第5章-课后习题答案

合集下载

第五章微机原理课后习题参考答案

第五章微机原理课后习题参考答案

习题五一. 思考题⒈半导体存储器主要分为哪几类?简述它们的用途和区别。

答:按照存取方式分,半导体存储器主要分为随机存取存储器RAM(包括静态RAM和动态RAM)和只读存储器ROM(包括掩膜只读存储器,可编程只读存储器,可擦除只读存储器和电可擦除只读存储器)。

RAM在程序执行过程中,能够通过指令随机地对其中每个存储单元进行读\写操作。

一般来说,RAM中存储的信息在断电后会丢失,是一种易失性存储器;但目前也有一些RAM 芯片,由于内部带有电池,断电后信息不会丢失,具有非易失性。

RAM的用途主要是用来存放原始数据,中间结果或程序,与CPU或外部设备交换信息。

而ROM在微机系统运行过程中,只能对其进行读操作,不能随机地进行写操作。

断电后ROM中的信息不会消失,具有非易失性。

ROM通常用来存放相对固定不变的程序、汉字字型库、字符及图形符号等。

根据制造工艺的不同,随机读写存储器RAM主要有双极型和MOS型两类。

双极型存储器具有存取速度快、集成度较低、功耗较大、成本较高等特点,适用于对速度要求较高的高速缓冲存储器;MOS型存储器具有集成度高、功耗低、价格便宜等特点,适用于内存储器。

⒉存储芯片结构由哪几部分组成?简述各部分的主要功能。

答:存储芯片通常由存储体、地址寄存器、地址译码器、数据寄存器、读\写驱动电路及控制电路等部分组成。

存储体是存储器芯片的核心,它由多个基本存储单元组成,每个基本存储单元可存储一位二进制信息,具有0和1两种状态。

每个存储单元有一个唯一的地址,供CPU访问。

地址寄存器用来存放CPU访问的存储单元地址,该地址经地址译码器译码后选中芯片内某个指定的存储单元。

通常在微机中,访问地址由地址锁存器提供,存储单元地址由地址锁存器输出后,经地址总线送到存储器芯片内直接进行译码。

地址译码器的作用就是用来接收CPU送来的地址信号并对它进行存储芯片内部的“译码”,选择与此地址相对应的存储单元,以便对该单元进行读\写操作。

数理经济学第5章课后题答案

数理经济学第5章课后题答案

第五章 习题答案1.求下面等式约束最优化问题可能的极值点,要求写出一阶必要条件并求解由一阶必要条件构成的方程组。

(1)164..),(max 212121=+=x x t s x x x x f ,(2)32..),(min max 222122121=+=x x t s x x x x f or(3)11..),(min max 22=+=+=y x y x t s xy y x f or 和解:(1)首先写出拉格朗日函数:121212(,,)(164)L x x x x x x λλ=+--将L 对1x ,2x 和λ分别求偏导数可得:1221120401640x x L x L x L x x λλλ=-=⎧⎪=-=⎨⎪=--=⎩ 解得128, 2x x **==,2λ*=,此时16f =。

则点(8,2)为目标函数的驻点,且在该点处约束条件满足约束规格。

(2)首先写出拉格朗日函数:222121212(,,)(32)L x x x x x x λλ=+--\将L 对1x ,2x 和λ分别求偏导数可得:12121212221224020320x x L x x x L x x L x x λλλ=-=⎧⎪=-=⎨⎪=--=⎩ 解得121, 1x x **==,12λ*=,此时1f =;或者121, 1x x **==-,12λ*=-,此时1f =-;或者121, 1x x **=-=,12λ*=,此时1f =;或者121, 1x x **=-=-,12λ*=-,此时1f =-。

则点(1,1)、(1,1)-、(1,1)-和(1,1)--为目标函数的驻点,且在这些点处约束条件满足约束规格。

(3)首先写出拉格朗日函数:221212(,,,)(1)(1)L x y xy x y x y λλλλ=+--+--将L 对x ,y ,1λ和2λ分别求偏导数可得:1212122220201010x yL y x L x y L x y L x y λλλλλλ=--=⎧⎪=--=⎪⎨=--=⎪⎪=--=⎩ 解得111,0,2x y λ***===-2,1λ*=,此时0f =;或者110,1,2x y λ***===- ,21λ*=,此时0f =。

计算机网络课后习题答案(第五章)

计算机网络课后习题答案(第五章)

答:可能,但应用程序中必须额外提供与TCP相同的功能。

5—08为什么说UDP是面向报文的,而TCP是面向字节流的?答:发送方UDP 对应用程序交下来的报文,在添加首部后就向下交付IP 层。

UDP 对应用层交下来的报文,既不合并,也不拆分,而是保存这些报文的边界。

接收方UDP 对IP 层交上来的UDP 用户数据报,在去除首部后就原封不动地交付上层的应用进程,一次交付一个完整的报文。

发送方TCP对应用程序交下来的报文数据块,视为无结构的字节流〔无边界约束,课分拆/合并〕,但维持各字节5—09端口的作用是什么?为什么端口要划分为三种?答:端口的作用是对TCP/IP体系的应用进程进行统一的标志,使运行不同操作系统的计算机的应用进程能够互相通信。

熟知端口,数值一般为0~1023.标记常规的效劳进程;1024~491515—10试说明运输层中伪首部的作用。

答:用于计算运输层数据报校验和。

5—11某个应用进程使用运输层的用户数据报UDP,然而继续向下交给IP层后,又封装成IP 数据报。

既然都是数据报,可否跳过UDP而直接交给IP层?哪些功能UDP提供了但IP没提提供?答:不可跳过UDP而直接交给IP层IP数据报IP报承当主机寻址,提供报头检错;只能找到目的主机而无法找到目的进程。

UDP提供对应用进程的复用和分用功能,以及提供对数据差分的过失检验。

5—12一个应用程序用UDP,到IP层把数据报在划分为4个数据报片发送出去,结果前两个数据报片丧失,后两个到达目的站。

过了一段时间应用程序重传UDP,而IP层仍然划分为4个数据报片来传送。

结果这次前两个到达目的站而后两个丧失。

试问:在目的站能否将这两次传输的4个数据报片组装成完整的数据报?假定目的站第一次收到的后两个数据报片仍然保存在目的站的缓存中。

答:不行重传时,IP数据报的标识字段会有另一个标识符。

仅当标识符相同的IP数据报片才能组装成一个IP数据报。

前两个IP数据报片的标识符与后两个IP数据报片的标识符不同,因此不能组装成一个IP数据报。

物理学教程(第二版)[上册]第五章课后习题答案解析详解

物理学教程(第二版)[上册]第五章课后习题答案解析详解

物理学教程第二版第五章课后习题答案第五章 机械振动5-1 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )题5-1图分析与解(B )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向Ox 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(B ).5-2 一简谐运动曲线如图(a )所示,则运动周期是( )(A) 2.62 s (B) 2.40 s (C) 2.20 s(D )2.00 s题5-2图分析与解 由振动曲线可知,初始时刻质点的位移为A /2,且向x 轴正方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为-3/π2.振动曲线上给出质点从A /2 处运动到x =0处所需时间为1 s ,由对应旋转矢量图可知相应的相位差65232πππϕ=+=∆,则角频率1s rad 65Δ/Δ-⋅==πϕωt ,周期s 40.22==ωπT .故选(B ). 5-3 两个同周期简谐运动曲线如图(a )所示, x 1的相位比x 2的相位( )(A )落后2π(B )超前2π(C )落后π(D )超前π分析与解 由振动曲线图作出相应的旋转矢量图(b )即可得到答案为(B ).题5 -3图5-4 两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为( )(A )60 (B )90 (C )120 (D )180分析与解 由旋转矢量图可知两个简谐运动1和2的相位差为120 时,合成后的简谐运动3的振幅仍为A .正确答案为(C ).题5-4图5-5 若简谐运动方程为⎪⎭⎫ ⎝⎛+=4ππ20cos 10.0t x ,式中x 的单位为m ,t 的单位为s.求:(1)振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1)将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s rad π20-⋅=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a5-6 一远洋货轮,质量为m ,浮在水面时其水平截面积为S .设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力F 与位移x 间的关系,如果满足kx F -=,则货轮作简谐运动.通过kx F -=即可求得振动周期k m ωT /π2/π2==. 证 货轮处于平衡状态时[图(a )],浮力大小为F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点O ,竖直向下为x 轴正向,如图(b )所示.则当货轮向下偏移x 位移时,受合外力为∑'+=F P F其中F '为此时货轮所受浮力,其方向向上,大小为gSx mg gSx F F ρρ+=+='题5-6图则货轮所受合外力为kx gSx F P F -=-='-=∑ρ式中gS k ρ=是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑=t x m F 22d d /可得货轮运动的微分方程为0d d 22=+m gSx t x //ρ令m gS /ρω=2,可得其振动周期为gS ρm πωT /2/π2==5-7 如图(a )所示,两个轻弹簧的劲度系数分别为1k 、2k .当物体在光滑斜面上振动时.(1)证明其运动仍是简谐运动;(2)求系统的振动频率.题5-7图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点O ,Ox 轴正向沿斜面向下,由受力分析可知,沿Ox 轴,物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ.证 设物体平衡时两弹簧伸长分别为1x 、2x ,则由物体受力平衡,有2211sin x k x k mg ==θ(1)按图(b )所取坐标,物体沿x 轴移动位移x 时,两弹簧又分别被拉伸1x '和2x ',即21x x x '+'=.则物体受力为 ()()111222sin sin x x k mg x x k mg F '+-='+-=θθ(2) 将式(1)代入式(2)得1122x k x k F '-='-=(3) 由式(3)得11k F x /-='、22k F x /-=',而21x x x '+'=,则得到()[]kx x k k k k F -=+-=2121/式中()2121k k k k k +=/为常数,则物体作简谐运动,振动频率 ()m k k k k πm k ωv 2121/21/π21π2/+=== 讨论 (1)由本题的求证可知,斜面倾角θ对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2)如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其作简谐运动,且振动频率均为()m k k v /π2121+=,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.5-8 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1)物体在正方向端点;(2)物体在平衡位置、向负方向运动;(3)物体在x =-1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1)解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0和v =v 0来确定φ值.(2)旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0和速度v 0的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.题5-8图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==T ω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x cos 0,sin 0ϕωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ;(2)00=x 时,0cos 2=ϕ,2π2±=ϕ,因00<v ,取2π2=ϕ;(3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±=ϕ,由00<v ,取3π3=ϕ;(4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±=ϕ,由00>v ,取3π44=ϕ. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=ϕ,3π3=ϕ,3π44=ϕ. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m t πcos4100.22-⨯=x(2)()()m /2πt π4cos 100.22+⨯=-x(3)()()m /3πt π4cos 100.22+⨯=-x(4)()()m0.22+10=-xcos⨯/3π44tπ5-9有一弹簧,当其下端挂一质量为m的物体时,伸长量为9.8 ×10-2 m.若使物体上、下振动,且规定向下为正方向.(1)当t=0 时,物体在平衡位置上方8.0 ×10-2m处,由静止开始向下运动,求运动方程.(2)当t=0时,物体在平衡位置并以0.6m·s-1的速度向上运动,求运动方程.分析求运动方程,也就是要确定振动的三个特征物理量A、ω和φ.其中振动的角频率是由弹簧振子系统的固有性质(振子质量m及弹簧劲度系数k)决定的,即k mω=/,k可根据物体受力平衡时弹簧的伸长来计算;振幅A和初相φ需要根据初始条件确定.题5-9图解物体受力平衡时,弹性力F与重力P的大小相等,即F=mg.而此时弹簧的伸长量Δl=9.8 ×10-2m.则弹簧的劲度系数k=F/Δl =mg/Δl.系统作简谐运动的角频率为1ωmk//g=s=l10-∆=(1)设系统平衡时,物体所在处为坐标原点,向下为x轴正向.由初始条件t =0 时,x10=8.0 ×10-2m、v10=0 可得振幅()m 10082210210-⨯=+=./ωv x A ;应用旋转矢量法可确定初相π1=ϕ[图(a )].则运动方程为()()m π10t cos 100.821+⨯=-x(2)t =0时,x 20=0、v 20=0.6 m·s -1,同理可得()m 100622202202-⨯=+=./ωv x A ;2/π2=ϕ[图(b )].则运动方程为 ()()m π5.010t cos 100.622+⨯=-x5-10 某振动质点的x -t 曲线如图(a )所示,试求:(1)运动方程;(2)点P 对应的相位;(3)到达点P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过x -t 图线确定振动的三个特征量A 、ω和0ϕ,从而写出运动方程.曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便.解 (1)质点振动振幅A =0.10 m.而由振动曲线可画出t 0=0 和t 1=4 s时旋转矢量,如图(b )所示.由图可见初相3/π0-=ϕ(或3/π50=ϕ),而由()3201//ππω+=-t t 得1s 24/π5-=ω,则运动方程为()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x题5-10图(2)图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c )所示.当初相取3/π0-=ϕ时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=ϕ,则点P 相应的相位应表示为()π200=-+=p p t ωϕϕ.(3)由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t .5-11 质量为10 g 的物体沿x 的轴作简谐运动,振幅A =10 cm ,周期T =4.0 s ,t =0 时物体的位移为,cm 0.50-=x 且物体朝x 轴负方向运动,求(1)t =1.0 s 时物体的位移;(2)t =1.0 s 时物体受的力;(3)t =0之后何时物体第一次到达x =5.0 cm 处;(4)第二次和第一次经过x =5.0 cm 处的时间间隔.分析根据题给条件可以先写出物体简谐运动方程)cos(ϕω+=t A x .其中振幅A ,角频率Tπ2=ω均已知,而初相ϕ可由题给初始条件利用旋转矢量法方便求出. 有了运动方程,t 时刻位移x 和t 时刻物体受力x m ma F 2ω-==也就可以求出. 对于(3)、(4)两问均可通过作旋转矢量图并根据公式t ∆=∆ωϕ很方便求解.解由题给条件画出t =0时该简谐运动的旋转矢量图如图(a )所示,可知初相3π2=ϕ.而A =0.10 m ,1s 2ππ2-==T ω.则简谐运动方程为m )3π22πcos(10.0+=t x (1)t =1.0 s 时物体的位移m 1066.8m )3π22π0.1cos(10.02-⨯-=+⨯=x(2)t =1.0 s 时物体受力N1014.2N)1066.8()2π(101032232---⨯=⨯-⨯⨯⨯-=-=x m F ω (3)设t =0时刻后,物体第一次到达x =5.0 cm 处的时刻为t 1,画出t =0和t =t 1时刻的旋转矢量图,如图(b )所示,由图可知,A 1与A 的相位差为π,由t ∆=∆ωϕ得s 2s 2/ππ1==∆=ωϕt (4)设t =0时刻后,物体第二次到达x =5.0 cm 处的时刻为t 2,画出t =t 1和t = t 2时刻的旋转矢量图,如图(c )所示,由图可知,A 2与A 1的相位差为3π2,故有 s 34s 2/π3/π212==∆=-=∆ωϕt t t题 5-11 图5-12 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为2cm ,求(1)振动周期;(2)加速度的最大值;(3)运动方程. 分析 根据v -t 图可知速度的最大值v max ,由v max =Aω可求出角频率ω,进而可求出周期T 和加速度的最大值a max =Aω2.在要求的简谐运动方程x =A cos (ωt +φ)中,因为A 和ω已得出,故只要求初相位φ即可.由v -t 曲线图可以知道,当t =0 时,质点运动速度v 0=v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿x 轴正向向着平衡点运动.利用v 0=-Aωsinφ就可求出φ. 解 (1)由ωA v =max 得1s 51-=.ω,则s 2.4/π2==ωT(2)222max s m 1054--⋅⨯==.ωA a(3)从分析中已知2/sin 0ωA ωA =-=v ,即21sin /-=ϕ6/π5,6/π--=ϕ因为质点沿x 轴正向向平衡位置运动,则取6/π5-=,其旋转矢量图如图(b )所示.则运动方程为()cm 6π55.1cos 2⎪⎭⎫⎝⎛-=t x题5-12图5-13 有一单摆,长为1.0m ,最大摆角为5°,如图所示.(1)求摆的角频率和周期;(2)设开始时摆角最大,试写出此单摆的运动方程;(3)摆角为3°时的角速度和摆球的线速度各为多少?题5-13图分析 单摆在摆角较小时(θ<5°)的摆动,其角量θ与时间的关系可表示为简谐运动方程()ϕωθθ+=t cos max ,其中角频率ω仍由该系统的性质(重力加速度g 和绳长l )决定,即l g /=ω.初相φ与摆角θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理概念,必须注意区分. 解 (1)单摆角频率及周期分别为s 01.2/π2;s 13.3/1====-ωT l g ω(2)由0=t 时o max 5==θθ可得振动初相0=ϕ,则以角量表示的简谐运动方程为t θ13.3cos 36π=(3)摆角为3°时,有()60cos max ./==+θθϕωt ,则这时质点的角速度为()()1max 2max max s2180800cos 1sin /d d --=-=+--=+-=..ωθϕωωθϕωωθθt t t线速度的大小为1s m 218.0/d d -⋅-==t l v θ讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取θθ≈sin ,所以,单摆的简谐运动方程仅在θ较小时成立.*5-14 一飞轮质量为12kg ,内缘半径r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为2.0s ,试求其绕质心轴的转动惯量.题5-14图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为c /π2mgl J T =,因此,只要知道复摆振动的周期和转轴到质心的距离c l ,其以刃口为转轴的转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期c /π2mgl J T =,可得22π4/m g r TJ =(这里r l C ≈).则由平行轴定理得222220m kg 83.2π4⋅=-=-=mr mgrT mr J J 5-15 如图(a )所示,质量为 1.0 ×10-2kg 的子弹,以500m·s -1的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为4.99 kg ,弹簧的劲度系数为8.0 ×103 N·m -1,若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐运动方程.题5-15图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度v 0,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量m 1+m 2和弹簧的劲度系数k 确定,振幅和初相可根据初始条件(初速度v 0和初位移x 0)求得.初相位仍可用旋转矢量法求. 解 振动系统的角频率为()121s 40-=+=m m k /ω由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度v 0为12110s m 0.1-⋅=+=m m v m v又因初始位移x 0=0,则振动系统的振幅为()m 105.2//202020-⨯==+=ωωx A v v图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位2/π0=ϕ,则简谐运动方程为()()m π0.540cos 105.22+⨯=-t x5-16 如图(a )所示,一劲度系数为k 的轻弹簧,其下挂有一质量为m 1的空盘.现有一质量为m 2的物体从盘上方高为h 处自由落入盘中,并和盘粘在一起振动.问:(1)此时的振动周期与空盘作振动的周期有何不同?(2)此时的振幅为多大?题5-16图分析 原有空盘振动系统由于下落物体的加入,振子质量由m 1变为m 1 + m 2,因此新系统的角频率(或周期)要改变.由于()2020/ωx A v +=,因此,确定初始速度v 0和初始位移x 0是求解振幅A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度v 0,这也是该振动系统的初始速度.在确定初始时刻的位移x 0时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移x 0,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1)空盘时和物体落入盘中后的振动周期分别为k m ωT /π2/π21== ()k m m ωT /π2/π221+='='可见T ′>T ,即振动周期变大了.(2)如图(b )所示,取新系统的平衡位置为坐标原点O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即g kmg k m m k g m l l x 2211210-=+-=-= 式中k g m l 11=为空盘静止时弹簧的伸长量,l 2=g km m 21+为物体粘在盘上后,静止时弹簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度gh m m m m m m 22122120+=+=v v 式中gh 2=v 是物体由h 高下落至盘时的速度.故系统振动的振幅为()gm m khk g m x A )(21/2122020++='+=ωv 本题也可用机械能守恒定律求振幅A .5-17 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s -1求:(1)振动的周期;(2)物体通过平衡位置时的总能量与动能;(3)物体在何处其动能和势能相等?(4)当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度2max ωA a =,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题. 解 (1)由分析可得振动周期s 314.0/π2/π2max ===a A ωT(2)当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即J 100221213max22k -⨯====.mAa mA E E ω (3)设振子在位移x 0处动能与势能相等,则有42220//kA kx =得m 100772230-⨯±=±=./A x(4)物体位移的大小为振幅的一半(即2x A =/)时的势能为4221212P /E A k kx E =⎪⎭⎫⎝⎛==则动能为43P K /E E E E =-=5-18 一劲度系数k =312 1m N -⋅的轻弹簧,一端固定,另一端连接一质量kg 3.00=m 的物体,放在光滑的水平面上,上面放一质量为kg 2.0=m 的物体,两物体间的最大静摩擦系数5.0=μ.求两物体间无相对滑动时,系统振动的最大能量.分析简谐运动系统的振动能量为2p k 21kA E E E =+=.因此只要求出两物体间无相对滑动条件下,该系统的最大振幅max A 即可求出系统振动的最大能量.因为两物体间无相对滑动,故可将它们视为一个整体,则根据简谐运动频率公式可得其振动角频率为mm k+=0ω.然后以物体m 为研究对象,它和m 0一起作简谐运动所需的回复力是由两物体间静摩擦力来提供的.而其运动中所需最大静摩擦力应对应其运动中具有最大加速度时,即max 2max A m ma mg ωμ==,由此可求出max A . 解根据分析,振动的角频率mm k+=0ω 由max 2max A m ma mg ωμ==得kgm m g A μωμ)(02max +=则最大能量J1062.92)(])([212132220202max max -⨯=+=+==kg m m kg m m k kA E μμ5-19 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1)合振动的振幅及初相;(2)若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1+x 3的振幅最大?又3ϕ为多少时,x 2+x 3的振幅最小?题5-19图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctan ϕϕϕϕϕA A A A ++=/解 (1)作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=ϕϕϕ,故合振动振幅为()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A合振动初相位()()[]rad1.48arctan11cos cos sin sin arctan 22112211==++=ϕϕϕϕϕA A A A /(2)要使x 1+x 3振幅最大,即两振动同相,则由π2Δk =ϕ得,...2,1,0,π75.0π2π213±±=+=+=k k k ϕϕ要使x 1+x 3的振幅最小,即两振动反相,则由()π12Δ+=k ϕ得(),...2,1,0,π25.1π2π1223±±=+=++=k k k ϕϕ5-20 两个同频率的简谐运动1 和2 的振动曲线如图(a )所示,求(1)两简谐运动的运动方程x 1和x 2;(2)在同一图中画出两简谐运动的旋转矢量,并比较两振动的相位关系;(3)若两简谐运动叠加,求合振动的运动方程.分析 振动图已给出了两个简谐运动的振幅和周期,因此只要利用图中所给初始条件,由旋转矢量法或解析法求出初相位,便可得两个简谐运动的方程.解 (1)由振动曲线可知,A =0.1 m,T =2s,则ω=2π/T =πs-1.曲线1表示质点初始时刻在x =0 处且向x 轴正向运动,因此φ1=-π/2;曲线2 表示质点初始时刻在x =A /2 处且向x 轴负向运动,因此φ2=π/3.它们的旋转矢量图如图(b )所示.则两振动的运动方程分别为()()m 2/ππcos 1.01-=t x 和()()m 3/ππcos 1.02+=t x(2)由图(b )可知振动2超前振动1 的相位为5π/6. (3)()ϕω+'=+=t A x x x cos 21其中()m 0520cos 212212221.=-++='ϕϕA A A A A()12π0.268arctan cos cos sin sin arctan22112211-=-=++=ϕϕϕϕϕA A A A则合振动的运动方程为 ()()m π/12πcos 052.0-=t x题5-20 图5-21 将频率为348 Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz .若在待测频率音叉的一端加上一小块物体,则拍频数将减少,求待测音叉的固有频率.分析 这是利用拍现象来测定振动频率的一种方法.在频率υ1和拍频数Δυ=|υ2-υ1|已知的情况下,待测频率υ2可取两个值,即υ2=υ1 ±Δυ.式中Δυ前正、负号的选取应根据待测音叉系统质量改变时,拍频数变化的情况来决定.解 根据分析可知,待测频率的可能值为υ2=υ1 ±Δυ=(348 ±3) Hz因振动系统的固有频率mkπ21=v ,即质量m 增加时,频率υ减小.从题意知,当待测音叉质量增加时拍频减少,即|υ2-υ1|变小.因此,在满足υ2与Δυ均变小的情况下,式中只能取正号,故待测频率为υ2=υ1+Δυ=351 Hz*5-22 图示为测量液体阻尼系数的装置简图,将一质量为m 的物体挂在轻弹簧上,在空气中测得振动的频率为υ1,置于液体中测得的频率为υ2,求此系统的阻尼系数.题5-22图分析 在阻尼不太大的情况下,阻尼振动的角频率ω与无阻尼时系统的固有角频率ω0及阻尼系数δ有关系式220δωω-=.因此根据题中测得的υ1和υ2(即已知ω0、ω),就可求出δ.解 物体在空气和液体中的角频率为10π2v =ω和2π2v =ω,得阻尼系数为2221220π2v v -=-=ωωδ。

大学物理课后答案第5章

大学物理课后答案第5章

第五章 热力学基础5-1 在水面下50.0 m 深的湖底处(温度为4.0℃),有一个体积为1.0×10-5 m 3的空气泡升到湖面上来,若湖面的温度为17.0℃,求气泡到达湖面的体积。

(大气压P 0 = 1.013×105 Pa ) 分析:将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态。

利用理想气体物态方程即可求解本题。

位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出,其中ρ为水的密度(常取ρ = 1.0⨯103 kg·m -3)。

解:设气泡在湖底和湖面的状态参量分别为(p 1,V 1,T 1)和(p 2,V 2,T 2)。

由分析知湖底处压强为ghp gh p p ρρ+=+=021。

利用理想气体的物态方程可得空气泡到达湖面的体积为()3510120121212m 1011.6-⨯=+==T p V T gh p T p V T p V ρ5-2 氧气瓶的容积为3.2×10-2 m 3,其中氧气的压强为1.30×107 Pa ,氧气厂规定压强降到1.00×106 Pa 时,就应重新充气,以免经常洗瓶。

某小型吹玻璃车间,平均每天用去0.40 m 3 压强为1.01×105 Pa 的氧气,问一瓶氧气能用多少天?(设使用过程中温度不变) 分析:由于使用条件的限制,瓶中氧气不可能完全被使用。

从氧气质量的角度来分析。

利用理想气体物态方程pV = mRT /M 可以分别计算出每天使用氧气的质量m 3和可供使用的氧气总质量(即原瓶中氧气的总质量m 1和需充气时瓶中剩余氧气的质量m 2之差),从而可求得使用天数321/)(m m m n -=。

解:根据分析有RT V Mp m RT V Mp m RT V Mp m 333122111===;;则一瓶氧气可用天数()()5.933121321=-=-=V p V p p m m m n5-3 一抽气机转速ω=400r ּmin -1,抽气机每分钟能抽出气体20升。

第五章课后习题答案

第五章课后习题答案

5.10 假设对指令Cache 的访问占全部访问的75%;而对数据Cache 的访问占全部访问的25%。

Cache 的命中时间为1个时钟周期,失效开销为50 个时钟周期,在混合Cache 中一次load 或store 操作访问Cache 的命中时间都要增加一个时钟周期,32KB 的指令Cache 的失效率为0.39%,32KB 的数据Cache 的失效率为4.82%,64KB 的混合Cache 的失效率为1.35%。

又假设采用写直达策略,且有一个写缓冲器,并且忽略写缓冲器引起的等待。

试问指令Cache 和数据Cache 容量均为32KB 的分离Cache 和容量为64KB 的混合Cache 相比,哪种Cache 的失效率更低?两种情况下平均访存时间各是多少?解:(1)根据题意,约75%的访存为取指令。

因此,分离Cache 的总体失效率为:(75%×0.15%)+(25%×3.77%)=1.055%;容量为128KB 的混合Cache 的失效率略低一些,只有0.95%。

(2)平均访存时间公式可以分为指令访问和数据访问两部分:平均访存时间=指令所占的百分比×(读命中时间+读失效率×失效开销)+ 数据所占的百分比×(数据命中时间+数据失效率×失效开销)所以,两种结构的平均访存时间分别为:分离Cache 的平均访存时间=75%×(1+0.15%×50)+25%×(1+3.77%×50)=(75%×1.075)+(25%×2.885)=1.5275混合Cache 的平均访存时间=75%×(1+0.95%×50)+25%×(1+1+0.95%×50)=(75%×1.475)+(25%×2.475)=1.725因此,尽管分离Cache 的实际失效率比混合Cache 的高,但其平均访存时间反而较低。

第5章课后习题解答

第5章课后习题解答

第5章课后习题解答-情境题
【参考答案三】手环自身一般不具备分析功能,数据分析是 在服务器端完成的。服务器通过使用各种算法和科学缜密的逐 辑运算对采集的数据进行分析,建立健康模型,最终将这些数 据转变成手环可读数字——步数、距离、消耗的卡路里数值等 呈现给终端用户,还可以通过与手环相连的手机端将用户的运 动、睡眠、心率等数据可视化呈现出来并给用户提供健康建议。
【参考答案四】实际上仅依靠手环采集数据做分析是不全面 的,还需结合用户的年龄、体重、身高、性别等个人信息进行 数据分析,因此个人信息填写正确与否直接影响数据分析的准 确性。
【参考答案二】能回答运动时利用的加速度传感器是三轴加 速度传感器,而且是通过捕捉人体三个维度的各项数据,并上传 至服务端进行统计分析。或者增加实例,如利用手环检测心率, 主要是通过光感进行,采用绿色搭配感光光电二极管实时检测流 经手腕血液的流量来获取心率信息。当用户的心脏跳动时,会有 更多的血液流过用户的手腕,绿光的吸收量也会越大;在心脏跳 动间隙,血液流量减少,绿光的吸收也会减少。
B (2)下列可以用于分析数据趋势的是( )。
A. 饼图 B. 折线图 C. 动态热力图 D. 词云图
A (3)数据分析的方法不包括( )。
A. 线性分析 B. 关联分析 C. 聚类分析
D. 数据分类
第5章课后习题解答-思考题
若要求你对本班同学喜欢看的书籍进行分类统计,并对其进行数据分析,你 会如何做?谈谈你的想法。
参考答案一: (项目需求分析)分析书籍分类统计的项目:书名、图书类别、出版时 间、来源(网购、书店购买、图书馆借阅、向他人借阅)、同学姓名, 性别等。 (数据采集)能够选择合适的工具采集和保存信息:可使用文件共享或 选择协同办公软件采集书籍信息记录(逐条统计),能够使用硬盘存储 或云存储方式保存数据。 (数据分析与可视化表达)能够采用词云图、折线图或饼图等方式,按 照图书类别分析出本班同学的图书喜好,能分析出某位同学的兴趣爱好。

编译原理教程课后习题答案——第五章

编译原理教程课后习题答案——第五章

第五章代码优化5.1 完成以下选择题:(1) 优化可生成的目标代码。

a. 运行时间较短b. 占用存储空间较小c. 运行时间短但占用内存空间大d. 运行时间短且占用存储空间小(2) 下列优化方法不是针对循环优化进行的。

a. 强度削弱b. 删除归纳变量c. 删除多余运算d. 代码外提(3) 基本块内的优化为。

a. 代码外提,删除归纳变量b. 删除多余运算,删除无用赋值c. 强度削弱,代码外提d. 循环展开,循环合并(4) 在程序流图中,我们称具有下述性质的结点序列为一个循环。

a. 它们是非连通的且只有一个入口结点b. 它们是强连通的但有多个入口结点c. 它们是非连通的但有多个入口结点d. 它们是强连通的且只有一个入口结点(5) 关于必经结点的二元关系,下列叙述中不正确的是。

a. 满足自反性b. 满足传递性c. 满足反对称性d. 满足对称性【解答】(1) d (2) c (3) b (4) d (5) d5.2 何谓局部优化、循环优化和全局优化?优化工作在编译的哪个阶段进行?【解答】优化根据涉及的程序范围可分为三种。

(1) 局部优化是指局限于基本块范围内的一种优化。

一个基本块是指程序中一组顺序执行的语句序列(或四元式序列),其中只有一个入口(第一个语句)和一个出口(最后一个语句)。

对于一个给定的程序,我们可以把它划分为一系列的基本块,然后在各个基本块范围内分别进行优化。

通常应用DAG方法进行局部优化。

(2) 循环优化是指对循环中的代码进行优化。

例如,如果在循环语句中某些运算结果不随循环的重复执行而改变,那么该运算可以提到循环外,其运算结果仍保持不变,但程序运行的效率却提高了。

循环优化包括代码外提、强度削弱、删除归纳变量、循环合并和循环展开。

5.3 将下面程序划分为基本块并作出其程序流图。

read(A,B)F=1C=A*AD=B*Bif C<D goto L1E=A*AF=F+1E=E+Fwrite(E)haltL1: E=B*BF=F+2E=E+Fwrite(E)if E >100 goto L2haltL2: F=F-1goto L1【解答】先求出四元式程序中各基本块的入口语句,即程序的第一个语句,或者能由条件语句或无条件转移语句转移到的语句,或者条件转移语句的后继语句。

计导-课后习题参考答案(第5章

计导-课后习题参考答案(第5章

第5章计算机组成一、复习题1.计算机由哪三个子系统组成?答:计算机由中央处理单元、主存储器和输入/输出子系统组成。

2.CPU又哪几个部分组成?答:;CPU由算术逻辑单元(ALU)、控制单元和寄存器组成。

3.ALU的功能是什么?答:ALU(即算术逻辑单元)用于算术运算和逻辑运算。

4.描述一下几种不同的寄存器。

答:寄存器是用来临时存放数据的高速独立的存储单元。

寄存器有三种:数据寄存器、指令寄存器和程序计数器。

其功能如下:①数据寄存器:数据寄存器用来保存复杂运算的中间结果,可以提高运算速度。

②指令寄存器:指令寄存器存储CPU从内存中逐条取出的指令,解释并执行指令。

③程序计数器:程序计数器保存当前正在执行的指令,当前的指令执行完后,计数器自动加1,指向下一条指令的地址。

5.控制单元的功能是什么?答:控制单元控制各部件协调工作,对取到指令寄存器中的指令进行译码并产生控制信号以完成操作。

控制通过线路的开(高电平)或关(低电平)来实现。

6.字和字节有什么区别?答:数据是以称之为字的位组的形式在存储器中传入和传出。

字就是指执行一条指令时可以处理的二进制数位数。

不同的机器字可以取8位、16位、32位,甚至是64位。

而字节是指8位二进制位。

7.主存的功能是什么?答:主存是存储单元的集合,用于临时存储数据和程序。

8.兆字节的近似值和实际值的字节数如何对应?答:其实际值是220字节,近似值是106字节。

9.存储地址用哪种数的表示法表示?答:地址本身也使用位模式表示,通常用无符号二进制整数表示。

10.RAM和ROM有何区别?答:RAM是随机存取存储器,是主存的主要组成部分。

具有可随机读写、易失性的特点。

ROM是只读存储器,具有只读、非易失性特点。

11.SRAM和DRAM有何区别?答:SRAM技术使用传统的触发器门电路,通电时数据始终存在,不需要刷新,速度快但价格昂贵;DRAM技术使用电容器,内存单元需要周期性地刷新(因为漏电),速度慢,但是便宜。

第5章课后习题参考答案

第5章课后习题参考答案
}
printf("一行字符中字母#和a出现的次数分别是%d,%d\n ",num1,num2);
}
6、从键盘输入一个正整数,统计该数的位数,如输入1234,输出4,输入0,输出1
#include<stdio.h>
void main()
{
int n,m,num=0;
printf("请输入一个正整数n:");
}
ave=sum/num2;
printf("负数个数num1=%d,正数的平均值ave=%.2f\n",num1,ave);
}
2、sum=2+5+8+11+14+…,输入正整数n,求sum的前n项和。
#include<stdio.h>
void main()
{
int i,n,sum=0;
#include<stdio.h>
void main()
{
char ch;
int num1=0,num2=0;
printf("请输入一行字符:\n");
while((ch=getchar())!='\n')
{
if(ch=='#') num1++;
if(ch=='a') num2++;
#include<stdio.h>
void main()
{
int x,y,z,num=0;
for(x=1;x<=9;x++)

第5章课后习题参考答案

第5章课后习题参考答案

第五章习题参考答案3.给定一个单位立方体,一个顶点在(0,0,0),相对的另一个顶点在(1,1,1),过这两个顶点连接一条直线,将单位立方体绕该直线旋转θ角,试导出变换矩阵。

解答:需进行以下复合变换:⑴绕Z轴旋转-45。

角,变换矩阵为:/220 0T1= 2/20 00 1 00 0 1⑵绕Y轴旋转2)角,变换矩阵为:/30 30T2= 0 1 0 030 300 0 0 1⑶绕X轴旋转θ角,变换矩阵为:1 0 0 0T3= 0 cosθs i nθ00 -sinθc o sθ00 0 0 1⑷绕Y轴旋转2)角,变换矩阵为:/30 30T4= 0 1 0 030 300 0 0 1⑸绕Z 轴旋转45。

角,变换矩阵为:/2/20 0 T5= 2/20 0 0 0 1 00 0 0 1 故最后的变换矩阵为: T=T1T2T3T4T5=1/32/3cos θ+ 1/3/3s i n1/3c o s θθ+- 1/3/3s i n 1/3c o s θθ-- 0 1/33sin 1/3cos θθ-- 1/32/3c o s θ+ 1/3/3s i n1/3c o s θθ+- 01/33sin 1/3cos θθ+- 1/3/3s i n1/3c o s θθ-- 1/32/3c o s θ+ 00 0 0 1 6.编程绘制第5题中三棱锥的正等轴测和正二测图。

同上类似,只是变换矩阵改为T 正等=0.70700.40800.70700.4080000.816001-⎡⎤⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦和T 正二=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1000943.0000312.00354.00118.00935.07.编程绘制第5题中三棱锥的斜等测和斜二测投影图。

同上类似,变换矩阵改为:T 斜等=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1001000707.00707.00001T斜二=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-1001000354.00354.000018.编程绘制第5题中三棱锥的立体一点、二点和三点透视图。

大学物理课后习题答案第五章

大学物理课后习题答案第五章

第五章机械波5.1 已知一波的波动方程为y = 5×10-2sin(10πt – 0.6x ) (m). (1)求波长、频率、波速及传播方向;(2)说明x = 0时波动方程的意义,并作图表示. [解答](1)与标准波动方程比较得:2π/λ= 0.6, 因此波长为:λ = 10.47(m);圆频率为:ω = 10π, 频率为:v =ω/2π = 5(Hz);波速为:u = λ/T = λv = 52.36(m·s -1).且传播方向为x 轴正方向.(2)当x = 0时波动方程就成为该处质点的振动方程: y = 5×10-2sin10πt = 5×10-2cos(10πt – π/2), 振动曲线如图.5.2 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为(m).试求:(1)简谐波的波动方程;(2)x= -0.05m 处质点P 处的振动方程.[解答](1)简谐波的波动方程为:; 即= 0.03cos[4π(t – 5x ) + π/2]. (2)在x = -0.05m 处质点P 点的振动方程为:y = 0.03cos[4πt + π + π/2]= 0.03cos(4πt - π/2).5.3已知平面波波源的振动表达式为(m).求距波源5m 处质点的振动方程和该质点与波源的位相差.设波速为2m·s -1.[解答]振动方程为:, 位相差为 Δφ = 5π/4(rad).5.4有一沿x 轴正向传播的平面波,其波速为u = 1m·s -1,波长λ = 0.04m ,振幅A = 0.03m .若以坐标原点恰在平衡位置而向负方向运动时作为开始时刻,试求:(1)此平面波的波动方程;(2)与波源相距x = 0.01m 处质点的振动方程,该点初相是多少? [解答](1)设原点的振动方程为:y 0 = A cos(ωt + φ),其中A = 0.03m .由于u = λ/T ,所以质点振动的周期为:T = λ/u = 0.04(s),圆频率为:ω = 2π/T = 50π. 当t = 0时,y 0 = 0,因此cos φ = 0;由于质点速度小于零,所以φ = π/2. 原点的振动方程为:y 0 = 0.03cos(50πt + π/2), 平面波的波动方程为:= 0.03cos[50π(t – x ) + π/2).(2)与波源相距x = 0.01m 处质点的振动方程为:y = 0.03cos50πt . 该点初相φ = 0.5.5一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.试求: (1)P 点的振动表达式;2cos()xy A t πωλ=-0.03cos(4)2A y t ππ=-cos[()]Ax x y A t uωϕ-=-+0.050.03cos[4()]0.22x y t ππ-=--20 6.010sin2y t π-=⨯26.010sin()2xy t u π-=⨯-50.06sin()24t ππ=-0.03cos[50()]2x y t u ππ=-+(2)波动方程; (3)画出O 点的振动曲线.[解答](1)设P 点的振动方程为y P = A cos(ωt + φ), 其中A = 0.2m .在Δt = 0.25s 内,波向右传播了Δx = 0.45/3 = 0.15(m),所以波速为u = Δx/Δt = 0.6(m·s -1).波长为:λ = 4Δx = 0.6(m), 周期为:T = λ/u = 1(s), 圆频率为:ω = 2π/T = 2π.当t = 0时,y P = 0,因此cos φ = 0;由于波沿x 轴正向传播,所以P 点在此时向上运动,速度大于零,所以φ = -π/2.P 点的振动表达式为:y P = 0.2cos(2πt - π/2). (2)P 点的位置是x P = 0.3m ,所以波动方程为. (3)在x = 0处的振动方程为y 0 = 0.2cos(2πt + π/2),曲线如图所示.5.6 如图所示为一列沿x 负向传播的平面谐波在t = T /4时的波形图,振幅A 、波长λ以及周期T 均已知.(1)写出该波的波动方程;(2)画出x = λ/2处质点的振动曲线;(3)图中波线上a 和b 两点的位相差φa – φb 为多少?[解答](1)设此波的波动方程为: ,当t = T /4时的波形方程为:. 在x = 0处y = 0,因此得sin φ = 0,解得φ = 0或π.而在x = λ/2处y = -A ,所以φ = 0. 因此波动方程为:. (2)在x = λ/2处质点的振动方程为:, 曲线如图所示.(3)x a = λ/4处的质点的振动方程为; x b = λ处的质点的振动方程为.波线上a 和b 两点的位相差φa – φb = -3π/2.0.2cos[2()]2P x x y t u ππ-=--100.2cos(2)32t x πππ=-+cos[2()]t xy A T πϕλ=++cos(2)2xy A ππϕλ=++sin(2)xA πϕλ=-+cos 2()t x y A T πλ=+cos(2)cos 2t t y A A T Tπππ=+=-cos(2)2a t y A T ππ=+cos(22)b ty A Tππ=+图5.55.7 已知波的波动方程为y = A cosπ(4t – 2x )(SI ).(1)写出t = 4.2s 时各波峰位置的坐标表示式,并计算此时离原点最近的波峰的位置,该波峰何时通过原点?(2)画出t = 4.2s 时的波形曲线.[解答]波的波动方程可化为:y = A cos2π(2t – x ),与标准方程比较,可知:周期为T = 0.5s ,波长λ = 1m .波速为u = λ/T = 2m·s -1. (1)当t = 4.2s 时的波形方程为 y = A cos(2πx – 16.8π)= A cos(2πx – 0.8π). 令y = A ,则cos(2πx – 0.8π) = 1,因此 2πx – 0.8π = 2k π,(k = 0, ±1, ±2,…), 各波峰的位置为x = k + 0.4,(k = 0, ±1, ±2,…).当k = 0时的波峰离原点最近,最近为:x = 0.4(m).通过原点时经过的时间为:Δt = Δx/u = (0 – x )/u = -0.2(s), 即:该波峰0.2s 之前通过了原点.(2)t = 0时刻的波形曲线如实线所示.经过t = 4s 时,也就是经过8个周期,波形曲线是重合的;再经Δt = 0.2s ,波形向右移动Δx = u Δt = 0.4m ,因此t = 4.2s 时的波形曲线如虚线所示.[注意]各波峰的位置也可以由cos(2πx – 16.8π) = 1解得,结果为x = k + 8.4,(k = 0, ±1, ±2,…),取同一整数k 值,波峰的位置不同.当k = -8时的波峰离原点最近,最近为x = 0.4m .5.8一简谐波沿x 轴正向传播,波长λ = 4m ,周期T = 4s ,已知x = 0处的质点的振动曲线如图所示. (1)写出时x = 0处质点的振动方程;(2)写出波的表达式;(3)画出t = 1s 时刻的波形曲线.[解答]波速为u = λ/T = 1(m·s -1).(1)设x = 0处的质点的振动方程为y = A cos(ωt + φ), 其中A = 1m ,ω = 2π/T = π/2.当t = 0时,y = 0.5,因此cos φ = 0.5,φ = ±π/3.在0时刻的曲线上作一切线,可知该时刻的速度小于零,因此φ = π/3.振动方程为:y = cos(πt /2 + π/3).(2)波的表达式为:.(3)t = 1s 时刻的波形方程为,波形曲线如图所示.5.9在波的传播路程上有A 和B 两点,都做简谐振动,B 点的位相比A 点落后π/6,已知A 和B 之间的距离为2.0cm ,振动周期为2.0s .求波速u 和波长λ.cos[2()]t x y A T πϕλ=-+cos[2()]t xy A T πϕλ=-+cos[()]23t x ππ=-+5cos()26y x ππ=-图5.8[解答]设波动方程为:, 那么A 和B 两点的振动方程分别为:, . 两点之间的位相差为:,由于x B – x A = 0.02m ,所以波长为:λ = 0.24(m).波速为:u = λ/T = 0.12(m·s -1). 5.10 一平面波在介质中以速度u = 20m·s -1沿x 轴负方向传播.已知在传播路径上的某点A 的振动方程为y = 3cos4πt .(1)如以A 点为坐标原点,写出波动方程;(2)如以距A 点5m 处的B 点为坐标原点,写出波动方程; (3)写出传播方向上B ,C ,D 点的振动方程. [解答](1)以A 点为坐标原点,波动方程为 .(2)以B 点为坐标原点,波动方程为. (3)以A 点为坐标原点,则x B = -5m 、x C = -13m 、x D = 9m ,各点的振动方程为, ,.[注意]以B 点为坐标原点,求出各点坐标,也能求出各点的振动方程.5.11 一弹性波在媒质中传播的速度u = 1×103m·s -1,振幅A = 1.0×10-4m ,频率ν= 103Hz .若该媒质的密度为800kg·m -3,求:(1)该波的平均能流密度;(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量. [解答](1)质点的圆频率为:ω = 2πv = 6.283×103(rad·s -1), 波的平均能量密度为:= 158(J·m -3), 平均能流密度为:= 1.58×105(W·m -2).(2)1分钟内垂直通过面积S = 4×10-4m 2的总能量为:E = ItS = 3.79×103(J).5.12一平面简谐声波在空气中传播,波速u = 340m·s -1,频率为500Hz .到达人耳时,振幅A = 1×10-4cm ,试求人耳接收到声波的平均能量密度和声强?此时声强相当于多少分贝?已知空气密度ρ = 1.29kg·m -3.[解答]质点的圆频率为:ω = 2πv = 3.142×103(rad·s -1), 声波的平均能量密度为:= 6.37×10-6(J·m -3), cos[2()]t xy A T πϕλ=-+cos[2()]AA x ty A T πϕλ=-+cos[2()]BB x ty A Tπϕλ=-+2(2)6BAx x πππλλ---=-3cos 4()3cos(4)5x x y t t u πππ=+=+3cos 4()Ax x y t u π-=+3cos(4)5x t πππ=+-3cos 4()3cos(4)BB x y t t u πππ=+=-33cos 4()3cos(4)5C C x y t t u πππ=+=-93cos 4()3cos(4)5D D x y t t u πππ=+=+2212w A ρω=I wu =2212w A ρω=图5.10平均能流密度为:= 2.16×10-3(W·m -2), 标准声强为:I 0 = 1×10-12(W·m -2), 此声强的分贝数为:= 93.4(dB).5.13 设空气中声速为330m·s -1.一列火车以30m·s -1的速度行驶,机车上汽笛的频率为600Hz .一静止的观察者在机车的正前方和机车驶过其身后所听到的频率分别是多少?如果观察者以速度10m·s -1与这列火车相向运动,在上述两个位置,他听到的声音频率分别是多少?[解答]取声速的方向为正,多谱勒频率公式可统一表示为, 其中v S 表示声源的频率,u 表示声速,u B 表示观察者的速度,u S 表示声源的速度,v B 表示观察者接收的频率.(1)当观察者静止时,u B = 0,火车驶来时其速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 660(Hz). 火车驶去时其速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 550(Hz). (2)当观察者与火车靠近时,观察者的速度方向与声速相反,u B = -10m·s -1;火车速度方向与声速方向相同,u S = 30m·s -1,观察者听到的频率为= 680(Hz). 当观察者与火车远离时,观察者的速度方向与声速相同,u B = 10m·s -1;火车速度方向与声速方向相反,u S = -30m·s -1,观察者听到的频率为= 533(Hz). [注意]这类题目涉及声速、声源的速度和观察者的速度,规定方向之后将公式统一起来,很容易判别速度方向,给计算带来了方便.5.14.一声源的频率为1080Hz ,相对地面以30m·s -1速率向右运动.在其右方有一反射面相对地面以65m·s -1的速率向左运动.设空气中声速为331m·s -1.求:(1)声源在空气中发出的声音的波长; (2)反射回的声音的频率和波长.[解答](1)声音在声源垂直方向的波长为:λ0 = uT 0 = u /ν0 = 331/1080 = 0.306(m); 在声源前方的波长为:λ1 = λ0 - u s T 0 = uT 0 - u s T 0 = (u - u s )/ν0 = (331-30)/1080 = 0.2787(m); 在声源后方的波长为:λ2 = λ0 + u s T 0 = uT 0 + u s T 0 = (u + u s )/ν0= (331+30)/1080 = 0.3343(m).(2)反射面接收到的频率为 = 1421(Hz).将反射面作为波源,其频率为ν1,反射声音的频率为= 1768(Hz).I wu =010lgIL I =BB S Su u u u νν-=-33060033030B S S u u u νν==--33060033030B S S u u u νν==-+3301060033030B B S S u u u u νν-+==--3301060033030B B S S u u u u νν--==-+1033165108033130B Su u u u νν++==⨯--`11331142133165B u u u νν==⨯--反射声音的波长为=0.1872(m).或者= 0.1872(m). [注意]如果用下式计算波长=0.2330(m), 结果就是错误的.当反射面不动时,作为波源发出的波长为u /ν1 = 0.2330m ,而不是入射的波长λ1.5.15S 1与S 2为两相干波源,相距1/4个波长,S 1比S 2的位相超前π/2.问S 1、S 2连线上在S 1外侧各点的合成波的振幅如何?在S 2外侧各点的振幅如何?[解答]如图所示,设S 1在其左侧产生的波的波动方程为,那么S 2在S 1左侧产生的波的波动方程为,由于两波源在任意点x 产生振动反相,所以合振幅为零.S 1在S 2右侧产生的波的波动方程为,那么S 2在其右侧产生的波的波动方程为,由于两波源在任意点x 产生振动同相,所以合振幅为单一振动的两倍.5.16两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S 1S 2连线中点为原点,求S 1S 2间因干涉而静止的各点的坐标.[解答]如图所示,设S 1在其右侧产生的波的波动方程为 ,那么S 2在其左侧产生的波的波动方程为. 两个振动的相差为Δφ = πx + π,当Δφ = (2k + 1)π时,质点由于两波干涉而静止,静止点为x = 2k , k 为整数,但必须使x 的值在-l /2到l /2之间,即-2.5到2.5之间.当k = -1、0和1时,可得静止点的坐标为:x = -2、0和2(m).5.17设入射波的表达式为,`1111331651421BBu u u uλννν--=-==`1`13311768uλν==`111650.27871768Bu λλν=-=-1cos[2()]t xy A T πϕλ=++2/4cos[2()]2t x y A T λππϕλ-=++-cos[2()]t xA T πϕπλ=++-1cos[2()]t xy A T πϕλ=-+2/4cos[2()]2t x y A T λππϕλ-=-+-cos[2()]t xA T πϕλ=-+1/2cos[2()]x l y A t u πνϕ+=-+5cos(2)24A t x πππνϕ=-+-2/2cos[2()]x l y A t u πνϕπ-=+++cos(2)24A t x πππνϕ=++-1cos 2()t xy A T πλ=+S 1 S 2S 12在x = 0处发生反射,反射点为一自由端,求:(1)反射波的表达式; (2)合成驻波的表达式.[解答](1)由于反射点为自由端,所以没有半波损失,反射波的波动方程为.(2)合成波为y = y 1 + y 2,将三角函数展开得,这是驻波的方程.5.18两波在一很长的弦线上传播,设其表达式为:,,用厘米、克、秒(cm,g,s )制单位,求:(1)各波的频率,波长、波速;(2)节点的位置;(3)在哪些位置上,振幅最大?[解答](1)两波可表示为:,, 可知它们的周期都为:T = 0.5(s),频率为:v = 1/T = 2(Hz);波长为:λ = 200(cm);波速为:u = λ/T = 400(cm·s -1).(2)位相差Δφ = πx /50,当Δφ = (2k + 1)π时,可得节点的位置x = 50(2k + 1)(cm),(k = 0,1,2,…).(3)当Δφ = 2k π时,可得波腹的位置x = 100k (cm),(k = 0,1,2,…).2cos 2()t xy A T πλ=-222coscosy A x t Tππλ=1 6.0cos(0.028.0)2y x t π=-2 6.0cos(0.028.0)2y x t π=+1 6.0cos 2()0.5200t x y π=-2 6.0cos 2()0.5200t x y π=+。

结构力学课后答案第五章习题答案

结构力学课后答案第五章习题答案

5-1 试回答:用单位荷载法计算结构位移时有何前提条件?单位荷载法是否可用于超静定结构的位移计算?aaaaa NCD NCE NBE NAD NBC NAC DE F F 0, F F F F F A B P P P PR R F F F =========-由对称性分析知道N NP 12()F F 1()2 6.832222()P P P cx P F a l F a F a EA EA EA EA EA ⨯⨯-⨯-⨯∆==⨯+⨯+=↓∑5-4 已知桁架各杆截面相同,横截面面积A =30cm 2,E =20.6×106N/cm 2,F P =98.1kN 。

试求C 点竖向位移yC Δ。

25544P P P P F F F ===NAD NAE NEC NEF 由节点法知:对A 节点 F F 对E 节点 F F115(122516(()4)4 11.46 ()N NP yc P P P F F l F F EA EA cm =∆==⨯⨯⨯+⨯⨯+⨯⨯=↓∑NAD NAE 由节点法知:对A 节点 F F5-5 已知桁架各杆的EA 相同,求AB 、BC 两杆之间的相对转角B Δθ。

杆的内力计算如图所示施加单位力在静定结构上。

其受力如图11(12N NP BF F l EA EAθ∆==-∑5-6 试用积分法计算图示结构的位移:(a )yB Δ;(b )yC Δ;(c )B θ;(d )xB Δ。

(a)211232113421yc 1004142B ()1()26()111 ()()()26111 =()30120p llp q q q x x q l q qM x q x x lM x x q q M x M x dx q x x dx EI EI l q l q l EI -=+-=+=-∴∆=⨯=++⎰⎰以点为原点,向左为正方向建立坐标。

显然,A Bq 2q 1lEI22q l 254q l PM l74l M2224113153251315127()()324244342243416yc ql q l l ql l ql l l l l l ql EI EI ∆=⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=↓(c)22201()(sin )12(1cos )2()1111[(sin )12(1cos)]2(8-3)-1.42=()EI EIB M R R M R R Rd EIπϕϕϕϕθϕϕϕπ=⨯-⨯-==⨯⨯-⨯-=⎰逆时针l3l 4ABCql EI=常数OAB1kN/m2kNR =2m4mϕθqds qRd θ=20()sin()(1cos )M qRd R qR ϕϕθϕθϕ=⨯-=-⎰2240()sin 111()()(1cos )sin ()2xBM R M M ds qR R Rd qR EI EI EIπϕϕϕϕϕϕϕ=∆==-=←⎰⎰5-7 试用图乘法计算图示梁和刚架的位移:(a )yC Δ;(b )yD Δ;(c )xC Δ;(d )xE Δ;(e )D θ;(f )yE Δ。

基础物理学第五章(静电场)课后习题答案

基础物理学第五章(静电场)课后习题答案

第五章 静电场 思考题5-1 根据点电荷的场强公式2041rqE ⋅=πε,当所考察的点与点电荷的距离0→r 时,则场强∞→E ,这是没有物理意义的。

对这个问题该如何解释? 答:当时,对于所考察点来说,q 已经不是点电荷了,点电荷的场强公式不再适用.5-2 0FE q =与02014q E r r πε=⋅两公式有什么区别和联系? 答:前式为电场(静电场、运动电荷电场)电场强度的定义式,后式是静电点电荷产生的电场分布。

静电场中前式是后一式的矢量叠加,即空间一点的场强是所有点电荷在此产生的场强之和。

5-3 如果通过闭合面S 的电通量e Φ为零,是否能肯定面S 上每一点的场强都等于零?答:不能。

通过闭合面S 的电通量e Φ为零,即0=⋅⎰SS d E,只是说明穿入、穿出闭合面S的电力线条数一样多,不能讲闭合面各处没有电力线的穿入、穿出。

只要穿入、穿出,面上的场强就不为零,所以不能肯定面S 上每一点的场强都等于零。

5-4 如果在闭合面S 上,E 处处为零,能否肯定此闭合面一定没有包围净电荷? 答:能肯定。

由高斯定理∑⎰=⋅内qS d E S1ε,E 处处为零,能说明面内整个空间的电荷代数和0=∑内q,即此封闭面一定没有包围净电荷。

但不能保证面内各局部空间无净电荷。

例如,导体内有一带电体,平衡时导体壳内的闭合高斯面上E 处处为零0=∑内q,此封闭面包围的净电荷为零,而面内的带电体上有净电荷,导体内表面也有净电荷,只不过它们两者之和为零。

5-5 电场强度的环流lE dl ⋅⎰表示什么物理意义?0lE dl⋅=⎰表示静电场具有怎样的性质?答:电场强度的环流lE dl ⋅⎰说明静电力是保守力,静电场是保守力场。

0lE dl⋅=⎰表示静电场的电场线不能闭合。

如果其电场线是闭合曲线,我们就可以将其电场线作为积分回路,由于回路上各点沿环路切向,得⎰≠⋅Ll d E 0,这与静电场环路定理矛盾,说明静电场的电场线不可能闭合。

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。

试求切应力τxy 、τyx 和附加压应力p ´x 、p ´y 以及压应力p x 、p y 。

解:0y x xy yx u u x y ττμ∂⎛⎫∂==+= ⎪∂∂⎝⎭24xxu p a xμμ∂'=-=-∂,24y y u p a y μμ∂'=-=∂, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette )流动。

试求在这种流动情况下,两平板间的速度分布。

(请将d 0d px=时的这一流动与在第一章中讨论流体粘性时的流动相比较)解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。

由例5-1中的(11)式可得2d (1)2d h y p y yu v h x h h μ=-- (1) 当d 0d p x =时,y u v h=,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。

它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。

当d 0d px≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为(1)u y y yp v h h h=-- (2) 式中2d ()2d h pp v xμ=- (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况.5-3 设明渠二维均匀(层流)流动,如图所示。

若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为2sin (2)2x gu zh z r q m=-,单宽流量3sin 3gh q r q m=。

《统计学概论》第五章课后练习题答案

《统计学概论》第五章课后练习题答案

《统计学概论》第五章课后练习题答案一、思考题1.什么叫时间序列,构成时间序列的基本要素有哪些?P1212.序时平均数与一般平均数有何异同?P1273.时间数列与时点数列有哪些区别?P124-1254.环比增长速度与定基增长速度之间有什么关系?P1365.什么是平均发展速度?说说水平法和累计法计算平均发展速度的基本思路,各在什么情况下选用?P1386.测定长期趋势有哪些常用的方法?测定的目的是什么?P1367.实际中如何根据时间序列的发展变化的数列特征来判断合适的趋势方程形式?P1458.影响时间序列指标数值大小的因素有哪些?这些因素共同作用的理论模型有哪些?P140二、判断题1.时间序列也称动态数列,它是变量数列的一种形式。

(×)【解析】时间序列是数列,而变量数列是静态数列。

2.时间数列和时点数列属于总量指标时间序列。

(√)3.所谓序时平均数是指将同一总体的不同时期的平均数按时间先后顺序排列起来。

(×)【解析】序时平均数是将不同时期的发展水平加以平均而得到的平均数。

4.间隔相等的时期数列计算平均发展水平时,应用首末折半法。

(×)【解析】间隔相等的时点数列计算平均发展水平时,应用首末折半法。

5.平均增长速度等于各期环比增长速度连乘积开n次方。

(×)【解析】平均发展速度等于各期环比发展速度连乘积开n次方,平均增长速度=平均发展速度-1(或100%)6.两个相邻时期的定基发展速度之比等于相应的环比发展速度。

(√)7.用移动平均法测定长期趋势时,移动平均项数越多越好。

(×)【解析】移动平均法所取项数的多少,应视资料的特点而定。

8.某一时间序列有25年的数据,若采用五项移动平均,则修匀后的数列缺少4项数据。

(√)9.如果时间序列是年度数据,则不存在季节变动。

(√)10.用相同方法拟合趋势方程时,t的取值不同,则得到的趋势方程也不同,但趋势预测值不变。

(√)三、单项选择题1.时间序列的构成要素是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章 习题解答
5-1 由与非门组成的基本RS 触发器的d d S ,R 之间为什么要有约束?当违反约束条件时,输出端Q 、Q 会出现什么情况?试举例说明。

解:由与非门组成的基本RS 触发器的d R 和d S 之间的约束条件是:不允许d R 和d S 同时为0。

当违反约束条件即当d R =d S =0时,Q 、Q 端将同时为1,作为基本存储单元来说,这既不是0状态,又不是1状态,没有意义。

5-2 试列出或非门组成的基本RS 触发器的真值表,它的输入端R d 和S d 之间是否也要有约束?为什么?
解:真值表如右表所示、
Rd 、Sd 之同也要有约束条件,即不允许Rd=Sd=1, 否则Q 、Q 端会同时出现低电平。

5-3 画出图5-33由与非门组成的基本RS 触发器输出端Q 、Q 的电压波形,输入端
D D S R 、的电压波形如图中所示。

图5-33
解:见下图:
5-4 画出图5-34由或非门组成的基本RS 触发器输出端Q 、Q 的电压波形,输入端S D 、R D 的电压波形如图中所示。

图5-34
解:见下图:
5-5 图5-35所示为一个防抖动输出的开关电路。

当拨动开关S时,由于开关触点接R S、的电压波形如图中所示。

试画出Q、Q端对应的电压波形。

通瞬间发生振颤,D D
图5-35
解:见下图:
5-6 在图5-36电路中、若CP、S、R的电压波形如图中所示,试画出Q、Q端与之对应的电压波形。

假定触发器的初始状态为Q=0。

图5-36
解:见下图:
5-7 在图5-37(a)所示的主从RS触发器中,CP、R、S的波形如图5-37(b)所示,试画Q、Q和Q的波形图。

出相应的Q m、
m
图5-37
解:主从RS触发器的工作过程是:在CP=l期间主触发器接收输入信号,但输出端并不改变状态,只有当CP下降沿到来时从触发器甚才翻转,称为下降沿触发。

根据主从RS 触发器状态转换图可画出波形图如下图所示。

5-8 在图5-38(a)所示的主从JK 触发器中,CP 、J 、K 的波形如图5-38(b)所示,试画出相应的Q m 、m Q 、Q 和Q 的波形图。

图5-38
解:主从JK 触发翻的工作过程是上升沿接收,下降沿翻转。

根据状态转换图可画出波形图如下图所示。

5-9 TTL 主从触发器的输入端J 、K 、d R 、d S 及CP 的波形图如图5-39所示,试画出输出端Q 的波形图。

图5-39
解:根据输入信号画主从JK 触发器的输出端波形时,需考虑如下三点:第一,在CP 信号下降沿到来时状态更新;第二,在CP 上升沿及CP=1期间,J 、K 信号如有变化,应考虑一次变化问题;第三,d R 和d S 为直接复位端、置位端。

只要有低电平作用,可以直接将触发器复位或置位,不受CP 信号到来与否的限制。

输出端Q 波形图如下图所示。

5-10 边沿触发型JK 触发器及其输入端信号CP 、J 、K 的波形如图5-40所示,设触发器的初始状态为0,试画出Q 、Q 的波形图.
图5-40
解:见下图:
5-11 维持阻塞D触发器及其CP、D输入端的波形图如图5-41所示,设触发器的初始状态为0,试画出Q和Q的波形图。

图5-41
解:见下图:
5-12 已知CMOS边沿触发结构JK触发器各输入端的电压波形如图5-42所示。

试画出Q、Q端对应的电压波形。

图5-42
解:见下图:
5-13 设图5-43中各触发器的初始状态皆为Q=0,试画出在CP信号连续作用下各触发器输出端的电压波形。

图5-43
解:见下图:
5-14 图5-44(a)所示各触发器均为边沿触发器,其CP及A、B、C的波形图如图5-44(b)所所示,试写出各触发器次态Q n+1的逻辑表达式,设各触发器的初态均为0,要求画出Q端的工作时序图。

图5-44
解:见下图:
5-15 图5-45(a)中FF1、FF2是CMOS边沿触发器,FF3、FF4是TTL边沿触发器。

CP及其A、B、C输入端的波形用如图5-45(b)所示。

设各触发器的初态均为0。

试画出各触发器输出端Q的波形图。

图5-45
解:见下图:
5-16 在图5-46(a)所示的T触发器电路中,已知CP和输入端T的波形如图5-46(b)所示,设初始状态为0,试画Q和Q的波形图。

图5-46
解:见下图:
5-17 如图5-47(a)所示电路,设初始状态0
2
1
=
=n
n Q
Q,CP、A端的输入波形如图5-47(b)所示,试画出Q1和Q2的波形图。

图5-47
解:见下图:
F1:CP1=A,
J=K=1
F2:CP2=CP,
1
n
J Q
=,K=1
5-18 如图5-48(a)所示电路,设初始状态1
2
1
=
=n
n Q
Q,其输入端D、R d及CP的波形
图如图5-48(b)所示,试分别画出1
2
1
1
+
+n
n Q
Q和的波形图。

图5-48
1
11
2
n
n
n
Q Q
R Q
+=
=
1
212
n
n n
Q Q Q
+=
解:见下图:
F1:
F2:
1
n
J Q
=,K=1
5-19 如图5-49(a)所示电路。

其输入端CP和A的波形图如图5-49(b)所示,设触
发器的初始状态0
2
1
=
=n
n Q
Q,试画出电路输出端F1,F2的波形图。

图5-49
解:见下图:
5-20 在图5-50(a)所示电路中,CP和J的波形图如图5-50(b)所示,设触发器的初始状态为0,试画出Q和R的波形图。

1
1
n
Q D
+=
1
212
n
n n
Q Q Q
+=
1
1
n
Q A
+=
1
21
n n
Q Q
+=
112
22
1
n
n
n n
F Q Q
F Q Q
=
=
图5-50
解:见下图:
5-21 图5-51所示是用CMOS边沿触发器和异或门组成的脉冲分路电路。

试画出在—系列CP脉冲作用下Q1、Q2和Z端对应的输出电压波形。

设触发器的初始状态皆为Q=0。

图5-51
解:见下图:。

相关文档
最新文档