圆锥曲线难点知识点

合集下载

(完整版)《圆锥曲线》主要知识点

(完整版)《圆锥曲线》主要知识点

圆锥曲线与方程 知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=+,则点P 的轨迹是 2若P 是椭圆:12222=+by a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为3、点与椭圆、直线与椭圆的位置关系(1)点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:①点P 在椭圆上⇔ ;②点P 在椭圆内部⇔ ; ③点P 在椭圆外部⇔ .(2)直线y =kx +m 与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系判断方法:先联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1.消y 得一个一元二次方程是:(3)弦长公式:设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, ∴|AB |=(x 1-x 2)2+(kx 1-kx 2)2=1+k 2·(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2, 或|AB |=⎝⎛⎭⎫1ky 1-1k y 22+(y 1-y 2)2=1+1k 2·(y 1-y 2)2=1+1k2×(y 1+y 2)2-4y 1y 2. 其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.(4)直线l :y =kx +m 与椭圆:()012222>>=+b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 二、双曲线方程. 1、双曲线的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==-,则点P 的轨迹是 2(1)等轴双曲线:双曲线a y x ±=-称为等轴双曲线,其渐近线方程为 ,离心率(2)共渐近线的双曲线系方程:)0(2222≠=-λλby a x 的渐近线方程为如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为 .(3)从双曲线一个焦点到一条渐近线的距离等于 . 3、直线与双曲线的位置关系(1)一般地,设直线l :y =kx +m ……① 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0) ……②把①代入②得关于x 的一元二次方程为 . ①当b 2-a 2k 2=0时,直线l 与双曲线的渐近线 ,直线与双曲线C . ②当b 2-a 2k 2≠0时,Δ>0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ=0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ<0⇒直线与双曲线 公共点,此时称直线与双曲线 . 注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.(2)直线l :y =kx +m 与双曲线:()0,012222>>=-b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 三、抛物线方程. 1、抛物线的定义平面内与一个定点F 和一条定直线l (不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的 .思考1:平面内与一个定点F 和一条定直线l (l 经过点F ),点的轨迹是 2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2), AB 的中点M (x 0,y 0),相应的准线为l .(1)以AB 为直径的圆必与准线l 的位置关系是 ; (2)|AB |= (焦点弦长用中点M 的坐标表示); (3)若直线AB 的倾斜角为α,则|AB |= (焦点弦长用倾斜角为α表示);如当α=90°时,AB 叫抛物线的通径,是焦点弦中最短的;抛物线的通径等于 . (4)求证A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2= ,y 1·y 2= . 4、直线与抛物线的位置关系1.设直线l :y =kx +m ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立整理成 关于x 的一元二次方程为 ,(1)若k =0,直线与抛物线有 个公共点,此时直线 于抛物线的对称轴或与对称轴 . 因此直线与抛物线有一个公共点是直线与抛物线相切的 条件. (2)若k ≠0, 当Δ>0时,直线与抛物线 ,有两个公共点;当Δ=0时,直线与抛物线 ,有一个公共点; 当Δ<0时,直线与抛物线 ,无公共点.2.直线l :y =kx +m 与抛物线:y 2=2px (p >0)的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用p 和x 0,y 0表示)3.抛物线:y 2=2px (p >0,y >0)在点A (x 0,02px )处的切线方程为 ,4.抛物线:x 2=2py (p >0)在点A (x 0,px 220)处的切线方程为 ,。

(完整版)高中数学圆锥曲线知识点总结

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。

用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。

其中定点叫焦点,定直线叫准线,常数是离心率用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。

用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。

其中定点叫焦点,定直线叫准线,常数e是离心率。

用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。

用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。

则椭圆的各性质(除切线外)均可在这个图中找到。

3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。

当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
一、圆锥曲线的基本概念
1、圆锥曲线:平面内以圆为母线的曲线,又称为圆锥线,是数学上的一类曲线。

2、离心率:圆锥曲线的离心率是有两个参数确定的:它们是焦距a和准线焦距c。

3、双曲线:双曲线是一类特殊的圆锥曲线,a>0, c>0时,它概括了圆锥曲线的一般情况,称为双曲线。

二、圆锥曲线的性质
1、改变离心率可以改变圆锥曲线的形状,当离心率大于1时,曲线呈双曲线,当离心率小于1时,曲线呈凹凸线;
2、圆锥曲线的焦点与顶点之间的距离是两个焦距的和,a+c;
3、圆锥曲线的切线方程的斜率是1/(a+c);
4、圆锥曲线的半矢量的方向是以焦点为圆心,从焦距a出发的方向;
5、圆锥曲线的曲率半径是2a+c;
6、圆锥曲线的弧长是一定积分的表达式,是确定的;
7、圆锥曲线的曲线方程是确定的,但极坐标表示法有两种形式,要根据离心率来确定;
三、圆锥曲线的应用
1、圆锥曲线的应用着重于机械设计领域,如齿轮的设计和制造;
2、圆锥曲线的半径可以用于圆弧的求解和曲线的精度检验;
3、圆锥曲线的弧长可以用于求解同轴运动的轮毂的周长;
4、圆锥曲线的曲线方程可以用于二维图形的绘制;
5、圆锥曲线的曲线方程可以用于求解曲面曲线的面积和表面积;
6、圆锥曲线的曲线方程可以用于求解椭圆锥曲线的主曲线参数,以求解椭球面的曲线参数;
7、圆锥曲线的曲率半径可以用于求解圆的曲率半径参数;
8、圆锥曲线的切线可以用于求解圆弧的切线参数;
9、圆锥曲线的球面可以用于求解曲面的曲率方向;
10、圆锥曲线的曲线可以用于运动学分析和机器学习算法中的运动路径规划。

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结专题一:椭圆一、椭圆的定义平面内到两定点21,F F 的距离的和为常数(大于21F F )的动点的轨迹叫椭圆。

即a MF MF 221=+当2a ﹥2c 时,轨迹是椭当2a =2c 时,轨迹是一条线段21F F ,当2a ﹤2c 时,轨迹不存在。

椭圆的几何性质:222b c a +=(符合勾股定理的结构)【补充】过焦点做垂直与实轴且交椭圆的线段叫通径,通径的一半为ab 2专题二:双曲线知识点:1、双曲线的概念:平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线。

即a MF MF 221=- 当2a ﹤2c 时,轨迹是双曲线 当2a =2c 时,轨迹是两条射线 当2a ﹥2c 时,轨迹不存在【注】有绝对值时是两支,不含绝对值时仅一支. 2、双曲线的标准方程及几何性质:【注】焦点到渐近线的距离为b ;通径为ab 22。

3、常见双曲线的设法:(1)已知b a =的双曲线设为)0(22≠=-λλy x ; (2)已知过两点的双曲线可设为)0(122<=+AB By Ax ;(3)已知渐近线0=±nym x 的双曲线方程可设为)0(2222≠=-λλn y m x .4、两种特殊的双曲线:(1)实轴和虚轴等长的双曲线称为等轴双曲线.等轴双曲线的离心率为2.(2)双曲线()222210,0x y a b a b-=>>的共轭双曲线方程为12222=-a x b y ,它们有共同的渐近线为x aby ±=,它们的离心率21,e e 满足的关系式为1112221=+e e . 5、焦点三角形:设若双曲线方程为,F 1,F 2分别为它的左右焦点,P 为双曲线上任意一点,则有:若则2tan221θb S PF F =∆;特别地,当时,有。

6、直线与双曲线的位置关系:(注意直线与渐近线平行)思考:平面内任一点P 作直线与双曲线只有一个交点,这样的直线有几条? 几何方法:1、若P 在双曲线内,有2条(分别与渐近线平行);2、若P 在双曲线上,有3条(与渐近线平行的有两条,切线一条);3、若P 在双曲线外:①若P 在渐近线上且P 为原点时,0条;2222x y 1a b-=12FP F ,∠=θ12F P F 90∠=o122FPF S b =V 22221(0,0)x ya b a b-=>>②若P 在渐近线上且P 不为原点时,2条(与另一渐近线平行的一条,切线一条);③若P 不在渐近线上,有4条(与渐近线平行的有两条,切线两条); 代数方法:通过对直线方程与双曲线方程组成的一元二次方程组的求解来讨论它们的位置关系。

高考数学圆锥曲线知识点、题型、易误点、技巧总结

高考数学圆锥曲线知识点、题型、易误点、技巧总结

高考数学圆锥曲线概念方法题型易误点技巧总结一.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e 。

圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。

练习:1.已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是(答:C ); A .421=+PF PF B .621=+PF PF C .1021=+PF PF D .122221=+PF PF2.方程8表示的曲线是_____(答:双曲线的左支)3.已知点)0,22(Q 及抛物线4x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____(答:2)二.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>)⇔{cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数),焦点在y 轴上时2222bx a y +=1(0a b >>)。

方程22Ax By C +=表示椭圆的充要条件是什么?(ABC≠0,且A ,B ,C 同号,A ≠B )。

(完整版)圆锥曲线知识点归纳总结

(完整版)圆锥曲线知识点归纳总结

完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。

三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。

构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。

2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。

椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。

椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。

重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。

抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。

重要公式:抛物线的标准方程为(x^2/4a) = y。

4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。

双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。

双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。

椭圆的应用包括轨道运动、天体力学以及密码学等领域。

抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。

双曲线的应用包括电磁波的传播、双曲线钟的标定等。

6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。

对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。

切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。

焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。

此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。

熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。

高中数学圆锥曲线知识点

高中数学圆锥曲线知识点

高中数学圆锥曲线知识点
圆锥曲线,渗透到平面解析几何的各个部分,是解决解析几何问题的重要工具之一,更是高考必考内容之一。

对于高中数学的学习,圆锥曲线是一大难点,也是一大重点,归纳结论和解题技巧对学生来说都是十分重要,事实上,运用解析法解决几何问题是一种解决问题的思路,为了体现这种思路,必须出现一些用传统几何方法无法解决或者很难解决的问题,而圆锥曲线就是最好的载体了——简单的方程和很多时候方便出题的性质。

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。

双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。

抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。

二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。

以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。

双曲线和抛物线的参数方程也可以类似地表示。

三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。

以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。

双曲线和抛物线的极坐标方程也可以类似地表示。

四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。

2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。

圆锥曲线的知识点、结论、易错点、真题

圆锥曲线的知识点、结论、易错点、真题

圆锥曲线的知识点、结论、易错点、真题(⼀)椭圆及其标准⽅程1. 椭圆的定义:椭圆的定义中,平⾯内动点与两定点1F 、2F 的距离的和⼤于|1F 2F |这个条件不可忽视.若这个距离之和⼩于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F .2.椭圆的标准⽅程:12222=+b y a x (a >b >0),12222=+bx a y (a >b >0).3.椭圆的标准⽅程判别⽅法:判别焦点在哪个轴只要看分母的⼤⼩:如果2x 项的分母⼤于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.4.求椭圆的标准⽅程的⽅法:⑴正确判断焦点的位置;⑵设出标准⽅程后,运⽤待定系数法求解. (⼆)椭圆的简单⼏何性质1. 椭圆的⼏何性质:设椭圆⽅程为12222=+by a x (a >b >0).⑴范围: -a ≤x ≤a ,-b ≤x ≤b ,所以椭圆位于直线x=a ±和y=b ±所围成的矩形⾥.⑵对称性:分别关于x 轴、y 轴成轴对称,关于原点中⼼对称.椭圆的对称中⼼叫做椭圆的中⼼. ⑶顶点:有四个1A (-a,0)、2A (a ,0)1B (0,-b )、2B (0,b ).线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.⑷离⼼率:椭圆的焦距与长轴长的⽐ace =叫做椭圆的离⼼率.它的值表⽰椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆. 2.椭圆的第⼆定义⑴定义:平⾯内动点M 与⼀个顶点的距离和它到⼀条定直线的距离的⽐是常数ace =(e <1=时,这个动点的轨迹是椭圆.⑵准线:根据椭圆的对称性,12222=+by a x (a >b >0)的准线有两条,它们的⽅程为c a x 2±=.对于椭圆12222=+b x a y (a >b >0)的准线⽅程,只要把x 换成y 就可以了,即c a y 2±=.3.椭圆的焦半径:由椭圆上任意⼀点与其焦点所连的线段叫做这点的焦半径.设1F (-c ,0),2F (c ,0)分别为椭圆12222=+by a x (a >b >0)的左、右两焦点,M (x ,y )是椭圆上任⼀点,则两条焦半径长分别为ex a MF +=1,ex a MF -=2.椭圆中涉及焦半径时运⽤焦半径知识解题往往⽐较简便.椭圆的四个主要元素a 、b 、c 、e 中有2a =2b +2c 、ac e =两个关系,因此确定椭圆的标准⽅程只需两个独⽴条件.4.椭圆的参数⽅程椭圆12222=+b y a x (a >b >0)的参数⽅程为cos sin x a y b θθ=??=?(θ为参数).说明: ⑴这⾥参数θ叫做椭圆的离⼼⾓.椭圆上点P 的离⼼⾓θ与直线OP 的倾斜⾓α不同:θαtan tan ab=;⑵椭圆的参数⽅程可以由⽅程12222=+by a x 与三⾓恒等式1sin cos 22=+θθ相⽐较⽽得到,所以椭圆的参数⽅程的实质是三⾓代换. 椭圆22221(0)x y a b a b +=>>的参数⽅程是cos sin x a y b θθ=??=?. 5.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ?+<. (2)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的外部2200221x y a b+>. 6. 椭圆的切线⽅程(1)椭圆22221(0)x y a b a b+=>>上⼀点00(,)P x y 处的切线⽅程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外⼀点00(,)P x y 所引两条切线的切点弦⽅程是00221x x y y a b +=.(3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A aB b c +=(三)双曲线及其标准⽅程1.双曲线的定义:平⾯内与两个定点1F 、2F 的距离的差的绝对值等于常数2a (⼩于|1F 2F |)的动点M 的轨迹叫做双曲线.在这个定义中,要注意条件2a <|1F 2F |,这⼀条件可以⽤“三⾓形的两边之差⼩于第三边”加以理解.若2a=|1F 2F |,则动点的轨迹是两条射线;若2a >|1F 2F |,则⽆轨迹.若1MF <2MF 时,动点M 的轨迹仅为双曲线的⼀个分⽀,⼜若1MF >2MF 时,轨迹为双曲线的另⼀⽀.⽽双曲线是由两个分⽀组成的,故在定义中应为“差的绝对值”.2. 双曲线的标准⽅程:12222=-b y a x 和12222=-bx a y (a >0,b >0).这⾥222a c b -=,其中|1F 2F |=2c.要注意这⾥的a 、b 、c 及它们之间的关系与椭圆中的异同.3.双曲线的标准⽅程判别⽅法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a 不⼀定⼤于b ,因此不能像椭圆那样,通过⽐较分母的⼤⼩来判断焦点在哪⼀条坐标轴上.4.求双曲线的标准⽅程,应注意两个问题:⑴正确判断焦点的位置;⑵设出标准⽅程后,运⽤待定系数法求解.(四)双曲线的简单⼏何性质1.双曲线12222=-by a x 的实轴长为2a ,虚轴长为2b ,离⼼率a c e =>1,离⼼率e 越⼤,双曲线的开⼝越⼤.2. 双曲线12222=-by a x 的渐近线⽅程为x a b y ±=或表⽰为02222=-b y a x .若已知双曲线的渐近线⽅程是x nmy ±=,即0=±ny mx ,那么双曲线的⽅程具有以下形式:k y n x m =-2222,其中k 是⼀个不为零的常数.3.双曲线的第⼆定义:平⾯内到定点(焦点)与到定直线(准线)距离的⽐是⼀个⼤于1的常数(离⼼率)的点的轨迹叫做双曲线.对于双曲线12222=-by a x ,它的焦点坐标是(-c ,0)和(c ,0),与它们对应的准线⽅程分别是ca x 2-=和c a x 2=.双曲线22221(0,0)x y ab a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.4.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ?-<. 5.双曲线的⽅程与渐近线⽅程的关系(1)若双曲线⽅程为12222=-by a x ?渐近线⽅程:22220x y a b -=?x a by ±=.(2)若渐近线⽅程为x a by ±=?0=±b y a x ?双曲线可设为λ=-2222by a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).6. 双曲线的切线⽅程(1)双曲线22221(0,0)x y a b a b-=>>上⼀点00(,)P x y 处的切线⽅程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外⼀点00(,)P x y 所引两条切线的切点弦⽅程是00221x x y y a b -=.(3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.(五)抛物线的标准⽅程和⼏何性质1.抛物线的定义:平⾯内到⼀定点(F )和⼀条定直线(l )的距离相等的点的轨迹叫抛物线。

第3章圆锥曲线的方程知识点汇总

第3章圆锥曲线的方程知识点汇总

p 2
x p 2
x p 2
y p 2
y p 2
过抛物线的焦点且垂直于对称轴的弦称为通径: HH 2 p
AB x1 x2 p 参数 p 表示焦点到准线的距离, p 越大,开口越阔
谢谢观看!
A1 a,0 、 A2 a,0
A1 0, a 、 A2 0,a
实轴的长 2a
虚轴的长 2b
关于 x 轴、 y 轴对称,关于原点中心对称
F1 c,0 、 F2 c,0
F1 0, c 、 F2 0,c
F1F2 2c (c2 a2 b2)
3.2 双曲线
a,b, c 关系
离心率
渐近线方程 焦点到渐近线
图形
标准方程
顶点 离心率 对称轴
y2 2 px
y2 2 px
x2 2 py
x2 2 py
p 0
p 0
p 0
p 0
0, 0
e 1
x轴
y轴
3.3 抛物线
范围
焦点
准线方程
通径 焦点弦长
公式
参数 p 的
几何意义
x0
x0
y0
y0
F
p 2
,
0
F
p 2
,
0
F
0,
p 2ቤተ መጻሕፍቲ ባይዱ
F
0,
第3章 圆锥曲线的方程知识点汇总
3.1 椭圆
定义 焦点的位置
平面内与两个定点 F1 、 F2 的距离的和等于常数 2a (大于| F1F2 | 2 c )的点的
轨迹叫椭圆,两个定点叫椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
焦点在 x 轴上
焦点在 y 轴上
图形

【尖子生必备】圆锥曲线知识清单(知识点总结精华)

【尖子生必备】圆锥曲线知识清单(知识点总结精华)

b 分别叫做椭圆的长半轴长和短半轴长。
由椭圆的对称性知: 椭圆的短轴端点到焦点的距离为 a ; 在 Rt OB2 F2 中, | OB2 | b ,
| OF2 | c , | B2 F2 | a ,且 | OF2 |2 | B2 F2 |2 | OB2 |2 ,即 c 2 a 2 c 2 ; c ④离心率: 椭圆的焦距与长轴的比 e 叫椭圆的离心率。 ∵a c 0, ∴ 0 e 1, a 且 e 越接近 1 , c 就越接近 a ,从而 b 就越小,对应的椭圆越扁;反之, e 越接近于 0 , c 就越接近于 0 ,从而 b 越接近于 a ,这时椭圆越接近于圆。当且仅当 a b 时, c 0 , 两 2 2 2 焦点重合,图形变为圆,方程为 x y a 。
x2 y2 1 的顶点。 a2 b2
x2 y2 1 的各支向外延伸时,与这两条直线逐 a2 b2
渐接近。 ⑤等轴双曲线: 1)定义:实轴和虚轴等长的双曲线叫做等轴双曲线。定义式: a b ;
2)等轴双曲线的性质: (1)渐近线方程为: y x ; (2)渐近线互相垂直。 注意以上几个性质与定义式彼此等价。亦即若题目中出现上述其一,即可推知双曲线 为等轴双曲线,同时其他几个亦成立。 3)注意到等轴双曲线的特征 a b ,则等轴双曲线可以设为: x y ( 0) ,
2 2 2
的图形、标准方程、焦点坐标以及准线方程如下表: 标准方程
y 2 2 px ( p 0) y l o F p ( , 0) 2 p x 2 x0 x轴 (0, 0) e 1 x
y 2 2 px ( p 0) y F o ( p , 0) 2 p x 2 x0 x轴 (0, 0) e 1

圆锥曲线知识要点及重要结论

圆锥曲线知识要点及重要结论

圆锥曲线知识要点及重要结论圆锥曲线是数学中的一个重要概念,它包括椭圆、双曲线和抛物线三种特殊的曲线形状。

本文将介绍圆锥曲线的基本定义、性质和重要结论,以帮助读者更好地理解和应用这一概念。

1. 圆锥曲线的定义圆锥曲线是由一个可移动的点P和两个固定点F1、F2组成的。

对于椭圆和双曲线而言,这两个固定点称为焦点,而抛物线只有一个焦点。

圆锥线还有一个固定的直线L,称为准线,通过焦点F1、F2的垂线交于准线上的点称为顶点。

圆锥曲线的定义可以用以下公式表示:椭圆:PF1 + PF2 = 2a,其中a为椭圆的大半轴长度;双曲线:|PF1 - PF2| = 2a,其中a为双曲线的距离焦点到准线的距离;抛物线:PF = PL,其中P为抛物线上任意一点,F为焦点,L为准线。

2. 圆锥曲线的性质2.1 椭圆椭圆是圆锥曲线中的一种,它的性质如下:- 所有椭圆上的点到焦点的距离之和等于常数2a,其中a为椭圆的大半轴长度;- 椭圆的长轴是焦点的连线,短轴是准线的连线;- 椭圆是一个封闭曲线,对称于长轴和短轴。

2.2 双曲线双曲线是圆锥曲线中的一种,它的性质如下:- 所有双曲线上的点到焦点的距离之差的绝对值等于常数2a,其中a为焦点到准线距离的一半;- 双曲线的两支分别相交于点F1、F2,这两个点称为焦点;- 双曲线是一个非封闭曲线,它与准线之间没有交点。

2.3 抛物线抛物线是圆锥曲线中的一种,它的性质如下:- 抛物线上的点到焦点的距离等于该点到准线的垂直距离;- 抛物线是一个非封闭曲线,它与准线相切于顶点。

3. 圆锥曲线的重要结论3.1 椭圆的离心率椭圆的离心率是用来衡量椭圆形状扁度的指标,其定义为离心距与长轴长度的比值。

离心率的取值范围为0到1,当离心率为0时,椭圆变成了一个圆,而当离心率为1时,椭圆变成了一个线段。

3.2 双曲线的离心率双曲线的离心率也是衡量其形状的指标,其定义为离心距与焦点距离之差的比值。

离心率的取值范围大于1,当离心率趋近于无穷大时,双曲线的形状趋近于两个平行线。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。

它们在数学和物理学等领域都有广泛的应用。

下面我们来详细总结一下圆锥曲线的相关知识点。

一、椭圆1、定义平面内与两个定点 F1、F2 的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

2、标准方程焦点在 x 轴上时:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。

焦点在 y 轴上时:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} =1\)(\(a > b > 0\))。

3、椭圆的性质(1)范围:\(a \leq x \leq a\),\(b \leq y \leq b\)。

(2)对称性:关于 x 轴、y 轴和原点对称。

(3)顶点:\((\pm a, 0)\),\((0, \pm b)\)。

(4)离心率:\(e =\frac{c}{a}\)(\(0 < e < 1\)),离心率反映了椭圆的扁平程度,离心率越大,椭圆越扁;离心率越小,椭圆越接近于圆。

二、双曲线1、定义平面内与两个定点 F1、F2 的距离之差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线。

这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。

2、标准方程焦点在 x 轴上时:\(\frac{x^2}{a^2} \frac{y^2}{b^2} =1\),其中\(a\)为实半轴长,\(b\)为虚半轴长,\(c\)为半焦距,满足\(c^2 = a^2 + b^2\)。

焦点在 y 轴上时:\(\frac{y^2}{a^2} \frac{x^2}{b^2} =1\)。

3、双曲线的性质(1)范围:\(x \geq a\)或\(x \leq a\)。

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。

其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。

定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。

标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。

定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。

标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。

圆锥曲线知识点清单

圆锥曲线知识点清单

圆锥曲线知识点清单1.圆锥曲线定义:圆锥曲线可以定义为平面上一条曲线,是由一个平面与一个双曲面(或抛物面、圆锥、椭球)相交而得到的曲线。

2.圆锥曲线的分类:根据双曲面的切割方式,圆锥曲线可以分为圆、椭圆、双曲线和抛物线四种。

3.圆:圆是一种特殊的圆锥曲线,是由一个平面与圆锥体的底面相交而得到的曲线。

圆的特点是所有的点到圆心的距离都相等。

4.椭圆:椭圆是圆锥曲线中除了圆之外最为常见的一种形式。

椭圆的特点是到两个焦点的距离之和等于定长的点构成的轨迹。

5.双曲线:双曲线是圆锥曲线中的一种形式,具有两个分离的点,称为焦点。

双曲线的特点是到两个焦点的距离之差等于定长的点构成的轨迹。

6.抛物线:抛物线是圆锥曲线中的一种形式,具有一个焦点和一个定点。

抛物线的特点是到焦点和定点的距离相等的点构成的轨迹。

7.圆锥曲线的方程:每种圆锥曲线都有其特定的方程形式。

例如,椭圆的方程可以表示为x^2/a^2+y^2/b^2=1,其中a和b分别代表椭圆的长半轴和短半轴长度。

8.圆锥曲线的焦点和准线:每种圆锥曲线都具有焦点和准线,它们在曲线的定义中起到重要作用。

焦点是曲线的特定点,而准线是曲线的特定直线。

9.圆锥曲线的参数方程:除了直角坐标系方程外,圆锥曲线还可以使用参数方程来表示。

参数方程由参数t控制,使我们可以通过调整参数值来改变曲线的形状。

10.圆锥曲线的基本性质:每种圆锥曲线都具有一些基本的性质,如对称性、渐近线、离心率等。

这些性质有助于我们更好地理解和分析圆锥曲线。

11.圆锥曲线的应用:圆锥曲线在现实生活和工程领域中有着广泛的应用,如天体轨道、卫星通信、汽车运动轨迹等。

了解圆锥曲线的性质和方程形式有助于我们更好地理解和应用它们。

12.圆锥曲线的研究方法:研究圆锥曲线的方法包括几何方法和解析几何方法。

几何方法主要是通过几何性质和图形推理来研究曲线的特性,而解析几何方法则是通过代数和数学计算来推导圆锥曲线的方程和性质。

以上是圆锥曲线的一些主要知识点,通过学习和了解这些知识点,我们可以更好地理解和应用圆锥曲线。

高中数学圆锥曲线的教学难点与解决策略

高中数学圆锥曲线的教学难点与解决策略

高中数学圆锥曲线的教学难点与解决策略圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。

它不仅在数学学科中具有重要地位,也在实际生活和其他科学领域有着广泛的应用。

然而,对于学生和教师来说,圆锥曲线的教学和学习都存在着一定的难度。

一、教学难点1、概念抽象圆锥曲线的概念较为抽象,学生难以直观地理解和把握。

例如,椭圆的定义是“平面内到两个定点的距离之和等于常数(大于两定点间的距离)的点的轨迹”,双曲线的定义是“平面内到两个定点的距离之差的绝对值等于常数(小于两定点间的距离)的点的轨迹”。

这些定义涉及到距离的运算和比较,对于学生的空间想象能力和逻辑思维能力要求较高。

2、图形复杂圆锥曲线的图形较为复杂,其形状和性质随着参数的变化而变化。

学生在绘制图形和分析图形时容易出现错误,难以准确把握图形的特点和规律。

3、计算量大在求解圆锥曲线的相关问题时,往往需要进行大量的计算,如联立方程、求解方程组、化简表达式等。

这些计算过程繁琐,容易出错,对学生的计算能力和耐心是一个很大的考验。

4、综合应用难度高圆锥曲线常常与其他数学知识,如函数、不等式、向量等综合考查。

学生需要具备较强的知识整合能力和综合运用能力,才能解决这些综合性的问题。

二、解决策略1、加强直观教学利用多媒体技术,如动画、视频等,直观地展示圆锥曲线的形成过程和图形特点,帮助学生理解抽象的概念。

例如,通过动画演示动点到两个定点的距离之和或之差的变化过程,让学生直观地看到椭圆和双曲线的形成。

2、注重图形分析在教学中,引导学生仔细观察圆锥曲线的图形,分析图形的对称性、顶点、焦点、准线等重要元素的位置和性质。

通过大量的图形练习,培养学生的图形感知能力和分析能力。

3、优化计算方法教给学生一些简化计算的方法和技巧,如设而不求、整体代换等。

同时,加强学生的计算训练,提高计算的准确性和速度。

4、强化知识整合在教学中,有意识地引导学生将圆锥曲线与其他数学知识进行联系和整合,通过综合性的例题和练习,让学生体会知识之间的相互关系,提高综合运用能力。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结(共7页) -本页仅作为预览文档封面,使用时请删除本页-圆锥曲线知识点总结圆锥曲是数学考试中的一个难点,那么相关的知识点又有什么呢?下面圆锥曲线知识点总结是小编想跟大家分享的,欢迎大家浏览。

圆锥曲线知识点总结圆锥曲线的应用【考点透视】一、考纲指要1.会按条件建立目标函数研究变量的最值问题及变量的取值范围问题,注意运用"数形结合"、"几何法"求某些量的最值.2.进一步巩固用圆锥曲线的定义和性质解决有关应用问题的方法.二、命题落点1.考查地理位置等特殊背景下圆锥曲线方程的应用,修建公路费用问题转化为距离最值问题数学模型求解,如例1;2.考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力,如例2;3.考查双曲线的概念与方程,考查考生分析问题和解决实际问题的能力,如例3.【典例精析】例1:(2004・福建)如图,B地在A地的正东方向4km处,C地在B地的北偏东300方向2km处,河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.现要在曲线PQ上选一处M建一座码头,向B、C两地转运货物.经测算,从M到B、M到C修建公路的费用分别是a万元/km、2a万元/km,那么修建这两条公路的总费用最低是()A.(2-2)a万元万元C.(2+1)a万元D.(2+3)a万元解析:设总费用为y万元,则y=a・MB+2a・MC∵河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km.,∴曲线PG是双曲线的一支,B为焦点,且a=1,c=2.过M作双曲线的焦点B对应的准线l的垂线,垂足为D(如图).由双曲线的第二定义,得=e,即MB=2MD.∴y=a・2MD+2a・MC=2a・(MD+MC)≥2a・CE.(其中CE是点C到准线l的垂线段).∵CE=GB+BH=(c-)+BC・cos600=(2-)+2×=.∴y≥5a(万元).答案:B.例2:(2004・北京,理17)如图,过抛物线y2=2px(p>0)上一定点P(x0,y0)(y0>0),作两条直线分别交抛物线于A(x1,y1),B(x2,y2).(1)求该抛物线上纵坐标为的点到其焦点F的距离;(2)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数.解析:(1)当y=时,x=.又抛物线y2=2px的准线方程为x=-,由抛物线定义得,所求距离为.(2)设直线PA的斜率为kPA,直线PB的斜率为kPB.由y12=2px1,y02=2px0,相减得:,故.同理可得,由PA、PB倾斜角互补知,即,所以,故.设直线AB的斜率为kAB,由,,相减得,所以.将代入得,所以kAB是非零常数.例3:(2004・广东)某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s.已知各观测点到该中心的距离都是1020m,试确定该巨响发生的位置.(假定当时声音传播的速度为340m/s,相关各点均在同一平面上)解析:如图,以接报中心为原点O,正东、正北方向为x轴、y轴正向,建立直角坐标系.设A、B、C分别是西、东、北观测点,则A(-1020,0),B(1020,0),C(0,1020).设P(x,y)为巨响发生点,由A、C同时听到巨响声,得|PA|=|PC|, 故P在AC的垂直平分线PO上,PO的方程为y=-x,因B点比A点晚4s听到爆炸声,故|PB|-|PA|=340×4=1360.由双曲线定义知P点在以A、B为焦点的双曲线上,依题意得a=680,c=1020,∴b2=c2-a2=10202-6802=5×3402,故双曲线方程为.用y=-x代入上式,得x=±680,∵|PB|>|PA|,∴x=-680,y=680,即P(-680,680),故PO=680.答:巨响发生在接报中心的西偏北450距中心680m处.【常见误区】1.圆锥曲线实际应用问题多带有一定的实际生活背景,考生在数学建模及解模上均不同程度地存在着一定的困难,回到定义去,将实际问题与之相互联系,灵活转化是解决此类难题的关键;2.圆锥曲线的定点、定量、定值等问题是隐藏在曲线方程中的固定不变的性质,考生往往只能浮于表面分析问题,而不能总结出其实质性的结论,致使问题研究徘徊不前,此类问题解决需注意可以从特殊到一般去逐步归纳,并设法推导论证.【基础演练】1.(2005・重庆)若动点()在曲线上变化,则的最大值为().2.(2002・全国)设,则二次曲线的离心率的取值范围为()3.(2004・精华教育三模)一个酒杯的轴截面是一条抛物线的一部分,它的方程是x2=2y,y∈[0,10]在杯内放入一个清洁球,要求清洁球能擦净酒杯的最底部(如图),则清洁球的最大半径为()4.(2004・泰州三模)在椭圆上有一点P,F1、F2是椭圆的左右焦点,△F1PF2为直角三角形,则这样的点P有()个个个个5.(2004・湖南)设F是椭圆的右焦点 5.(2004?湖南)设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...组成公差为d的等差数列,则d的取值范围为.且椭圆上至少有21个不同的点Pi(i=1 5.(2004?湖南)设F 是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...组成公差为d的等差数列,则d的取值范围为.2 5.(2004?湖南)设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...组成公差为d的等差数列,则d的取值范围为.3 5.(2004?湖南)设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...组成公差为d的等差数列,则d的取值范围为....) 5.(2004?湖南)设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...组成公差为d的等差数列,则d的取值范围为.使| 5.(2004?湖南)设F 是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...组成公差为d的等差数列,则d的取值范围为.| 5.(2004?湖南)设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...组成公差为d的等差数列,则d的取值范围为.| 5.(2004?湖南)设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...组成公差为d的等差数列,则d的取值范围为.| 5.(2004?湖南)设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...组成公差为d 的等差数列,则d的取值范围为.| 5.(2004?湖南)设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...组成公差为d的等差数列,则d的取值范围为.| 5.(2004?湖南)设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...组成公差为d 的等差数列,则d的取值范围为....组成公差为d的等差数列5.(2004?湖南)设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,...),使|FP1|,|FP2|,|FP3|,...组成公差为d的等差数列,则d的取值范围为.则d的取值范围为.6.(2004・上海)教材中"坐标平面上的直线"与"圆锥曲线"两章内容体现出解析几何的本质是.7.(2004・浙江)已知双曲线的中心在原点,右顶点为A(1,0),点P、Q在双曲线的右支上,点M(m,0)到直线AP的距离为1,(1)若直线AP的斜率为k,且|k|[],求实数m的取值范围;(2)当m=+1时,△APQ的内心恰好是点M,求此双曲线的方程.8.(2004・上海)如图,直线y=x与抛物线y=x2-4交于A、B两点,线段AB的垂直平分线与直线y=-5交于Q点.(1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含A、B)的动点时,求ΔOPQ面积的最大值.9.(2004・北京春)2003年10月15日9时,"神舟"五号载人飞船发射升空,于9时9分50秒准确进入预定轨道,开始巡天飞行.该轨道是以地球的中心为一个焦点的椭圆.选取坐标系如图所示,椭圆中心在原点.近地点A距地面200km,远地点B距地面350km.已知地球半径R=6371km.(1)求飞船飞行的椭圆轨道的方程;(2)飞船绕地球飞行了十四圈后,于16日5时59分返回舱与推进舱分离,结束巡天飞行,飞船共巡天飞行了约,问飞船巡天飞行的平均速度是多少km/s(结果精确到1km/s)(注:km/s即千米/秒)。

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结高中数学圆锥曲线知识点总结一、基本概念1、圆锥曲线:圆锥曲线是由一系列圆及其与它们的共轭切面围成的曲线,也可以看作是由一条曲线以及一个光滑曲面所围成的曲线空间。

2、圆弧:圆弧是曲线上一定角度范围内的闭合曲线,实际中常用于表示圆的片段。

3、渐开线:渐开线是由来自同一个圆的两个圆弧构成的弧线,渐开线的共轭切面是一条直线,而此直线又可在空间上做一个新的圆锥曲线。

二、圆锥曲线的性质1、圆锥曲线的曲线部分是由圆弧和渐开线组成的,曲线上每个点都是圆切弧上的一个点;2、圆锥曲线的表面部分是一个椭圆锥曲面,其参数方程由三个椭圆锥参数函数组成,其积分可以计算出圆锥曲面上的面积;3、点P(x,y,z)在圆锥曲线上,则其有连续的x,y,z三个坐标参数,并且满足圆锥曲线的参数方程;4、圆锥曲线的曲线部分是椭圆锥曲线,并且任一点在曲线上的切线方向都是一致的;5、圆锥曲线的曲线与曲面的连接,是一条中间缝合曲线,即渐开线,渐开线也可以看作是空间曲线上的锥面的交线。

6、圆锥曲线的曲线部分与表面部分的连接,是一条中间缝合曲线,被称为椭圆锥曲线,椭圆锥曲线也是一条空间曲线上的椭圆锥面的交线。

7、圆锥曲线的曲线部分与表面部分之间的交点的曲线,也被称为椭圆锥曲线,它也可以看作是圆锥曲线上的椭圆锥线的交点的曲线。

三、圆锥曲线的应用1、圆锥曲线在建筑学上常用于建造拱顶、圆顶、屋顶等,这些曲线具有很好的象征性;2、圆锥曲线在航空和航天工程上常用于设计飞机、火箭的运动轨迹;3、圆锥曲线在汽车制造上常用于设计汽车的底盘,以实现更好的操控性能;4、圆锥曲线在计算机渲染上常用于设计三维物体,以获得更加逼真的渲染效果;5、圆锥曲线在绘画上常用于创作凹凸有致的曲线,以实现更加自然的线条。

总之,圆锥曲线是一种非常有用的曲线,它在不同领域有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线知识储备汇总
1. 直线方程的形式
(1)直线方程的形式有五个:点斜式、两点式、斜截式、截距式、一般式。

(2)与直线相关的重要内容
倾斜角与斜率tan ,[0,)k ααπ=∈
点到直线的距离d =
两平行直线的距离d =
(3)弦长公式
直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =-
= 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且
2、圆锥曲线基本性质
椭圆(以122
22=+b
y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶
点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ; ⑤离心率:c e a =,椭圆⇔01e <<,e 越小,椭圆越圆;e 越大,椭圆越扁。

双曲线(以22
22
1x y a b -=(0,0a b >>)为例):①范围:x a ≤-或,x a y R ≥∈;②焦点:两个焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),两个顶点(,0)a ±,其中实轴长为2a ,虚轴长为2b ,特别地,当实轴和虚轴的长相等时,称为
等轴双曲线,其方程可设为22,0x y k k -=≠; ⑤离心率:c e a
=,双曲线⇔1e >,等
轴双曲线⇔e =
e 越小,开口越小,e 越大,开口越大;⑥两条渐近线:b y x a =±。

抛物线(以22(0)y px p =>为例):①范围:0,x y R ≥∈;②焦点:一个焦点(,0)2
p ,其中p 的几何意义是:焦点到准线的距离;③对称性:一条对称轴0y =,没有对称中心,只有一个顶点(0,0);④准线:一条准线2
p x =-。

3、点、直线与圆锥曲线的位置关系
点00(,)P x y 和椭圆122
22=+b
y a x (0a b >>)的关系:(1)点00(,)P x y 在椭圆外⇔2200221x y a b +>;(2)点00(,)P x y 在椭圆上⇔220220b
y a x +=1;(3)点00(,)P x y 在椭圆内⇔2200221x y a b
+< 直线与圆锥曲线相交:0∆>⇔直线与椭圆相交; 0∆>⇒直线与双曲线相交,但直线与双曲线相交不一定有0∆>,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故0∆>是直线与双曲线相交的充分条件,但不是必要条件;0∆>⇒直线与抛物线相交,但直线与抛物线相交不一定有0∆>,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故0∆>也仅是直线与抛物线相交的充分条件,但不是必要条件。

相切:0∆=⇔直线与椭圆相切;0∆=⇔直线与双曲线相切;0∆=⇔直线与抛物线相切;
相离:0∆<⇔直线与椭圆相离;0∆<⇔直线与双曲线相离;0∆<⇔直线与抛物线相离。

4、圆锥曲线方程及性质
(1)、椭圆的方程的形式有几种?(三种形式)
标准方程:221(0,0,)mx ny m n m n +=>>≠
2a =
参数方程:cos ,sin x a y b θθ==
(2)、双曲线的方程的形式有两种
标准方程:221(0)mx ny m n +=⋅<
距离式方程:2a =
(3)、三种圆锥曲线的通径
22222b b p a a
椭圆:;双曲线:;抛物线:
(4)、焦点三角形面积公式(证明过程??):
122tan 2
F PF P b θ∆=在椭圆上时,S 122cot 2
F PF P b θ∆=在双曲线上时,S (其中222
1212121212||||4,cos ,||||cos ||||
PF PF c F PF PF PF PF PF PF PF θθθ+-∠==•=⋅) (5)焦半径公式(证明过程??):
(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为
(2)0||x e x a ±双曲线焦点在轴上时为
(3)11||,||22
p p x x y +
+抛物线焦点在轴上时为焦点在y 轴上时为 简记为“左加右减,上加下减”。

5、利用导函数求解切线问题。

相关文档
最新文档