)=-6a 3; ③a a 2-1÷a 2a 2+a =1a -1;④a ÷b ·1b =a ⑤(-a 2b )·(-b 2a )÷(a 2b 2)=1ab.A .1个B .2个C .3个D .4个6.计算(-2x y 2)3·(2y x )2÷(-2y x )的结果是( )A .-8x 3y 6 B.8x 3y 6 C .-16x 2y 5 D.16x 2y 57.化简16-a 2a 2+4a +4÷a -42a +4·a +2a +4,其结果是( )A .-2B .2C .-2(a +2)2 D.2(a +2)28.计算:x x -y ·x 2-y 2x =________.9.计算:(-2b5a 3)2=________.10.已知|a -2|+b -3=0,则a 2-b 2a +b ÷(a-b)·1a -b 的值为______.11.计算:3a 4b ·16b9a 212.计算:x 2-1x +1÷x 2-2x +1x 2-x13.先化简,再求值:x 2-6x +9x 2-9÷x -32,其中x =2-314.化简代数式x 2-1x 2+2x ÷x -1x ,并判断当x 满足不等式组⎩⎪⎨⎪⎧x +2<1,2(x -1)>-6时,该代数式的符号.15.有甲、乙两筐水果,甲筐水果重(x-1)2千克,乙筐水果重(x2-1)千克(其中x>1),若两筐水果都卖了50元.(1) 哪筐水果的单价卖的低?(2) 高的单价是低的单价的多少倍?答案:1---7 ADACD DA8. x +y9. 4b 225a 610. -111. 43a12. x13. 原式=(x -3)2(x +3)(x -3)·2x -3=2x +3,当x =2-3时,原式= 2 14. 解不等式组得-2<x <-1∴x +1<0,x +2>0x 2-1x 2+2x ÷x -1x =(x -1)(x +1)x (x +2)·x x -1=x +1x +2<0 即该代数式的符号为负号15. (1)甲筐水果的单价为50(x -1)2,乙筐水果的单价为50x 2-1. ∵x>1,∴0<(x -1)2<x 2-1∴50x 2-1<50(x -1)2∴乙筐水果的单价低(2)x +1x -1倍。

2018年中考数学真题分类汇编(第二期)专题7分式与分式方程试题(含解析)

2018年中考数学真题分类汇编(第二期)专题7分式与分式方程试题(含解析)

分式与分式方程一.选择题1. (2018·湖南怀化·4分)一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=【分析】根据“以最大航速沿江顺流航行100km所用时间,与以最大航速逆流航行80km所用时间相等,”建立方程即可得出结论.【解答】解:江水的流速为v km/h,则以最大航速沿江顺流航行的速度为(30+v)km/h,以最大航速逆流航行的速度为(30﹣v)km/h,根据题意得,,故选:C.【点评】此题是由实际问题抽象出分式方程,主要考查了水流问题,找到相等关系是解本题的关键.2.(2018•临安•3分)下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【分析】此类题目难度不大,可用验算法解答.【解答】解:A.a12÷a6是同底数幂的除法,指数相减而不是相除,所以a12÷a6=a6,错误;B.(x+y)2为完全平方公式,应该等于x2+y2+2xy,错误;C.===﹣,错误;D.正确.故选:D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n,②÷=(a≥0,b>0).3.(2018•金华、丽水•3分)若分式的值为0,则x的值是()A. 3B.C. 3或D. 0【解析】【解答】解:若分式的值为0,则,解得.故答案为:A.【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时,则分子为零,分母不能为0.5.(2018·黑龙江哈尔滨·3分)方程=的解为()A.x=﹣1 B.x=0 C.x= D.x=1【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.6.(2018·黑龙江龙东地区·3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解,正确得出分母不为零是解题关键.7.(2018•贵州黔西南州•4分)施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的A.=2 B.=2C.=2 D.=2【分析】设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.【解答】解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:﹣=2,故选:A.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.8.(2018•海南•3分)分式方程=0的解是()A.﹣1 B.1 C.±1D.无解【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1,得:x2﹣1=0,解得:x=1或x=﹣1,当x=1时,x+1≠0,是方程的解;当x=﹣1时,x+1=0,是方程的增根,舍去;所以原分式方程的解为x=1,故选:B.【点评】本题主要考查分式方程的解,解题的关键是熟练掌握解分式方程的步骤.9.(2018湖南张家界3.00分)若关于x的分式方程=1的解为x=2,则m的值为()A.5 B.4 C.3 D.2【分析】直接解分式方程进而得出答案.【解答】解:∵关于x的分式方程=1的解为x=2,∴x=m﹣2=2,解得:m=4.故选:B.【点评】此题主要考查了分式方程的解,正确解方程是解题关键.1. (2018·湖北襄阳·3分)计算﹣的结果是.【分析】根据同分母分式加减运算法则计算即可,最后要注意将结果化为最简分式.【解答】解:原式===,故答案为:.【点评】本题考查了分式的加减,归纳提炼:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.2. (2018•达州•3分)若关于x的分式方程=2a无解,则a的值为.【分析】直接解分式方程,再利用当1﹣2a=0时,当1﹣2a≠0时,分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.3. (2018•遂宁•4分)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.4. (2018•湖州•4分)当x=1时,分式的值是.【分析】将x=1代入分式,按照分式要求的运算顺序计算可得.【解答】解:当x=1时,原式==,故答案为:.【点评】本题主要考查分式的值,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.5. (2018•嘉兴•4分.)甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少10%.若设甲每小时检测个.则根据题意,可列出方程:________.【答案】【解析】【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:.故答案为:【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.7.(2018·黑龙江哈尔滨·3分)函数y=中,自变量x的取值范围是x≠4.【分析】根据分式分母不为0列出不等式,解不等式即可.【解答】解:由题意得,x﹣4≠0,解得,x≠4,故答案为:x≠4.【点评】本题考查的是函数自变量的取值范围,掌握分式分母不为0是解题的关键.8.(2018·黑龙江齐齐哈尔·3分)若关于x的方程+=无解,则m的值为﹣1或5或﹣.【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解答】解:去分母得:x+4+m(x﹣4)=m+3,可得:(m+1)x=5m﹣1,当m+1=0时,一元一次方程无解,此时m=﹣1,当m+1≠0时,则x==±4,解得:m=5或﹣,综上所述:m=﹣1或5或﹣,故答案为:﹣1或5或﹣.【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.9.(2018•广西贵港•3分)若分式的值不存在,则x的值为﹣1 .【分析】直接利用分是有意义的条件得出x的值,进而得出答案.【解答】解:若分式的值不存在,则x+1=0,解得:x=﹣1,故答案为:﹣1.【点评】此题主要考查了分式有意义的条件,正确把握分式有意义的条件:分式有意义的条件是分母不等于零是解题关键.11.(2018•贵州铜仁•4分)分式方程=4的解是x= ﹣9 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x﹣1=4x+8,解得:x=﹣9,经检验x=﹣9是分式方程的解,故答案为:﹣912. (2018湖南长沙3.00分)化简:= 1 .【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减,分母不变,把分子相加减计算即可.【解答】解:原式==1.故答案为:1.【点评】本题考查了分式的加减法法则,解题时牢记定义是关键.13.(2018湖南湘西州4.00分)要使分式有意义,则x的取值范围为x≠﹣2 .【分析】根据根式有意义的条件即可求出答案.【解答】解:由题意可知:x+2≠0,∴x≠﹣2故答案为:x≠﹣2【点评】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件,本题属于基础题型.14. (2018•达州•3分)若关于x的分式方程=2a无解,则a的值为.【分析】直接解分式方程,再利用当1﹣2a=0时,当1﹣2a≠0时,分别得出答案.【解答】解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.【点评】此题主要考查了分式方程的解,正确分类讨论是解题关键.15. (2018•遂宁•4分)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程.【分析】直接利用甲车比乙车早半小时到达目的地得出等式即可.【解答】解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.三.解答题1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·5分)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.【点评】本题主要考查分式的乘除法,解题的关键是掌握分式乘除运算顺序和运算法则.2. (2018·湖北随州·6分)先化简,再求值:,其中x为整数且满足不等式组.【分析】根据分式的除法和加法可以化简题目中的式子,由x为整数且满足不等式组可以求得x的值,从而可以解答本题.【解答】解:===,由得,2<x≤3,∵x是整数,∴x=3,∴原式=.【点评】本题考查分式的化简求值、解一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确分式的化简求值的计算方法.3. (2018·湖北襄阳·6分)正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的2.5倍,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.【分析】设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,根据题意列出方程,求出方程的解即可.【解答】解:设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,根据题意得:﹣=1.5,解得:x=325,经检验x=325是分式方程的解,且符合题意,则高铁的速度是325千米/小时.【点评】此题考查了分式方程的应用,弄清题中的等量关系是解本题的关键.4.(2018•内蒙古包头市•3分)化简;÷(﹣1)= ﹣.【分析】根据分式混合运算顺序和运算法则计算可得.【解答】解:原式=÷(﹣)=÷=•=﹣,故答案为:﹣.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.2.(2018•内蒙古包头市•10分)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元?(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?【分析】(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x元,根据数量=总价÷单价结合4月份比3月份多销售30件,即可得出关于x的分式方程,解之经检验即可得出结论;(2)设该商品的进价为y元,根据销售利润=每件的利润×销售数量,即可得出关于y的一元一次方程,解之即可得出该商品的进价,再利用4月份的利润=每件的利润×销售数量,即可求出结论.【解答】解:(1)设该商店3月份这种商品的售价为x元,则4月份这种商品的售价为0.9x 元,根据题意得:=﹣30,解得:x=40,经检验,x=40是原分式方程的解.答:该商店3月份这种商品的售价是40元.(2)设该商品的进价为y元,根据题意得:(40﹣a)×=900,解得:a=25,∴(40×0.9﹣25)×=990(元).答:该商店4月份销售这种商品的利润是990元.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.6.(2018•山东烟台市•6分)先化简,再求值:(1+)÷,其中x满足x2﹣2x﹣5=0.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=•=•=x(x﹣2)=x2﹣2x,由x2﹣2x﹣5=0,得到x2﹣2x=5,则原式=5.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.7.(2018•山东东营市•8分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min到达剧院.求两人的速度.【分析】设小明的速度为3x米/分,则小刚的速度为4x米/分,根据时间=路程÷速度结合小明比小刚提前4min到达剧院,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设小明的速度为3x米/分,则小刚的速度为4x米/分,根据题意得:﹣=4,解得:x=25,经检验,x=25是分式方程的根,且符合题意,∴3x=75,4x=100.答:小明的速度是75米/分,小刚的速度是100米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.8.(2018•山东济宁市•7分)先化简,再求值:﹣÷(﹣),其中a=﹣.【分析】首先计算括号里面的减法,然后再计算除法,最后再计算减法,化简后,再代入a 的值可得答案.【解答】解:原式=﹣÷[﹣],=﹣÷[﹣],=﹣÷,=﹣•,=﹣,=﹣,当a=﹣时,原式=﹣=﹣4.【点评】此题主要考查了分式的化简求值,关键是掌握化简求值,一般是先化简为最简分式或整式,再代入求值.9. (2018•达州•6分)化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.【分析】直接将=去括号利用分式混合运算法则化简,再解不等式组,进而得出x的值,即可计算得出答案.【解答】解:原式=×﹣×=3(x+1)﹣(x﹣1)=2x+4,,解①得:x≤1,解②得:x>﹣3,故不等式组的解集为:﹣3<x≤1,把x=﹣2代入得:原式=0.【点评】此题主要考查了分式的化简求值以及不等式组解法,正确掌握分式的混合运算法则是解题关键.10. (2018•遂宁•8分)先化简,再求值•+.(其中x=1,y=2)【分析】根据分式的运算法则即可求出答案,【解答】解:当x=1,y=2时,原式=•+=+==﹣3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.11.(2018•资阳•7分)先化简,再求值:÷(﹣a),其中a=﹣1,b=1.【分析】先根据分式混合运算顺序和运算法则化简原式,再将A.b的值代入计算可得.【解答】解:原式=÷=•=,当a=﹣1,b=1时,原式====2+.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.12.(2018•乌鲁木齐•10分)某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?【分析】设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据时间=路程÷速度结合乘公共汽车比骑自行车少用小时,即可得出关于x的分式方程,解之经检验即可得出结论.【解答】解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:﹣=,解得:x=12,经检验,x=12是原分式方程的解,∴3x=36.答:自行车的速度是12km/h,公共汽车的速度是36km/h.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.13.(2018•临安•6分)(1)化简÷(x﹣).(2)解方程:+=3.【分析】(1)先计算括号内分式的减法,再计算除法即可得;(2)先去分母化分式方程为整式方程,解整式方程求解的x值,检验即可得.【解答】解:(1)原式=÷(﹣)=÷=•=;(2)两边都乘以2x﹣1,得:2x﹣5=3(2x﹣1),解得:x=﹣,检验:当x=﹣时,2x﹣1=﹣2≠0,所以分式方程的解为x=﹣.【点评】本题主要考查分式的混合运算与解分式方程,解题的关键是掌握解分式方程和分式混合运算的步骤.14.(2018•嘉兴•4分)化简并求值()•,其中a=1,b=2.【答案】原式= =a-b当a=1,b=2时,原式=1-2=-1【考点】利用分式运算化简求值【解析】分式的化简当中,可先运算括号里的,或都运用乘法分配律计算都可16. (2018•贵州安顺•10分)先化简,再求值:,其中.【答案】,.【解析】分析:先化简括号内的式子,再根据分式的除法进行计算即可化简原式,然后将x=-2代入化简后的式子即可解答本题.详解:原式=.∵,∴,舍,当时,原式.点睛:本题考查分式的化简求值,解题的关键是明确分式化简求值的方法.17.(2018•广西桂林•8分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?【答案】(1)60天;(2)24天.【解析】分析:(1)设二号施工队单独施工需要x天,根据题意可知一号施工队5天工作总量与一号施工队和二号施工队合作工作总量之和=1列出方程求解即可;(2)根据工作总量÷工作效率=工作时间求解即可.详解:(1)设二号施工队单独施工需要x天,依题可得解得x=60,经检验,x=60是原分式方程的解,∴由二号施工队单独施工,完成整个工期需要60天.(2)由题可得(天),∴若由一、二号施工队同时进场施工,完成整个工程需要24天.点睛:本题考查了列分式方程解应用题,灵活运用和掌握工作总量÷工作效率=工作时间是解题关键.18.(2018•广西南宁•6分)解分式方程:﹣1=.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论依次计算可得.【解答】解:两边都乘以3(x﹣1),得:3x﹣3(x﹣1)=2x,解得:x=1.5,检验:x=1.5时,3(x﹣1)=1.5≠0,所以分式方程的解为x=1.5.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.19. 2018·黑龙江大庆·4分)解方程:﹣=1.【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2,求出方程的解,再代入x(x+3)进行检验即可.【解答】解:两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣,检验:当x=﹣时,x(x+3)=﹣≠0,所以分式方程的解为x=﹣.20. (2018·黑龙江哈尔滨·7分)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21(2018·黑龙江龙东地区·5分)先化简,再求值:(1﹣)÷,其中a=sin30°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=sin30°时,所以a=原式=•=•==﹣1【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22..(2018·湖北省恩施·8分)先化简,再求值:•(1+)÷,其中x=2﹣1.【分析】直接分解因式,再利用分式的混合运算法则计算得出答案.【解答】解:•(1+)÷=••=,把x=2﹣1代入得,原式===.【点评】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.23.(2018•福建A卷•8分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.(2018•福建B卷•8分)先化简,再求值:(﹣1)÷,其中m=+1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将m的值代入即可解答本题.【解答】解:(﹣1)÷===,当m=+1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25.(2018•广东•6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.26.(2018•广东•7分)某公司购买了一批A.B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.27.(2018•广西北海•6分)解分式方程:【答案】 x = 1.5【考点】解分式方程【解答】解:方程左右两边同乘3(x -1),得3x - 3(x -1) = 2x3x - 3x + 3 = 2x2x = 3x = 1.5检验:当x = 1.5时, 3(x -1) ≠ 0所以,原分式方程的解为 x = 1.5 .【点评】根据解分式的一般步骤进行去分母,然后解一元一次方程,最后记得检验即可.28.(2018•广西贵港•10分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值,再计算加减可得;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2),得:4+(x+2)(x﹣2)=x+2,整理,得:x2﹣x﹣2=0,解得:x1=﹣1,x2=2,检验:当x=﹣1时,(x+2)(x﹣2)=﹣3≠0,当x=2时,(x+2)(x﹣2)=0,所以分式方程的解为x=﹣1.【点评】此题考查了实数的运算与解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.29.(2018•贵州黔西南州•12分)(2)先化简(1﹣)•,再在1.2.3中选取一个适当的数代入求值.【分析】(2)根据分式的减法和乘法可以化简题目中的式子,再从1.2.3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.【解答】解:(2)(1﹣)•===,当x=2时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确它们各自的计算方法.30.(2018•贵州贵阳•10 分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10 元,用 480 元购买乙种树苗的棵数恰好与用360 元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50 棵.此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500 元,那么他们最多可购买多少棵乙种树苗?【解(1)设甲种树苗每棵的价格是x 元,由题意知:乙种树苗每棵的价格是x 10元.则480 360,解得:x 30 x 10 x即,甲、乙两种树苗每棵的价格分别是30 元、40 元(2)设他们购买乙种树苗y 棵,则购买甲种树苗50 y 棵. 由(1)知:甲种树苗每棵30 元,乙种树苗每棵40 元甲种树苗降低10%后为:30(110%) 27 元由题意知:27(50 y)40y 1500 解得:y 15011.54 13所以,他们最多可以购买11 棵乙种树苗.31.(2018年湖南省娄底市)先化简,再求值:( +)÷,其中x=.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=时,原式==3+2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.32.(2018湖南省邵阳市)(8分)某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?【分析】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同建立方程求出其解就可以得出结论.(2)设购进A型机器人a台,根据每小时搬运材料不得少于2800kg列出不等式并解答.【解答】解:(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料,根据题意,得=,解得x=120.经检验,x=120是所列方程的解.。

中考数学专项练习分式的混合运算(含解析)

中考数学专项练习分式的混合运算(含解析)

中考数学专项练习分式的混合运算(含解析)【一】单项选择题1.计算的结果是〔〕A.B.C.x2+1D.x2﹣12.化简分式〔x-y+〕〔x+y-〕的结果为〔〕A.y2-x2B.x2-y2C.x2-4y2D.4x2-y23.x﹣=﹣y,且x+y≠0,那么xy的值为〔〕A.-1B.0C.1D.24.化简÷〔1+ 〕的结果是〔〕A.B.C.D.5.化简:〔1+ 〕÷结果为〔〕A.4xB.3xC.2xD.x6.化简〔1﹣〕÷的结果是〔〕A.〔x+1〕2B.〔x﹣1〕2C.D.7.以下运算结果为x﹣1的是〔〕A.1﹣B.•C.÷D.8.化简的结果是〔〕A.B.C.x+1D.x﹣19.假设分式□运算结果为x,那么在〝□〞中添加的运算符号为〔〕A.+B.﹣C.+或×D.﹣或÷10.化简的结果是()A.1B.C.D.-111.计算〔﹣〕÷的结果为〔〕A.B.C.D.12.以下等式成立的是〔〕A.+ =B.=C.=D.=﹣【二】填空题13.化简:〔1+ 〕÷的结果为________.14.÷·=________÷·________.15.化简:=________.16.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:那么第n次运算的结果yn=________〔用含字母x和n的代数式表示〕.17.计算:=________.【三】计算题18.计算:〔1〕;〔2〕.19.计算:〔1〕〔2〕.20.计算:①;②﹣a﹣1;③.21.计算:.22.计算或化简:①计算〔﹣〕÷.②a≠0,且满足a2﹣3a+1=0,求a2+ 的值.23.计算或化简:〔1〕.〔2〕.24.计算:.25.计算:〔1〕÷;〔2〕〔1+ 〕÷.【四】解答题26.:y= ,试说明不论x为任何有意义的值,y值均不变.27.化简:÷.【一】单项选择题1.计算的结果是〔〕A.B.C.x2+1D.x2﹣1【考点】分式的混合运算【解析】【解答】解:原式=[+ ]•〔x+1〕〔x﹣1〕=2x+〔x﹣1〕2=x2+1,应选C【分析】原式括号中两项通分并利用同分母分式的加法法那么计算,同时利用除法法那么变形,约分即可得到最简结果.2.化简分式〔x-y+〕〔x+y-〕的结果为〔〕A.y2-x2B.x2-y2C.x2-4yD.4x2-y2【考点】分式的混合运算【解析】【分析】先算小括号里的,再算乘法,把分子因式分解,化简即可.【解答】〔x-y+)〔x+y-)===x2-y2 .应选B、【点评】当整式与分式相加减时,一般可以把整式看作分母为1的分式,与其它分式进行通分运算.需注意:〔x+y)2-4xy=〔x-y)2 ,〔x-y)2+4xy =〔x+y)2的应用.3.x﹣=﹣y,且x+y≠0,那么xy的值为〔〕A.-1B.0C.1D.2【考点】分式的混合运算【解析】【解答】解:∵x﹣=﹣y,∴x+y=+= ,∵x+y≠0,∴xy=1,应选C【分析】等式移项变形,整理后根据x+y不为0求出xy的值即可.4.化简÷〔1+ 〕的结果是〔〕A.B.D.【考点】分式的混合运算【解析】【解答】解:原式=÷= •=,应选C【分析】原式括号中两项通分并利用同分母分式的加法法那么计算,同时利用除法法那么变形,约分即可得到结果.5.化简:〔1+ 〕÷结果为〔〕A.4xB.3xC.2xD.x【考点】分式的混合运算6.化简〔1﹣〕÷的结果是〔〕A.〔x+1〕2B.〔x﹣1〕2C.D.【考点】分式的混合运算【解析】【解答】解:〔1﹣〕÷===〔x﹣1〕2 ,应选B、【分析】先对括号内的式子通分,然后再将除法转化为乘法即可解答此题.7.以下运算结果为x﹣1的是〔〕A.1﹣B.•C.÷D.【考点】分式的混合运算【解析】【解答】解:A、1﹣= ,故此选项错误;B、原式= •=x﹣1,故此选项正确;C、原式= •〔x﹣1〕= ,故此选项错误;D、原式= =x+1,故此选项错误;应选:B、【分析】根据分式的基本性质和运算法那么分别计算即可判断.8.化简的结果是〔〕A.B.C.x+1D.x﹣1【考点】分式的混合运算9.假设分式□运算结果为x,那么在〝□〞中添加的运算符号为〔〕A.+B.﹣C.+或×D.﹣或÷【考点】分式的混合运算【解析】【解答】解:A、根据题意得:+ = ,不符合题意;B、根据题意得:﹣= =x,不符合题意;C、根据题意得:×= ,不符合题意;D、根据题意得:﹣= =x;÷= •=x,符合题意;应选D【分析】将运算符号放入原式,计算即可得到结果.10.化简的结果是()A.1B.C.D.-1【考点】分式的混合运算11.计算〔﹣〕÷的结果为〔〕A.B.C.D.【考点】分式的混合运算【解析】【解答】解:原式=÷= •=.应选A、【分析】首先把括号内的式子通分、相减,然后把除法转化为乘法,进行通分即可.12.以下等式成立的是〔〕A.+ =B.=C.=D.=﹣【考点】分式的混合运算【解析】【解答】解:A、原式= ,错误;B、原式不能约分,错误;C、原式= = ,正确;D、原式= =﹣,错误,应选C【分析】原式各项计算得到结果,即可做出判断.【二】填空题13.化简:〔1+ 〕÷的结果为________.【考点】分式的混合运算14.÷·=________÷·________.【考点】分式的混合运算15.化简:=________.【考点】分式的混合运算【解析】【解答】解:=1﹣=1﹣= = .【分析】把第二个分式的分子分母先因式分解,再把除法统一成乘法化简,最后算减法.16.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:那么第n次运算的结果yn=________〔用含字母x和n的代数式表示〕.【考点】分式的混合运算17.计算:=________.【考点】分式的混合运算【三】计算题18.计算:〔1〕;〔2〕.【考点】分式的混合运算【解析】【分析】〔1〕原式利用除法法那么变形,约分即可得到结果;〔2〕原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.19.计算:〔1〕〔2〕.【考点】分式的混合运算【解析】【分析】〔1〕原式通分并利用同分母分式的加法法那么计算,即可得到结果;〔2〕原式括号中通分并利用同分母分式的减法法那么计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.20.计算:①;②﹣a﹣1;③.【考点】分式的混合运算【解析】【分析】①原式利用除法法那么变形,约分即可得到结果;②原式两项通分并利用同分母分式的减法法那么计算即可得到结果;③原式括号中两项通分并利用同分母分式的加减法那么计算,约分即可得到结果.21.计算:.【考点】分式的混合运算【解析】【分析】原式括号中三项通分并利用同分母分式的减法法那么计算,约分即可得到结果.22.计算或化简:①计算〔﹣〕÷.②a≠0,且满足a2﹣3a+1=0,求a2+ 的值.【考点】分式的混合运算【解析】【分析】①原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分即可得到结果;②等式整理求出a + 的值,再利用完全平方公式即可求出所求式子的值.23.计算或化简:〔1〕.〔2〕.【考点】分式的混合运算【解析】【分析】〔1〕、〔2〕根据分式混合运算的法那么进行计算即可.24.计算:.【考点】分式的混合运算【解析】【分析】先把括号内通分,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.25.计算:〔1〕÷;〔2〕〔1+ 〕÷.【考点】分式的混合运算【解析】【分析】〔1〕原式利用除法法那么变形,约分即可得到结果;〔2〕原式括号中两项通分并利用同分母分式的加法法那么计算,同时利用除法法那么变形,约分即可得到结果.【四】解答题26.:y= ,试说明不论x为任何有意义的值,y值均不变.【考点】分式的混合运算【解析】【分析】先算乘除,约分化为最简分式,后算加减,得到不论x为任何有意义的值,y值均不变.27.化简:÷.【考点】分式的混合运算【解析】【分析】利用分式的混合运算顺序求解即可.。

2018年中考数学试题分类汇编解析(6)分式

2018年中考数学试题分类汇编解析(6)分式

2018中考数学试题分类汇编:考点6 分式一.选择题(共20小题)1.(2018•武汉)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣2【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.2.(2018•金华)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.3.(2018•株洲)下列运算正确的是()A.2a+3b=5ab B.(﹣ab)2=a2b C.a2•a4=a8 D.【分析】根据合比同类项法则,同底数幂的乘法以及幂的乘方与积的乘方法则解答.【解答】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=a2b2,故本选项错误;C、原式=a6,故本选项错误;D、原式=2a3,故本选项正确.故选:D.4.(2018•江西)计算(﹣a)2•的结果为()A.b B.﹣b C.ab D.【分析】先计算乘方,再计算乘法即可得.【解答】解;原式=a2•=b,故选:A.5.(2018•山西)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.【解答】解:A、(﹣a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.6.(2018•曲靖)下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.(﹣)3=﹣【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a3,不符合题意;B、原式=a4,不符合题意;C、原式=﹣a2b,符合题意;D、原式=﹣,不符合题意,故选:C.7.(2018•河北)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.【解答】解:∵÷=•=•=•==,∴出现错误是在乙和丁,故选:D.8.(2018•永州)甲从商贩A处购买了若干斤西瓜,又从商贩B处购买了若干斤西瓜.A、B两处所购买的西瓜重量之比为3:2,然后将买回的西瓜以从A、B两处购买单价的平均数为单价全部卖给了乙,结果发现他赔钱了,这是因为()A.商贩A的单价大于商贩B的单价B.商贩A的单价等于商贩B的单价C.商版A的单价小于商贩B的单价D.赔钱与商贩A、商贩B的单价无关【分析】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.【解答】解:利润=总售价﹣总成本=×5﹣(3a+2b)=0.5b﹣0.5a,赔钱了说明利润<0∴0.5b﹣0.5a<0,∴a>b.故选:A.9.(2018•广州)下列计算正确的是()A.(a+b)2=a2+b2B.a2+2a2=3a4C.x2y÷=x2(y≠0)D.(﹣2x2)3=﹣8x6【分析】根据相关的运算法则即可求出答案.【解答】解:(A)原式=a2+2ab+b2,故A错误;(B)原式=3a2,故B错误;(C)原式=x2y2,故C错误;故选:D.10.(2018•台州)计算,结果正确的是()A.1 B.x C.D.【分析】根据分式的运算法则即可求出答案.【解答】解:原式==1故选:A.11.(2018•淄博)化简的结果为()A. B.a﹣1 C.a D.1【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+==a﹣1故选:B.12.(2018•南充)已知=3,则代数式的值是()A.B.C.D.【分析】由=3得出=3,即x﹣y=﹣3xy,整体代入原式=,计算可得.【解答】解:∵=3,∴=3,∴x﹣y=﹣3xy,则原式====,故选:D.13.(2018•天津)计算的结果为()A.1 B.3 C. D.【分析】原式利用同分母分式的减法法则计算即可求出值.【解答】解:原式==,故选:C.14.(2018•苏州)计算(1+)÷的结果是()A.x+1 B. C. D.【分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【解答】解:原式=(+)÷=•=,故选:B.15.(2018•云南)已知x+=6,则x2+=()A.38 B.36 C.34 D.32【分析】把x+=6两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把x+=6两边平方得:(x+)2=x2++2=36,则x2+=34,故选:C.16.(2018•威海)化简(a﹣1)÷(﹣1)•a的结果是()A.﹣a2B.1 C.a2D.﹣1【分析】根据分式的混合运算顺序和运算法则计算可得.【解答】解:原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.17.(2018•孝感)已知x+y=4,x﹣y=,则式子(x﹣y+)(x+y﹣)的值是()A.48 B.12C.16 D.12【分析】先通分算加法,再算乘法,最后代入求出即可.【解答】解:(x﹣y+)(x+y﹣)=•=•=(x+y)(x﹣y),当x+y=4,x﹣y=时,原式=4=12,故选:D.18.(2018•北京)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.19.(2018•泰安)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.3【分析】根据相反数的概念、零指数幂的运算法则计算.【解答】解:﹣(﹣2)+(﹣2)0=2+1=3,故选:D.20.(2018•常德)﹣2的相反数是()A.2 B.﹣2 C.2﹣1D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2的相反数是:2.故选:A.二.填空题(共12小题)21.(2018•湘西州)要使分式有意义,则x的取值范围为x≠﹣2.【分析】根据根式有意义的条件即可求出答案.【解答】解:由题意可知:x+2≠0,∴x≠﹣2故答案为:x≠﹣222.(2018•宁波)要使分式有意义,x的取值应满足x≠1.【分析】直接利用分式有意义则分母不能为零,进而得出答案.【解答】解:要使分式有意义,则:x﹣1≠0.解得:x≠1,故x的取值应满足:x≠1.故答案为:x≠1.23.(2018•滨州)若分式的值为0,则x的值为﹣3.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:因为分式的值为0,所以=0,化简得x2﹣9=0,即x2=9.解得x=±3因为x﹣3≠0,即x≠3所以x=﹣3.故答案为﹣3.24.(2018•湖州)当x=1时,分式的值是.【分析】将x=1代入分式,按照分式要求的运算顺序计算可得.【解答】解:当x=1时,原式==,故答案为:.25.(2018•襄阳)计算﹣的结果是.【分析】根据同分母分式加减运算法则计算即可,最后要注意将结果化为最简分式.【解答】解:原式===,故答案为:.26.(2018•衡阳)计算:=x﹣1.【分析】根据同分母分式的加减,分母不变,只把分子相加减,计算求解即可.【解答】解:==x﹣1.故答案为:x﹣1.27.(2018•自贡)化简+结果是.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+=故答案为:28.(2018•武汉)计算﹣的结果是.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+=故答案为:29.(2018•长沙)化简:=1.【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减,分母不变,把分子相加减计算即可.【解答】解:原式==1.故答案为:1.30.(2018•大庆)已知=+,则实数A=1.【分析】先计算出+=,再根据已知等式得出A、B的方程组,解之可得.【解答】解: +=+=,∵=+,∴,解得:,故答案为:1.31.(2018•永州)化简:(1+)÷=.【分析】根据分式的加法和除法可以解答本题.【解答】解:(1+)÷===,故答案为:.32.(2018•福建)计算:()0﹣1=0.【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.三.解答题(共10小题)33.(2018•天门)化简:•.【分析】先将分子、分母因式分解,再约分即可得.【解答】解:原式=•=.34.(2018•成都)(1)22+﹣2sin60°+|﹣|(2)化简:(1﹣)÷【分析】(1)根据立方根的意义,特殊角锐角三角函数,绝对值的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4+2﹣2×+=6(2)原式=×=×=x﹣135.(2018•青岛)(1)解不等式组:(2)化简:(﹣2)•.【分析】(1)先求出各不等式的解集,再求出其公共解集即可.(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)解不等式<1,得:x<5,解不等式2x+16>14,得:x>﹣1,则不等式组的解集为﹣1<x<5;(2)原式=(﹣)•=•=.36.(2018•重庆)计算:(1)(x+2y)2﹣(x+y)(x﹣y);(2)(a﹣1﹣)÷【分析】(1)原式利用完全平方公式,平方差公式化简,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=x2+4xy+4y2﹣x2+y2=4xy+5y2;(2)原式=•=•=.37.(2018•泰州)(1)计算:π0+2cos30°﹣|2﹣|﹣()﹣2;(2)化简:(2﹣)÷.【分析】(1)先计算零指数幂、代入三角函数值,去绝对值符号、计算负整数指数幂,再计算乘法和加减可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=1+2×﹣(2﹣)﹣4=1+﹣2+﹣4=2﹣5;(2)原式=(﹣)÷=•=.38.(2018•盐城)先化简,再求值:,其中x=+1.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=+1时原式=•=x﹣1=39.(2018•黑龙江)先化简,再求值:(1﹣)÷,其中a=sin30°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=sin30°时,所以a=原式=•=•==﹣140.(2018•深圳)先化简,再求值:,其中x=2.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=把x=2代入得:原式=41.(2018•玉林)先化简再求值:(a﹣)÷,其中a=1+,b=1﹣.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=1+,b=1﹣时,原式=•=•===42.(2018•哈尔滨)先化简,再求代数式(1﹣)÷的值,其中a=4cos30°+3tan45°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=4cos30°+3tan45°时,所以a=2+3原式=•==。

【精品】全国各地2018年中考数学真题汇编 分式【含答案】

【精品】全国各地2018年中考数学真题汇编 分式【含答案】

分式一、选择题1. (2018山东滨州)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B . 2 C.3 D.4【答案】B2. (2018天津)计算的结果为()A. 1B. 3C.D.【答案】C3.(2018甘肃凉州)若分式的值为0,则的值是()A. 2或-2 B. 2C. -2D. 0【答案】A4.函数中,自变量x的取值范围是()。

A. x≠0B. x<1 C. x>1 D. x≠1【答案】D5.若分式的值为0,则的值是()A. 2B.0 C. -2 D. -5 【答案】A6.若分式的值为0,则x的值是()A. 3B.C. 3或D. 0【答案】A二、填空题7.要使分式有意义,则的取值范围是________.【答案】 28.要使分式有意义,x的取值应满足________。

【答案】x≠19.使得代数式有意义的的取值范围是________.【答案】10.若分式的值为0,则x的值为________.【答案】-3三、解答题11.先化简,再求值:,其中.【答案】原式= = ,当时,原式= 。

12.计算:(1)(2)【答案】(1)解:原式= =(2)解:原式===13.先化简,再求值:,其中.【答案】解:原式∵x=2,∴= .14.先化简,再求值:(-)÷ ,其中x满足x2-2x-2=0.【答案】解:原式= ,= ,= ,∵x2-2x-2=0,∴x2=2x+2,∴= .15.计算:.【答案】解:原式== ﹒.16.先化简,再求值: ,其中是不等式组的整数解.【答案】解:原式= • ﹣= ﹣= ,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式= ..17.先化简,再求值:(xy2+x2y)× ,其中x=π0﹣()﹣1,y=2sin45°﹣.【答案】解:原式=xy(x+y)• =x﹣y,当x=1﹣2=﹣1,y= ﹣2 =﹣时,原式= ﹣118.计算.【答案】解:19.已知(1)化简T。

北京市海淀区普通中学2018年1月初三数学中考复习 分式方程的应用 专题练习题 含答案

北京市海淀区普通中学2018年1月初三数学中考复习 分式方程的应用  专题练习题 含答案

北京市海淀区普通中学2018年1月初三数学中考复习分式方程的应用 专题练习题1.一只船顺流航行90千米与逆流航行60千米所用的时间相等,若水流的速度是2千米/时,求船在静水中的速度.如果设船在静水中的速度为x 千米/时,可列出的方程是( )A.90x +2=60x -2B.90-x -2=60x +2C.90x +2=60xD.60x +2=90x2.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天的工作效率比原计划提高20%,结果提前2天完成任务.设原计划每天铺设x 米,下面所列方程正确的是( ) A.720x -720(1+20%)x =2 B.720(1-20%)-720x=2 C.720(1+20%)x -720x =2 D.720x +2=720(1+20%)x3. 两地相距60千米,若骑摩托车走完全程可比骑自行车少用32小时,已知摩托车的速度是自行车速度的2倍,求骑自行车的速度.设骑自行车的速度为x 千米/时,根据题意可列方程为__________.4. 市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队再单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x 天,可列方程为_________.5. 某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x 个物件,根据题意列出的方程是___________.6. 到长沙的距离约为320 km,小明开着大货车,小华开着小轿车,都从张家界同时去长沙,已知小轿车的速度是大货车的1.25倍,小华比小明提前1小时到达长沙.试问:大货车和小轿车的速度各是多少?7. 装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有A,B两个制衣间,A车间每天加工的数量是B车间的1.2倍,A,B两车间共完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用了20天完成,求A,B两车间每天分别能加工多少件?8.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按标价的八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?9.A,B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同,求A型机器每小时加工零件的个数.10.某自来水公司水费计算办法如下:若每户每月用水不超过5 m3,则每立方米收费1.5元;若每户每月用水超过5 m3,则超过部分每立方米收取较高的定额费用.2月份,小王家用水量是小李家用水量的23,小王家当月水费是17.5元,小李家当月水费是27.5元,求超过5 m3的部分每立方米收费多少元?11.某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1) 求原计划每天生产的零件个数和规定的天数;(2) 为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.12.某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?答案:1. A2. A3. 60x -602x =324. 520+45x=1 5. 60x +8=45x6. 设大货车的速度是x 千米/时,则小轿车的速度是1.25x 千米/时,由题意得320x -3201.25x=1,解得x =64 经检验x =64是原方程的解,且符合题意,则1.25 x =80答:大货车的速度是64千米/时,小轿车的速度是80千米/时7. 设B 车间每天能加工x 件,则A 车间每天能加工1.2x 件由题意得4400x +1.2x +4400x=20,解得x =320 经检验x =320是原分式方程的解,且符合题意∴1.2×320=384(件).答:A 车间每天能加工384件,B 车间每天能加工320件8. (1) 设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫是2x 件,依题意得13200x +10=288002x,解得x =120,经检验x =120是原方程的解,且符合题意.答:该商家购进的第一批衬衫是120件(2) 3x =3×120=360,设每件衬衫的标价y 元,依题意有(360-50)y +50×0.8y≥(13200+28800)×(1+25%),解得y≥150.答:每件衬衫的标价至少是150元9. 设A 型机器每小时加工零件x 个,则B 型机器每小时加工零件(x -20)个.根据题意列方程得400x =300x -20,解得x =80.经检验x =80是原方程的解. 答:A 型机器每小时加工零件80个10. 设超过5 m 3的部分每立方米收费x 元.根据题意小王与小李家的用水量超过5立方米可得5+17.5-5×1.5x =23×(5+27.5-5×1.5x),解得x =2 经检验x =2是原方程的解,且符合题意.∴超过5 m 3的部分每立方米收费2元11. (1)设原计划每天生产零件x 个,依题意有24000x =24000+300x +30,解得x =2400,经检验,x =2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产零件2400个,规定的天数是10天(2)设原计划安排的工人人数为y 人,依题意有[5×20×(1+20%)×2400y+2400]×(10-2)=24000,解得y =480,经检验,y =480是原方程的根,且符合题意.答:原计划安排的工人人数为480人12. 设甲队单独完成此项工程需要x 天,乙队单独完成需要(x +5)天.依据题意可列方程1x +1x +5=16,解得x 1=10,x 2=-3(舍去). 经检验x =10是原方程的解.设甲队每天的工程费为y 元,则乙队每天的工程费为(y -4000)元,依据题意可列方程6y +6(y -4000)=385200,解得y =34100.∴甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队。

2017-2018学年度北师大版初中数学八年级下册《分式与分式方程》单元检测题及答案解析4-精品试卷

2017-2018学年度北师大版初中数学八年级下册《分式与分式方程》单元检测题及答案解析4-精品试卷

《第5章分式与分式方程》一、分式的有关概念:1.下列各式(1﹣x),,,+x,,其中分式共有()个.A.2 B.3 C.4 D.52.下列分式的值,可以为零的是()A.B.C.D.3.若把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小到原来的D.缩小到原来的4.使分式的值为正的条件是()A.B.C.x<0 D.x>05.把分式方程=化为整式方程,方程两边需同时乘以()A.2x B.2x﹣4 C.2x(x﹣2)D.2x(2x﹣4)6.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为()A.﹣=20 B.﹣=20C.﹣=0.5 D.﹣=0.5二、填空题(共12小题,每小题3分,满分36分)7.当x 时,分式有意义.8.对于分式,当x= 时,分式无意义;当x= 时,分式值为零.9.填空:=,=﹣.10.下列各式①;②;③;④;⑤中分子与分母没有公因式的分式是.(填序号).11.化简:= .12.若=,则的值是.13.不改变分式的值,使分式的分子和分母里次数最高的项的系数是正整数.(1)= ;(2)= .14.分式,的最简公分母是.15.一件工作,甲单独做a小时完成,乙单独做b小时完成,则甲、乙合作小时完成.16.关于x的方程的解是正数,则a的取值范围是.17.在方程中,如果设y=x2﹣4x,那么原方程可化为关于y的整式方程是.18.关于x的方程﹣2=有增根,则增根是,k的值为.三、解答题(共5小题,满分0分)19.计算:(1)•÷(2)÷(4x2﹣y2)(3)+(4)﹣x+y(5)(1﹣)(﹣1)(6)(+)÷.20.先化简,再求值:,其中m=﹣2.21.解方程:(1)1﹣=(2)﹣=.22.列分式方程解应用题:某市从今年1月1日起调整居民用水价格,每吨水费上涨三分之一,小丽家去年12月的水费是15元,今年2月的水费是30元.已知今年2月的用水量比去年12月的用水量多5吨,求该市今年居民用水的价格?23.列分式方程解应用题:“六一”儿童节前,某玩具商店根据市场调查,用2 500元购进一批儿童玩具,上市后很快脱销,接着又用4 500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.①求第一批玩具每套的进价是多少元?②如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?《第5章分式与分式方程》参考答案与试题解析一、分式的有关概念:1.下列各式(1﹣x),,,+x,,其中分式共有()个.A.2 B.3 C.4 D.5【考点】分式的定义.【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:中的分母含有字母是分式.故选A.【点评】本题主要考查分式的定义,π不是字母,不是分式.2.下列分式的值,可以为零的是()A.B.C.D.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:A、分式的值不能为零,故A错误;B、x=﹣1时,分式无意义,故B错误;C、x=﹣1时,分式无意义,故C错误;D、x=﹣1时,分式的值为零,故D正确;故选:D.【点评】本题考查了分式值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.若把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.不变C .缩小到原来的D .缩小到原来的【考点】分式的基本性质.【分析】若把分式中的x 和y 都扩大3倍,然后与原式比较.【解答】解:将3x 、3y 代入原式,则原式===,所以缩小到原来的,故选C .【点评】本题主要考查了分式的基本性质.4.使分式的值为正的条件是( )A .B .C .x <0D .x >0【考点】分式的值.【专题】计算题.【分析】根据题意可得不等式>0,由于分子是负数,根据负负得正,可知1﹣3x <0,即可求x 的取值范围.【解答】解:根据题意得>0,∴1﹣3x <0,∴x >.故选B .【点评】本题考查了解不等式.注意负负得正.5.把分式方程=化为整式方程,方程两边需同时乘以( ) A .2x B .2x ﹣4 C .2x (x ﹣2) D .2x (2x ﹣4)【考点】解分式方程.【分析】首先找最简公分母,再化成整式方程.【解答】解:由2x ﹣4=2(x ﹣2),另一个分母为2x ,故可得方程最简公分母为2x (x ﹣2).故选:C .【点评】本题考查的是解分式方程,最简公分母的确定时将分式方程转化为整式方程的第一步,因此要根据所给分母确定最简公分母.6.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为()A.﹣=20 B.﹣=20C.﹣=0.5 D.﹣=0.5【考点】由实际问题抽象出分式方程.【分析】设原价每瓶x元,根据某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,可列方程.【解答】解:设原价每瓶x元,﹣=20.故选B.【点评】本题考查理解题意的能力,关键是设出价格,以瓶数做为等量关系列方程求解.二、填空题(共12小题,每小题3分,满分36分)7.当x ≠1 时,分式有意义.【考点】分式有意义的条件.【分析】分式有意义,分母不等于零.【解答】解:当分母1﹣x≠0,即x≠1时,分式有意义.故答案是:≠1.【点评】从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.8.对于分式,当x= 3 时,分式无意义;当x= ﹣1 时,分式值为零.【考点】分式的值为零的条件;分式有意义的条件.【分析】分式无意义时,分母等于零;分式的值为零时,分子等于零且分母不等于零.【解答】解:依题意得:x﹣3=0,解得x=3,所以x=3时,分式无意义;依题意得:x2﹣2x﹣3=0且x﹣3≠0,即(x﹣3)(x+1)=0且x﹣3≠0,所以x+1=0,解得x=﹣1.故答案是:3;﹣1.【点评】本题考查了分式有意义的条件和分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.9.填空:=,=﹣.【考点】分式的基本性质.【专题】推理填空题.【分析】根据分式的基本性质和化简方法,逐一化简即可.【解答】解:=,=﹣.故答案为:x﹣y、﹣x+y.【点评】此题主要考查了分式的基本性质和应用,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.10.下列各式①;②;③;④;⑤中分子与分母没有公因式的分式是③⑤.(填序号).【考点】约分.【分析】根据公因式的定义,及各分式的形式即可得出答案.【解答】解:①公因式是:3;②公因式是:(x+y);③没有公因式;④公因式是:m.⑤没有公因式;则没有公因式的是③、⑤.故答案为:③⑤.【点评】本题考查了约分的知识,属于基础题,关键是掌握公因式的定义.11.化简:= .【考点】约分.【分析】把分式进行化简就是对分式进行约分,首先要对分子、分母进行分解因式,然后提取出分子分母的公因式.【解答】解:化简:=.【点评】分式进行约分时,应先把分子、分母中的多项式进行分解因式,正确分解因式是掌握约分的关键.12.若=,则的值是.【考点】分式的值.【分析】由=得出a=b,代入分式求得数值即可.【解答】解:由=,∴a=b,代入==.故答案为:.【点评】此题利用换元法求代数式的值,是数学中常用的解题方法.13.不改变分式的值,使分式的分子和分母里次数最高的项的系数是正整数.(1)= ;(2)= .【考点】分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零数,分式的值不变,可得答案.【解答】解:(1)=;(2)=,故答案为:,.【点评】本题考查了分式的基本性质.在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.14.分式,的最简公分母是(x﹣1)2(x﹣2).【考点】最简公分母.【分析】先把分母分解因式,再根据最简公分母的定义进行填空即可.【解答】解:分式,的最简公分母是(x﹣1)2(x﹣2),故答案为(x﹣1)2(x﹣2).【点评】本题考查了最简公分母,系数的最小公倍数以及字母的最高次幂.15.一件工作,甲单独做a小时完成,乙单独做b小时完成,则甲、乙合作小时完成.【考点】列代数式(分式).【分析】根据两人合作一小时完成的工作量=甲1小时的工作量+乙1小时的工作量,进而求出两人合作所用时间即可.【解答】解:∵一件工程甲单独完成要a小时,乙单独完成要b小时,∴甲1小时的工作量为,乙1小时的工作量为,∴两人合作一小时完成的工作量为:=.故答案为:.【点评】此题考查了列代数式,得到甲乙合作1小时的工作量的等量关系是解决本题的关键.16.关于x的方程的解是正数,则a的取值范围是a<﹣1且a≠﹣2 .【考点】分式方程的解.【分析】先去分母得2x+a=x﹣1,可解得x=﹣a﹣1,由于关于x的方程的解是正数,则x>0并且x﹣1≠0,即﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2.【解答】解:去分母得2x+a=x﹣1,解得x=﹣a﹣1,∵关于x的方程的解是正数,∴x>0且x≠1,∴﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2,∴a的取值范围是a<﹣1且a≠﹣2.故答案为:a<﹣1且a≠﹣2.【点评】本题考查了分式方程的解:先把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;若整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.17.在方程中,如果设y=x2﹣4x,那么原方程可化为关于y的整式方程是y2+4y+3=0 .【考点】换元法解分式方程.【分析】先把方程整理出含有x2﹣4x的形式,然后换成y再去分母即可得解.【解答】解:方程整理得,x2﹣4x++4=0,设y=x2﹣4x,原方程可化为,y++4=0,方程两边都乘以y,去分母得,y2+4y+3=0.故答案为:y2+4y+3=0.【点评】本题考查了用换元法解方程,解题关键是能准确的找出可用替换的代数式x2﹣4x,再用字母y代替解方程.18.关于x的方程﹣2=有增根,则增根是 3 ,k的值为 3 .【考点】分式方程的增根.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出k的值.【解答】解:方程两边都乘(x﹣3),得x﹣2(x﹣3)=k∵原方程增根为x=3,∴把x=3代入整式方程,得k=3,故答案为:3,3.【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.三、解答题(共5小题,满分0分)19.计算:(1)•÷(2)÷(4x2﹣y2)(3)+(4)﹣x+y(5)(1﹣)(﹣1)(6)(+)÷.【考点】分式的混合运算.【分析】(1)从左到右依次计算即可;(2)根据分式的除法法则进行计算即可;(3)、(4)先通分,再把分子相加减即可;(5)先算括号里面的,再算乘法即可;(6)先算括号里面的,再算除法即可.【解答】解:(1)原式=•=;(2)原式=•=(2x﹣y)•=;(3)原式=﹣==a+b;(4)原式=﹣==;(5)原式=•=•=﹣;(6)原式=•=•=.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.20.(2005•海淀区)先化简,再求值:,其中m=﹣2.【考点】分式的化简求值.【专题】计算题.【分析】首先把分式进行化简,然后代值计算.【解答】解:原式==(2分)=;(4分)当m=﹣2时,原式=.(5分)【点评】分子、分母能因式分解的先因式分解;除法要统一为乘法运算.21.解方程:(1)1﹣=(2)﹣=.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2﹣25﹣x﹣5=x2﹣5x,解得:x=,经检验x=是分式方程的解;(2)去分母得:3x+3﹣2x+3=1,解得:x=﹣5,经检验x=﹣5是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.列分式方程解应用题:某市从今年1月1日起调整居民用水价格,每吨水费上涨三分之一,小丽家去年12月的水费是15元,今年2月的水费是30元.已知今年2月的用水量比去年12月的用水量多5吨,求该市今年居民用水的价格?【考点】分式方程的应用.【分析】可设去年每吨水费为x元,则今年每吨水费为(1+)x元,小丽家去年12月的用水量为吨,今年2月的用水量为(+5)吨,根据等量关系:今年2月的水费是30元,列出方程即可求解.【解答】解:设去年每吨水费为x元,则今年每吨水费为(1+)x元,小丽家去年12月的用水量为吨,今年2月的用水量为(+5)吨,依题意有(+5)(1+)x=30,解得:x=1.5,经检验得:x=1.5是原方程的根,答:今年居民用水的价格为1.5元.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.列分式方程解应用题:“六一”儿童节前,某玩具商店根据市场调查,用2 500元购进一批儿童玩具,上市后很快脱销,接着又用4 500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.①求第一批玩具每套的进价是多少元?②如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?【考点】分式方程的应用;一元一次不等式的应用.【分析】①设第一批玩具每套的进价是x元,则第一批进的件数是:,第二批进的件数是:,再根据等量关系:第二批进的件数=第一批进的件数×1.5可得方程;②设每套售价是y元,利润=售价﹣进价,根据这两批玩具每套售价相同,且全部售完后总利润不低于25%,可列不等式求解.【解答】解:①设第一批玩具每套的进价是x元,根据题意可得:×1.5=,解得:x=50,经检验x=50是分式方程的解,符合题意.答:第一批玩具每套的进价是50元;②设每套售价是y元,×1.5=75(套).50y+75y﹣2500﹣4500≥(2500+4500)×25%,解得:y≥70,答:如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是70元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,理解题意的能力,关键是根据价格做为等量关系列出方程,根据利润做为不等辆关系列出不等式求解.。

中考数学一轮复习专题解析—分式的运算

中考数学一轮复习专题解析—分式的运算

中考数学一轮复习专题解析—分式的运算复习目标1.了解分式的概念2.会利用分式的基本性质进行约分和通分。

3.会进行分式的加、减、乘、除、乘方运算4.能够根据具体问题数量关系列出简单的分式方程5.会解简单的可化为一元一次方程的分式方程;考点梳理一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.【归纳总结】分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B ≠0时,分式有意义;当分式有意义时,B ≠0.②当B =0时,分式无意义;当分式无意义时,B =0.③当B ≠0且A =0时,分式的值为零.例1、若把x ,y 的值同时缩小x 为原来的13倍,则下列分式的值保持不变的是()A .xy x y+B .22y x ++C .()22x y x +D .222x y x -【答案】C 【解析】A.1111333==11333x y xyxy x y x y x y⨯⨯+++,选项说法错误,不符合题意;B.61263=3616233y y x x y x +++=+++,选项说法错误,不符合题意;C.22222222111()()()33311()()33x y x y x y x x x ⎛⎫++ ⎪+⎝⎭==,选项说法正确,符合题意;D.22222213112261())(33()3xx xy x y x y x ⨯==---⨯,选项说法错误,不符合题意故选C二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算±=同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.例2、计算22111m mm m----的结果是()A.1m+B.1m-C.2m-D.2m--【答案】B【解析】解:()222121211 1111mm m m m mm m m m---+-===-----;故选B.【归纳总结】约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.【特别提醒】通分注意事项(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.【特别提醒】1.解分式方程注意事项(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.2.列分式方程解应用题的基本步骤(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.例3、随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周6000件提高到8400件,平均每人每周比原来多投递80件,若快递公司的快递人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.6000x=840080x+B.6000x+80=8400xC.8400x=6000x﹣80D.6000x=840080x-【答案】A【解析】解:设原来平均每人每周投递快件x件,则更换交通工具后平均每人每周投递快件(x+80)件,依题意得:6000x=840080x+,故选:A.综合训练1.(2022·全国九年级课时练习)若代数式13x x -+有意义,则x 的取值范围是()A .3x ≠B .1x ≠C .3x ≥-D .3x ≠-【答案】D【分析】根据分式有意义的条件分析即可.【详解】 数式13x x -+有意义,30x ∴+≠,解得3x ≠-.故选D .2.(2022·老河口市教学研究室九年级月考)化简2b a ba a a ⎛⎫+-÷ ⎪⎝⎭的结果是()A .-a bB .a b +C .1a b-D .1a b+【答案】A【分析】直接将括号里面通分,进而分解因式,再利用分式的除法运算法则计算得出答案.【详解】解:2b a ba a a ⎛⎫+-÷⎪⎝⎭=22a b aa a b-⨯+=()()a b a b aaa b+-⨯+=-a b .故选:A .3.(2022·厦门市第九中学九年级二模)港珠澳大桥是我国桥梁建筑史上的又一伟大奇迹,东接香港,西接珠海、澳门,全程55千米.通车前需走水陆两路共约170千米,通车后,约减少时间3小时,平均速度是原来的2.5倍,如果设原来通车前的平均时速为x 千米/小时,则可列方程为()A .1705532.5x x-=B .5517032.5x x-=C .17055 2.53x x ⨯-=D .1705532.5x x-=【答案】D【分析】设原来通车前的平均时速为x 千米/小时,所以通车后,的平均时速为2.5x 千米/小时,根据它们行驶的时间差为3小时列出分式方程.【详解】解:设原来通车前的平均时速为x 千米/小时,所以通车后,的平均时速为2.5x 千米/小时,依题意得:1705532.5x x-=故选D .4.(2022·哈尔滨市第十七中学校)分式方程1x x +12x +-=1的解是()A .x =1B .x =﹣1C .x =3D .x =﹣3【答案】A【分析】观察可得最简公分母是x (x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解即可.【详解】解:112x x x ++-=1,去分母,方程两边同时乘以x (x ﹣2)得:(x +1)(x ﹣2)+x =x (x ﹣2),x 2﹣x ﹣2+x =x 2﹣2x ,x =1,经检验,x =1是原分式方程的解.故选:A .5.(2022·四川九年级期中)关于x 的方程244x ax x -=++有增根,则a 的值为()A .-4B .-6C .0D .3【答案】B【分析】将分式方程转化为整式方程,根据方程有增根求得4x =-,代入整式方程即可.【详解】解:244x ax x -=++两边同时乘4x +得:2x a -=①∵244x ax x -=++有增根∴4x =-代入方程①得:6a =-故答案为B .6.(2022·全国)已知实数a ,b 满足1a b ⋅=,那么221111a b +++的值为()A .14B .12C .1D .2【答案】C【分析】把所求分式通分,再把已知条件代入求解.【详解】解:∵•1a b =,∴()2221a b ab ==,∴22222222112111a b a b a b b a +++=+++++2222211a b b a ++=+++1=.故选:C .7.(2022·日照市田家炳实验中学九年级一模)已知关于x 的方程2222x mm x x+=--无解,则m 的值是___.【答案】12或1【分析】分方程有增根,增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母20x -=,得到2x =,然后代入化为整式方程的方程算出m 的值和方程没有增根两种情况进行讨论.【详解】解:①当方程有增根时方程两边都乘2x -,得22(2)x m m x -=-,∴最简公分母20x -=,解得2x =,当2x =时,1m =故m 的值是1,②当方程没有增根时方程两边都乘2x -,得22(2)x m m x -=-,解得221mx m =-,当分母为0时,此时方程也无解,∴此时210m -=,解得12m =,∴综上所述,当12m =或1时,方程无解.故答案为:12或1.8.(2022·山东滨州市·九年级其他模拟)已知关于x 的分式方程3522x mx x=+--的解为非负数,则m 的取值范围为______.【答案】10m ≥-且6≠-m 【分析】根据解分式方程,可得分式方程的解,根据分式方程的解为负数,可得不等式,解不等式,可得答案.【详解】解:3522x m x x=+--去分母,得:35(2)x m x =-+-,移项、合并,得:210x m=+系数化为1得:102mx +=∵分式方程的解为非负数,∴1002m +≥且1022m +≠,解得:10m ≥-且6≠-m ,故答案为:10m ≥-且6≠-m .9.(2022·云南九年级期末)先化简,再求值:212(1)11x x x ++÷+-,其中2x =.【答案】x -1,1【分析】根据分式的混合运算法则化简原式然后代值计算即可.【详解】解:原式=2111()12x x x x ++-⨯++=2(1)(1)12x x x x x ++-⨯++=1x -,∵2x =,∴原式=211-=.10.(2022·河南三门峡市·)下面是小锐同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++()()()()23321233x x x x x +-+=-++…第一步()321323x x x x -+=-++…第二步()()()23212323x x x x -+=-++…第三步()()262123x x x --+=+…第四步()262123x x x --+=+…第五步526x =-+…第六步(1)填空:①以上化简步骤中,第______步是进行分式的通分,通分的依据是______;②第______步开始出现错误,这一步错误的原因是__________.(2)请从出现错误的步骤开始继续进行该分式的化简;(3)除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需注意的事项给其他同学提一条建议.【答案】(1)①三,分式的基本性质;②五,括号前面是“-”,去掉括号后,括号里面的第二项没有变号;(2)见解析;(3)最后结果应化为最简分式或整式【分析】(1)①分式的通分是把异分母的分式化为同分母的分式,通分的依据是分式的基本性质,据此即可进行判断;②根据分式的运算法则可知:第五步开始出现错误,然后根据去括号法则解答即可;(2)根据分式的混合运算法则解答;(3)可从分式化简的最后结果或通分时应注意的事项等进行说明.【详解】解:(1)①在以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质(或分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变);②第五步开始出现错误,这一步错误的原因是:括号前面是“-”,去掉括号后,括号里面的第二项没有变号;(2)原式()262172326x x x x ---==-++;(3)答案不唯一.如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆等.。

【精编】2018年全国各地中考数学真题汇编:分式(含答案)

【精编】2018年全国各地中考数学真题汇编:分式(含答案)

2018年中考数学真题汇编:分式一、选择题1. (2018山东滨州)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B2. (2018天津)计算的结果为()A. 1B. 3C.D.【答案】C3.(2018甘肃凉州)若分式的值为0,则的值是()A. 2或-2B. 2C. -2D. 0【答案】A4.函数中,自变量x的取值范围是()。

A. x≠0B. x<1C. x>1D. x≠1【答案】D5.若分式的值为0,则的值是()A. 2B. 0C. -2D. -5【答案】A6.若分式的值为0,则x的值是()A. 3B.C. 3或D. 0【答案】A二、填空题7.要使分式有意义,则的取值范围是________.【答案】 28.要使分式有意义,x的取值应满足________。

【答案】x≠19.使得代数式有意义的的取值范围是________.【答案】10.若分式的值为0,则x的值为________.【答案】-3三、解答题11.先化简,再求值:,其中.【答案】原式= = ,当时,原式= 。

12.计算:(1)(2)【答案】(1)解:原式= =(2)解:原式===13.先化简,再求值:,其中.【答案】解:原式∵x=2,∴= .14.先化简,再求值:(-)÷ ,其中x满足x2-2x-2=0.【答案】解:原式= ,= ,= ,∵x2-2x-2=0,∴x2=2x+2,∴= .15.计算:.【答案】解:原式== ﹒.16.先化简,再求值: ,其中是不等式组的整数解.【答案】解:原式= • ﹣= ﹣= ,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式= ..17.先化简,再求值:(xy2+x2y)× ,其中x=π0﹣()﹣1,y=2sin45°﹣.【答案】解:原式=xy(x+y)• =x﹣y,当x=1﹣2=﹣1,y= ﹣2 =﹣时,原式= ﹣118.计算.【答案】解:19.已知(1)化简T。

北京市海淀区普通中学2018届初三数学中考复习 分式方程的应用 专题复习练习题 含答案

北京市海淀区普通中学2018届初三数学中考复习 分式方程的应用 专题复习练习题 含答案

北京市海淀区普通中学2018届初三数学中考复习 分式方程的应用 专题复习练习题1.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( ) A.800x +50=600x B.800x -50=600x C.800x =600x +50 D.800x =600x -502.穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲、乙两城市相距480 km ,乘坐高铁列车比乘坐普通快车能提前4 h 到达,已知高铁列车的平均行驶速度比普通列车快160 km/h ,设普通列车的平均行驶速度x km/h ,依题意,下面所列方程正确的是( ) A.480x +160-480x =4 B.480x -480x +160=4 C.480x -480x -160=4 D.480x -160-480x=4 3.施工队要铺设一段全长2 000米的管道,因在中考期间需停工两天,实际每天施工需比原计划多50米,才能按时完成任务,求原计划每天施多少米.设原计划每天施工x 米,则根据题意所列方程正确的是( ) A.2 000x -2 000x +50=2 B.2 000x +50-2 000x =2C.2 000x -2 000x -50=2D.2 000x -50-2 000x=24. 某单位向一所希望小学赠送1 080件文具,现用A ,B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个,设B 型包装箱每个可以装x 件文具,根据题意列方程为( )A.1 080x =1 080x -15+12B.1 080x =1 080x -15-12C.1 080x =1 080x +15-12D.1 080x =1 080x +15+125. 市开发区在一项工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程,刚好如期完工;②乙队单独完成此项工程要比规定工期多用5天;③■■■■■■■,剩下的工程由乙单独做,也正好如期完工.某同学设规定的工期为x 天,根据题意列出了方程:4x +x x +5=1,则方案③被墨水污染的部分应该是( )A .甲先做了4天B .甲、乙合做了4天C .甲先做了工程的14D .甲、乙合做了工程的146. 如图是石家庄某小区高层住户2016年的取暖费统计表,小宇家住1201(12楼)室,小鹏家住3301(33楼)室,小宇家和小鹏家的面积是一样的,该小区对28楼以上的住户的取暖费有优惠政策,在实施该政策以后,小宇发现小鹏家平均每平方米的取暖费比他家的少4.4元,则小宇家每平方米的取暖费为( )A.21元 B.22元C.23元 D.24元7.甲、乙承包一项任务,若甲、乙合作,5天能完成,若单独做,甲比乙少用4天,设甲单独做x天能完成此项任务,则可列出方程___________________.8.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是_______________.9. 在课外活动跳绳时,相同时间内小林跳了90下,小群跳了120下,已知小群每分钟比小林多跳20下,设小林每分钟跳x下,则可列关于x的方程为_______________.19.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工作效率相同,结果提前两天完成任务,设甲计划完成此项工作的天数是x,则x的值是______.11. 2016年母亲节前夕,宜宾某花店用4 000元购进若干束花,很快售完,接着又用4 500元购进第二批花,已知第二批所购花的束数是第一批所购花的束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?12. 某校学生利用双休时间去距学校10 km的炎帝故里参观,一部分学生骑自行车先走,过了20 min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.13. 几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.14. 甲、乙二人分别从相距36千米的A,B两地同时出发,相向而行,甲从A地出发1千米时,发现有物品遗忘在A地,便立即返回,取了物品又立即从A地向B地行进,这样甲、乙二人恰好在A,B两地的中点处相遇,又知甲比乙每小时多走0.5千米,求甲、乙二人的速度?15. 为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.16. 某校九年级准备购买一批笔奖励优秀学生,在购买时发现,每只笔可以打九折,用360元钱购买笔,打折后购买的数量比打折前多10支.(1)求打折前每支笔的售价是多少元?(2)由于学生的需求不同,学校决定购买笔和笔袋共80件,笔袋每个原售价为10元,两种物品都打八折,若购买总金额不低于400元,且不高于405元,问有哪几种购买方案?17. 某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385 200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?18. 节能电动车越来越受到人们的喜爱,新开发的各种品牌电动车相继投放市场,涛伟车行经营的A型节能电动车去年销售总额为m万元,今年每辆A型节能电动车的销售价比去年降低2000元.若今年和去年卖出的节能电动车的数量相同(同一型号的节能电动车每辆的销售价格相同),则今年的销售总额将比去年减少20%.(1)今年A型节能电动车每辆售价多少元?(用列方程的方法解答)(2)涛伟车行清明节后计划新购进一批A型节能电动车和新款B型节能电动车,进货时,每购进3辆节能电动车,批发商就给车行返回1500元.若新款B型节能电动车的进货数量是A型节能电动车的进货数量的2倍,全部销售获得的利润不少于18万元,且今年A ,B 两种型号节能电动车的进货和销售价格如下表:那么新款B 型节能电动车至少要购进多少辆? 答案:1---6 ABABB B 7. 1x +1x +4=158. 60x +8=45x9. 90x =120x +2010. 611. 解:设第一批花每束的进价是x 元/束,依题意得:4 000x ×1.5=4 500x -5,解得x =20,经检验x =20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束12. 解:设骑车学生的速度为x km /h ,汽车的速度为2x km /h ,可得10x =102x +2060,解得x =15,经检验x =15是原方程的解,2x =5×15=30 答:骑车学生的速度和汽车的速度分别是15 km /h ,30 km /h13. 解:设票价为x 元,由题意得360x +2=360-720.6x ,解得x =60,经检验x =60是分式方程的根,则小伙伴人数为36060+2=8(人)14. 解:设乙的速度为x 千米/小时,则甲的速度为(x +0.5)千米/小时,由题意得2×1+18x +0.5=18x ,解得x =4.5,经检验x =4.5是分式方程的根,x +0.5=5(千米/小时),则甲、乙两人的速度分别为5千米/时和4.5千米/时15. 解:(1)由题意得90m =75m -3,解得m =18,经检验m =18是分式方程的根,∴m=18 (2)设购买A 型号x 台,B 型号(10-x)台,由题意得18x +15(10-x)≤165,解得x≤5,因为x 是指0到10之间的整数,所以购买方案有6种,设月处理的污水量是w 吨,则w =220x +180(10-x)=40x +1 800,当x =5时,月污水处理量最多为3 800吨16. (1)设笔打折前售价为x 元,则打折后售价为0.9x 元.由题意得:360x +10=3600.9x ,解得x =4,经检验x =4是原方程的根,∴打折前每支笔4元 (2)设购买笔y 件,则购买笔袋(80-y)件.由题意得:400≤4×0.8y+10×0.8×(80-y)≤405,解得482324≤y≤50,所以y 可取49,50.故有两种方案:笔49,笔袋31;笔50,笔袋3017. 解:设甲队单独完成此项工程需要x 天,乙队单独完成需要(x +5)天.依据题意可列方:1x +1x +5=16,解得x 1=10,x 2=-3(舍去),经检验x =10是原方程的解,设甲队每天的工程费为y 元,依据题意可列方程6y +6(y -4000)=385 200,解得:y =34 100.甲队完成此项工程费用为34 100×10=341 000元.乙队完成此项工程费用为30 100×15=451 500元.答:从节约资金的角度考虑,应该选择甲工程队 18. 解:(1)设今年A 型车每辆售价x 元,则去年售价每辆为(x +2 000)元,由题意得10 000m x +2 000=10 000m (1-20%)x ,解得x =8 000,经检验x =8 000是分式方程的根,∴今年A 型车每辆售价8 000元 (2)设今年新进B 型节能电动车a 辆,则A 型节能电动车a 2辆,获利y 万元,依题意得y =a(2-0.7)+a2(0.8-0.55)+0.15×a +a23≥18,解得a≥12,因为a 是整数,所以a =12,即新型B 型节能电动车至少要购进12辆。

中考数学专题复习 分式的混合运算(含解析)

中考数学专题复习 分式的混合运算(含解析)

分式的混合运算一、单选题1.计算的结果是()A. 1B.C.D.2.化简的结果是()A.B.C.D.3.如果()2÷()2=3,那么a8b4等于()A. 6B. 9C. 12D. 814.化简的结果是()A. 1B. 5C. 2a+1D. 2a+55.计算的结果是()A.B.C. a﹣bD. a+b6.化简(1﹣)÷ 的结果是()A. (x+1)2B. (x ﹣1)2 C.D.7.若分式□ 运算结果为x,则在“□”中添加的运算符号为()A. +B. ﹣C. +或×D. ﹣或÷8.化简(﹣)的结果是()A. xB.C.D.9.化简:(1+ )÷ 结果为()A. 4xB. 3xC. 2xD. x10.计算(1+ )÷ 的结果是()A. x+1B.C.D.11.如果()2÷()2=3,那么a8b4等于()A. 6B. 9C. 12D. 8112.化简的结果是()A.B.C.D.13.下列等式成立的是()A. + =B. =C. =D. =﹣14.化简的结果是()A.B.C.D.二、填空题15.化简=________.16.化简()的结果是________17.计算:=________.18.若()•ω=1,则ω=________ .三、计算题19.计算: - ÷ .20.计算:(﹣x﹣2)÷ + .21.计算(1)(2)(3)1﹣(4).22.计算:23.计算题(1)先化简(x﹣)÷ ,再任选一个你喜欢的数x代入求值;(2)计算(2 + )(2 ﹣)﹣(﹣1)2.24.化简:1﹣÷ .25.计算(1)÷(y+2﹣)(2)[ ﹣]÷ .四、解答题26.(1)求不等式组的整数解;(2)化简:(1+)÷.答案解析部分一、单选题1.计算的结果是()A. 1B.C.D.【答案】A【考点】分式的混合运算【解析】【分析】【点评】本题难度较低,主要考查学生对分式运算知识点的掌握。

北京市海淀区普通中学2018年1月初三数学中考复习 可化为一元一次方程的分式及解法 专题练习题 含

北京市海淀区普通中学2018年1月初三数学中考复习 可化为一元一次方程的分式及解法  专题练习题 含

北京市海淀区普通中学2018年1月初三数学中考复习可化为一元一次方程的分式及解法 专题练习题1.下列关于x 的方程中,是分式方程的有(a 为常数)( )①12x 2-23x +4=0;②x a =2;③x 2-9x -3;④a x =4;⑤1x +3=6;⑥x -1a +x +1a=2. A .2个 B .3个 C .4个 D .5个2.若x =3是分式方程a -2x -1x -2=0的根,则a 的值是( ) A .5 B .-5 C .3 D .-33.解分式方程2x -1+x +21-x=3时,去分母后变形为( ) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1)C .2-(x +2)=3(1-x )D .2-(x +2)=3(x -1)4.分式方程2x x -3=1的解为( ) A .x =-2 B .x =-3C .x =2D .x =35.若分式方程x 2x -1=1x -1有增根,则增根为( ) A .x =-1 B .x =1 C .x =±1 D .x =06.若关于x 的分式方程2x -3+x +m 3-x=2有增根,则m 的值是( ) A .m =-1 B .m =0C .m =3D .m =0或m =37.对于非零的两个实数a ,b ,规定a*b =3b -2a,若5*(3x -1)=2,则x 的值为( )A.56B.34C.23 D .-168. 解方程:2x -11+x=09. 解方程:1x -2-4x 2-4=110. 已知关于x 的分式方程k x +1+x +k x -1=1的解为负数,求k 的取值范围.11.小明解方程1x -x -2x=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.解:方程两边同乘以x 得1-(x -2)=1 ①去括号得 1-x -2=1 ②合并同类项得 -x -1=1 ③移项得 -x =2 ④系数化为1得 x =-2 ⑤原方程的解为:x =-2 ⑥12.是否存在实数x ,使得代数式x -2x +2-16x 2-4与代数式1+4x -2的值相等. 13.如图,点A ,B 在数轴上,它们所对应的数分别是2x -2和1-x 2-x,且点A 到原点的距离比B 到原点的距离多3,求x 的值.14.若关于x 的分式方程m x 2-4-1x +2=0无解,则m =____________. 15.阅读下列材料:关于x 的方程:x +1x =c +1c 的解是x 1=c ,x 2=1c ;x -1x=c -1c (即x +-1x =c +-1c )的解是x 1=c ,x 2=-1c ;x +2x =c +2c的解是x 1=c ,x 2=2c ;x +3x =c +3c 的解是x 1=c ,x 2=3c;…… 根据以上材料解答下列问题:(1)请观察上述方程解的特征,比较关于x 的方程x +m x =c +m c(m≠0)与它们的关系,猜想它的解是______________;(2)利用上述结论求关于x 的方程:x -3x -2=a -3a -2(a ≠2)的解.(不要求进行检验)答案:1---7 AADBB AB8. 解得x =-2,经检验x =-2是分式方程的解,∴原方程的解是x =-29. 解得x 1=2,x 2=-1,经检验x =2是增根,舍去;∴x=-1是原方程的根∴原方程的根是x =-110. 去分母得k(x -1)+(x +k)(x +1)=(x +1)(x -1),整理得(2k +1)x =-1,因为方程k x +1+x +k x -1=1的解为负数,所以2k +1>0且x≠±1,即2k +1≠1且2k +1≠-1,解得k >-12且k≠0,即k 的取值范围为k >-12且k≠0 11. 小明的解法有三处错误,步骤①去分母有误; 步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边同乘以x 得1-(x -2)=x ,去括号得1-x +2=x ,移项得-x -x =-1-2,合并同类项得-2x =-3,系数化为1得x =32,经检验x =32是分式方程的解,则方程的解为x =3212. 根据题意得x -2x +2-16x 2-4=1+4x -2, 去分母得x 2-4x +4-16=x 2-4+4x +8,合并同类项得8x =-16,解得x =-2,经检验x =-2是增根,分式方程无解,则不存在13. 根据题意得-2x -2+1-x 2-x=3, 去分母得2+1-x =6-3x ,解得x =32, 经检验x =32是分式方程的解, ∴x=3214. 0或-415. (1) x 1=c ,x 2=m c(2) 原方程可变形为x -2-3x -2=a -2-3a -2,仿照(1)的结论可知:x -2=a -2,x -2=-3a -2,解得x 1=a ,x 2=2a -7a -2。

北京市海淀区2018届中考复习《分式及其运算》专题练习含解析

北京市海淀区2018届中考复习《分式及其运算》专题练习含解析

北京市海淀区普通中学2018届初三数学中考复习 分式及其运算 专题练习一、选择题1.在函数y =x -3x -4中,自变量x 的取值范围是( )A .x >3B .x ≥3C .x >4D .x ≥3且x≠42.计算a 3·(1a)2的结果是( )A .aB .a 5C .a 6D .a 93.下列各式与x +yx -y(x≠±y)相等的是( )A.(x +y )+5(x -y )+5B.2x +y 2x -yC.(x +y )2x 2-y 2D.x 2+y 2x 2-y 24.下列运算结果为x -1的是( )A .1-1x B.x 2-1x ·x x +1 C.x +1x ÷1x -1 D.x 2+2x +1x +15.已知14m 2+14n 2=n -m -2,则1m -1n的值等于( )A .1B .0C .-1D .-146.如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2 C.12<k <1 D .0<k <12二、填空题7.计算:5c 26ab ·3ba 2c=____.8.要使代数式x +1x有意义,则x 的取值范围是__ __.9.若当x =1时,分式x +a a -b 的值为0;当x =3时,分式x +ax -b无意义,则a +b 的值等于___.10.下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.2x +2-x -6x 2-4=2(x -2)(x +2)(x -2)-x -6(x +2)(x -2) 第一步=2(x -2)-x +6第二步 =2x -4-x +6第三步 =x +2第四步小明的解法从第____步开始出现错误,正确的化简结果是_ __. 11.某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,若设甲商品的单价为x 元,则购买240元甲商品的数量比购买300元乙商品的数量多__ __件.12.若分式1x 2-2x +m无论x 取何值都有意义,则m 的取值范围是__ __.三、解答题13. 化简:x +3x 2-2x +1÷x 2+3x(x -1)2.14. 先化简,再求值:x +3x -2÷(x +2-5x -2),其中x =3+ 3.15.从三个代数式:①a 2-2ab +b 2,②3a -3b ,③a 2-b 2中任意选择两个代数式构造成分式,然后进行化简,并求当a =6,b =3时该分式的值.16.已知2m -3n =0,求m m +n +m m -n -n 2m 2-n 2的值.17.先观察下列等式,然后用你发现的规律解答下列问题.11×2=1-12,12×3=12-13,13×4=13-14,…. (1)计算:11×2+12×3+13×4+14×5+15×6=__56__;(2)探究:11×2+12×3+13×4+…+1n (n +1)=__nn +1__;(用含n 的式子表示)(3)若11×3+13×5+15×7+…+1(2n -1)(2n +1)的值为1735,求n 的值.答案与解析: 一、1. D【解析】欲使二次根式有意义,则需x -3≥0;欲使分式有意义,则需x -4≠0.∴x的取值范围是⎩⎪⎨⎪⎧x -3≥0,x -4≠0.解得x ≥3且x≠4.故选D.2. A【解析】a 3·(1a)2=a 3·a -2=a 3-2=a.3. C4. B5. C【解析】由14m 2+14n 2=n -m -2,得(m +2)2+(n -2)2=0,则m =-2,n =2,∴1m-1n =-12-12=-1.故选C. 6. B【解析】S 甲阴影=a 2-b 2,S 乙阴影=a 2-ab ,∴k =a 2-b 2a 2-ab =(a -b )(a +b )a (a -b )=a +b a=1+b a ,而a>b>0,故0<b a <1,∴1<ba+1<2,即1<k<2.二、 7. 5c 2a3【解析】5c 26ab ·3b a 2c =5c 2a ·1a 2=5c2a3.8. x≥-1且x≠0【解析】根据题意,得x +1≥0,且x≠0,即x≥-1且x≠0. 9. 210. 二 1x -2【解析】从第二步开始,丢了分母.2x +2-x -6x 2-4=2(x -2)(x +2)(x -2)-x -6(x +2)(x -2)=2(x -2)-(x -6)(x +2)(x -2)=2x -4-x +6(x +2)(x -2)=x +2(x +2)(x -2)=1x -2.11. 90x【解析】设甲商品的单价为x 元,乙商品的单价为2x 元,根据题意列出的式子为240x -3002x ,化简结果为 90x . 12. m>1 【解析】分式有意义的条件为x 2-2x +m≠0.即函数y =x 2-2x +m 与x 轴无交点,Δ=4-4m<0,∴m>1. 三、13. 解:原式=x +3(x -1)2·(x -1)2x (x +3)=1x14. 解:原式=x +3x -2÷(x 2-4x -2-5x -2)=x +3x -2÷x 2-9x -2=x +3x -2·x -2(x +3)(x -3)=1x -3,当x =3+3时,原式=13+3-3=3315. 解:答案不唯一,例如:若选①÷②,得a 2-2ab +b 23a -3b =(a -b )23(a -b )=a -b3,当a =6,b =3时,原式=6-33=1(有6种情况)16. 解:原式=m (m -n )(m +n )(m -n )+m (m +n )(m +n )(m -n )-n 2m 2-n 2=m 2+m 2-n 2m 2-n2=m 2m 2-n 2+1.①∵2m-3n =0,∴n =23m.原式=m 2m 2-49m 2+1=95+1=14517. (1) 56_ (2)nn +1(3) 解:11×3+13×5+15×7+…+1(2n -1)(2n +1)=12(1-13)+12(13-15)+12(15-17)+…+12(12n -1-12n +1)=12(1-12n +1)=n 2n +1,由n 2n +1=1735,解得n =17)。

北京市丰台区普通中学2018届初三数学中考复习 分式方程 专项复习练习题 含答案与解析

北京市丰台区普通中学2018届初三数学中考复习 分式方程 专项复习练习题 含答案与解析

北京市丰台区普通中学2018届初三数学中考复习 分式方程 专项复习练习题1.解分式方程1x -1-2=31-x,去分母得( ) A .1-2(x -1)=-3 B .1-2(x -1)=3C .1-2x -2=-3D .1-2x +2=32. 分式方程x x -1-1=3(x -1)(x +2)的解为( ) A .x =1 B .x =-1 C .无解 D .x =-23. 分式方程2x +13-x =32的解是___________ __. 4. 分式方程4x -3-1x=0的根是____________. 5. 关于x 的分式方程m x 2-4-1x +2=0无解,则m =_____________. 6. 当m =___________时,关于x 的分式方程2x +m x -3=-1无解. 7. 解方程:2x -1=1x -1+1.8. 解方程:1x -2-3=x -12-x.9. 解方程:x x -7-17-x=2.10. 关于x 的分式方程x +m x -2+2m 2-x=3的解为正实数,求实数m 的取值范围.11. 若关于x 的方程x -1x -5=m 10-2x无解,求m 的值.12. 某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?13. 甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的43倍,甲队比乙队多筑路20天.若甲、乙两队平均每天筑路公里数之比为5∶8,求乙队平均每天筑路多少公里?14. 早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少?(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?15. 甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?16. 某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?答案与解析:1. A 【解析】方程两边同乘以x -1得到,故选A.2. C 【解析】解得x =1,经检验,x =1不是原方程的根,原分式方程无解,故选C.3. x =14. x =-1. 【解析】把分式方程乘以最简公分母x(x -3)转化成整式方程,求出整式方程的解,再代入x(x -3)进行检验即可.方程两边都乘x(x -3)得4x -(x -3)=0,解得x =-1,经检验,x =-1是原分式方程的解,故答案为:x =-1.5. 0或-4 【解析】先两边同乘以x 2-4,解出方程,若方程无解,说明该方程的增根为2或-2,转化为关于m 的方程求解6. -6 【解析】2x +m x -3=-1无解(注:分式有意义的条件为x -3≠0即x≠3).3x=3-m ,即x =3-m 3,原方程无解,即此时存在x =3-m 3=3,m =-6. 7. 解:方程两边同乘以(x -1),得2=1+x -1,解得x =2,把x =2代入原方程检验:∵左边=右边,∴x =2是分式方程的根8. 解:方程两边同乘x -2,1-3(x -2)=-(x -1),即1-3x +6=-x +1,则-2x =-6,得x =3.检验,当x =3时,x -2≠0,所以原方程的解为x =3【解析】分式方程同乘(x -2)去分母转化为整式方程.9. 解:去分母得x +1=2x -14,解得x =15, 经检验x =15是分式方程的解10. 解:方程两边同乘以x -2可得,x +m -2m =3(x -2),解得x =-m -62,因方程的解为正实数,且x -2≠0,所以-m -62>0且m≠2,即m<6且m≠2 【解析】使分母为0的未知数的值即为增根x =2.11. 解:分式方程去分母,得2(x -1)=-m ,将x =5代入,得m =-812. 解:(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得360x -3601.6x=4, 解得x =33.75,经检验x =33.75是原分式方程的解,则1.6x =1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米(2)设平均每年绿化面积增加a 万平方米,根据题意得54×3+2(54+a)≥360 解得a≥45.答:至少每年平均增加45万平方米【解析】(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a 万平方米.则由“完成新增绿化面积不超过2年”列出不等式.13. 解:设甲队每天筑路5x 公里,乙队每天筑路8x 公里,根据题意得605x -20=808x ,解得x =110, 经检验:x =110是方程的解且符合题意, 则乙队每天筑路8x =8×110=45(公里) 答:乙队每天筑路45公里 【解析】依据等量关系“甲队比乙队多筑路20天”,列出分式方程.14. 解:(1)设小明步行的速度是x 米/分,由题意得900x =9003x+10,解得x =60,经检验,x =60是原分式方程的解,则小明步行的速度是60米/分(2)小明家与图书馆之间的路程最多是y 米,根据题意可得y 60≤900180×2,解得y≤600,则小明家与图书馆之间的路程最多是600米【解析】(1)根据等量关系:小明步行回家的时间=骑车返回时间+10分钟,列分式方程求解即可;(2)根据(1)中计算的速度列出不等式解答即可.15. 解:设乙每小时做x 面彩旗,则甲每小时做(x +5)面彩旗.根据题意,得60x +5=50x,解得x =25.经检验,x =25是所列方程的解,∴x +5=30,则甲每小时做30面彩旗,乙每小时做25面彩旗16. 解:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x -11)元/盒,根据题意得3500x =2400x -11,解得x =35,经检验,x =35是原方程的解. 答:2014年这种礼盒的进价是35元/盒(2)设年增长率为m ,2014年的销售数量为3500÷35=100(盒).根据题意得(60-35)×100(1+m)2=(60-35+11)×100,解得m =0.2=20%或m =-2.2(不合题意,舍去).答:年增长率为20%【解析】(1)根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x 的分式方程;(2)设年增长率为m ,根据数量=总价÷单价,求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m 的一元二次方程.。

2018年中考数学复习专题04 分式及其运算

2018年中考数学复习专题04 分式及其运算

专题04 分式及其运算☞解读考点☞2年中考【2018年题组】1.(2018常州)要使分式23-x 有意义,则x 的取值范围是( )A .2x >B .2x <C .2x ≠-D .2x ≠ 【答案】D . 【解析】试题分析:要使分式23-x 有意义,须有20x -≠,即2x ≠,故选D .考点:分式有意义的条件.2.(2018济南)化简2933m m m ---的结果是( )A .3m +B .3m -C .33m m -+D .33m m +-【答案】A .考点:分式的加减法.3.(2018百色)化简222624x x x x x --+-的结果为( ) A .214x - B .212x x + C .12x - D .62x x --【答案】C . 【解析】试题分析:原式=262(2)(2)x x x x --++-=2(2)(6)(2)(2)x x x x ---+-=2(2)(2)x x x ++-=12x -.故选C .考点:分式的加减法. 4.(2018甘南州)在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( )A .13B .23C .16D .34【答案】B . 【解析】试题分析:分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.故选B .考点:1.概率公式;2.分式的定义;3.综合题.5.(2018龙岩)已知点P (a ,b )是反比例函数1y x =图象上异于点(﹣1,﹣1)的一个动点,则1111a b +++=( )A .2B .1C .32D .12【答案】B .考点:1.反比例函数图象上点的坐标特征;2.分式的化简求值;3.条件求值.6.(2018山西省)化简22222a ab b ba b a b ++---的结果是( ) A .a a b - B .b a b - C .a a b + D .ba b +【答案】A . 【解析】试题分析:原式=2()()()a b b a b a b a b +-+--=a b b a b a b +---=a b b a b +--=a a b -,故选A .考点:分式的加减法.7.(2018泰安)化简:341()(1)32a a a a -+---的结果等于( )A .2a -B .2a +C .23a a --D .32a a --【答案】B . 【解析】 试题分析:原式=(3)342132a a a a a a -+---⋅--=24332a a a a --⋅--=(2)(2)332a a a a a +--⋅--=2a +.故选B . 考点:分式的混合运算.8.(2018莱芜)甲乙两人同时从A 地出发到B 地,如果甲的速度v 保持不变,而乙先用12v的速度到达中点,再用2v 的速度到达B 地,则下列结论中正确的是( ) A .甲乙同时到达B 地 B .甲先到达B 地C .乙先到达B 地D .谁先到达B 地与速度v 有关 【答案】B .考点:1.列代数式(分式);2.行程问题.9.(2018内江)已知实数a,b满足:211aa+=,211bb+=,则2015a b-|= .【答案】1.【解析】试题分析:∵2110aa+=>,2110bb+=>,∴0a>,0b>,∴()10ab a b++>,∵211aa+=,211bb+=,两式相减可得2211a ba b-=-,()()b aa b a bab-+-=,[()1]()0ab a b a b++-=,∴0a b-=,即a b=,∴2015a b-=02015=1.故答案为:1.考点:1.因式分解的应用;2.零指数幂;3.条件求值;4.综合题;5.压轴题.10.(2018黄冈)计算)1(22baabab+-÷-的结果是________.【答案】1a b -.【解析】试题分析:原式=()()b a b aa b a b a b+-÷+-+=()()b a ba b a b b+⋅+-=1a b-.故答案为:1a b-.考点:分式的混合运算.11.(2018安徽省)已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则111 a b+=;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a +b+c=8.其中正确的是(把所有正确结论的序号都选上).【答案】①③④.考点:1.分式的混合运算;2.解一元一次方程.12.(2018梅州)若1212)12)(12(1++-=+-n bn a n n ,对任意自然数n 都成立,则=a ,=b ;计算:=⨯++⨯+⨯+⨯=21191751531311 m .【答案】12;12-;1021.【解析】试题分析:1(21)(21)n n -+=2121a bn n +-+=(21)(21)(21)(21)a n b n n n ++-+-=(22)(21)(21)a b n a b n n ++-+-,可得(22)1a b n a b ++-=,即:01a b a b +=⎧⎨-=⎩,解得:a=12,b=12-;m=111111(1...)23351921-+-++-=11(1)221-=1021,故答案为:12;12-;1021. 考点:1.分式的加减法;2.综合题.13.(2018河北省)若02≠=b a ,则ab a b a --222的值为 .【答案】32.【解析】试题分析:∵2a b =,∴原式=2222442b b b b --=32,故答案为:32.考点:分式的化简求值.14.(2018绥化)若代数式25626x x x -+-的值等于0,则x=_________.【答案】2. 【解析】试题分析:由分式的值为零的条件得2560x x -+=,2x ﹣6≠0,由2560x x -+=,得x=2或x=3,由2x ﹣6≠0,得x≠3,∴x=2,故答案为:2. 考点:分式的值为零的条件.15.(2018崇左)化简:2221(1)2a a a a +--÷. 【答案】12-a .考点:分式的混合运算.16.(2018桂林)先化简,再求值:2269392x x x x -+-÷-,其中3x =-. 【答案】23x +.【解析】试题分析:分解因式后,利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.试题解析:原式=2(3)2(3)(3)3x x x x -⨯+--=23x +,当3x =-时,原式.考点:分式的化简求值.17.(2018南京)计算:22221()aa ba ab a b -÷--+.【答案】21a .【解析】试题分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可. 试题解析:原式=21[]()()()a b a b a b a a b a +-⨯+--=2[]()()()()a a b a ba ab a b a a b a b a ++-⨯+-+- =2()()()a ab a b a a b a b a -++⨯+-=21a . 考点:分式的混合运算.18.(2018苏州)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x =. 【答案】11x +考点:分式的化简求值.19.(2018盐城)先化简,再求值:)()(131112+÷-+a aa ,其中a=4.【答案】31aa -,4.【解析】试题分析:根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可.试题解析:原式=2113(1)(1)(1)a a a a a -++⋅+-=23(1)(1)(1)a a a a a +⋅+-=31aa -;当a=4时,原式=3441⨯-=4.考点:分式的化简求值.20.(2018成都)化简:211()242a a a a a -+÷+-+. 【答案】12a a --.【解析】试题分析:括号内先通分,同时把除法转化为乘法,再用分式乘法法则计算机即可.试题解析:原式=()()()22221212214412212a a a a a a a a a a a a a -⎛⎫-++-+⨯=⨯= ⎪---+---⎝⎭.考点:分式的加减法.21.(2018资阳)先化简,再求值:2112()111x x x x +-÷-+-,其中x 满足260x -=. 【答案】22x +,25.考点:1.分式的混合运算;2.分式的化简求值.22.(2018达州)化简2221432a a a a a a +⋅----,并求值,其中a 与2、3构成△ABC 的三边,且a 为整数.【答案】13a -,1.【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a 的值代入计算即可求出值.试题解析:原式=21(2)(2)(3)2a a a a a a a +⋅++---=11(2)(3)2a a a +---=13(2)(3)aa a+---=2(2)(3)aa a---=13a-,∵a与2、3构成△ABC的三边,且a为整数,∴1<a<5,即a=2,3,4,当a=2或a=3时,原式没有意义,则a=4时,原式=1.考点:1.分式的化简求值;2.三角形三边关系.23.(2018广元)先化简:222222()1211x x x x xx x x x+--÷--++,然后解答下列问题:(1)当3x=时,求原代数式的值;(2)原代数式的值能等于1-吗?为什么?【答案】(1)2;(2)不能.考点:分式的化简求值.24.(2018凉山州)先化简:222122(1)1211x x x xx x x x++-+÷+--+-,然后从22x-≤≤的范围内选取一个合适的整数作为x的值代入求值.【答案】241xx-+;当x=2时,原式=0,当x=-2时,原式=8.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时根据除法法则变形,约分得到最简结果,将x=0代入计算即可求出值.试题解析:原式=211(1)2(1)1(1)(1)(1)x x x xx x x x x++---⋅+-++-=22(1)21(1)1x xx x x x-⋅--++=2(1)211xx x--++=241xx-+,∵满足22x-≤≤的整数有±2,±1,0,而x=±1,0时,原式无意义,∴x=±2,当x=2时,原式=22421⨯-=+,当x=-2时,原式=2(2)4821⨯--=-+.考点:分式的化简求值.25.(2018广州)已知A=222111 x x xx x++---.(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.【答案】(1)11x-;(2)1.考点:1.分式的化简求值;2.一元一次不等式组的整数解.26.(2018白银)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式21x+,22x--,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式A B.(1)请用画树状图或列表的方法,写出代数式AB所有可能的结果;(2)求代数式AB恰好是分式的概率.【答案】(1)答案见试题解析;(2)23.【解析】 试题分析:(1)画出树状图,由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,利用概率公式求解即可求得答案. 试题解析:(1)画树状图:(2)代数式A B 所有可能的结果共有6种,其中代数式AB 是分式的有4种,所以P (是分式)=46=23.考点:1.列表法与树状图法;2.分式的定义.【2018年题组】1.(2018年无锡中考) 分式22x -可变形为( )A. 22x +B.22x -+ C. 2x 2- D. 2x 2--【答案】D .考点:分式的基本性质.2.(2018年杭州中考)若241()w 1a 42a +⋅=--,则w=( )A.a 2(a 2)+≠-B. a 2(a 2)-+≠C. a 2(a 2)-≠D. a 2(a 2)--≠-【答案】D . 【解析】试题分析:∵()()()()()2414a 22a 1a 42a a 2a 2a 2a 2a 2a 2a 2+-+=-==---+--++-+,∴w=a 2(a 2)--≠-.故选D . 考点:分式的化简.3.(2018年温州中考)要使分式x 1x 2+-有意义,则x 的取值应满足( )A. x 2≠B. x 1≠-C. x 2=D. x 1=- 【答案】A . 【解析】试题分析:根据分式分母不为0的条件,要使x 1x 2+-在实数范围内有意义,必须x 20x 2-≠⇒≠.故选A .考点:分式有意义的条件.4.(2018年牡丹江中考)若x :y=1:3,2y=3z ,则的值是( )A .﹣5B . ﹣C .D . 5【答案】A . 【解析】试题分析:∵x :y=1:3,∴设x=k ,y=3k ,∵2y=3z ,∴z=2k ,∴532322-=-+=-+k k kk y z y x .故选A .考点:比例的性质.5.(2018年凉山中考)分式x 3x 3-+的值为零,则x 的值为( ) A. 3 B. ﹣3 C. ±3 D. 任意实数 【答案】A .考点:分式的值为零的条件.6.(2018年常德中考)计算:2111a a a -=-- 【答案】211a -.【解析】试题分析:原式=1(1)(1)(1)(1)a a a a a a +-+-+-=1(1)(1)a a +-=211a -.考点:分式的加减法.7.(2018年河池中考)计算:m 1m 1m 1-=-- .【答案】1. 【解析】试题分析:根据分式加减法运算法则直接计算:m 1m 11m 1m 1m 1--==---.考点:分式加减法.8.(2018年镇江中考)化简:1x 1x x 23x 6-⎛⎫+÷⎪--⎝⎭. 【答案】3x 3-.考点:分式的混合运算.9.(2018年苏州中考)先化简,再求值:22x 11x 1x 1⎛⎫÷+ ⎪--⎝⎭,其中x 1=-.【解析】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简. 然后代x 的值,进行二次根式化简. 试题解析:原式=x x 11x x x x 11()(x 1)(x 1)x 1x 1(x 1)(x 1)x 1(x 1)(x 1)x x 1--÷+=÷=⋅=-+---+--++.当x 1=时,原式====.考点:1.分式的化简求值;2. 二次根式化简.10.(2018年抚顺中考)先化简,再求值:(1-11x +)÷221xx x ++,其中x=+1)0+(12)-1•tan60°.【答案】.【解析】 试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用零指数幂、负指数幂法则以及特殊角的三角函数值求出x 的值,代入计算即可求出值.试题解析:原式=2211(1)(1)111x x x x x x x x x +-++==+++,∵x=+1)0+(12)-1•tan60°,∴当时,原式+2.考点:1.分式的化简求值;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.☞考点归纳归纳 1:分式的有关概念 基础知识归纳:分式有意义的条件是分母不为零;分式无意义的条件是分母等于零;分式值为零的条件是分子为零且分母不为零. 注意问题归纳:分式有意义的条件是分母不为0,无意义的条件是分母为0. 分式值为0要满足两个条件,分子为0,分母不为0.【例1】使分式21x -有意义,则x 的取值范围是( )x ≠1 B .x=1 C .x ≤1 D .x ≥1 【答案】A .【解析】根据题意得:x-1≠0,解得:x ≠1.故选A . 考点:分式的有关概念.【例2】分式x 3x 3-+的值为零,则x 的值为( )A. 3B. ﹣3C. ±3D. 任意实数 【答案】A .考点:分式的有关概念. 归纳2:分式的性质 基础知识归纳:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示为)0()0(≠÷÷=≠⋅⋅=C C B C A B A C CB C A B A注意问题归纳:分式的基本性质是分式变形的理论依据,所有分式变形都不得与此相违背,否则分式的值改变;将分式化简,即约分,要先找出分子、分母的公因式,如果分子、分母是多项式,要先将它们分别分解因式,然后再约分,约分应彻底;巧用分式的性质,可以解决某些较复杂的计算题,可应用逆向思维,把要求的算式和已知条件由两头向中间凑的方式来求代数式的值.【例3】化简2244xy y x x --+的结果是( ) 2x x +B .2x x -C .2y x +D .2y x -【答案】D .考点:分式的性质.【例4】已知x+y=xy ,求代数式11x y +-(1-x )(1-y )的值.【答案】0.【解析】∵x+y=xy ,∴11x y +-(1-x )(1-y )=x y xy +-(1-x-y+xy )=x yxy +-1+x+y-xy=1-1+0=0.考点:分式的性质.归纳 3:分式的加减运算 基础知识归纳:加减法法则:① 同分母的分式相加减:分母不变,分子相加减② 异分母的分式相加减:先通分,变为同分母的分式,然后再加减 . 注意问题归纳:1.分式加减运算的运算法则:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,然后再加减.异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.求最简公分母的方法是:①将各个分母分解因式;②找各分母系数的最小公倍数;③找出各分母中不同的因式,相同因式中取次数最高的,满足②③的因式之积即为各分式的最简公分母.【例5】计算:1a a 11a +--的结果是 .【答案】1-.【解析】1a 1a 1a 1a 11a a 1a 1a 1-+=-==------.考点:分式的加减法.【例6】化简21639x x ++-的结果是 【答案】13x -.考点:分式的加减法.归纳 4:分式的乘除运算 基础知识归纳:1.乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.乘方法则:分式的乘方,把分子、分母分别乘方.2.除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.注意问题归纳:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.【例7】计算:222x 1x x.x 1x 2x 1--⋅+-+【答案】x .【解析】原式()()()()2x 1x 1x x 1xx 1x 1+--=⋅=+-.考点:分式的乘除法.归纳5:分式的混合运算基础知识归纳:在分式的混合运算中,应先算乘方,再将除法化为乘法,进行约分化简,最后进行加减运算.若有括号,先算括号里面的.灵活运用运算律,运算结果必须是最简分式或整式.注意问题归纳:注意运算顺序,计算准确.【例8】化简:222x 2x 6x 3x 1x 1x 2x 1++-÷+--+ 【答案】2x 1+.考点:分式的混合运算.☞1年模拟1.(2019届四川省成都市外国语学校中考直升模拟)要使+有意义,则x应满足()A.12≤x≤3 B.x≤3且x≠12C.12<x<3 D.12<x≤3【答案】D.【解析】试题分析:由题意得,3210xx--≥⎧⎨⎩①>②,解不等式①得,x≤3,解不等式②的,x>12,所以,12<x≤3.故选D.考点:1.二次根式有意义的条件;2.分式有意义的条件.2.(2019届山东省威海市乳山市中考一模)计算(-12)-1=()A.-12B.12C.-2 D.2【答案】C.【解析】试题解析:11()22--=.故选C.考点:负整数指数幂.3.(2019届山东省潍坊市昌乐县中考一模)分式211xx-+的值为0,则()A.x=-1 B.x=1 C.x=±1 D.x=0 【答案】B.考点:分式的值为零的条件.4.(2019届广东省深圳市龙华新区中考二模)化简111x x x +--的结果是( )A .-1B .1C .1+xD .1-x 【答案】A . 【解析】试题分析:原式=11111111x x x x x x x ---==-=-----.故选A .考点:分式的加减法.5.(2019届江苏省南京市建邺区中考一模)计算a3•(1a )2的结果是( )A .aB .a5C .a6D .a8 【答案】A . 【解析】试题分析:原式=a3•21a =a ,故选A .考点:分式的乘除法.6.(2019届河北省中考模拟二)已知2+,2-,则(22a bab bab a ---)÷22a b ab +的值为( )A .1B .14 CD【答案】B .考点:分式的化简求值.7.(2019届北京市平谷区中考二模)分式2aa -有意义的条件是 .【答案】a≠2. 【解析】试题分析:根据分式有意义的条件可知分母a-2≠0,所以a ≠2.考点:分式有意义的条件.8.(2019x+1)0都有意义,则x的取值范围为.【答案】x>-1且x≠1.【解析】试题分析:根据题意得:101010 xxx+⎧≥-≠+≠⎪⎨⎪⎩解得:x>-1且x≠1.故答案为:x>-1且x≠1.考点:1.二次根式有意义的条件;2.分式有意义的条件;3.零指数幂.9.(2019届广东省佛山市初中毕业班综合测试)若分式||11xx--的值为零,则x的值为.【答案】x=-1.【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.故答案为:x=-1.考点:分式的值为零的条件.10.(2019届江苏省南京市建邺区中考一模)在函数y=11x-中,自变量x的取值范围是.【答案】x≠1.【解析】试题分析:根据题意得1-x≠0,解得x≠1.故答案为:x≠1.考点:1.函数自变量的取值范围;2.分式有意义的条件.11.(2019届北京市门头沟区中考二模)已知1m=-,求222442111m m mm m m-+-+÷+--的值.【答案】.考点:分式的化简求值.12.(2019届四川省成都市外国语学校中考直升模拟)计算题(1)先化简,再求值:22222()2a ab a ba ba ab b b+---÷++,其中a=sin45°,b=cos30°;(2)若关于x的方程311x ax x--=-无解,求a的值.【答案】(1)5;(2)a=1.【解析】试题分析:(1)原式第二项利用除法法则变形,约分后利用同分母分式的减法法则计算,约分得到最简结果,把a与b的值代入计算即可求出值;(2)分式方程去分母转化为整式方程,由分式方程无解求出x的值,代入计算即可求出a 的值.试题解析:(1)原式=2()()a a ba b++-(a-b)•()()ba b a b+-=a b a ba b a b a b--=+++,当a=sin45°,b=cos30°时,原式(55==--=;(2)去分母得:x2-ax-3x+3=x2-x,解得:x=32a+,由分式方程无解,得到x(x-1)=0,即x=0或x=1,若x=0,a无解;若x=1,解得:a=1.考点:1.分式的化简求值;2.分式方程的解;3.特殊角的三角函数值.13.(2019届安徽省安庆市中考二模)先化简,再求值:(﹣)÷,其中x=.【答案】3+xx,1﹣3.考点:分式的化简求值.14.(2019届山东省威海市乳山市中考一模)化简代数式22112x xx x x--÷+,并判断当x满足不等式组⎧⎨⎩x+2<12(x-1)>6时该代数式的符号.【答案】负号.【解析】试题分析:做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分化简为12xx++;再分别求出一元一次不等式组中两个不等式的解,从而得到一元一次不等式组的解集,依此分别确定x+1<0,x+2>0,从而求解.试题解析:原式=(1)(1)(2)1x x xx x x+-⨯+-=12xx++;不等式组⎧⎨⎩x+2<1①2(x-1)>6②,解不等式①,得x<-1.解不等式②,得x>-2,∴不等式组⎧⎨⎩x+2<12(x-1)>6的解集是-2<x<-1,∴当-2<x<-1时,x+1<0,x+2>0,∴12xx++<0,即该代数式的符号为负号.考点:1.分式的化简求值;2.解一元一次不等式组.15.(2019届山东省日照市中考模拟)先化简,再求值:2211()()x y x yx y x y x y+----+,其中2x =2y =-【答案】-4.考点:分式的化简求值.16.(2019届湖北省黄石市6月中考模拟)先化简再求值22213211143a a a a a a a +-+-⨯+-++,已知a2+2a ﹣7=0. 【答案】2221a a ++,14.考点:分式的化简求值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市海淀区普通中学2018届初三数学中考复习 分式及其运算 专题练习
一、选择题
1.在函数y =x -3
x -4
中,自变量x 的取值范围是( )
A .x >3
B .x ≥3
C .x >4
D .x ≥3且x≠4
2.计算a 3
·(1a
)2的结果是( )
A .a
B .a 5
C .a 6
D .a 9
3.下列各式与x +y
x -y
(x≠±y)相等的是( )
A.(x +y )+5(x -y )+5
B.2x +y 2x -y
C.(x +y )2x 2-y 2
D.x 2+y 2x 2-y 2
4.下列运算结果为x -1的是( )
A .1-1x B.x 2-1x ·x x +1 C.x +1x ÷1x -1 D.x 2+2x +1x +1
5.已知14m 2+14n 2=n -m -2,则1m -1
n
的值等于( )
A .1
B .0
C .-1
D .-1
4
6.如图,设k =甲图中阴影部分面积
乙图中阴影部分面积
(a >b >0),则有( )
A .k >2
B .1<k <2 C.12<k <1 D .0<k <1
2
二、填空题
7.计算:5c 26ab ·3b
a 2c
=____.
8.要使代数式x +1
x
有意义,则x 的取值范围是__ __.
9.若当x =1时,分式x +a a -b 的值为0;当x =3时,分式x +a
x -b
无意义,则a +b
的值等于___.
10.下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.
2x +2-x -6x 2-4=2(x -2)(x +2)(x -2)-x -6(x +2)(x -2) 第一步
=2(x -2)-x +6第二步 =2x -4-x +6第三步 =x +2第四步
小明的解法从第____步开始出现错误,正确的化简结果是_ __. 11.某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,若设甲商品的单价为x 元,则购买240元甲商品的数量比购买300元乙商品的数量多__ __件.
12.若分式1
x 2-2x +m
无论x 取何值都有意义,则m 的取值范围是__ __.
三、解答题
13. 化简:x +3x 2-2x +1÷x 2+3x
(x -1)2
.
14. 先化简,再求值:x +3x -2÷(x +2-5
x -2
),其中x =3+ 3.
15.从三个代数式:①a 2-2ab +b 2,②3a -3b ,③a 2-b 2中任意选择两个代数式构造成分式,然后进行化简,并求当a =6,b =3时该分式的值.
16.已知2m -3n =0,求m m +n +m m -n -n 2
m 2-n 2
的值.
17.先观察下列等式,然后用你发现的规律解答下列问题.
11×2=1-12,12×3=12-13,13×4=13-14
,…. (1)计算:11×2+12×3+13×4+14×5+15×6=__5
6__;
(2)探究:11×2+12×3+13×4+…+1n (n +1)=__n
n +1
__;(用含n 的式
子表示)
(3)若11×3+13×5+15×7+…+1(2n -1)(2n +1)的值为17
35
,求n 的
值.
答案与解析: 一、 1. D
【解析】欲使二次根式有意义,则需x -3≥0;欲使分式有意义,则需x -
4≠0.∴x 的取值范围是⎩⎪⎨⎪⎧x -3≥0,
x -4≠0.解得x ≥3且x≠4.故选D.
2. A
【解析】a 3
·(1a
)2
=a 3·a -2=a 3-2=a.
3. C
4. B
5. C
【解析】由14m 2+14
n 2
=n -m -2,得(m +2)2+(n -2)2=0,则m =-2,n =2,
∴1m -1n =-12-1
2=-1.故选C. 6. B
【解析】S 甲阴影=a 2
-b 2
,S 乙阴影=a 2
-ab ,∴k =a 2-b 2a 2-ab =(a -b )(a +b )
a (a -
b )

a +
b a =1+b a ,而a>b>0,故0<b a <1,∴1<b
a
+1<2,即1<k<2. 二、 7. 5c 2a
3
【解析】5c 26ab ·3b a 2c =5c 2a ·1a 2=5c
2a
3.
8. x≥-1且x≠0
【解析】根据题意,得x +1≥0,且x≠0,即x≥-1且x≠0. 9. 2
10. 二 1
x -2
【解析】从第二步开始,丢了分母.2x +2-x -6x 2-4=2(x -2)
(x +2)(x -2)

x -6(x +2)(x -2)=2(x -2)-(x -6)(x +2)(x -2)=2x -4-x +6
(x +2)(x -2)

x +2(x +2)(x -2)=1
x -2.
11. 90x
【解析】设甲商品的单价为x 元,乙商品的单价为2x 元,根据题意列出的式
子为240x -3002x ,化简结果为 90x .
12. m>1
【解析】分式有意义的条件为x 2-2x +m≠0.即函数y =x 2-2x +m 与x 轴无交点,Δ=4-4m<0,∴m>1. 三、
13. 解:原式=x +3(x -1)2·(x -1)2x (x +3)=1
x
14. 解:原式=x +3x -2÷(x 2-4x -2-5x -2)=x +3x -2÷x 2-9
x -2

x +3x -2·x -2(x +3)(x -3)=1x -3,当x =3+3时,原式=13+3-3=3
3
15. 解:答案不唯一,例如:若选①÷②,得a 2-2ab +b 23a -3b =(a -b )23(a -b )=a -b
3

当a =6,b =3时,原式=6-3
3
=1(有6种情况)
16. 解:原式=m (m -n )(m +n )(m -n )+m (m +n )(m +n )(m -n )-n 2m 2-n 2=m 2+m 2-n 2
m 2-n 2
=m 2m 2-n 2
+1.①∵2m-3n =0,∴n =23m.原式=m 2m 2-49m 2
+1=95+1=145
17. (1) 56_ (2)n
n +1
(3) 解:11×3+13×5+15×7+…+1(2n -1)(2n +1)=12(1-13)+12(13-1
5)
+12(15-17)+…+12(12n -1-12n +1)=12(1-12n +1)=n 2n +1,由n 2n +1=1735,解得n =17
)。

相关文档
最新文档