1996全国高考理科数学试题

合集下载

1996年全国Ⅱ高考数学试题(理)

1996年全国Ⅱ高考数学试题(理)

1996年普通高等数学招生全国统一考试(全国Ⅱ)理科数学参考公式:三角函数的积化和差公式:[]1sin cos sin()sin()2αβαβαβ=++- []1cos sin sin()sin()2αβαβαβ=+--[]1cos cos cos()cos()2αβαβαβ=++-[]1sin sin cos()cos()2αβαβαβ=-+--正棱台、圆台的侧面积公式1()2S c c l ='+台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长.球的体积公式:343V r π=球,其中R 表示球的半径.第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题,第1-10题第小题4分,第11-15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集I N =,集合{}|2,A x x n n N ==∈,{}|4,B x x n n N ==∈,则A .I AB =B .I A B =C .I A B =D .I A B =2.当1a >时,在同一坐标系中,函数x y a -=与logy x =的图像是3.若22sin cos x x >,则x 的取值范围是A .322,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭B .522,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭C .22,44x k x k k Z ππππ⎧⎫-<<+∈⎨⎬⎩⎭D .322,44x k x k k Z ππππ⎧⎫+<<+∈⎨⎬⎩⎭4.复数4A.1+ B.1-+ C.1- D.1--5.如果直线,l m 与平面,,αβγ满足:l βγ= ,l ∥α,m α⊂和m γ⊥,那么必有A .a γ⊥且l m ⊥B .αγ⊥且m ∥βC .m ∥β且l m ⊥D .α∥β且αγ⊥ 6.当22x ππ-≤≤时,函数()sin f x x x =+的A .最大值是1,最小值是-1B .最大值是1,最小值是12-C .最大值是2,最小值是-2D .最大值是2,最小值是-17.椭圆33cos ,15sin ,x y ϕϕ=+⎧⎨=-+⎩的两个焦点的坐标是A .(3,5)-,(3,3)--B .(3,3),(3,5)-C .(1,1),(7,1)-D .(7,1)-,(1,1)--8.若02πα<<,则arcsin[cos()]arccos[sin()]2παπα+++等于A .2πB .2π-C .22πα- D .22πα--9.将边长为a 的正方形A B C D 沿对角线A C 折起,使得B D a =,则三棱锥D A B C -的体积为A .36aB .312aC12D.31210.等比数列{}n a 的首项11a =-,前n 项和为n S ,若1053132S S =,则lim n n S →∞等于A .23B .23-C .2D .2-11.椭圆的极坐标方程为32cos ρθ=-,则它的短轴上的两个顶点的极坐标是A .(3,0),(1,)πB.)2π,3)2πC .(2,)3π,5(2,)3π D.arctan2,2arctan2π-12.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为A .130B .170C .210D .26013.设双曲线22221(0)x y a b ab-=<<的半焦距为c ,直线l 过(,0)a ,(0,)b 两点,已知原点到直线l4,则双曲线的离心率为A .2 B. CD.314.母线长为1,的圆锥体积最大时,其侧面展开图圆心角ϕ等于A.3B.3C. D315.设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f 等于A .0.5B .0.5-C .1.5D . 1.5-第Ⅱ卷(非选择题共85分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.16.已知圆22670x y x +-+=与抛物线22(0)y px p =>的准线相切,则p = . 17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个(用数字作答).18.tan 20tan 4020tan 40++的值是 .19.如图,正方形A B C D 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线A D 与B F 所成角的余弦值是 .ABDCFE三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.20.(本小题满分10分)解不等式1log (1)1a x ->.21.(本小题满分11分)已知△ABC 的三个内角A 、B 、C 满足:2A C B +=,11cos cos cos ACB+=-,求cos2A C -的值.22.(本小题满分12分)如图,在正三棱柱111ABC A B C -中,1E BB ∈,截面1A EC ⊥侧面1AC . (1)求证:1BE EB =;(2)若111AA A B =,求平面1A EC 与平面111A B C 所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(1)的完整证明,交解答(2).(右下图)(1)证明:在截面1A EC 内,过E 作1EG A C ⊥,G 是垂足. ①∵∴E G ⊥侧面1AC ,取A C 的中点F ,连结B F ,F G ,由A B B C =得BF AC ⊥, ②∵∴B F ⊥侧面1AC ,得B F ∥F G ,B F 、F G 确定一个平面,交侧面1AC 于F G . ③∵ ∴B E ∥F G ,四边形B E G F 是平行四边形,B E F G =, ④∵ ∴F G ∥1A A ,△1AA C ∽△F G C ,⑤∵ ∴111122F G A A B B ==,即112B E B B =,故1BE EB =23.(本小题满分12分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人A 1ACB1C 1EA 1 A CB B 1C 1EF G均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)? (粮食单产=总产量耕地面积,人均粮食占有量=总产量总人口数24.(本小题满分12分)已知1l 、2l 是过点(0)P 的两条互相垂直的直线,且1l 、2l 与双曲线221y x -=各有两个交点,分别为1A 、1B 和2A 、2B . (1)求1l 的斜率1k 的取值范围;(2)若1122|||A B A B =,求1l 、2l 的方程.25.(本小题满分12分)已知a 、b 、c 是实数,函数2()f x ax bx c =++,()g x ax b =+,当11x -≤≤时,|()|1f x ≤.(1)证明:||1c ≤;(2)证明:当11x -≤≤时,|()|2g x ≤;(3)设0a >,当11x -≤≤时,()g x 的最大值为2,求()f x .数学试题参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力13.14.15.16.三、解答题 17.1996年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四.只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.第(1)-(10)题每小题4分,第(11)-(15)题每小题5分.满分65分.(1)C (2)A (3)D (4)B (5)A (6)D (7)B (8)A (9)D (10)B (11)C (12)C (13)A (14)D (15)B二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(16)2 (17)32(18)3(19)42三.解答题(20)本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.满分11分.解:(Ⅰ)当a >1时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧>->-.11,011a x x——2分由此得xa 11>-.因为1-a <0,所以x <0,∴.011<<-x a——5分 (Ⅱ)当0<a <1⎪⎪⎩⎪⎪⎨⎧<->-.11,011a x x由①得,x >1或x <0,由②得,,110a x -<<∴ax -<<111 ——10分 综上,当1>a 时,不等式的解集为⎭⎬⎫⎩⎨⎧<<-011x a x;当10<<a 时,不等式的解集为⎭⎬⎫⎩⎨⎧-<<a x x 111 ——11分(21)本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.满分12分. 解法一:由题设条件知B =60°,A +C =120°. ——2分 ∵,2260cos 2-=-∴22cos 1cos 1-=+CA将上式化为C A C A cos cos 22cos cos -=+ 利用和差化积及积化和差公式,上式可化为)]cos()[cos(22cos2cos2C A C A C A C A -++-=-+ ——6分将21)cos(,2160cos 2cos-=+==+C A C A代入上式得)cos(222)2cos(C A C A --=- 将1)2(cos 2)cos(2--=-C A C A 代入上式并整理得 023)2cos(2)2(cos 242=--+-CA C A ——9分,0)32cos22)(22cos2(=+---C A C A∵,032cos22≠+-C A ∴.022cos2=--C A 从而得.222cos=-C A ——12分解法二:由题设条件知B =60°,A +C =120°. 设αα2,2=--=C A C A 则,可得α+= 60A ,α-=60C——3分所以)60cos(1)60cos(1cos 1cos 1αα-++=+CAααααs23c211s23c211++-=ααα22sin 43cos 41cos -=43cos cos 2-=αα ——7分依题设条件有Bcos 243cos cos 2-=-αα,∵21cos =B ∴2243cos cos 2-=-αα整理得,023cos 2cos 242=-+αα——9分,0)3cos 22)(2cos 2(=+-αα∵03cos 22≠+α,∴02cos 2=-α.从而得222cos=-C A . ——12分(22)本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ) ①∵面A 1EC ⊥侧面AC 1, ——2分②∵面ABC ⊥侧面AC 1, ——3分 ③∵BE ∥侧面AC 1, ——4分 ④∵BE ∥AA 1, ——5分 ⑤∵AF =FC , ——6分(Ⅱ)解:分别延长CE 、C 1B 1交于点D ,连结A 1D .∵1EB ∥11112121,CC BB EB CC ==,∴,21111111B A C B DC DB ===∵∠B 1A 1C 1=∠B 1 C 1A 1=60°,∠DA 1B 1=∠A 1DB 1=21(180°-∠D B 1A 1)=30°,∴∠DA 1C 1=∠DA 1B 1+∠B 1A 1C 1=90°,即1DA ⊥11C A ——9分∵CC 1⊥面A 1C 1B 1,即A 1C 1是A 1C 在平面A 1C 1D 上的射影,根据三垂线定理得DA 1⊥A 1C , 所以∠CA 1C 1是所求二面角的平面角. ——11分∵CC 1=AA 1=A 1B 1=A 1C 1,∠A 1C 1C =90°,∴∠CA 1C 1=45°,即所求二面角为45° ——12分 (23)本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.解:设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷.依题意得不等式%)101(10%)11()1010(%)221(4104+⨯⨯≥+⨯-⨯+⨯PM P x M ——5分 化简得]22.1)01.01(1.11[10103+⨯-⨯≤x——7分∵]22.1)01.01(1.11[10103+⨯-⨯)]01.001.01(22.11.11[1022101103+⨯+⨯+⨯-⨯=C C]1045.122.11.11[103⨯-⨯≈1.4≈ —— 9分∴x ≤4(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷. ——10分 (24)本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.解:(I )依题设,l 1、l 2的斜率都存在,因为l 1过点P )0,2(-且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=1)0)(2(2211x y k x k y ① ——1分有两个不同的解.在方程组①中消去y ,整理得01222)1(2121221=-++-k x k x k ②若0121=-k ,则方程组①只有一个解,即l 1与双曲线只有一个交点,与题设矛盾,故0121≠-k ,即11≠k ,方程②的判别式为).13(4)12)(1(4)22(2121212211-=---=∆k k k k设2l 的斜率为2k ,因为2l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=.1),0)(2(2222x y k x k y ③ 有两个不同的解.在方程组③中消去y ,整理得01222)1(2222222=-++-k x k x k ④ 同理有)13(4,0122222-=∆≠-k k又因为l 1⊥l 2,所以有k 1·k 2=-1.——4分于是,l 1、l 2与双曲线各有两个交点,等价于⎪⎪⎩⎪⎪⎨⎧≠-=⋅>->-.1,1,013,0131212221k k k k k 解得⎪⎩⎪⎨⎧≠<<.1,33311k k ——6分∴)3,1()1,33()33,1()1,3(1 ----∈k ——7分(Ⅱ)设),(),,(221111y x B y x A 由方程②知112,122212121212121--=⋅--=+k k x x k k x x∴│A 1B 1│2=(x 1-x 2)2+(y 1-y 2)222121))(1(x x k -+=2212121)1()13)(1(4--+=kk k ⑤ ——9分同理,由方程④可求得222B A ,整理得2212121222)1()3)(1(4k k k B A --+=⑥由22115B A B A =,得2222115B A B A =将⑤、⑥代入上式得22121212212121)1()3)(1(45)1()13)(1(4k k k kk k --+⨯=--+解得21±=k取21=k 时,)2(22:),2(2:21+-=+=x y l x y l ; 取21-=k 时,)2(22:),2(2:21+=+-=x y l x y l .——12分(25)本小题主要考查函数的性质、含有绝对值的不等式的性质,以及综合运用数学知识分析问题与解决问题的能力.满分12分.(Ⅰ)证明:由条件当-1≤x ≤1时,│f (x )│≤1,取x =0得│c │=│f (0)│≤1,即│c │≤1. ——2分(Ⅱ)证法一:当a >0时,g (x )=ax +b 在[-1,1]上是增函数,∴g (-1)≤g (x )≤g (1), ∵│f (x )│≤1 (-1≤x ≤1),│c │≤1,∴g (1)=a +b =f (1)-c ≤│f (1)│+│c │≤2, g (-1)=-a +b =-f (-1)+c ≥-(│f (-1)│+│c │)≥-2, 由此得│g (x )│≤2; ——5分 当a <0时,g (x )=ax +b 在[-1,1]上是减函数,∴g (-1)≥g (x )≥g (1), ∵│f (x )│≤1 (-1≤x ≤1),│c │≤1,∴g (-1)=-a +b =-f (-1)+c ≤│f (-1)│+│c │≤2, g (1)=a +b =f (1)-c ≥-(│f (1)│+│c │)≥-2,由此得│g (x )│≤2; ——7分 当a =0时,g (x )=b ,f (x )=bx +c .∵-1≤x ≤1,∴│g (x )│=│f (1)-c │≤│f (1)│+│c │≤2.综上得│g (x )│≤2. ——8分证法二:由4)1()1(22--+=x x x ,可得b ax x g +=)()2121(])21()21[(22--++--+=x x b x x a])21()21([])21()21([22c x b x a c x b x a +-+--++++=),21()21(--+=x f x f ——6分当-1≤x ≤1时,有,0211,1210≤-≤-≤+≤x x根据含绝对值的不等式的性质,得2)21()21()21()21(≤-++≤--+x f x f x f x f即│g (x )│≤2. ——8分(Ⅲ)因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2,即g (1)=a +b =f (1)-f (0)=2. ①∵-1≤f (0)=f (1)-2≤1-2=-1,∴c =f (0)=-1. ——10分 因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0),根据二次函数的性质,直线x =0为f (x )的图像的对称轴,由此得0,02==-b ab 即由① 得a =2.所以 f (x )=2x 2-1. ——12分。

(详细解析)1996年普通高等学校招生全国统一考试数学试题及答案(理)

(详细解析)1996年普通高等学校招生全国统一考试数学试题及答案(理)

1996年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一.选择题:本大题共15小题,第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集I N =,集合{}{}2,,4,A x x n n N B x x n n N ==∈==∈||,则 A .B A I = B .B A I = C .B A I = D .B A I = 【答案】C【解析】由于B A Þ,所以AB I =.2.当1a >时,在同一坐标系中,函数xy a -=与log a y x =的图像【答案】A【解析】当1a >时,函数xy a -=是减函数,且过点(0,1);而函数log a y x =为增函数,且过点(1,0).3.若22sin cos x x >,则x 的取值范围是 A .⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,412432ππππ B .⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,452412ππππ C .⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,4141ππππ D .⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ 【答案】D【解析】2221sin cos sin sin 22x x x x >⇒>⇒>或sin 2x <-,解得24k x ππ+< 32()4k k Z ππ<+∈或322()44k x k k Z ππππ-<<-∈,即(21)(21)4k x k πππ-+<<- 3()4k Z π+∈,所以x 的取值范围是⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ.4.复数54)31()22(i i -+等于A .i 31+B .i 31+-C .i 31-D .i 31--【答案】B44425(2)12()i ω===-+-.5.如果直线,l m 与平面,,αβγ满足:,//,l l m βγαα=⊂和m γ⊥,那么必有A .αγ⊥且l m ⊥B .αγ⊥且//m βC .//m β且l m ⊥D .//αβ且αγ⊥ 【答案】A 【解析】略. 6.当22x ππ-≤≤时,函数()sin f x x x =+的A .最大值是1,最小值是1-B .最大值是1,最小值是12-C .最大值是2,最小值是2-D .最大值是2,最小值是1- 【答案】D【解析】因为()sin 2sin()3f x x x x π==+,由已知5636x πππ-≤+≤.故当 32x ππ+=,即6x π=时,()f x 有最大值是2;当36x ππ+=-,即2x π=-时,()f x 有最小值是1-. 7.椭圆⎩⎨⎧+-=+=ϕϕsin 51,cos 33y x 的两个焦点坐标是A .(3,5),(3,3)---B .(3,3),(3,5)-C .(1,1),(7,1)-D .(7,1),(1,1)--- 【答案】B【解析】消去参数可得直角坐标方程22(1)(3)1259y x +-+=,故焦点坐标是(3,3),(3,5)-.8.若02πα<<,则arcsin[cos()]arccos[sin()]2παπα+++等于A .2πB .2π-C .22πα-D .22πα--【答案】A【解析】解法一:由于已知sin 0,cos()02παα>+<,原式arcsin(sin )arccos(sin )arccos(sin )αααπααπ=-+-=-+-=-+arccos[cos()]()222πππααπα--=-+--=.解法二:当1x ≤时arcsin arccos 2x x π+=,而1sin 0α-<-<,∴原式arcsin(sin )arccos(sin )2παα=-+-=.9.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD a =,则三棱锥D ABC -的体积为A .63aB .123a C .3123a D .3122a 【答案】D【解析】取AC 的中点O ,连接,BO DO ,如图所示.,ABC ADC ∆∆均为等腰直角三角形,22AC BO DO ===, ∴2BOD π∠=,则DO ⊥面ABC ,DO 就是三棱锥D ABC -的高,所以231132212D ABC V a -=⋅⋅=.10.等比数列{}n a 的首项11a =-,前n 项和为n S ,若3231510=S S 则n n S ∞→lim 等于 A .32 B .23- C .2 D .2- 【答案】B【解析】显然1q ≠,由3231510=S S 得10151(1)31(1)32a q a q -=-,则105323110q q --=,解得 5132q =-,得12q =-,所以12lim 13n n a S q →∞==--.11.椭圆的极坐标方程为θρcos 23-=,则它在短轴上的两个顶点的极坐标是A .(3,0),(1,)π B.3)22ππ C .5(2,),(2,)33ππD .(2arctg )22π- 【答案】C【解析】将极坐标方程为θρcos 23-=化为直角坐标方程22(1)143x y -+=,在短轴上的两个顶点的直角坐标是,所以极坐标是5(2,),(2,)33ππ.12.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为A .130B .170C .210D .260 【答案】C【解析】由已知得230,100m m S S ==,则232,,m m m m m S S S S S --成等差数列,所以323()210m m m S S S =-=.13.设双曲线)0(12222b a by a x <<=-的半焦距为c ,直线l 过(,0),(0,)a b 两点.已知原点到直线l 的距离为c 43,则双曲线的离心率为 A .2 B .3 C .2 D .332 【答案】A【解析】直线l 的方程为0bx ay ab +-=,原点到直线l 4c =,则22222316a b c a b =+,即22222()316a c a c c -=,解得2e =或e =0a b <<,所以e ==>,所以3e =不合题意.14.母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于 A .π322 B .π332 C .π2 D .π362 【答案】D15.设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f 等于A .0.5B .0.5-C .1.5D . 1.5- 【答案】B【解析】(7.5)(5.52)(5.5)[(3.5)](3.5)(1.5)[(0.5)]f f f f f f f =+=-=--==-=---(0.5)0.5f =-=-.第Ⅱ卷(非选择题共85分)二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.16.已知圆07622=--+x y x 与抛物线)0(22>=p px y 的准线相切,则p = . 【答案】2【解析】圆的标准方程为22(3)16x y -+=,圆心和半径分别为(3,0),4,所以4312p=-=,则2p =.17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个.(用数字作答) 【答案】32【解析】从7个点中取3个点有37C 种取法,3个点共线的有3种,三角形共有37332C -=个.18.tg20tg403tg20tg40++的值是 . 【答案】3【解析】∵tg20tg40tg(2040)31tg20tg40++==-,∴tg20tg403(1-tg20tg40)+=,tg20tg403tg20tg403++=.19.如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60的二面角,则异面直线AD与BF 所成角的余弦值是 .【答案】42 【解析】由于//AD BC ,所以CBF ∠即为异面直线AD 与BF 所成角,设正方形边长为a ,在CBF ∆中,,,BF BC a FC =====,222cos 24BF BC FC CBF BF BC +-∠==⋅.三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤. 20.(本小题满分11分)解不等式1)11(log >-xa .【解】本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.满分11分.(Ⅰ)当1>a 时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧>->-.11,011a xx——2分由此得xa 11>-. 因为10a -<,所以0x <,∴101x a<<-. ——5分 (Ⅱ)当01a <<时,原不等式等价于不等式组:110,11.xa x⎧->⎪⎪⎨⎪-<⎪⎩——7分由①得,1x >或0x <, 由②得,101x a <<-,∴ax -<<111. ——10分 综上,当1>a 时,不等式的解集为⎭⎬⎫⎩⎨⎧<<-011x a x;当10<<a 时,不等式的解集为⎭⎬⎫⎩⎨⎧-<<a x x 111. ——11分 21.(本小题满分12分)已知ABC ∆的三个内角,,A B C 满足:BC A B C A cos 2cos 1cos 1,2-=+=+,求 2cosCA -的值. 【解】本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.满分12分.解法一:由题设条件知60,120B A C =+=. ——2分∵cos 60=-22cos 1cos 1-=+CA .将上式化为C A C A cos cos 22cos cos -=+. 利用和差化积及积化和差公式,上式可化为)]cos()[cos(22cos 2cos2C A C A CA C A -++-=-+. ——6分 将21)cos(,2160cos 2cos-=+==+C A C A 代入上式得cos)22A C A C -=-. 将1)2(cos 2)cos(2--=-CA C A 代入上式并整理得 023)2cos(2)2(cos 242=--+-CA C A ——9分(2cos3)022A C A C ---+=,∵302A C -+≠,∴2cos 02A C-=.从而得cos2A C -=. ——12分 解法二:由题设条件知60,120B A C =+=.设2A Cα-=,则2A C α-=,可得60,60A C αα=+=-, ——3分 所以)60cos(1)60cos(1cos 1cos 1αα-++=+ C A ααααsin 23cos 211sin 23cos 211++-=ααα22sin 43cos 41cos -=43cos cos 2-=αα. ——7分 依题设条件有Bcos 243cos cos 2-=-αα, ∵21cos =B ,∴2243cos cos 2-=-αα.整理得22cos 0,αα+-= ——9分(2cos 3)0αα-+=,∵03cos 22≠+α,∴02cos 2=-α.从而得222cos=-C A . ——12分22.(本小题满分12分)如图1,在正三棱柱111ABC A B C -中,1E BB ∈,截面1A EC ⊥侧面1AC . (Ⅰ)求证:1BE EB =;(Ⅱ)若111AA A B =;求平面1A EC 与平面111A B C 所成二面角(锐角)的度数. 注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ). (Ⅰ)证明:(如图2)在截面1A EC 内,过E 作1EG AC ⊥,G 是垂足.① ∵ ,∴EG ⊥侧面1AC ;取AC 的中点F ,连结,BF FG ,由AB BC = 得BF AC ⊥.② ∵ ,∴BF ⊥侧面1AC ;得//,,BF EG BF EG 确定一个平面,交侧面1AC 于FG .③ ∵ ,∴//BE FG ,四边形BEGF 是平行四边形,BE FG =. ④ ∵ ,∴11//,FG AA AAC FGC ∆∆,⑤ ∵ ,∴112121BB AA FG ==,即112BE BB =,故1BE EB =. (Ⅱ)解:【解】本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ)①面1A EC ⊥侧面1AC , ——2分②面ABC ⊥侧面1AC , ——3分 ③//BE 侧面1AC , ——4分 ④1//BE AA , ——5分 ⑤//AF FC , ——6分 (Ⅱ)分别延长11,CE C B 交于点D ,连结1A D .∵1111111//,22EB CC EB BB CC ==,∴,21111111B A C B DC DB ===∵11111160B AC C B A ∠=∠=︒,1111111(180)302DA B A DB DB A ∠=∠=︒-∠=︒,∴111111190DAC DA B B AC ∠=∠+∠=︒, 即111DA AC ⊥. ——9分∵1CC ⊥面111AC B ,即11A C 是1A C 在平面11AC D 上的射影, 根据三垂线定理得11DA A C ⊥,所以11CAC ∠是所求二面角的平面角. ——11分 ∵11111111,90CC AA A B AC AC C ===∠=︒,∴1145CA C ∠=,即所求二面角为45. ——12分 23.(本小题满分10分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=耕地面积总产量,人均粮食占有量=总人口数总产量)【解】本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷.依题意得不等式%)101(10%)11()1010(%)221(4104+⨯⨯≥+⨯-⨯+⨯P M P x M .——5分 化简得]22.1)01.01(1.11[10103+⨯-⨯≤x . ——7分 ∵103312210101.1(10.01) 1.110[1]10[1(10.010.01)]1.22 1.22C C ⨯+⨯-=⨯-⨯+⨯+⨯+3 1.110[1 1.1045] 4.11.22≈⨯-⨯≈. —— 9分 ∴4x ≤(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷. ——10分 24.(本小题满分12分)已知12,l l 是过点)0,2(-P 的两条互相垂直的直线,且12,l l 与双曲线122=-x y 各有两个交点,分别为11,A B 和22,A B .(Ⅰ)求1l 的斜率1k 的取值范围;(Ⅱ)若1122A B B =,求12,l l 的方程.【解】本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.(I )依题设,12,l l 的斜率都存在,因为1l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=1)0)(2(2211x y k x k y ① ——1分 有两个不同的解.在方程组①中消去y ,整理得01222)1(2121221=-++-k x k x k . ②若0121=-k ,则方程组①只有一个解,即1l 与双曲线只有一个交点,与题设矛盾,故0121≠-k ,即11≠k ,方程②的判别式为2222211111)4(1)(21)4(31)k k k ∆=---=-.设2l 的斜率为2k ,因为2l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=.1),0)(2(2222x y k x k y ③ 有两个不同的解.在方程组③中消去y ,整理得01222)1(2222222=-++-k x k x k . ④同理有)13(4,0122222-=∆≠-k k .又因为12l l ⊥,所以有121l l ⋅=-. ——4分于是,12,l l 与双曲线各有两个交点,等价于⎪⎪⎩⎪⎪⎨⎧≠-=⋅>->-.1,1,013,0131212221k k k k k解得⎪⎩⎪⎨⎧≠<<.1,33311k k——6分∴)3,1()1,33()33,1()1,3(1 ----∈k . ——7分 (Ⅱ)设),(),,(221111y x B y x A .由方程②知112,122212121212121--=⋅--=+k k x x k k x x . ∴22222111212112()()(1)()A B x x y y k x x =-+-=+-22112214(1)(31)(1)k k k +-=-. ⑤ ——9分 同理,由方程④可求得222B A ,整理得2212121222)1()3)(1(4k k k B A --+= ⑥ 由22115B A B A =,得2211225A B A B =将⑤、⑥代入上式得22121212212121)1()3)(1(45)1()13)(1(4k k k k k k --+⨯=--+,解得21±=k 取21=k 时,)2(22:),2(2:21+-=+=x y l x y l ; 取21-=k 时,)2(22:),2(2:21+=+-=x y l x y l . ——12分25.(本小题满分12分)已知,,a b c 是实数,函数2(),()f x ax bx c g x ax b =++=+,当11x -≤≤时,()1f x ≤. (Ⅰ)证明:1c ≤;(Ⅱ)证明:当11x -≤≤时,()2g x ≤;(Ⅲ)设0a >,当11x -≤≤时,()g x 的最大值为2,求()f x .【解】本小题主要考查函数的性质、含有绝对值的不等式的性质,以及综合运用数学知识分析问题与解决问题的能力.满分12分.(Ⅰ)证明:由条件当11x -≤≤时,()1f x ≤,取0x =得(0)1c f =≤,即1c ≤.——2分(Ⅱ)证法一:当0a >时,()g x ax b =+在[1,1]-上是增函数,∴(1)(0)(1)g g g -≤≤,∵()1(11),1f x x c ≤-≤≤≤,∴(1)(1)(1)2g a b f c f c =+=-≤+≤,(1)(1)((1))2g a b f c f c -=-+=--+≥--+≥-,由此得()2g x ≤. ——5分 当0a <时,()g x ax b =+在[1,1]-上是减函数,∴(1)(0)(1)g g g -≥≥, ∵()1(11),1f x x c ≤-≤≤≤,∴(1)(1)(1)2g a b f c f c -=-+=--+≤-+≤,(1)(1)((1))2g a b f c f c =+=-≥-+≥-,由此得()2g x ≤; ——7分当0a =时,(),()g x b f x bx c ==+.∵11x -≤≤,∴()(1)(1)2g x f c f c =-≤+≤.综上得()2g x ≤. ——8分证法二:由4)1()1(22--+=x x x ,可得221111()[()()]()2222x x x x g x ax b a b +-+-=+=-+- ])21()21([])21()21([22c x b x a c x b x a +-+--++++= 11()()22x x f f +-=-, ——6分当11x -≤≤时,有,0211,1210≤-≤-≤+≤x x 根据含绝对值的不等式的性质,得2)21()21()21()21(≤-++≤--+x f x f x f x f ,即()2g x ≤. ——8分 (Ⅲ)因为0a >,()g x 在[1,1]-上是增函数,当1x =时取得最大值2,即(1)(1)(0)2g a b f f =+=-=. ①∵1(0)(1)2121f f -≤=-≤-=-,∴(0)1c f ==-. ——10分 因为当11x -≤≤时,()1f x ≥-,即()(0)f x f ≥,根据二次函数的性质,直线0x =为()f x 的图像的对称轴,由此得02ba-=,即0b =.由①得2a =.所以 2()21f x x =-. ——12分。

一九九六年高考数学试卷

一九九六年高考数学试卷

1. 下列各数中,有理数是()A. √2B. √-1C. 3.14D. π2. 已知函数f(x) = x² - 4x + 4,那么f(x)的图像是()A. 抛物线开口向上B. 抛物线开口向下C. 双曲线D. 直线3. 若a、b是方程x² - 3x + 2 = 0的两根,则a + b的值为()A. 2B. 3C. 4D. 54. 在△ABC中,∠A = 30°,∠B = 45°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°5. 已知数列{an}的前n项和为Sn,若a1 = 1,an = 2an-1,则S5的值为()A. 31B. 32C. 33D. 346. 若log2x + log4x = 3,则x的值为()A. 2B. 4C. 8D. 167. 已知等差数列{an}的首项a1 = 2,公差d = 3,则第10项an的值为()A. 27B. 30C. 33D. 368. 在平面直角坐标系中,点A(2,3),点B(-1,2),则线段AB的中点坐标为()A. (1,2.5)B. (1,3)C. (3,2)D. (3,2.5)9. 若复数z满足|z - 1| = |z + 1|,则复数z的几何意义是()A. z在复平面上的实部为0B. z在复平面上的虚部为0C. z在复平面上的模为1D. z在复平面上的辐角为90°10. 若函数f(x) = ax² + bx + c在x = 1时取得极值,则a、b、c的关系是()A. a ≠ 0,b = 0B. a ≠ 0,b ≠ 0C. a = 0,b ≠ 0D. a = 0,b = 011. 若等比数列{an}的首项a1 = 3,公比q = 2,则第5项an的值为()A. 48B. 96C. 192D. 38412. 在△ABC中,若∠A = 30°,∠B = 60°,∠C = 90°,则△ABC的周长为()A. 2√3B. 2√2C. 2√5D. 4二、填空题(本大题共6小题,每小题5分,共30分)13. 若log3(2x - 1) = 2,则x的值为______。

1996年普通高等学校招生全国统一考试理科数学-推荐下载

1996年普通高等学校招生全国统一考试理科数学-推荐下载

(B) (3,3),(3,-5)
(D) (7,-1),(-1,-1)
arccos[sin(
(9) 将边长为 a 的正方形 ABCD 沿对角线 AC 折起,使得 BD=a,则三棱锥 D-ABC 的
体积为
a3
(A)
6
(10) 等比数列 an
2
(A)
3
a3
(B)
12
的首项 a1=-1,前 n 项和为 S n ,若 S10 31
(13)

(A) 130
x2
设双曲线
a2

y2 b2
(B) 170
(C) 210
1(0 a b) 的半焦距为 c,直线 l 过 (a,0)(0, b) 两点,已知原点到
线 l 的距离为 3 c ,则双曲线的离心率为 4
(A) 2
(B) 3
(14) 母线长为 1 的圆锥体积最大时,其侧面展开图圆心角 等于
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡
皮擦干净后,再选涂其它答案,不能答在试题卷上. 3.考试结束,监考人将本试卷和答题卡一并收回. 一.选择题:本大题共 15 小题,第 1—10 题每小题 4 分,第 11—15 题每小题 5 分,共 65
分.在每小题给出的四个选项中,只有一项是符合题目要求的 新疆 王新敞 奎屯
(C) -2 2
(C) 3 a3 12
(C) 2
3 , ),(
2
7 , arctg
)] 等于
2
3 , 3 )
3
),(
2
(D) 1 3i

(D)


(D) 2 a3 12

1996年全国统一高考数学试卷(理科)

1996年全国统一高考数学试卷(理科)

1996年全国统一高考数学试卷(理科)一、选择题(共15小题,1-10每小题4分,11-15每小题5分,满分65分)1.(4分)已知全集I=N ,集合A={x|x=2n ,n ∈N},B={x|x=4n ,n ∈N},则( )A . I =A ∪B B . I =∪BC .D .2.(4分)(2010•兰州一模)当a >1时,在同一坐标系中,函数y=a ﹣x 与y=log a x 的图象( )A .B .C .D .3.(4分)若sin 2x >cos 2x ,则x 的取值范围是( )A .B .C .D .4.(4分)复数等于( )A .B .C .D .5.(4分)(2015•广东模拟)如果直线l 、m 与平面α、β、γ满足:l=β∩γ,l ∥α,m ⊂α和m ⊥γ,那么必有( )A . α⊥γ且l ⊥mB . α⊥γ且m ∥βC . m ∥β且l ⊥mD . α∥β且α⊥γ6.(4分)当时,函数f (x )=sinx+cosx 的( )A . 最大值是1,最小值是﹣1B . 最大值是1,最小值是﹣C . 最大值是2,最小值是﹣2D . 最大值是2,最小值是﹣17.(4分)椭圆(θ为参数)的两个焦点坐标是( )A . (﹣3,5),(﹣3,﹣3)B . (3,3),(3,﹣5)C . (1,1),(﹣7,1)D . (7,﹣1),(﹣1,﹣1)8.(4分)若,则等于( )A .B . ﹣C . ﹣2αD . ﹣﹣2α9.(4分)(2014•广西模拟)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D﹣ABC的体积为()A.B.C.D.10.(4分)等比数列{a n}的首项a1=﹣1,前n项和为S n,若则等于()A.B.﹣C.2D.﹣211.(5分)椭圆的极坐标方程为,则它在短轴上的两个顶点的极坐标是()B.(,),(,)A.(3,0),(1,π)C.(2,),(2,D.(,),(,))12.(5分)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.26013.(5分)设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为()A.2B.C.D.14.(5分)母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于()A.B.C.D.15.(5分)设f(x)是(﹣∞,+∞)上的奇函数,f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x,则f (7.5)等于()A.0.5 B.﹣0.5 C.1.5 D.﹣1.5二、填空题(共4小题,每小题4分,满分16分)16.(4分)(2010•柳州三模)已知圆x2+y2+4x+3=0与抛物线y2=2px(p>0)的准线相切,则P=_________.17.(4分)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有_________个(用数字作答).18.(4分)求值:tan20°+tan40°+tan20°tan40°=_________.19.(4分)如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异面直线AD 与BF所成角的余弦值是_________.三、解答题(共6小题,满分69分)20.(7分)解不等式.21.(10分)已知△ABC的三个内角A,B,C满足:,求的值.22.(12分)如图,在正三棱柱ABC﹣A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.(1)求证:BE=EB1;(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.①∵_________∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,②∵_________∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.③∵_________∴BE∥FG,四边形BEGF是平行四边形,BE=FG,④∵_________∴FG∥AA1,△AA1C∽△FGC,⑤∵_________∴,即.23.(12分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷?(精确到1公顷)(粮食单产=,人均粮食占有量=)24.(12分)已知l1、l2是过点P(﹣,0)的两条互相垂直的直线,且l1、l2与双曲线y2﹣x2=1各有两个交点,分别为A1、B1和A2、B2.(1)求l1的斜率k1的取值范围;(2)若|A1B1|=|A2B2|,求l1、l2的方程.25.(16分)已知a,b,c∈R,函数f(x)=ax2+bx+c,g(x)=ax+b,当﹣1≤x≤1时,|f(x)|≤1,求证:①|c|≤1.②当﹣1≤x≤1时,|g(x)|≤2.1996年全国统一高考数学试卷(理科)参考答案与试题解析一、选择题(共15小题,1-10每小题4分,11-15每小题5分,满分65分)1.(4分)已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则()A.I=A∪B B.I=∪B C.D.考点:集合的包含关系判断及应用.分析:根据题意,分析A是正偶数的集合,而B是4的正整数倍组成的集合,易得B⊂A,做出图示,分析可得答案.解答:解:根据题意,A是正偶数的集合,而B是4的正整数倍组成的集合.易得B⊂A,根据题意,做出图示可得,由图示可得,故选C.点评:本题考查集合间的关系,图示法简单直观的方法.2.(4分)(2010•兰州一模)当a>1时,在同一坐标系中,函数y=a﹣x与y=log a x的图象()A.B.C.D.考点:函数的图象与图象变化.专题:数形结合.分析:先将函数y=a﹣x化成指数函数的形式,再结合函数的单调性同时考虑这两个函数的单调性即可判断出结果.解答:解:∵函数y=a﹣x可化为函数y=,其底数小于1,是减函数,又y=log a x,当a>1时是增函数,两个函数是一增一减,前减后增.故选A.点评:本题考查函数的图象,考查同学们对对数函数和指数函数基础知识的把握程度以及数形结合的思维能力.3.(4分)若sin2x>cos2x,则x的取值范围是()A.B.C.D.考点:余弦函数的单调性;二倍角的余弦.专题:计算题.分析:sin2x>cos2x化为cos2x﹣sin2x<0,就是cos2x<0,然后求解不等式即可得到x的取值范围.解答:解:因为sin2x>cos2x,所以cos2x﹣sin2x<0,就是cos2x<0解得:2kπ+<2x<2kπk∈Z所以x的取值范围是故选D.点评:本题考查余弦函数的单调性,二倍角的余弦,考查计算能力,是基础题.4.(4分)复数等于()A.B.C.D.考点:复数代数形式的混合运算.分析:利用1的立方虚根的性质化简,然后求得答案.解答:解:复数==.故选B.点评:复数代数形式的混合运算,同时应用1的立方虚根的性质化简;本题是中档题.5.(4分)(2015•广东模拟)如果直线l、m与平面α、β、γ满足:l=β∩γ,l∥α,m⊂α和m⊥γ,那么必有()A.α⊥γ且l⊥m B.α⊥γ且m∥β C.m∥β且l⊥m D.α∥β且α⊥γ考点:空间中直线与平面之间的位置关系.分析:m⊂α和m⊥γ⇒α⊥γ,l=β∩γ,l⊂γ.然后推出l⊥m,得到结果.解答:解:∵m⊂α和m⊥γ⇒α⊥γ,∵l=β∩γ,l⊂γ.∴l⊥m,故选A.点评:本题考查空间直线与平面之间的位置关系,画出图形,帮助分析,考查逻辑思维能力和分析判断能力,基础题.6.(4分)当时,函数f(x)=sinx+cosx的()A.最大值是1,最小值是﹣1 B.最大值是1,最小值是﹣C.最大值是2,最小值是﹣2 D.最大值是2,最小值是﹣1考点:三角函数中的恒等变换应用.分析:首先对三角函数式变形,提出2变为符合两角和的正弦公式形式,根据自变量的范围求出括号内角的范围,根据正弦曲线得到函数的值域. 解答: 解:∵f (x )=sinx+cosx=2(sinx+cosx ) =2sin (x+), ∵,∴f (x )∈[﹣1,2], 故选D 点评: 了解各公式间的内在联系,熟练地掌握这些公式的正用、逆用以及某些公式变形后的应用.掌握两角和与差的正弦、余弦、正切公式及其推导,本题主要是公式的逆用和对三角函数值域的考查.7.(4分)椭圆(θ为参数)的两个焦点坐标是( )A . (﹣3,5),(﹣3,﹣3)B . (3,3),(3,﹣5)C . (1,1),(﹣7,1)D . (7,﹣1),(﹣1,﹣1)考点: 椭圆的参数方程.专题: 计算题.分析: 由题意将椭圆先化为一般方程坐标,然后再计算两个焦点坐标.解答:解:∵椭圆,∴5x ﹣15=15cos φ,3y+3=15sin φ,方程两边平方相加, ∴(5x ﹣15)2+(3y+3)2=152∴,∴椭圆的两个焦点坐标是(3,3),(3,﹣5), 故选B . 点评:此题考查椭圆的性质和焦点坐标,还考查了参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.8.(4分)若,则等于( ) A .B . ﹣C . ﹣2αD . ﹣﹣2α考点:反三角函数的运用. 专题: 计算题. 分析: 利用诱导公式化简,然后根据﹣sin α∈[﹣1,1],反三角函数的运算法则求出结果即可. 解答: 解:=arcsin[﹣sinα]+arccos[﹣sinα]因为﹣sinα∈[﹣1,1]所以,上式=故选A.点评:本题考查反三角函数的运用,诱导公式,是基础题.9.(4分)(2014•广西模拟)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D﹣ABC的体积为()A.B.C.D.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:取AC的中点O,连接DO,BO,求出三角形DOB的面积,求出AC的长,即可求三棱锥D ﹣ABC的体积.解答:解:O是AC中点,连接DO,BO,如图,△ADC,△ABC都是等腰直角三角形,DO=B0==,BD=a,△BDO也是等腰直角三角形,DO⊥AC,DO⊥BO,DO⊥平面ABC,DO就是三棱锥D﹣ABC的高,S△ABC=a2三棱锥D﹣ABC的体积:,故选D.点评:本题考查棱锥的体积,是基础题.10.(4分)等比数列{a n}的首项a1=﹣1,前n项和为S n,若则等于()A.B.﹣C.2D.﹣2考点:等比数列的前n项和;极限及其运算.专题:计算题.分析:根据q5=得到q5,进而求出q.根据等比数列的求和公式,求得S n,最后令n趋近无穷取极限可得到答案.解答:解:∵∴q5===﹣∴q=∴==()•[1﹣()n﹣1]=﹣故选B点评:本题主要考查了等比数列的求和公式的应用.本题巧妙利用了在同一等比数列中项数相等的几组数列仍是等比数列的性质.11.(5分)椭圆的极坐标方程为,则它在短轴上的两个顶点的极坐标是()A.(3,0),(1,B .(,),(,)π)D.(,),(,)C.(2,),(2,)考点:简单曲线的极坐标方程.专题:计算题.分析:利用圆锥曲线统一的极坐标方程,求出圆锥曲线的短轴上的两个顶点位置,从而确定它们的极坐标.解答:解:将原极坐标方程为,化成:极坐标方程为ρ=,对照圆锥曲线统一的极坐标方程得:e=,a=2,b=,c=1.∴它在短轴上的两个顶点的极坐标(2,),(2,).故选C.点评:本题主要考查了圆锥曲线的极坐标方程,属于基础题.12.(5分)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260考点:等差数列的前n项和;等差数列的性质.专题:计算题.分析:利用等差数列的前n项和公式,结合已知条件列出关于a1,d的方程组,用m表示出a1、d,进而求出s3m;或利用等差数列的性质,s m,s2m﹣s m,s3m﹣s2m成等差数列进行求解.解答:解:解法1:设等差数列{a n}的首项为a1,公差为d,由题意得方程组,解得d=,a1=,∴s3m=3ma1+d=3m+=210.故选C.解法2:∵设{a n}为等差数列,∴s m,s2m﹣s m,s3m﹣s2m成等差数列,即30,70,s3m﹣100成等差数列,∴30+s3m﹣100=70×2,解得s3m=210.故选C.点评:解法1为基本量法,思路简单,但计算复杂;解法2使用了等差数列的一个重要性质,即等差数列的前n项和为s n,则s n,s2n﹣s n,s3n﹣s2n,…成等差数列.13.(5分)设双曲线=1(0<a<b)的半焦距为c,直线l过(a,0)(0,b)两点,已知原点到直线l的距离为,则双曲线的离心率为()A.2B.C.D.考点:双曲线的简单性质.专题:计算题;压轴题.分析:直线l的方程为,原点到直线l的距离为,∴,据此求出a,b,c间的数量关系,从而求出双曲线的离心率.解答:解:∵直线l的方程为,c2=a2+b2∴原点到直线l的距离为,∴,∴16a2b2=3c4,∴16a2(c2﹣a2)=3c4,∴16a2c2﹣16a4=3c4,∴3e4﹣16e2+16=0,解得或e=2.0<a<b,∴e=2.故选A.点评:若,则有0<b<a.14.(5分)母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于()A.B.C.D.考点:基本不等式在最值问题中的应用;旋转体(圆柱、圆锥、圆台).专题:计算题;压轴题.分析:利用母线长得到底面半径与高的关系,利用圆锥的体积公式将体积表示成底面半径的函数,将函数凑成乘积为定值的形式,利用基本不等式求函数的最值.解答:解:设圆锥底面半径为r,高为h,则圆锥体积V=πr2•h又∵r2+h2=1∴h=∴圆锥体积V=πr2•=•∵=,当且仅当时,即当时圆锥体积V取得最大值∴侧面展开图圆心角ϕ=2πr=2π•故选择D点评:本题考查利用基本不等式求函数的最值:需要注意满足的条件:一正;二定;三相等.15.(5分)设f(x)是(﹣∞,+∞)上的奇函数,f(x+2)=﹣f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于()A.0.5 B.﹣0.5 C.1.5 D.﹣1.5考点:奇函数.专题:计算题;压轴题.分析:题目中条件:“f(x+2)=﹣f(x),”可得f(x+4)=f(x),故f(7.5)=f(﹣0.5)=﹣f(0.5)=﹣0.5.解答:解:∵f(x+2)=﹣f(x),∴可得f(x+4)=f(x),∵f(x)是(﹣∞,+∞)上的奇函数∴f(﹣x)=﹣f(x).∴故f(7.5)=f(﹣0.5)=﹣f(0.5)=﹣0.5.故选B.点评:本题考查函数的奇偶性、周期性等,抽象函数是相对于给出具体解析式的函数来说的,它虽然没有具体的表达式,但是有一定的对应法则,满足一定的性质,这种对应法则及函数的相应的性质是解决问题的关键.二、填空题(共4小题,每小题4分,满分16分)16.(4分)(2010•柳州三模)已知圆x2+y2+4x+3=0与抛物线y2=2px(p>0)的准线相切,则P=2或6.考点:直线与圆的位置关系;抛物线的简单性质.专题:计算题.分析:先求出准线方程为x=﹣,因为准线与圆相切,得到圆心到准线的距离等于半径,再根据对称性得到,列出方程求出P即可.解答:解:由圆的方程得到圆心坐标为(﹣2,0),半径为1;由抛物线的方程得:准线方程为x=﹣,因为准线与圆相切,所以圆心到准线的距离d=圆的半径r得:d===r=1,解得p=2,p=﹣2(舍去),所以p=2;得到准线方程为x=﹣1,根据对称性得:x=﹣3也和圆相切,所以﹣=﹣3,解得p=6.所以p=2或6.故答案为2或6点评:考查学生掌握直线与圆相切时得到圆心到直线的距离等于圆的半径,以及灵活运用抛物线的简单性质解决数学问题,此题有两种情况,学生容易漏解.17.(4分)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有32个(用数字作答).考点:组合及组合数公式.专题:计算题.分析:正六边形的中心和顶点共7个点,选3个点的共有的方法减去在一条直线上的三点的个数即可.解答:解:正六边形的中心和顶点共7个点,选3个点的共有的方法是:C73=35在一条直线上的三点有3个符合题意的三角形有35﹣3=32个故答案为:32点评:本题考查组合及组合数公式,考查计算能力,逻辑思维能力,是基础题.18.(4分)求值:tan20°+tan40°+tan20°tan40°=.考点:两角和与差的正切函数.专题:计算题;压轴题.分析:利用60°=20°+40°,两角和的正切公式,进行变形,化为所求式子的值.解答:解:tan60°=tan(20°+40°)==tan20°+tan40°+tan20°tan40故答案为:点评:本题考查两角和的正切函数公式的应用,考查计算化简能力,观察能力,是基础题.19.(4分)如图,正方形ABCD所在平面与正方形ABEF所在平面成60°的二面角,则异面直线AD与BF所成角的余弦值是.考点:异面直线及其所成的角.专题:计算题;作图题;压轴题.分析:由题意得,CB⊥AB,AB⊥BE.可得正方形ABCD所在平面与正方形ABEF的二面角即∠CBE=60°,同时也得AB⊥平面BCE,即AB⊥CE,即是EF⊥CE.进而求出CF、FB、BC,即可求出异面直线AD与BF所成角的余弦值.解答:解:由题意得,CB⊥AB,AB⊥BE.可得正方形ABCD所在平面与正方形ABEF的二面角即∠CBE=60°,同时也得AB⊥平面BCE,即AB⊥CE,即三角形CEF为直角三角形和三角形CBE为等边三角形;即是EF⊥CE.设AB=1,则CE=1,CF=,FB=,利用余弦定理,得.故异面直线AD与BF所成角的余弦值是.点评:此题主要考查异面直线的角度及余弦值计算.三、解答题(共6小题,满分69分)20.(7分)解不等式.考点:其他不等式的解法.专题:计算题;分类讨论;转化思想.分析:先由对数函数的单调性转化不等式分a>1时,原不等式等价于不等式组:,0<a<1时,原不等式等价于不等式组:求解.解答:解:①当a>1时,原不等式等价于不等式组:由此得.因为1﹣a<0,所以x<0,∴.②当0<a<1时,原不等式等价于不等式组:解得:综上,当a>1时,不等式的解集为;当0<a<1时,不等式的解集为点评:本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.最后两种结果分开来写.既不取并集也不能取交集.21.(10分)已知△ABC的三个内角A,B,C满足:,求的值.考点:三角函数中的恒等变换应用;三角函数的积化和差公式.专题:计算题.分析:先根据A,B,C的关系求出B的值,再代入到中得到cosA,cosC的关系,根据和差化积及积化和差公式化简,再将cos,cos(A+C)的值代入整理后因式分解,即可求出的值.解答:解:由题设条件知B=60°,A+C=120°.∵,∴将上式化为利用和差化积及积化和差公式,上式可化为将代入上式得将代入上式并整理得,∵,∴从而得点评:本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.22.(12分)如图,在正三棱柱ABC﹣A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1.(1)求证:BE=EB1;(2)若AA1=A1B1;求平面A1EC与平面A1B1C1所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(1)证明:在截面A1EC内,过E作EG⊥A1C,G是垂足.①∵面A1EC⊥侧面AC1∴EG⊥侧面AC1;取AC的中点F,连接BF,FG,由AB=BC得BF⊥AC,②∵面ABC⊥侧面AC1∴BF⊥侧面AC1;得BF∥EG,BF、EG确定一个平面,交侧面AC1于FG.③∵BE∥侧面AC1∴BE∥FG,四边形BEGF是平行四边形,BE=FG,④∵BE∥AA1∴FG∥AA1,△AA1C∽△FGC,⑤∵AF=FC∴,即.考点:与二面角有关的立体几何综合题;棱柱的结构特征.分析:本题考查的知识点是棱柱的结构特征及二面角及其度量,(1)要证BE=EB1;即证E为BB1的中点;由截面A1EC⊥侧面AC1.我们可以在截面A1EC内,过E作EG⊥A1C,G是垂足,则易证FG=BE,我们可转化为FG=,由中位线性质,我们易得答案.(2)分别延长CE、C1B1交于点D,连接A1D.我们易得∠CA1C1是平面A1EC与平面A1B1C1所成锐二面角的平面角,解三角形CA1C1即可得到答案.解答:解:(Ⅰ)①面A1EC⊥侧面AC1②面ABC⊥侧面AC1③BE∥侧面AC1④BE∥AA1⑤AF=FC(Ⅱ)解:分别延长CE、C1B1交于点D,连接A1D.∵EB1∥,∴,∵∠B1A1C1=∠B1C1A1=60°,∠DA1B1=∠A1DB1=(180°﹣∠DB1A1)=30°,∴∠DA1C1=∠DA1B1+∠B1A1C1=90°,即DA1⊥A1C1∵CC1⊥面A1C1B1,即A1C1是A1C在平面A1C1D上的射影,根据三垂线定理得DA1⊥A1C,所以∠CA1C1是所求二面角的平面角.∵CC1=AA1=A1B1=A1C1,∠A1C1C=90°,∴∠CA1C1=45°,即所求二面角为45°点评:本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠CA1C1为所求二面角的平面角,通过解∠CA1C1所在的三角形求得∠CA1C1.其解题过程为:作∠CA1C1→证∠CA1C1是二面角的平面角→计算∠CA1C1,简记为“作、证、算”.23.(12分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷?(精确到1公顷)(粮食单产=,人均粮食占有量=)考点:二项式定理的应用;基本不等式在最值问题中的应用.专题:计算题;压轴题.分析:利用公式粮食单产=,人均粮食占有量=分别求出现在和10 年后的人均粮食占有量再利用已知条件人均粮食占有量比现在提高10%.列出不等式解得.解答:解:设耕地平均每年至多只能减少x公顷,又设该地区现有人口为P人,粮食单产为M吨/公顷.依题意得不等式化简得∵=≈4.1∴x≤4(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷.点评:本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.24.(12分)已知l1、l2是过点P(﹣,0)的两条互相垂直的直线,且l1、l2与双曲线y2﹣x2=1各有两个交点,分别为A1、B1和A2、B2.(1)求l1的斜率k1的取值范围;(2)若|A1B1|=|A2B2|,求l1、l2的方程.考点:直线与圆锥曲线的关系;直线的斜率;斜率的计算公式.专题:计算题;综合题;压轴题.分析:(1)显然l1、l2斜率都存在,设l1的斜率为k1,得到l1、l2的方程,将直线方程与双曲线方程联立方程组,消去y得到关于x的二次方程,再结合根的判别即可求得斜率k1的取值范围;(2)利用(1)中得到的关于x的二次方程,结合根与系数的关系,利用弦长公式列关于k的方程,解方程即可求得k值,从而求出l1、l2的方程.解答:解:(1)显然l1、l2斜率都存在,否则l1、l2与曲线不相交.设l1的斜率为k1,则l1的方程为y=k1(x+).联立得y=k1(x+),y2﹣x2=1,消去y得(k12﹣1)x2+2k12x+2k12﹣1=0.①根据题意得k12﹣1≠0,②△1>0,即有12k12﹣4>0.③完全类似地有﹣1≠0,④△2>0,即有12•﹣4>0,⑤从而k1∈(﹣,﹣)∪(,)且k1≠±1.(2)由弦长公式得|A1B1|=.⑥完全类似地有|A2B2|=.⑦∵|A1B1|=|A2B2|,∴k1=±,k2=.从而l1:y=(x+),l2:y=﹣(x+)或l1:y=﹣(x+),l2:y=(x+).点评:本题主要考查了直线与圆锥曲线的交点,直线和圆锥曲线的位置是解析几何中的一个重点内容,也是一个难点,在高考试题中占有一席之地,属于中档题.25.(16分)已知a,b,c∈R,函数f(x)=ax2+bx+c,g(x)=ax+b,当﹣1≤x≤1时,|f(x)|≤1,求证:①|c|≤1.②当﹣1≤x≤1时,|g(x)|≤2.考点:简单线性规划.专题:压轴题;分类讨论.分析:①中因为C为函数解析式的常数项,则C=f(0),由些证明C的范围可转化为f(0)的范围②中由于a值不确定,因此要对a进行分类讨论,分类标准为a与0的关系;在每种情况中结合g(x)的单调性与①中结论不难给出结论.注意:分类讨论后一定要有总结的过程,此步骤虽无实际作用,但不可缺少.解答:证明:①∵当﹣1≤x≤1时,|f(x)|≤1,令x=0得|c|=|f(0)|≤1,即|c|≤1.②当a>0时,g(x)=ax+b在[﹣1,1]上是增函数,∴g(﹣1)≤g(x)≤g(1),又∵|f(x)|≤1(﹣1≤x≤1),|c|≤1,∴g(1)=a+b=f(1)﹣c≤|f(1)|+|c|≤2,g(﹣1)=﹣a+b=﹣f(﹣1)+c≥﹣(|f(﹣1)|+|c|)≥﹣2,由此得|g(x)|≤2;同理当a<0时,g(x)=ax+b在[﹣1,1]上是减函数,∴g(﹣1)≥g(x)≥g(1),又∵|f(x)|≤1(﹣1≤x≤1),|c|≤1,∴g(﹣1)=﹣a+b=﹣f(﹣1)+c≤|f(﹣1)|+|c|≤2,g(1)=a+b=f(1)﹣c≥﹣(|f(1)|+|c|)≥﹣2,由此得|g(x)|≤2;当a=0时,g(x)=b,f(x)=bx+c.∵﹣1≤x≤1,∴|g(x)|=|f(1)﹣c|≤|f(1)|+|c|≤2.综上得|g(x)|≤2.点评:在高中阶段由于研究函数的角度与初中阶段相比有所变化,因此同样对二次函数来说,高中研究的主要是二次函数性质的应用,如单调性、对称性等,因此解决此类问题的关键是熟练掌握二次函数的图象和性质,并注意和方程思想、分类讨论思想、转化思想、数形结合思想等高中重要数学思想之间的紧密联系.。

1996年全国高考数学试题

1996年全国高考数学试题

一九九六年全国高考数学试题理科试题一.选择题:本题共15个小题;第(1)-(10)题每小题4分,第(11)-(15)题每小题5分,共65分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知全集I=N ,集合},2|{N n n x x A ∈==,},4|{N n n x x B ∈==。

则 ( C )(A )B A I ⋃= (B )B A I ⋃= (C )B A I ⋃= (D )B A I ⋃=(2)当1>a 时,在同一坐标系中,函数x a y -=与x y a log =的图象是 ( A )(3)若x x 22cos sin >,则x 的取值范围是 ( D )(A )},412432|{Z k k x k x ∈π+π<<π-π(B )},452412|{Z k k x k x ∈π+π<<π+π(C )},4141|{Z k k x k x ∈π+π<<π-π(D )},4341|{Z k k x k x ∈π+π<<π+π(4)复数54)31()22(i i -+等于 ( B )(A )i 31+ (B )i 31+- (C )i 31- (D )i 31--(5)如果直线l 、m 与平面α、β、γ满足:α⊂αγ⋂β=m l l ,//,和γ⊥m ,那么必有 ( A )(A) y (B) y (C) y (D) yx(A )γ⊥α且m l ⊥ (B )γ⊥α且β//m (C )β//m 且m l ⊥ (D )βα//且γ⊥α(6)当22π≤≤π-x 时,函数x x x f cos 3sin )(+=的 ( D ) (A )最大值是1,最小值是-1 (B )最大值是1,最小值是21- (C )最大值是2,最小值是-2 (D )最大值是2,最小值是-1 (7)椭圆⎩⎨⎧ϕ+-=ϕ+=.sin 51,cos 33y x 的两个焦点坐标是 ( B )(A )(-3,5),(-3,-3) (B )(3,3),(3,-5) (C )(1,1),(-7,1) (D )(7,-1),(-1,-1)(8)若20π<α<,则)](arccos[sin )]2(arcsin[cos α+π+α+π等于 ( A ) (A )2π (B )2π- (C )α-π22 (D )α-π-22(9)将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD=a ,则三棱锥D-ABC 的体积为 ( D )(A )63a (B )123a (C )3123a (D )3122a(10)等比数列}{n a 的首项11-=a ,前n 项和为n S ,若3231510=S S ,则nn S ∞→lim 等于 ( B ) (A )32 (B )32- (C )2 (D )-2 (11)椭圆的极坐标方程为θ-=ρcos 23,则它在短轴上的两个顶点的极坐标是 ( C )(A )(3,0),(1,π) (B )(2,3π),(23,3π) (C )(2,3π),(2,35π) (D )(23,7arctg ),(232,7arctg -π)(12)等差数列}{n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为 ( C ) (A )130 (B )170 (C )210 (D )260(13)设双曲线)0(12222b a by a x <<=-的半焦距为c ,直线l 过(a ,0),(0,b )两点。

1996年全国高考数学(理科)试题

1996年全国高考数学(理科)试题

1996年全国统一高考数学试卷(理科数学)一、选择题: 本大题共15小题:第1-10题每小题4分,第11-15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集I N =,集合{}2,A x x n n N ==∈,{}4,B x x n n N ==∈,则 A.I A B = B.()I I C A B = C.()I I A C B = D.()()I I I C A C B =2.当1a >时,在同一坐标系中,函数x y a -=与log a y x =的图象3.若22sin cos x x>,则x 的取值范围是A. 322,44x k x k k z ππππ⎧⎫-<<+∈⎨⎬⎩⎭ B. 522,44x k x k k z ππππ⎧⎫+<<+∈⎨⎬⎩⎭C. ,44x k x k k z ππππ⎧⎫-<<+∈⎨⎬⎩⎭D. 3,44x k x k k z ππππ⎧⎫+<<+∈⎨⎬⎩⎭44等于 A.1+ B. 1-+ C. 1- D. 1- 5.如果直线,l m 与平面,,αβγ满足:l βγ=,l ∥α,m α⊂和m γ⊥,那么必有A.αγ⊥且l m ⊥B.αγ⊥且m ∥βC.m ∥β且l m ⊥D.α∥β且αγ⊥ 6.当22x ππ-≤≤时,函数()sin f x x x =的A. 最大值是1,最小值是1-B. 最大值是1,最小值是12-C. 最大值是2,最小值是2-D. 最大值是2,最小值是1-7.椭圆33cos 15sin x y θθ=+⎧⎨=-+⎩(θ为参数)的两个焦点坐标是A.(3,5)-,(3,3)-B. (3,3),(3,5)-C. (1,1),(7,1)-D. (7,1),(1,1)-- 8.若02πα<<,则arcsin[cos()]arccos[sin()]2παπα+++等于 A.2πB. 2π-C. 22πα-D. 22πα--9.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD a =,则三棱锥D ABC -的体积为A.36aB. 312aC. 312D. 31210.等比数列{}n a 的首项11a =-,前n 项和为n S ,若1053132S S =,则lim n n S →∞等于A.23 B . 23- C. 2 D. 2- 11.椭圆的极坐标方程为32cos ρθ=-,则它在短轴上的两个顶点的极坐标是A.(3,0),(1,)πB.(3,)2π,3)2πC.(2,)3π,5(2,)3πD. )2,2arctan )2π- 12.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为 A.130 B. 170 C. 210 D. 26013.设双曲线22221x y a b-=(0a b <<)的半焦距为c ,直线l 过(,0),(0,)a b 两点,已知原点到直线l的距离为4,则双曲线的离心率为 A.214.母线长为l 的圆锥体积最大时,其侧面展开图圆心角ϕ等于A.315.设()f x 是(,)-∞∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时()f x x =, 则(7.5)f 等于A. 0.5B. 0.5-C. 1.5D. 1.5- 二、填空题(共4小题,每小题4分,满分16分)16.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p =__ . 17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个(用数字作答).18.求值:tan 20tan 403tan 20tan 40++=_______ .19.如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60的二面角,则异面直线AD 与BF 所成角的余弦值是 ____ . 三、解答题:本大题共6小题,共65分.解答应写出文字说明、证明过程或推演步骤.20.(本小题满分11分)解不等式1log (1)1a x ->.21.(本小题满分12分)已知ABC ∆的三个内角,,A B C 满足:2A C B +=,11cos cos cos A C B+=-,求cos2A C-的值. 22.(本小题满分12分)如图,在正三棱柱111ABC A B C -中,E 在1BB 上, 截面1A EC ⊥侧面11AAC C .(1)求证:1BE EB =;注意:在下面横线上填写适当内容,使之成为(1)的完整证明,并解答(2). (1)证明:在截面1A EC 内,过E 作1EG A C ⊥,G 是垂足. ①∵ _________ABCD E FABCEA 1B 1C 1∴EG ⊥侧面1AC ;取AC 的中点F ,连接,BF FG ,由AB BC =,得BF AC ⊥, ②∵ _________∴BF ⊥侧面1AC ;得BF ∥EG ,BF 、EG 确定一个平面,交侧面1AC 于FG . ③∵ _________∴BE ∥FG ,四边形BEFG 是平行四边形,BE FG =, ④∵ _________∴FG ∥1AA ,1AA C ∆∽FGC ∆,⑤∵ _________∴111122FG AA BB ==,112BE BB =,故1BE EB =(2)若111AA A B =;求平面1A EC 与平面111A B C 所成二面角(锐角)的度数. 23.(本小题满分10分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷?(精确到1公顷)(粮食单产=总产量/耕地面积,人均粮食占有量=总产量/总人口数) 24.(本小题满分12分)已知1l ,2l 是过点(P 的两条互相垂直的直线,且1l ,2l 与双曲线221y x -=,各有两个交点,分别为1A ,1B 和2A ,2B . (1)求1l 的斜率1k 的取值范围;(2)若1122A B B =,求1l ,2l 的方程. 25.(本小题满分12分)已知,,a b c R ∈,函数2()f x ax bx c =++,()g x ax b =+,当11x -≤≤时,()1f x ≤. (1)证明:1c ≤;(2)证明:当11x -≤≤时,()2g x ≤;(3)设0a >,当11x -≤≤时,()g x 的最大值为2,求()f x .。

精编版-1996年安徽高考理科数学真题及答案

精编版-1996年安徽高考理科数学真题及答案

1996年安徽高考理科数学真题及答案本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题;第(1)(10)题每小题4分,第(11)(15)题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集I=N,集合A={x │x=2n,n ∈N},B={x │x=4n,n ∈N},则B A I )D (B A I )C (B A I )B (B A I )A (⋃=⋃=⋃=⋃=[Key] C(1)已知全集I=N,集合A={x │x=2n,n ∈N},B={x │x=4n,n ∈N},则B A I )D (B A I )C (B A I )B (B A I )A (⋃=⋃=⋃=⋃=[Key] C(3)若sin 2x>cos 2x,则x 的取值范围是}Z k ,43k x 41k 2|x ){D (}Z k ,43k x 41k |x ){C (}Z k ,45k 2x 41k 2|x ){B (}Z k ,41k 2x 43k 2|x ){A (∈π+π<<π+π∈π+π<<π-π∈π+π<<π+π∈π+π<<π-π[Key] D(4)复数)i 31()i 22(4-+等于i 31)D (i 31)C (i 31)B (i 31)A (---+-+[Key] B5)如果直线l 、m 与平面α、β、γ满足:l=β∩γ,l//α,m ⊂α和m ⊥γ那么必有(A)α⊥γ且l ⊥m (B)α⊥γ且m ∥β(C)m ∥β且l ⊥m (D)α∥β且α⊥γ[Key] A(6)当2x 2π≤≤π-,函数x cos 3x sin )x (f +=的(A)最大值是1,最小值是-1(B)最大值是1,最小值是-(1/2)(C)最大值是2,最小值是-2(D)最大值是2,最小值是-1[Key] D(7)椭圆⎩⎨⎧ϕ+-=ϕ+=sin 51y cos 33x 的两个焦点坐标是(B)(A)(-3,5),(-3,-3) (B)(3,3,),(3,-5)(C)(1,1,),(-7,1) (D)(7,-1,),(-1,-1)(8)若2a 0π<<,则)]a (arccos[sin )]a 2(arcsin[cos +π++π等于a 22)D (a 22)C (2)B (2)A (-π--ππ-π[Key] A(9)将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD=a,则三棱锥D-ABC 的体积为3333a 122)D (a 123)C (12a )B (6a )A ([Key] D(10)等比数列{a n }的首项a 1=-1,前n 项的和为S n ,若3231S S 510=,则n n S lim ∞→等于2)D (2)C (32)B (32)A (--[Key] B(11)椭圆的极坐标方程为θ-=ρcos 23,则它在短轴上的两个顶点的极坐标是)23arctg 2,7)(23arctg ,7)(B ()35,2)(3,2)(B ()23,3)(2,3)(B (),1)(0,3)(A (-ππππππ [Key] C(12)等差数列{a n 的前m 项和为30,前2m 项和为100,则它的前3m 项和为(A)130 (B)170 (C)210 (D)260[Key] C(13)设双曲线)b a 0(1b y a x 2222<<=+的半焦距为c ,直线l 过两点(a,0)(0,b)。

1996年普通高等学校招生全国统一考试数学试卷(理)及答案

1996年普通高等学校招生全国统一考试数学试卷(理)及答案

1996年普通高等学校招生全国统一考试数 学(理工农医类)第 Ⅰ 卷一.选择题:本大题共15小题,1—10小题每小题4分,11—15小题每小题5分,共65分。

在每一小题给出的四个结论,只有一个结论是满足条件的。

1.已知全集I =N ,集合A ={ x |x =2n , n ∈N }, B ={ x |x =4n , n ∈N },则 A .I =A B B .I =B A C .I =B A D .I =B A2.当a >1时,在同一坐标系中,函数y =x a -与y =x log a 的图象是 A B C D 3.若x cos x sin 22>,则x 的取值范围是A .},412432|{Z k k x k x ∈+-ππππ<< B .},452412|{Z k k x k x ∈++ππππ<<C .},4141|{Z k k x k x ∈+-ππππ<<D .},4341|{Z k k x k x ∈++ππππ<<4.复数54)31()22(i i -+等于A .1+3iB .-1+3iC .1-3iD .-1-3i5.如果直线l 、m 与平面γβα、、满足:l =γβ ,l ∥α,m α⊂和m ⊥γ,那么必有 A .α⊥γ且l ⊥m B .α⊥γ且m ∥βC .m ∥β且l ⊥mD .α∥β且α⊥γ 6.当22ππ≤≤x -时,函数f (x )=sin x +3cos x 的A .最大值是1,最小值是-1B .最大值是1,最小值是-21C .最大值是2,最小值是-2D .最大值是2,最小值是-1 7.椭圆{ϕϕsin y cos x 5133+-+== 的两个焦点坐标是A .(-3,5),(-3,-3)B .(3,3),(3,-5)C .(1,1),(-7,1)D .(7,-1),(-1,-1) 8.若0<α<2π,则arcsin [cos (απ+2)]+arccos [sin (απ+)]等于A .2πB .-2πC .απ22- D .-απ22-9.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为 A .361a B .3121a C .3123a D .3122a 10.等比数列的首项为-1,前n 项和为n S ,若3231510=S S ,则n n S lim ∞→=A .32 B .-32C .2D .-2 11.椭圆的极坐标方程为θρcos -23=,它在短轴上的两个顶点的极坐标是A .(3,0),(1,π)B .)233()23(ππ,,,C .)352()32(ππ,,, D .)232,7(),23,7(arctg arctg -π 12.等差数列的前m 项和为30,前2m 项和为100,则它的前3m 项和为A .130B .170C .210D .26013.设双曲线2222by a x -=1(0<a <b )的半焦距为c ,直线l 过(a , 0), (0, b )两点。

高考理科数学试题及答案1996

高考理科数学试题及答案1996

高考理科数学试题及答案(考试时间:120分钟试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+() A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为() A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是()A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =()A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为()A .2B .3C .2D .2310. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为()A.1-B.32e --C.35e -D.111. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为()A .32 B .155 C .105D .33 12. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。

高考_1996年天津高考理科数学真题及答案

高考_1996年天津高考理科数学真题及答案

1996年天津高考理科数学真题及答案本试卷分第一卷(选择题)和第二卷(非选择题)两局部.共150分,考试时间120分钟.第一卷(选择题共65分)一、选择题:本大题共15小题;第(1) (10)题每题4分,第(11) (15)题每题5分,共65分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.(1)全集I=N,集合A={x │x=2n,n ∈N},B={x │x=4n,n ∈N},那么B A I )D (B A I )C (B A I )B (B A I )A (⋃=⋃=⋃=⋃=[Key] C(1)全集I=N,集合A={x │x=2n,n ∈N},B={x │x=4n,n ∈N},那么B A I )D (B A I )C (B A I )B (B A I )A (⋃=⋃=⋃=⋃=[Key] C(3)假设sin 2x>cos 2x,那么x 的取值范围是}Z k ,43k x 41k 2|x ){D (}Z k ,43k x 41k |x ){C (}Z k ,45k 2x 41k 2|x ){B (}Z k ,41k 2x 43k 2|x ){A (∈π+π<<π+π∈π+π<<π-π∈π+π<<π+π∈π+π<<π-π[Key] D(4)复数)i 31()i 22(4-+等于i 31)D (i 31)C (i 31)B (i 31)A (---+-+[Key] B5)如果直线l 、m 与平面α、β、γ满足:l=β∩γ,l//α,m ⊂α和m ⊥γ那么必有(A)α⊥γ且l ⊥m (B)α⊥γ且m ∥β(C)m ∥β且l ⊥m (D)α∥β且α⊥γ[Key] A(6)当2x 2π≤≤π-,函数x cos 3x sin )x (f +=的(A)最大值是1,最小值是-1(B)最大值是1,最小值是-(1/2)(C)最大值是2,最小值是-2(D)最大值是2,最小值是-1[Key] D(7)椭圆⎩⎨⎧ϕ+-=ϕ+=sin 51y cos 33x 的两个焦点坐标是(B)(A)(-3,5),(-3,-3) (B)(3,3,),(3,-5)(C)(1,1,),(-7,1) (D)(7,-1,),(-1,-1)(8)假设2a 0π<<,那么)]a (arccos[sin )]a 2(arcsin[cos +π++π等于a 22)D (a 22)C (2)B (2)A (-π--ππ-π[Key] A(9)将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD=a,那么三棱锥D-ABC 的体积为3333a 122)D (a 123)C (12a )B (6a )A ([Key] D(10)等比数列{a n }的首项a 1=-1,前n 项的和为S n ,假设3231S S 510=,那么n n S lim ∞→等于2)D (2)C (32)B (32)A (--[Key] B(11)椭圆的极坐标方程为θ-=ρcos 23,那么它在短轴上的两个顶点的极坐标是)23arctg 2,7)(23arctg ,7)(B ()35,2)(3,2)(B ()23,3)(2,3)(B (),1)(0,3)(A (-ππππππ [Key] C(12)等差数列{a n 的前m 项和为30,前2m 项和为100,那么它的前3m 项和为(A)130 (B)170 (C)210 (D)260[Key] C(13)设双曲线)b a 0(1b y a x 2222<<=+的半焦距为c ,直线l 过两点(a,0)(0,b)。

【高考数学试题】1996年普通高等学校招生全国统一考试.理科数学试题及答案

【高考数学试题】1996年普通高等学校招生全国统一考试.理科数学试题及答案

【高考数学试题】1996年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一、选择题:本大题共15小题;第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集I=N,集合A={x│x=2n,n∈N},B={x│x=4n,n∈N},则(A)I=A∪B (B)I=∪B(C)I=A∪(D)I=∪(2)当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象是(3)若sin2x>cos2x,则x的取值范围是(A){x|2kπ-3/4π<x<2kπ+1/4π,k∈Z} (B){x|2kπ+1/4π<x<2kπ+5/4π,k∈Z}(C){x|kπ-1/4π<x<kπ+1/4π,k∈Z} (D){x|kπ+1/4π<x<kπ+3/4π,k∈Z}(4)复数(2+2i)4/(1-i)5(A)1+ i (B)-1+ i (C)1- i (D)-1- i(5)如果直线l、m与平面α、β、γ满足:l=β∩γ,l∥α,mα和m⊥γ(A)α⊥γ且l⊥m (B)α⊥γ且m∥β(C)m∥β且l⊥m (D)α∥β且α⊥γ(6)当-π/2≤x≤π/2,函数f(x)=sinx+cosx的(A)最大值是1,最小值是-1(B)最大值是1,最小值是1/2(C)最大值是2,最小值是-2(C)最大值是2,最小值是-1(7)椭圆的两个焦点坐标是(A)(-3,5),(-3,-3)(B)(3,3),(3,-5)(C)(1,1),(-7,1)(D)(7,-1),(-1,-1)(8)若0<a<π/2,则arcsin[cos(π/2+a)]+arccos[s in(π+a)]等于(A)π/2(B)-π/2(C)π/2-2a(D)-π/2-2a(9)将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D-ABC的体积为(A)a3/6(B)a3/12(C)(/12)a3(D)(/12)a3(10)等比数列{a n}的首项a1=-1,前n项和为S n,若S10/S5=31/32,则limS n等于(A)2/3(B)-2/3(C)2(D)-2(11)椭圆的极坐标方程为ρ=3/(2-cosθ),则它在短轴上的两个顶点的极坐标是(A)(3,0),(1,π)(B)(,π/2),(,3π/2)(C)(2,π/3),(2,5π/3)(D)(,arctg(/2)),(,2π-arctg(/2))(12)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为(A)130 (B)170 (C)210 (D)260(13)设双曲线x2/a2-y2/b2=1(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点,已知原点到直线l的距离为/4c,则双曲线的离心率为(A)2 (B)(C)(D)2/3(14)母线长为1的圆锥体积最大时,其侧面展开图圆心角ψ等于(A)2 /3 π(B)2/3π(C)π(D)2/3π(15)设f(x)是(-∞,+∞)上的奇函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于(A)0.5 (B)-0.5(C)1.5 (D)-1.5第Ⅱ卷(非选择题共85分)二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(16)已知圆07622=--+x y x 与抛物线)0(22>=p px y 的准线相切,则P= (17)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个(用数字作答) (18) 40tg 20tg 340tg 20tg ++的值是(19)如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线AD 与BF 所成角的余弦值是三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.(20)解不等式1)11(log >-x a . (21)已知△ABC 的三个内角A ,B ,C 满足:BC A B C A cos 2cos 1cos 1,2-=+=+,求2c os C A -的值.22.如图,在正三棱柱ABC -A 1B 1C 1中,E ∈BB 1,截面A 1EC ⊥侧面AC 1.(Ⅰ)求证:BE =EB 1;(Ⅱ)若AA 1=A 1B 1;求平面A 1EC 与平面A 1B 1C 1所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(右下图)(Ⅰ)证明:在截面A 1EC 内,过E 作EG ⊥A 1C ,G 是垂足.① ∵∴EG ⊥侧面AC 1;取AC 的中点F ,连结BF ,FG ,由AB =BC 得BF⊥AC ,② ∵∴BF ⊥侧面AC 1;得BF ∥EG ,BF 、EG 确定一个平面,交侧面AC 1于FG .③ ∵∴BE ∥FG ,四边形BEGF 是平行四边形,BE =FG ,④ ∵∴FG ∥AA 1,△AA 1C ∽△FGC ,⑤ ∵ ∴112121BB AA FG ==,即11,21EB BE BB BE ==故 23.某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=耕地面积总产量,人均粮食占有量=总人口数总产量) 24.已知l 1、l 2是过点)0,2(-P 的两条互相垂直的直线,且l 1、l 2与双曲线122=-x y 各有两个交点,分别为A 1、B 1和A 2、B 2.(Ⅰ)求l 1的斜率k 1的取值范围;(Ⅱ)若12211,5l B A B A 求=、l 2的方程25.已知a 、b 、c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时,│f (x )│≤1. (Ⅰ)证明:│c │≤1;(Ⅱ)证明:当-1≤x ≤1时,│g (x )│≤2;(Ⅲ)设a >0,当-1≤x ≤1时,g (x )的最大值为2,求f (x ).1996年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数.。

1996年数二真题及解析

1996年数二真题及解析

1996年理工数学二试题、填空题(3)微分方程y" + 2r+5v = 0的通解为 ___________” I 寸I 丄](4)liiiiT sin In 1 + —-sin In 1 + —=_____ .f L I x丿l工丿」(5)由曲线v = x += 2及所围图形的面积3=二、选择题(1)设吗—0时.e x-(ax2+bx + l)杲比+高阶的无穷小* WJ(A)C二丄』= 1. (B) d = Lb = l2(C) a = -—.Z> = -1 (D) a= -LZ> = 12(D设函g(/(l)在区间(一尻叭内育宦乙若当XE{—/$)时*恒有|/(X)|<,V2.则.20必是/(V)(A)间断点一(B)连续而不可导的点(C)可导的点.且/(0)= 0 (D)可导的点,/(0)#0<3)设/(X)处处可导.则(A)当lim f(,v) = 必有lim /' (x) =(B)当lim f (工)=,必有lim y (x) = -co,(C)当lim /(x) = Y),必有lim f' (x) = +叫X—>-hx L ■X—>-KD(D)当lim / (x) = -HO.f必有lim f (x) = -F°O,斗f+OD 丄-' X->+0D丄丄(4)在区间(Y\*o)内,方程卜卩+卜卩一COS.Y = 0(A)无实根. (B)有且仅有一个实根(C)有且仅有两个实根(D)有无穷多个实根(5)设/(.v).g(x)在区间[eb]上连续,且g(x)<(山为常数),由曲线y = g(.v),y = = aRx = b所围成平面图形绕直线y = m旋转而成的旋转体积为(A)£^[2;n-/(.v) + g(x)][/(.v)-g(x)]rfY.(B)£^[2w-/(x)-g(x)][/(x)-g(x)]rfr,(C) f 7r[〃—/(x) + g(x)][/(.Y)-g(x)]*,(D) f 兀/(x)-g(x)][/(x)-g(x)]此三、计算jjjl 一严風求丿宀J 1 + Sill X1 —x⑷求函数/(*) = ——在* = 0点处带拉格朗日型余项的〃阶泰勒展开式. l + .v(5)求微分方程V* + = X2的通解.(6)设有一正椭圆柱体•氏底而得长、短分别为2d.2b.用过此柱体底面得短轴与底而成&角〔0 < a <彳的平面截此柱体,得一楔形体(如图),求此楔形体的体积7.四、计算不定积分J1-2.Y2,.V<-1五、设函数/(.丫)= { .0,- 1S.YW2⑶设U=[/e2)T,其中/(//)具有二阶导数,且/(町工0,求匚12x-16,x>2■(1)写出/(.Y)的反函数g(X)的表达式;(2)g(.Y)是否有间断点、不可导点,若有,指出这些点.六、设函数y = y(x)由方程2/-2r2 + 2.n-x2= 1所确定,试求y = y(x)的驻点,并判别它是否为极值点.七、设/(x)在区间[彳对上具有二阶导数,且/(n) = /(Z)) = 0./(n)/(Z))>0,证明: 存在gw(a,b)和〃w(d.b),使/(4) = 0 及 /'(7/) = 0.八、设/(.丫)为连续函数,v +av = /(X)(•的解/(.v),其中d是正常数;(2)若|/(x)|<Ar (斤为常数),证明:当20时,有卜(.丫)|/(1 一严)•答案解析【答】3( 「—兰【详解】v = x e 2* 1 +(? 2【答】2.【详解】=0+2=2v = e~x ( C\ cos 2x 4- C\ sill 2x ).【详解】特征方程zl2 + 2/ + 5 = 0的解为A=-l±2i t 所以通解为y =尹(C\ cos 2x + C2 sin 2x)所以【答】 2.【详解】方法令丄=人则由洛必达法则知原式=sin h】(1 十3/) - sin In (1 + r)lim -------- ------- --------- ---- =3=lim cos In (1 + 3r) ------ c os In (11+ 3/=lim20(1 + 3/ 1 + H方法二:直接利用三角函数和差化积公式.原式=r1+-( ?Ill=lim 2x sill —X—lini2xsin111十1+—Illcos—【详解】r->0=lim 2x-sin --------XTOO* +1【答】应选(A ) 【详解】 方法一: 由于x —>0时丫『=1 + X-I-丄,4-O ( X 2(1 \ ,『_(加丰加+ 1)(1 —小十x-^o(x 2)则由 lim —— ---- ---- --------- L 二]lin ------------" 丿 ----X —*-0斗 3JtfQ片2=0必有1一5二0、丄一 <7 = 02解得 a — —^b — Y.9方法二『一 (c'+M + l) ir e x -2ax-b[<.| Inn -------------- ; -------- = Inn ------------------ . I AJ x->0 i- r->0又 li 】u2x = (h linj(『-2ar —b) = l-b 所以存=丄一■7原式=limXf 0— 2ax — b2A -x->0jr-^O2【答】应选(C ). 【详解】由定义由题设必有 /(O ) = O因此/(O) = O【答】应选(D ). 【详解】方法一: 利用举反例排除不正确选项.令/(x) = x,则 lim /(x) = ±oo,{H/(x) = l,可见(A)、(C)均不正确.x —>±oo因而只有(D )是正确选项. 方法二:若 lim/(x) = +oo,贝 ij 存在 M>0 及 %>0,当 x > x 0 时,/ (A J > M 于是当x > x Q 时,有从而右/(X )>/(X O ) + M(X -X O )T +S (XT +^)血/(小/(0)=讪出Xf °X° x= lim^^x = O,x —O f(4)【答】应选(C)【详解】令/(x) = |xp +|xp -cosx,由于/(-x) = /(x),故/(X)为偶函数.因此只需考虔/(x) = 0在(0、+oo)内的实根情况. 当xno时,/(X)=丄兀■*+丄X 2 +S1DX八4 2可见,当xe 0冷)时,f (x)>0』(x)在| 0冷)内单调增加,且/(0) = -1, /(彳)>「因此/(x) = 0在(0,彳)上有唯•实根:当时,/(x)>0,故在(0,+oo)上/(x)仅存在唯•实根根据/(兀)关于y轴对称的性质./(x) = 0在(YO,+8)上有且仅有两个实根.(5)【答】应选(B)【详解】因为穴[2 加-/(x)-g(x)]”(x)-g(x)M-所以正确选项应为(B)方法二J0T )【it 縮】方法■:原式=rta2空竺卅二任丄dr-f 沁注 sinr ・ TsinrAT ” r , i t _COST j令 e = sin r,则 dx = ------ dtsinr原式=方法令Jl_严=t,则 原式=亜八£ /T /7= -ln (cscr-i-cott )| J --- = ln (2 + >/5)--—< 2 ' 1 2-f+ ln (2 + d )xsoo 「soofs nIIII 娄I I(4)■【详解】/(X)在在x = 0点处带拉格朗日型余项的n阶泰勒展开式为:/(x) = /(0)+/(0)x+lr(0)x2+-+^/(-)(0)x"梵中0<&<1・可见.关键爬求出/(x)在在x = 0点的斤阶导数广(0)* = 0丄2,…,+ 1由于2/⑴诂7 严⑴= ^^(21,2,7 + 1)(1 + x)所以/(x) = l-2x+2x2+--+(-l)"2r"+(-l)"*1【详解】对应的齐次方程的待征方程为:l2+z=O 解得几=0,几=一1故齐次方程的通解为尹=C] + C2e~x设非齐次方程的特解为:x(ax2+bx+c),代入原方程,得a =—.b = —l.c = 2,3因此•原方程得通解为V = —X’ — .V* + 2x + G + C\e r•» A 厶—^严他)严(卄1)!2严(1+ &X)(6)【谦解】方法•: 底血椭圆的方程为:计以垂直于y 轴的平行平面截此楔形体所得的截面为□角三角形,其•直角边为故哉面面积为楔形体积为方法二:2、底而椭圆的方程为二+买=1,以垂宜于X 轴平行平面截此楔形体所得的截面为矩形,楔形体的体积sb)壬tail a令•边长为xtana.故截面面积S(x) = 2bxtail a,令泊角边长为山1」 tana.其边长为2y = 2b四、[Wl方法■:f arct^n x .> arctan x . ? arctan A . ;1 讥--(arctan.r)' 工(l + F) 2x + 16 12(2)由于函数/⑴在(Y>,仙)内单调增加且连無 故反两数&(兀)在在(TD,柯)内单调Cretan x arctail x arctan A 1I arctan A -)'arctanx 11 y- —(arctanx)" +—In --- + C2 2 14-x'方法-1> x 二 tail mi[原式=-iVr = -rcotr+ (cos ^rfr -丄F* sinf 2 = -f cot f + lnsmr|--r +Caictaii Tx I yl ] 牡』 ’——(arctan A )-+ ln Vl+x^ 五、【订解】U )山趙设’ _广(耳)的反函数対g(jc) = * Vv,-l<x<8增加)1连续.没有间斷点,由于/(0) = 0,且/(0)= 0,故.V = 0尼&(门的不可导点./(-1)= -1和/(2)=8是g(H的两个可繼的不可导点,由于/(-1-0)^4,/(-1+0) = 3,所= 的不可导点.因此畧⑴在/(H)=-i处不可导;又/2(-l+0) = /(2-0) = 12s故/(x)在兀=2处可导.因此宕(工)在x = f(2) = 3处可导一、亠八、[L T<1对原方程两边求导.簿3y1 v — 2 vy + xy + v—工=0.令”=0・^v = x.代入原方程,有2 A3 -JT -1 = 0从,而禅得唯,的咗点X = 1在O式两边对工求导得(3y2- 2y + .v) j' + 2(3y-l)r2+ 2v -1 = 0.伙I此=丄:>0W)7故驻点X =1J6JZ =y(x)的扱小点.七、科不存在歹亡(码叭,使才(痔)亠则在区间(仏0)内恒有f(X)>0或/(工)CO,不妨iit/(x)>0 UJ/(x)<0,类緞可证}・则C\ r/{町“f 5 = hm -------------------- = lun -------- < 0,r—扩x-b八斫(叭Urn仪k。

高考数学普通高等学校招生全国统一考试96

高考数学普通高等学校招生全国统一考试96

高考数学普通高等学校招生全国统一考试96本试卷分选择题和非选择题两部分..共4页;满分150分.考试时间120分钟. 注意事项:1.答卷前;考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号写在答题卡上.用2B 铅笔将答题卡试卷类型(B )涂黑。

2.每小题选出答案后;用铅笔把答题卡上对应题目的答案标号涂黑;如需改动;用像皮擦干净后;再选涂其它答案;不能答在试题卷上.3.考试结束;监考人将本试卷和答题卡一并收回.第一部分 选择题(共50分)一、选择题:本大题共10小题;每小题5分;共50分.在每小题给出的四个选项中;只有一项是符合题目要求的1、函数2()lg(31)f x x ++的定义域是A.1(,)3-+∞B. 1(,1)3-C. 11(,)33-D. 1(,)3-∞- 2、若复数z 满足方程220z +=;则3z =A.±B. -C. -D. ± 3、下列函数中;在其定义域内既是奇函数又是减函数的是A.3 ,y x x R =-∈B. sin ,y x x R =∈C. ,y x x R =∈D. x 1() ,2y x R =∈ 4、如图1所示;D 是ABC ∆的边AB 上的中点;则向量CD =A.12BC BA -+B. 12BC BA --C. 12BC BA -D. 12BC BA +5、给出以下四个命题:①如果一条直线和一个平面平行;经过这条直线的平面和这个平面相交;那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直;那么这条直线垂直于这个平面 ③如果两条直线都平行于一个平面;那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线;那么这两个平面互相垂直. 其中真命题的个数是A.4B. 3C. 2D. 1 6、已知某等差数列共有10项;其奇数项之和为15;偶数项之和为30;则其公差为A.5B.4C. 3D. 2 7、函数()y f x =的反函数1()y f x -=的图像与y轴交于点ACB 图1(0,2)P (如图2所示);则方程()0f x =在[1,4]上的根是x =A.4B.3C.8、已知双曲线2239x y -=;则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于B.C. 2D. 4 9、在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下;当35x ≤≤时;目标函数32z x y =+的最大值的变化范围是A.[6,15]B. [7,15]C. [6,8]D. [7,8] 10、对于任意的两个实数对(,)a b 和(,)c d ;规定:(,)(,)a b c d =;当且仅当,a c b d ==;运算“⊗”为:(,)(,)(,)a b c d ac bd bc ad ⊗=-+;运算“⊕”为:(,)(,)(,)a b c d a c b d ⊕=++;设,p q R ∈;若(1,2)(,)(5,0)p q ⊗=;则(1,2)(,)p q ⊕=A.(4,0)B. (2,0)C. (0,2)D. (0,4)-第二部分 非选择题(共100分)二、填空题:本大题共4小题;每题5分;共20分. 11、2241lim()42x x x →--=-+________. 12、棱长为3的正方体的顶点都在同一球面上;则该球的表面积为______. 13、在112()x x-的展开式中;5x 的系数为________.14、在德国不来梅举行的第48届世乒赛期间;某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品;其中第1堆只有1层;就一个球;第2,3,4,堆最底层(第一层)分别按图4所示方式固定摆放;从第二层开始;每层的小球自然垒放在下一层之上;第n 堆第n 层就放一个乒乓球;以()f n 表示第n 堆的乒乓球总数;则(3)_____f =;()_____f n =(答案用n 表示).三解答题:本大题共6小题;共80分;解答应写出文字说明、证明过程或演算步骤. 15、(本题14分)已知函数()sin sin(),2f x x x x R π=++∈.(I)求()f x 的最小正周期;(II)求()f x 的的最大值和最小值; (III)若3()4f α=;求sin 2α的值. 图4…x +y +16、(本题12分)某运动员射击一次所得环数X 的分布如下:X067 8 9 10 P0.2 0.3 0.3 0.2 现进行两次射击;以该运动员两次射击中最高环数作为他的成绩;记为ξ. (I)求该运动员两次都命中7环的概率 (II)求ξ的分布列(III) 求ξ的数学期望E ξ.17、(本题14分)如图5所示;AF 、DE 分别世O 、1O 的直径;AD 与两圆所在的平面均垂直;8AD =.BC 是O 的直径;6AB AC ==,//OE AD .(I)求二面角B AD F --的大小; (II)求直线BD 与EF 所成的角.18、(本题14分)设函数3()32f x x x =-++分别在12x x 、处取得极小值、极大值.xoy 平面上点A B 、的坐标分别为11()x f x (,)、22()x f x (,);该平面上动点P 满足•4PA PB =,点Q 是点P 关于直线2(4)y x =- (I)求点A B 、的坐标; (II)求动点Q 的轨迹方程.19、(本题14分)已知公比为(01)q q <<的无穷等比数列{}n a 各项的和为9;无穷等比数列{}2na 各项的和为815. (I)求数列{}n a 的首项1a 和公比q ; (II)对给定的(1,2,3,,)k k n =;设()k T 是首项为k a ;公差为21k a -的等差数列;求(2)T 的前10项之和;(III)设i b 为数列()k T 的第i 项;12n n S b b b =+++;求n S ;并求正整数(1)m m >;使得limnmn S n →∞存在且不等于零.(注:无穷等比数列各项的和即当n →∞时该无穷等比数列前n 项和的极限)20、(本题12分)A 是定义在[2,4]上且满足如下条件的函数()x ϕ组成的集合:①对任意的[1,2]x ∈;都有(2)(1,2)x ϕ∈;②存在常数(01)L L <<;使得对任意的12,[1,2]x x ∈;都有图5A FD1212|(2)(2)|||x x L x x ϕϕ-≤-.(I)设(2)[2,4]x x ϕ∈ ;证明:()x A ϕ∈(II)设()x A ϕ∈;如果存在0(1,2)x ∈;使得00(2)x x ϕ=;那么这样的0x 是唯一的; (III) 设()x A ϕ∈;任取1(1,2)x ∈;令1(2)n n x x ϕ-=;1,2,n =;证明:给定正整数k ;对任意的正整数p ;成立不等式121||||1k k p k L x x x x L-+-≤--高考 (B)第一部分 选择题(50分)1、函数)13lg(13)(2++-=x xx x f 的定义域是A.),31(+∞- B. )1,31(- C. )31,31(- D. )31,(--∞1、解:由1311301<<-⇒⎩⎨⎧>+>-x x x ;故选B.2、若复数z 满足方程022=+z ;则=3zA.22±B. 22-C. i 22-D. i 22± 2、由i z i z z 2220232±=⇒±=⇒=+;故选D. 3、下列函数中;在其定义域内既是奇函数又是减函数的是A. R x x y ∈-=,3B. R x x y ∈=,sinC. R x x y ∈=,D.R x x y ∈=,)21(3、B 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,是减函数;故选A.4、如图1所示;D 是△ABC 的边AB 上的中点;则向量=CDA. BA BC 21+- B. BA BC 21-- C. BA BC 21- D. BA BC 21+4、BA BC BD CB CD 21+-=+=;故选A.5、给出以下四个命题①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面; ③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直. 其中真命题的个数是5、①②④正确;故选B.6、已知等差数列共有10项;其中奇数项之和15;偶数项之和为30;则其公差是 A.56、3302551520511=⇒⎩⎨⎧=+=+d d a d a ;故选C.7、函数)(x f y =的反函数)(1x f y -=的图象与y 轴交于点)2,0(P (如图2所示);则方程0)(=x f 的根是=x7、0)(=x f 的根是=x 2;故选C8、已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于 A.2 B.332 8、依题意可知 3293,322=+=+==b a c a ;2332===a c e ;故选C. 9、在约束条件⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥4200x y s y x y x 下;当53≤≤s 时;目标函数y x z 23+=的最大值的变化范围是A. ]15,6[B. ]15,7[C. ]8,6[D. ]8,7[9、由⎩⎨⎧-=-=⇒⎩⎨⎧=+=+42442s y sx x y s y x 交点为)4,0(),,0(),42,4(),2,0(C s C s s B A '--; (1) 当43<≤s 时可行域是四边形OABC ;此时;87≤≤z (2) 当54≤≤s 时可行域是△OA C '此时;8max =z故选D.10、对于任意的两个实数对(a ,b )和(c,d),规定(a ,b )=(c,d)当且仅当a =c,b =d;运算“⊗”为:),(),(),(ad bc bd ac d c b a +-=⊗;运算“⊕”为:),(),(),(d b c a d c b a ++=⊕;设R q p ∈,;若)0,5(),()2,1(=⊗q p 则=⊕),()2,1(q pA. )0,4(B. )0,2(C.)2,0(D.)4,0(-10、由)0,5(),()2,1(=⊗q p 得⎩⎨⎧-==⇒⎩⎨⎧=+=-210252q p q p q p , 所以)0,2()2,1()2,1(),()2,1(=-⊕=⊕q p ,故选B.第二部分 非选择题(100分)二、填空题 11、=+---→)2144(lim 22x xx 11、4121lim )2144(lim 222=-=+---→-→x x xx x 12、若棱长为3的正方体的顶点都在同一球面上;则该球的表面积为 12、ππ274233332==⇒=⇒=R S R d 13、在112⎪⎭⎫ ⎝⎛-x x 的展开式中;5x 的系数为13、85112)2()2(1121111111111111=⇒=-⇒-=-=-----+r r x C xx C T r r r rrrr所以5x 的系数为1320)2()2(3113111111-=-=---C C r r14、在德国不莱梅举行的第48届世乒赛期间;某商场橱窗里用同样的乒乓球堆成若干准“正三棱锥”形的展品;其中第一堆只有一层;就一个乒乓球;第2、3、4、…堆最底层(第一层)分别按图4所示方式固定摆放.从第一层开始;每层的小球自然垒放在下一层之上;第n 堆第n 层就放一个乒乓球;以)(n f 表示第n 堆的乒乓球总数;则=)3(f ;=)(n f (答案用n 表示) .14、=)3(f 10;6)2)(1()(++=n n n n f三、解答题15、(本小题满分14分) 已知函数R x x x x f ∈++=),2sin(sin )(π(Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 的最大值和最小值;(Ⅲ)若43)(=αf ;求α2sin 的值. 15解:)4sin(2cos sin )2sin(sin )(ππ+=+=++=x x x x x x f(Ⅰ))(x f 的最小正周期为ππ212==T ; (Ⅱ))(x f 的最大值为2和最小值2-;(Ⅲ)因为43)(=αf ;即167cos sin 2①43cos sin -=⇒⋅⋅⋅=+αααα,即 1672sin -=α16、(本小题满分12分)现进行两次射击;以该运动员两次射击中最高环数作为他的成绩;记为ξ. (Ⅰ)求该运动员两次都命中7环的概率; (Ⅱ)求ξ分布列; (Ⅲ) 求ξ的数学希望.16解:(Ⅰ)求该运动员两次都命中7环的概率为04.02.02.0)7(=⨯=P ; (Ⅱ) ξ的可能取值为7、8、9、1004.0)7(==ξP 21.03.03.02.02)8(2=+⨯⨯==ξP39.03.03.03.023.02.02)9(2=+⨯⨯+⨯⨯==ξP36.02.02.03.022.03.022.02.02)10(2=+⨯⨯+⨯⨯+⨯⨯==ξPξ分布列为(Ⅲ) ξ的数学希望为07.936.01039.0921.0804.07=⨯+⨯+⨯+⨯=ξE .17、(本小题满分14分)如图5所示;AF 、DE 分别是⊙O 、⊙O 1的直径.AD 与两圆所在的平面均垂直;AD =8,BC 是⊙O 的直径;AB =AC =6;OE//AD. (Ⅰ)求二面角B —AD —F 的大小; (Ⅱ)求直线BD 与EF 所成的角.17、解:(Ⅰ)∵AD 与两圆所在的平面均垂直,∴AD ⊥AB, AD ⊥AF,故∠BAD 是二面角B —AD —F 的平面角; 依题意可知;ABCD 是正方形;所以∠BAD =450. 即二面角B —AD —F 的大小为450;(Ⅱ)以O 为原点;BC 、AF 、OE 所在直线为坐标轴;建立空间直角坐标系(如图所示);则O (0;0;0);A (0;23-;0);B (23;0;0),D (0;23-;8);E (0;0;8);F (0;23;0)所以;)8,23,0(),8,23,23(-=--=FE BD10828210064180||||,cos =⨯++=•>=<FE BD FE BD EF BD 设异面直线BD与EF所成角为α;则1082|,cos |cos =><=EF BD α 直线BD 与EF 所成的角为1082arccos18、(本小题满分14分)设函数23)(3++-=x x x f 分别在1x 、2x 处取得极小值、极大值.xoy 平面上点A 、B 的坐标分别为))(,(11x f x 、))(,(22x f x ,该平面上动点P 满足4=•PB PA ,点Q 是点P 关于直线)4(2-=x y 的对称点.求(Ⅰ)点A 、B 的坐标 ; (Ⅱ)动点Q 的轨迹方程18解: (Ⅰ)令033)23()(23=+-='++-='x x x x f 解得11-==x x 或 当1-<x 时,0)(<'x f , 当11<<-x 时,0)(>'x f ,当1>x 时,0)(<'x f所以,函数在1-=x 处取得极小值,在1=x 取得极大值,故1,121=-=x x ,4)1(,0)1(==-f f所以, 点A 、B 的坐标为)4,1(),0,1(B A -.(Ⅱ) 设),(n m p ;),(y x Q ;()()4414,1,122=-+-=--•---=•n n m n m n m PB PA21-=PQ k ;所以21-=--m x n y ;又PQ 的中点在)4(2-=x y 上;所以⎪⎭⎫⎝⎛-+=+4222n x m y消去n m ,得()()92822=++-y x19、(本小题满分14分)已知公比为)10(<<q q 的无穷等比数列}{n a 各项的和为9;无穷等比数列}{2n a 各项的和为581. (Ⅰ)求数列}{n a 的首项1a 和公比q ; (Ⅱ)对给定的),,3,2,1(n k k ⋅⋅⋅=,设)(k T 是首项为k a ;公差为12-k a )(k T的前10项之和;(Ⅲ)设i b 为数列)(i T 的第i 项;n n b b b S +⋅⋅⋅++=21;求n S ;并求正整数)1(>m m ;使得m S nn ∞→lim存在且不等于零.(注:无穷等比数列各项的和即当∞→n 时该无穷数列前n 项和的极限)19解: (Ⅰ)依题意可知,⎪⎩⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-=-32358119112121q a q a q a(Ⅱ)由(Ⅰ)知,1323-⎪⎭⎫⎝⎛⨯=n n a ,所以数列)2(T的的首项为221==a t ,公差3122=-=a d ,15539102121010=⨯⨯⨯+⨯=S ,即数列)2(T 的前10项之和为155. (Ⅲ) i b =()()121--+i i a i a =()()112---i a i i =()()1321231--⎪⎭⎫⎝⎛--i i i ;()()2132271845--⎪⎭⎫ ⎝⎛+-=n n n S nn ;m n n n S ∞→lim =∞→n lim ()m nm m n n n n n n 2132271845--⎪⎭⎫ ⎝⎛+- 当m=2时;m n n n S ∞→lim=-21;当m>2时;m n n nS ∞→lim =0;所以m=220、(本小题满分12分)A 是由定义在]4,2[上且满足如下条件的函数)(x ϕ组成的集合:①对任意]2,1[∈x ;都有)2,1()2(∈x ϕ ; ②存在常数)10(<<L L ;使得对任意的]2,1[,21∈x x ;都有|||)2()2(|2121x x L x x -≤-ϕϕ(Ⅰ)设]4,2[,1)(3∈+=x x x ϕ;证明:A x ∈)(ϕ(Ⅱ)设A x ∈)(ϕ,如果存在)2,1(0∈x ,使得)2(00x x ϕ=,那么这样的0x 是唯一的;(Ⅲ)设A x ∈)(ϕ,任取)2,1(∈l x ,令,,2,1),2(1⋅⋅⋅==+n x x n n ϕ证明:给定正整数k,对任意的正整数p,成立不等式||1||121x x LL x x k k lk --≤-++解:对任意]2,1[∈x ,]2,1[,21)2(3∈+=x x x ϕ,≤33)2(x ϕ35≤,253133<<<,所以)2,1()2(∈x ϕ对任意的]2,1[,21∈x x ;()()()()23232132121211121212|||)2()2(|x x x x x x x x ++++++-=-ϕϕ;<3()()()()32321321112121x x x x ++++++;所以0<()()()()2323213211121212x x x x ++++++32<,令()()()()2323213211121212x x x x ++++++=L;10<<L ;|||)2()2(|2121x x L x x -≤-ϕϕ所以A x ∈)(ϕ反证法:设存在两个0000),2,1(,x x x x '≠∈'使得)2(00x x ϕ=,)2(00x x '='ϕ则 由|||)2()2(|/00/00x x L x x -≤-ϕϕ;得||||/00/00x x L x x -≤-;所以1≥L ;矛盾;故结论成立。

1996年普通高等学校招生全国统一考试数学(理工农医类)

1996年普通高等学校招生全国统一考试数学(理工农医类)

1996年普通高等学校招生全国统一考试数学(理工农医类)佚名
【期刊名称】《数学教学》
【年(卷),期】1996(000)005
【总页数】6页(P26-31)
【正文语种】中文
【中图分类】G634.6
【相关文献】
1.2007年普通高等学校招生全国统一考试 (湖南卷)数学(理工农医类) [J], 周友良
2.2007年普通高等学校招生全国统一考试数学 (理工农医类)(福建卷) [J], 童其林
3.2007年普通高等学校招生全国统一考试 (湖北卷)数学(理工农医类) [J], 王勇
4.2015年普通高等学校招生全国统一考试上海数学试卷(理工农医类) [J],
5.2016年普通高等学校招生全国统一考试上海数学试卷(理工农医类) [J],因版权原因,仅展示原文概要,查看原文内容请购买。

高考_1996年广西高考理科数学真题及答案

高考_1996年广西高考理科数学真题及答案

1996年广西高考理科数学真题及答案本试卷分第一卷(选择题)和第二卷(非选择题)两局部.共150分,考试时间120分钟.第一卷(选择题共65分)一、选择题:本大题共15小题;第(1) (10)题每题4分,第(11) (15)题每题5分,共65分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.(1)全集I=N,集合A={x │x=2n,n ∈N},B={x │x=4n,n ∈N},那么B A I )D (B A I )C (B A I )B (B A I )A (⋃=⋃=⋃=⋃=[Key] C(1)全集I=N,集合A={x │x=2n,n ∈N},B={x │x=4n,n ∈N},那么B A I )D (B A I )C (B A I )B (B A I )A (⋃=⋃=⋃=⋃=[Key] C(3)假设sin 2x>cos 2x,那么x 的取值范围是}Z k ,43k x 41k 2|x ){D (}Z k ,43k x 41k |x ){C (}Z k ,45k 2x 41k 2|x ){B (}Z k ,41k 2x 43k 2|x ){A (∈π+π<<π+π∈π+π<<π-π∈π+π<<π+π∈π+π<<π-π[Key] D(4)复数)i 31()i 22(4-+等于i 31)D (i 31)C (i 31)B (i 31)A (---+-+[Key] B5)如果直线l 、m 与平面α、β、γ满足:l=β∩γ,l//α,m ⊂α和m ⊥γ那么必有(A)α⊥γ且l ⊥m (B)α⊥γ且m ∥β(C)m ∥β且l ⊥m (D)α∥β且α⊥γ[Key] A(6)当2x 2π≤≤π-,函数x cos 3x sin )x (f +=的(A)最大值是1,最小值是-1(B)最大值是1,最小值是-(1/2)(C)最大值是2,最小值是-2(D)最大值是2,最小值是-1[Key] D(7)椭圆⎩⎨⎧ϕ+-=ϕ+=sin 51y cos 33x 的两个焦点坐标是(B)(A)(-3,5),(-3,-3) (B)(3,3,),(3,-5)(C)(1,1,),(-7,1) (D)(7,-1,),(-1,-1)(8)假设2a 0π<<,那么)]a (arccos[sin )]a 2(arcsin[cos +π++π等于a 22)D (a 22)C (2)B (2)A (-π--ππ-π[Key] A(9)将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD=a,那么三棱锥D-ABC 的体积为3333a 122)D (a 123)C (12a )B (6a )A ([Key] D(10)等比数列{a n }的首项a 1=-1,前n 项的和为S n ,假设3231S S 510=,那么n n S lim ∞→等于2)D (2)C (32)B (32)A (--[Key] B(11)椭圆的极坐标方程为θ-=ρcos 23,那么它在短轴上的两个顶点的极坐标是)23arctg 2,7)(23arctg ,7)(B ()35,2)(3,2)(B ()23,3)(2,3)(B (),1)(0,3)(A (-ππππππ [Key] C(12)等差数列{a n 的前m 项和为30,前2m 项和为100,那么它的前3m 项和为(A)130 (B)170 (C)210 (D)260[Key] C(13)设双曲线)b a 0(1b y a x 2222<<=+的半焦距为c ,直线l 过两点(a,0)(0,b)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

页脚内容11996年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一.选择题:本大题共15小题,第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的(1)已知全集I =N ,集合A ={x │x =2n ,n ∈N },B ={x │x =4n ,n ∈N },则 ()(A)B A I(B)B A I (C)B A I (D)B A I(2)当a >1时,在同一坐标系中,函数y =a -x 与y =l og a x 的图像 () (3)若sin 2x >cos 2x ,则x 的取值范围是()页脚内容2(A)Z k k x k x ,412432(B)Z k k x k x ,452412(C)Z k k x k x ,4141(D)Z k k x k x ,4341(4)复数54)31()22(i i 等于 ()(A)i 31 (B)i 31 (C)i 31 (D)i 31(5)如果直线l 、m 与平面 、 、 满足:l l , ∥m m 和 ,,⊥ ,那么必有 () (A)α⊥γ且l ⊥m (B)α⊥γ且m ∥β (C)m ∥β且l ⊥m(D)α∥β且α⊥γ(6)当x x x f x cos 3sin )(,22函数时的()(A)最大值是1,最小值是-1 (B)最大值是1,最小值是-21页脚内容3(C)最大值是2,最小值是-2 (D)最大值是2,最小值是-1(7)椭圆sin 51,cos 33y x 的两个焦点坐标是()(A)(-3,5),(-3,-3) (B)(3,3),(3,-5)(C)(1,1),(-7,1) (D)(7,-1),(-1,-1))](arccos[sin )]2(arcsin[cos ,20)8(则若等于 ()(A)2(B)-2(C)2-2 (D)-2-2(9)将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D -ABC 的体积为 ()(A)63a(B)123a(C)3123a (D)3122a (10)等比数列 n a 的首项a 1=-1,前n 项和为S n ,若3231510S S 则n n Slim 等于 ()(A)32(B)-32(C)2 (D)-2(11)椭圆的极坐标方程为cos 23,则它在短轴上的两个顶点的极坐标是页脚内容4()(A)(3,0),(1, )(B)(3,2),(3,23 )(C)(2,3),(2,35)(D)(7,23arctg),(7,23arctg -2 ) (12)等差数列 n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为 ()(A)130 (B)170 (C)210 (D)260(13)设双曲线)0(12222b a by a x 的半焦距为c ,直线l 过),0)(0,(b a 两点,已知原点到直线l 的距离为c 43,则双曲线的离心率为 ()(A)2 (B)3 (C)2 (D)332 (14)母线长为1的圆锥体积最大时,其侧面展开图圆心角 等于 ()页脚内容5(A)322 (B)332 (C) 2 (D)362 (15)设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5) 等于()(A)0.5 (B)-0.5 (C)1.5 (D)-1.5第Ⅱ卷(非选择题共85分)二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. (16)已知圆07622 x y x 与抛物线)0(22 p px y 的准线相切,则P=(17)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有个(用数字作答)(18) 40tg 20tg 340tg 20tg 的值是(19)如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线AD 与BF 所成角的余弦值是三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.(20)解不等式1)11(log xa .(21)已知△ABC 的三个内角A ,B ,C 满足:B C A B C A cos 2cos 1cos 1,2 ,求2cos CA 的值.页脚内容622.如图,在正三棱柱ABC -A 1B 1C 1中,E ∈BB 1,截面A 1EC ⊥侧面AC 1.(Ⅰ)求证:BE =EB 1;(Ⅱ)若AA 1=A 1B 1;求平面A 1EC 与平面A 1B 1C 1所成二面角(锐角)的度数. 注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(右下图)(Ⅰ)证明:在截面A 1EC 内,过E 作EG ⊥A 1C ,G 是垂足. ①∵∴EG ⊥侧面AC 1;取AC 的中点F ,连结BF ,FG ,由AB =BC 得BF ⊥AC , ②∵∴BF ⊥侧面AC 1;得BF ∥EG ,BF 、EG 确定一个平面,交侧面AC 1于FG . ③∵∴BE ∥FG ,四边形BEGF 是平行四边形,BE =FG , ④∵∴FG ∥AA 1,△AA 1C ∽△FGC , ⑤∵ ∴112121BB AA FG,即11,21EB BE BB BE 故 23.某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?页脚内容7(粮食单产=耕地面积总产量,人均粮食占有量=总人口数总产量)24.已知l 1、l 2是过点)0,2( P 的两条互相垂直的直线,且l 1、l 2与双曲线122 x y 各有两个交点,分别为A 1、B 1和A 2、B 2.(Ⅰ)求l 1的斜率k 1的取值范围; (Ⅱ)若12211,5l B A B A 求 、l 2的方程25.已知a 、b 、c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时,│f (x )│≤1. (Ⅰ)证明:│c │≤1;(Ⅱ)证明:当-1≤x ≤1时,│g (x )│≤2;(Ⅲ)设a >0,当-1≤x ≤1时,g (x )的最大值为2,求f (x ).1996年普通高等学校招生全国统一考试 数学试题(理工农医类)参考解答及评分标准说明:一.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数.页脚内容8四.只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.第(1)-(10)题每小题4分,第(11)-(15)题每小题5分.满分65分.(1)C (2)A(3)D(4)B(5)A(6)D(7)B(8)A(9)D(10)B(11)C(12)C(13)A (14)D (15)B二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(16)2 (17)32 (18)3 (19)42 三.解答题(20)本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.满分11分. 解:(Ⅰ)当a >1时,原不等式等价于不等式组:.11,011a x x——2分由此得xa 11. 因为1-a <0,所以x <0, ∴.011x a——5分(Ⅱ)当0<a <1时,原不等式等价于不等式组:页脚内容9.11,011a xx由①得,x >1或x <0, 由②得,,110ax ∴ax111 ——10分综上,当1 a 时,不等式的解集为011x a x ;当10 a 时,不等式的解集为a x x 111——11分(21)本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.满分12分. 解法一:由题设条件知B =60°,A +C =120°.——2分∵,2260cos 2∴22cos 1cos 1 CA 将上式化为C A C A cos cos 22cos cos 利用和差化积及积化和差公式,上式可化为)]cos()[cos(22cos 2cos2C A C A CA C A ——6分页脚内容10将21)cos(,2160cos 2cosC A C A 代入上式得 将1)2(cos 2)cos(2 CA C A 代入上式并整理得 023)2cos(2)2(cos 242 CA C A ——9分∵,032cos22 CA ∴.022cos2 CA 从而得.222cosC A ——12分解法二:由题设条件知B =60°,A +C =120°. 设 2,2C A CA 则,可得 60A , 60C ——3分所以)60cos(1)60cos(1cos 1cos 1 C A 43cos cos 2——7分依题设条件有Bcos 243cos cos 2, ∵21cosB ∴2243cos cos 2页脚内容11整理得,023cos 2cos 242 ——9分∵03cos 22 ,∴02cos 2 .从而得222cos C A . ——12分(22)本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ)①∵面A 1EC ⊥侧面AC 1, ——2分 ②∵面ABC ⊥侧面AC 1, ——3分 ③∵BE ∥侧面AC 1, ——4分 ④∵BE ∥AA 1, ——5分 ⑤∵AF =FC ,——6分(Ⅱ)解:分别延长CE 、C 1B 1交于点D ,连结A 1D . ∵1EB ∥11112121,CC BB EB CC , ∴,21111111B A C B DC DB∵∠B 1A 1C 1=∠B 1C 1A 1=60°, ∠DA 1B 1=∠A 1DB 1=21(180°-∠DB 1A 1)=30°,页脚内容12∴∠DA 1C 1=∠DA 1B 1+∠B 1A 1C 1=90°,即1DA ⊥11C A——9分∵CC 1⊥面A 1C 1B 1,即A 1C 1是A 1C 在平面A 1C 1D 上的射影,根据三垂线定理得DA 1⊥A 1C , 所以∠CA 1C 1是所求二面角的平面角. ——11分∵CC 1=AA 1=A 1B 1=A 1C 1,∠A 1C 1C =90°, ∴∠CA 1C 1=45°,即所求二面角为45°——12分 (23)本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.解:设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷. 依题意得不等式%)101(10%)11()1010(%)221(4104 P M P x M ——5分化简得]22.1)01.01(1.11[10103x ——7分∵]22.1)01.01(1.11[101031.4——9分∴x ≤4(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷.——10分(24)本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满页脚内容13分12分.解:(I )依题设,l 1、l 2的斜率都存在,因为l 1过点P )0,2( 且与双曲线有两个交点,故方程组1)0)(2(2211x y k x k y ① ——1分有两个不同的解.在方程组①中消去y ,整理得01222)1(2121221 k x k x k ②若0121 k ,则方程组①只有一个解,即l 1与双曲线只有一个交点,与题设矛盾,故0121 k ,即11 k ,方程②的判别式为设2l 的斜率为2k ,因为2l 过点)0,2( P 且与双曲线有两个交点,故方程组.1),0)(2(2222x y k x k y ③ 有两个不同的解.在方程组③中消去y ,整理得01222)1(2222222 k x k x k ④同理有)13(4,0122222k k 又因为l 1⊥l 2,所以有k 1·k 2=-1. ——4分于是,l 1、l 2与双曲线各有两个交点,等价于页脚内容14解得.1,33311k k——6分∴)3,1()1,33()33,1()1,3(1k ——7分(Ⅱ)设),(),,(221111y x B y x A 由方程②知 ∴│A 1B 1│2=(x 1-x 2)2+(y 1-y 2)22212121)1()13)(1(4 k k k ⑤ ——9分同理,由方程④可求得222B A ,整理得2212121222)1()3)(1(4k k k B A ⑥ 由22115B A B A ,得2222115B A B A 将⑤、⑥代入上式得 解得21 k取21 k 时,)2(22:),2(2:21x y l x y l ; 取21 k 时,)2(22:),2(2:21x y l x y l . ——12分(25)本小题主要考查函数的性质、含有绝对值的不等式的性质,以及综合运用数学知识分析问题与解决问题的能力.满分12分.(Ⅰ)证明:由条件当-1≤x≤1时,│f(x)│≤1,取x=0得│c│=│f(0)│≤1,即│c│≤1.——2分(Ⅱ)证法一:当a>0时,g(x)=ax+b在[-1,1]上是增函数,∴g(-1)≤g(x)≤g(1),∵│f(x)│≤1(-1≤x≤1),│c│≤1,∴g(1)=a+b=f(1)-c≤│f(1)│+│c│≤2,g(-1)=-a+b=-f(-1)+c≥-(│f(-1)│+│c│)≥-2,由此得│g(x)│≤2; ——5分当a<0时,g(x)=ax+b在[-1,1]上是减函数,∴g(-1)≥g(x)≥g(1),∵│f(x)│≤1(-1≤x≤1),│c│≤1,∴g(-1)=-a+b=-f(-1)+c≤│f(-1)│+│c│≤2,g(1)=a+b=f(1)-c≥-(│f(1)│+│c│)≥-2,由此得│g(x)│≤2; ——7分当a=0时,g(x)=b,f(x)=bx+c.页脚内容15页脚内容16∵-1≤x ≤1,∴│g (x )│=│f (1)-c │≤│f (1)│+│c │≤2. 综上得│g (x )│≤2. ——8分证法二:由4)1()1(22 x x x ,可得),21()21(x f x f ——6分当-1≤x ≤1时,有,0211,1210x x 根据含绝对值的不等式的性质,得 即│g (x )│≤2.——8分(Ⅲ)因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2, 即g (1)=a +b =f (1)-f (0)=2.① ∵-1≤f (0)=f (1)-2≤1-2=-1, ∴c =f (0)=-1.——10分因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0),根据二次函数的性质,直线x =0为f (x )的图像的对称轴,由此得 由①得a =2.所以f(x)=2x2-1.——12分页脚内容17。

相关文档
最新文档