《应用一元一次方程——水箱变高了》典型例题

合集下载

5.3 应用一元一次方程---水箱变高了

5.3 应用一元一次方程---水箱变高了

5.3 应用一元一次方程---水箱变高了一.选择题(共9小题)1.(2019秋•萧山区期末)有一个不完整圆柱形玻璃密封容器如图①,测得其底面半径为a ,高为h ,其内装蓝色液体若干.若如图②放置时,测得液面高为12h ;若如图3放置时,测得液面高为23h .则该玻璃密封容器的容积(圆柱体容积=底面积×高)是( )A .5π24a 2ℎB .5π6a 2ℎC .56a 2ℎD .53aℎ 2.(2020春•密山市期末)一个密封的瓶子里装着一些水(如图所示),已知瓶子的底面积为10cm 2,请你根据图中标明的数据,计算瓶子的容积是( )cm 3.A .80B .70C .60D .503.(2019秋•庐阳区期末)如图,小刚将一个正方形纸片剪去一个宽为5cm 的长条后,再从剩下的长方形纸片上剪去一个宽为6cm 的长条,如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和为( )A .215cm 2B .250cm 2C .300cm 2D .320cm 24.(2019秋•苍溪县期末)将一根长为12cm 的铁丝围成一个长与宽之比为2:1的长方形,则此长方形的面积为( )A .2cm 2B .4.5cm 2C .8cm 2D .32cm 25.(2020秋•定远县月考)如图,在水平桌面上有甲、乙两个内部呈圆柱形的容器,内部底面积分别为80cm2、100cm2,且甲容器装满水,乙容器是空的.若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲的水位高度低了8cm,则甲的容积是()A.1280 cm3B.2560 cm3C.3200 cm3D.4000 cm3 6.(2019秋•天津期末)如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()cm2.A.400B.500C.300D.7507.(2019秋•焦作期末)如图,在周长为10m的长方形窗户上钉一块宽为1m的长方形遮阳布,使透光部分正好是一正方形,则钉好后透光面积为()A.9 m2B.25 m2C.16 m2D.4 m2 8.(2020秋•盐池县期末)一个长方形的周长是40cm,若将长减少8cm,宽增加2cm,长方形就变成了正方形,则正方形的边长为()A.6cm B.7cm C.8cm D.9cm 9.(2019秋•巩义市期末)一个长方形的周长是18cm,若这个长方形的长减少1cm,宽增加2cm,就可以成为一个正方形,则此正方形的边长是()A.5cm B.6cm C.7cm D.8cm二.填空题(共11小题)10.(2019秋•金凤区校级期末)从一个内径为12cm的圆柱形茶壶向一个内径为6cm、内高为12cm的圆柱形茶杯中倒水,茶杯中的水满后,茶壶中的水下降了cm.11.(2020秋•南岗区期末)如图,在一块长为a米,宽为10米的长方形草地上,修建两条宽为2米的长方形小路,若这块草地的绿地面积(图中空白部分)为144平方米,则a =.12.(2020秋•青山区期末)如图,用一块长5cm、宽2cm的长方形纸板,和一块长4cm、宽1cm的长方形纸板,与一块正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形,则拼成的大正方形的面积是cm2.13.(2020秋•薛城区期末)如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为厘米2.(1毫升=1立方厘米)14.(2019秋•雁塔区校级期末)如图,小明将一张正方形纸片剪去一个宽为3cm的长条后,再从剩下的长方形纸片上剪去一个宽为4cm的长条,如果两次剪下的长条面积正好相等,则剪下的长条的面积之和为.15.(2019秋•武侯区期末)如图,甲、乙两个等高圆柱形容器,内部底面积分别为20cm2,50cm2,且甲中装满水,乙是空的若将甲中的水全部倒入乙中,则乙中的水位高度比原先甲中的水位高度低了3cm,则甲、乙两容器的高度均为.16.(2019秋•东阳市期末)把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为.17.(2019春•方城县期中)如图,由6个正方形A、B、C、D、E、F拼成一个长方形,已知位于中间的最小正方形A的面积为1,那么所拼成的这个长方形的面积是.18.(2019秋•太仓市期末)实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56c c m,则开始注入分钟的水量后,甲与乙的水位高度之差是16cm .19.(2019春•孟津县期中)如图,A 、B 两个长方体水箱放置在同一水平桌面上,开始时水箱A 中没有水,水箱B 盛满水,现以6dm 3/min 的流量从水箱B 中抽水注入水箱A 中,当水箱A 与水箱B 中的水的体积相等时,两水箱中水位的高度差(抽水水管的体积忽略不计) .20.(2019秋•瑞安市月考)如图1,有一个长方形被分割成了6个大小不同的正方形,其中最小正方形的边长是3,则该长方形的长是 ;将同一个长方形作如图2分割,分割成左上角的长方形G 、右下角的长方形H 以及7张长宽相同的小长方形M (小长方形M 如图3所示),当长方形G 与长方形H 的周长相等时,小长方形M 的宽是 .三.解答题(共3小题)21.(2020春•新蔡县期中)如图所示,长方形纸片的长为15厘米,在这张纸片的长和宽上各剪去一个宽为3厘米的纸条,剩余部分(阴影部分)的面积是60平方厘米,求原长方形纸片的宽.22.(2020秋•拱墅区校级期中)如图,一个瓶子的容积为1升,瓶内装着一些溶液,当瓶子正放时,瓶内溶液的高度为20cm,倒放时,空余部分的高度为5cm(如图).现把溶液全部倒在一个底面直径为8cm的圆柱形杯子里.求:(1)瓶内溶液的体积.(2)圆柱形杯子溶液的高度是多少?23.(2020秋•南岗区校级月考)一个长方体玻璃容器,从里面量长为3分米,宽为2分米,高4分米.向容器中倒入9升水,再把一个苹果放入水中,苹果完全浸没在水中,这时测得容器内的水面的高度是18厘米.这个苹果的体积是多少?。

初一上数学课件(北师版)-应用一元一次方程——水箱变高了

初一上数学课件(北师版)-应用一元一次方程——水箱变高了
【规范解答】设长方形的长为 x 米,依题意得:x+2(x-5)=35,解得 x= 15,∵15>14,∴小王的设计不合实际. 【题后反思】类似此类有关实际问题的应用题,在解出未知数的值后要注 意其值是否符合问题的实际意义.
知识点一:等积变形
等体积变形:即物体的外形或形态发生变化,但变化前后的体积 不变 ,
列方程解决形体问题. 【例 1】锻造车间要铸造底面半径为 8cm,高为 12cm 的圆柱形零件毛坯 5 个,需要用横截面半径为 16cm 的圆柱形钢材多长?(生产过程中的损耗不 计)
【思路分析】锻造过程中,虽然物体形状变了,但体积不变,就是利用这 一点为相等关系建立方程求解.
【规范解答】设需要横截面半径为 16cm 的圆柱形钢材 xcm,根据题意,得 5π×82×12=π×162×x,解得 x=15.答:需要横截面半径为 16cm 的圆柱形 钢材 15cm 长.
箱壁每平方米的造价是箱底每平方米造价的23,若整个水箱共花去 1860 元,
求水箱的高度.
解:设水箱的高度为 x 米,2(5x+3x)×60×23+5×3×60=1860,∴x=1.5, 答:水箱的高度为 1.5 米.
7.用一根铁丝围成一个三条边都为 24cm 的三角形,如果将它改围成一个
正方形,这个正方形的边长是( B )
A.24cm
B.18cm
C.12cm
D.9cm
8.如图,小明从一个正方形的纸片上剪下一个宽为 6cm 的长条后,再从剩 下的纸片上剪下一条宽为 8cm 的长条,如果两次剪下的长条面积正好相等, 则原正方形的边长是( B )
A.20 C.48
B.24 D.144
9.长方形的长是宽的 3 倍,如果宽增加了 4m 而长减少了 5m,那么面积增 加 15m2,设长方形原来的宽为 xm,所列方程是( B ) A.(x+4)(3x-5)+15=3x2 B.(x+4)(3x-5)-15=3x2 C.(x-4)(3x+5)-15=3x2 D.(x-4)(3x+5)+15=3x2

北师大版七年级数学上册第五章《应用一元一次方程—水箱变高了》课时练习题(含答案)

北师大版七年级数学上册第五章《应用一元一次方程—水箱变高了》课时练习题(含答案)

北师大版七年级数学上册第五章《3.应用一元一次方程—水箱变高了》课时练习题(含答案)一、单选题1.某阶梯教室开会,设座位有x 排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是( )A .30x ﹣8=31x ﹣26B .30x+8=31x+26C .30x+8=31x ﹣26D .30x ﹣8=31x+262.有一所寄宿制学校,开学安排宿舍时,如果每间宿舍安排4人,将会空出5间宿舍;如果每间宿舍安排3人,就有100人没床位,那么在学校住宿的学生有多少人?若设在学校住宿的学生有x 人,那么根据题意,可列出的方程为( )A .100543x x -+=B .510043x x +-= C .453100x x -=+ D .100543x x +-= 3.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电量15万度.如果设上半年每月平均用电x 度,则所列方程正确的是( )A .6x +6(x -2000)=150000B .6x +6(x +2000)=150000C .6x +6(x -2000)=15D .6x +6(x +2000)=154.某学校组织师生去衢州市中小学素质教育实践学校研学.已知此次共有n 名师生乘坐m 辆客车前往目的地,若每辆客车坐40人,则还有15人没有上车;若每辆客车坐45人,则刚好空出一辆客车.以下四个方程:①()4015451m m +=-;②()4015451m m -=-;③1514045n n -=-;④1514045n n -=+.其中正确的是( ) A .①③B .①④C .②③D .②④ 5.一个底面半径为10cm 、高为30cm 的圆柱形大杯中存满了水,把水倒入底面直径为10cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为( )A .6cmB .8cmC .10cmD .12 cm6.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .727.小明用长16cm 的铁丝围成一个长方形,并且长方形的长比宽多2cm ,设这个长方形的长为xcm ,则x 的值为()A .9B .5C .7D .108.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x 公顷旱地改造为林地,则可列方程为( )A .60-x =20%(120+x)B .60+x =20%×120C .180-x =20%(60+x)D .60-x =20%×120二、填空题9.一个蓄水池可蓄水240吨,现有一个进水管和一个排水管,单独打开进水管8小时可以把水池注满,单独打开排水管6小时可以把满池水排空.若原有满池水,设两管齐开,x 小时可把满池水排空,则可列方程________.10.某小学女生占全体学生52%,比男生多a 人,这个学校一共有______人学生. 11.已知一个两位数,其十位上的数字是个位上数字的3倍还少1,且它们的和是11,那么这个两位数是________.12.如图,一个尺寸为3604(⨯⨯单位:)dm 密封的铁箱中,有3dm 高的液体.当此铁箱竖起来(以34⨯为底面)时,箱中液体的高度是________dm .13.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x 人,可列方程为_______________.14.一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:4,圆锥的高是4.8厘米,则圆柱的高是___厘米.三、解答题15.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?16.10位同学在植树节这天共种了26棵树苗,其中男生每人种3棵,女生每人种2棵,则男生和女生分别有多少人?17.在一次美化校园活动中,先安排31人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树的人数的2倍.问支援拔草和植树的分别有多少人?(只列出方程即可)18.足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?19.有一个两位数,它的十位上的数字比个位上的数字大5,且这个两位数比它的两个数位上的数字之和的8倍还要多5,求这个两位数.20.冰墩墩是2022年北京冬季奥运会的吉祥物,将熊猫形象与富有超能量的冰晶外壳相结合,体现了追求卓越、引领时代,以及面向未来的无限可能.某学校购进了一批冰墩墩吉祥物分配给各班,若每班分4个,则剩余2个;若每班分5个,则还缺16个.求这个学校有几个班级?参考答案1.C2.A3.A4.B5.C6.D7.B8.A9.240240240 68x⎛⎫-=⎪⎝⎭10.25a11.8312.45.13.2x+56=589-x14.6.415.解:设长方形的长为cmx,根据题意,得2(10)10462x+=⨯+⨯.25220,x∴=-解得:16,x=所以长方形的长为16cm,宽为10cm.16.解:设男生x人,则女生(10-x)人,根据题意,得3x+2(10-x)=26,解得:x=6,10-x=10-6=4(人),答:男生6人,女生4人.17.解:设支援拔草的有x人,由题意得:31+x=2[18+(20-x)].18.解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程:3x+5x=32,解得:x=4,则黑色皮块有:3x=12个,白色皮块有:5x=20个.答:黑色皮块有12个,白色皮块有20个.19.解:设个位上的数字为x,则十位上的数字为(x+5),那么这个两位数为10(x+5)+x,依题意,可列方程10(x+5)+x=8[ (x+5)+x ]+5.解方程可得:x=1代入可得这个两位数为61.答:这个两位数为61.20.解:设这个学校有x个班级,则+=-,x x42516x=.解得18答:这个学校有18个班级。

一元一次方程应用题水箱变高了题型

一元一次方程应用题水箱变高了题型

一、概述水箱变高了是一个常见的一元一次方程应用题,它涉及到数学在实际生活中的应用,对于学生来说具有一定的教育意义。

在解决这类问题时,需要运用一元一次方程的知识,通过设立未知数、建立方程式、解方程等步骤来求解问题。

本文将通过具体的例题分析,帮助读者更好地理解并掌握解决这类问题的方法。

二、问题描述某地区的一个水箱的水位原来是30米,后来升高了h米。

经过一段时间,水箱的水位降低到了原来的一半,那么水箱升高了多少米?三、问题分析1. 设定未知数:我们可以设未知数x表示水箱升高的高度。

2. 建立方程式:根据题意,可以列出方程式:30 + x = 2(30 + x - h)。

3. 解方程求解:通过解方程来求解出水箱升高的高度x。

四、具体步骤1. 设定未知数:设水箱升高的高度为x米。

2. 建立方程式:根据题意,可以列出方程式:30 + x = 2(30 + x - h)。

3. 解方程求解:通过解方程求出x的值。

4. 检验答案:将得到的结果代入原方程中进行检验。

五、具体计算1. 设定未知数:设水箱升高的高度为x米。

2. 建立方程式:30 + x = 2(30 + x - h)。

3. 解方程求解:通过解方程30 + x = 60 + 2x - 2h,得到x = 30 - 2h。

4. 检验答案:将x = 30 - 2h代入方程30 + x = 2(30 + x - h)中进行检验:30 + (30 - 2h) = 2 * [30 + (30 - 2h) - h]化简得到:30 + 30 - 2h = 60 + 60 - 4h - 2h化简得到:60 - 2h = 120 - 6h化简得到:4h = 60化简得到:h = 15六、问题解答根据计算,水箱升高了15米。

七、总结通过上述的步骤,我们成功地解决了水箱变高了的一元一次方程应用题。

在解决这类问题时,关键在于正确地建立方程式,然后通过解方程的方法求解未知数。

为了确保解答正确,还需要对得到的结果进行检验。

北师大版数学七年级上册第五章一元一次方程第3节应用一元一次方程-水箱变高了课后练习

北师大版数学七年级上册第五章一元一次方程第3节应用一元一次方程-水箱变高了课后练习

第五章一元一次方程第3节应用一元一次方程-水箱变高了课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.内径为300 mm,内高为32 mm的圆柱形玻璃杯内盛满水,倒入内径为120 mm的圆柱形玻璃杯,刚好倒满,则内径为120 mm玻璃杯的内高为().A.150 mm B.200 mm C.250 mm D.300 mm 2.一个长方形的周长为26cm,这个长方形的长减少1cm,宽增加2cm,就可成为一个正方形,设长方形的长为xcm,则可列方程()A.x﹣1=(26﹣x)+2B.x﹣1=(13﹣x)+2C.x+1=(26﹣x)﹣2D.x+1=(13﹣x)﹣23.学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍.设调往甲处植树x人,则可列方程()A.23﹣x=2(17+20﹣x)B.23﹣x=2(17+20+x)C.23+x=2(17+20﹣x)D.23+x=2(17+20+x)4.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A.120350506x x+-=+B.350506x x-=+C.120350650x x+-=+D.120350506x x+-=+5.在一次革命传统教育活动中,有n位师生乘坐m辆客车.若每辆客车乘60人,则还有10人不能上车,若每辆客车乘62人,则最后一辆车空了8个座位.在下列四个方程①60m+10=62m﹣8;①60m+10=62m+8;①1086062n n-+=;①1086062n n+-=中,其中正确的有()A.① ①B.① ①C.① ①D.① ①6.中国明代数学著作《算法统宗》中有这样一首古诗:“巍巍古寺在山中,不知寺内有多僧?三百六十四只碗,恰好用尽不用争,三人共餐一碗饭,四人共尝一碗羹,请问先生能算者,算出寺内几多僧?”其大意是,某古寺用餐,3个和尚吃一碗饭,4个和尚合分一碗汤,一共用了364只碗,问有多少个和尚?根据题意,可以设和尚的个数为x ,则得到的方程是( ) A .34364x x +=B .1136434x x +=C .143643x x +=D .133644x x +=7.我国明朝珠算发明家程大位,他完成的古代数学名著《直指算法统宗》,详述了传统的珠算规则,确立了算盘用法.书中记载如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?设大和尚有x 人,则可列方程为( )A .13(100)1003x x +-=B .33(100)100x x +-=C .13(100)1003x x +-=D .1(100)1003x x +-=8.甲班有54人,乙班有48人,要使甲班人数是乙班的2倍,设从乙班调往甲班人数x ,可列方程( )A .54+x=2(48﹣x )B .48+x=2(54﹣x )C .54﹣x=2×48D .48+x=2×549.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是( )A .5(211)6(1)x x +-=-B .5(21)6(1)x x +=-C .5(211)6x x +-=D .5(21)6x x +=10.用一根铁丝围成一个长24cm ,宽12cm 的长方形,现将它拉成正方形,则这个正方形的边长是( ) A .9cm B .10cmC .18cmD .20cm评卷人 得分二、填空题 11.钢锭的截面是正方形,其边长是20厘米,要锻造成长、宽、高分别为40厘米,30厘米,10厘米的长方体,应截取这种钢锭的长度为________厘米.12.班级筹备运动会,要做直角边分别为0.4米和0.3米的三角形小旗,共做64面,要用长1.6米、宽1.2米的长方形红纸________张.13.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个;如果每人做4个,那么比计划少7个.设计划做x个中国结,可列方程______.14.某部队开展植树活动,甲队35 人,乙队27 人,现另调28 人去支援,使两队的人数相等,设应调往甲队x 人,依题意列方程为___________15.浙江农村地区向来有打年糕的习俗,糯米做成年糕的过程中重量会增加20%.如果原有糯米a斤,做成年糕后重量为______斤.16.众所周知,中华诗词博大精深,集大量的情景、情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数反而少了20个字.根据题意可知七言绝句有____首.17.某车间原计划用13小时生产一批零件,后来每小时多生产10个,用了12小时,不但完成了任务,而且还多生产零件60个,设原计划每小时生产零件x个,则可列方程为_______.18.将一个底画积为232cm,高为24cm的长方体金属熔铸成一个底面长6cm,宽4cm 的长方体零件毛坯,则这个长方体零件毛坯的高是______cm.19.甲、乙两个图形的面积之和是2150cm,面积之比为7:3,则较大图形的面积是____2cm.评卷人得分三、解答题20.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个养鸡场,其中长比宽多5米;小赵也打算用它围成一个养鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,养鸡场的面积是多少?21.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”22.我国明代数学家程大为曾提出过这样一个有趣的问题:有一个人赶着一群羊在前面走,另一个人牵着一只羊跟在后面.后面的人问赶羊的人说:“你这群羊有一百只吗?”赶羊的人回答:“我如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只.”请问这群羊有多少只?请设未知数,列出方程.23.有一位旅客携带了30kg重的行李从上海乘飞机去北京,按民航总局规定:旅客最多可免费携带20kg重的行李,超重部分每千克按飞机票价格1.5%购买行李票,现该旅客购买了180元的行李票,则飞机票价格应是多少元?24.甲仓库有水泥100吨,乙仓库有水泥80吨,要全部运动A、B两工地,已知A工地需要70吨,B工地需要110吨,甲仓库运到A、B两工地的运费分别是140元/吨、150元/吨,乙仓库运到A、B两工地的运费分别是200元/吨、80元/吨,本次运送水泥总运费需要25900元,问甲仓库运到A工地水泥的吨数.(运费:元/吨,表示运送每吨水泥所需的人民币)(1)设甲仓库运到A工地水泥的吨数为x吨,请在下面表格中用x表示出其他未知量.甲仓库乙仓库A工地xB工地x+10(2)用含x的代数式表示运送甲仓库100吨水泥的运费为元.(写出化简后的结果)(3)请根据题目中的等量关系和以上的分析列出方程.(只列出方程即可,写成ax+b=0的形式,不用解)25.(教材P144T3变式)如图所示,小明将一个正方形纸片剪去一个宽为8cm的长条后,再从剩下的长方形纸片上剪去一个宽为10cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为多少?参考答案:1.B【解析】【详解】试题分析:设内径为120 mm玻璃杯的内高为x mm.由题意本题的等量关系为两个圆柱形玻璃杯容积相同,则可列方程组π×1502×32=π×602x,解得即可.解:设内径为120 mm玻璃杯的内高为x mm.由题意得π×1502×32=π×602x,解得x=200(mm).即内径为120 mm玻璃杯的内高为200 mm.故选B.2.B【解析】【详解】根据题意可得:长方形的宽为(13-x)cm,根据题意可得:x-1=(13-x)+2.故选B.考点:一元一次方程的应用3.C【解析】【分析】设应调往甲处x人,则调往乙处(20-x)人,根据使在甲处植树的人数是乙处植树人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】解:设应调往甲处植树x人,则调往乙处植树(20﹣x)人,根据题意得:23+x=2(17+20﹣x).故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.4.D【解析】根据零件任务÷原计划每天生产的零件个数-(零件任务+120)÷实际每天生产的零件个数=3【详解】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:1203 50506x x+-=+,故选:D.【点睛】本题考查了一元一次方程的应用,根据时间得到相应的等量关系是解决本题的关键.5.A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】解:根据总人数列方程,应是60m+10=62m﹣8,根据客车数列方程,应该为:108 6062n n-+=,故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,能够根据不同的等量关系列方程.6.B【解析】【分析】设和尚的个数为x位,根据共有三百六十四只碗,三人共餐一碗饭,四人共尝一碗羹列出方程.【详解】设和尚的个数为x位.可列方程11364 34x x+=;故答案为B.本题考查由实际问题列一元一次方程,解题的关键是理解题意找出等量关系列方程. 7.A 【解析】 【分析】根据题意, 大和尚有x 人,共分馒头3x 个,小和尚有()100x -人,3人分1个,每人分13个,共分()11003x -个,再根据大小和尚得到的馒头之和为100,列出方程. 【详解】解:设大和尚有x 人,则小和尚有()100x -人, 据题意得,13(100)1003x x +-=.故选:A. 【点睛】本题主要考查一元一次方程解决问题中的分配问题,理解题意,找到数量关系是解答关键. 8.A 【解析】 【详解】解:设从乙班调入甲班x 人,则乙班现有48﹣x 人,甲班现有54+x 人.此时,甲班人数是乙班的2倍,所以所列的方程为:54+x =2(48﹣x ),故选A . 9.A 【解析】 【分析】利用两种不同栽法的总路程都是某一段公路的一侧的长,总长度等于(棵数-1)×每两棵之间的距离,列方程即可 【详解】解:设原有树苗x 棵,每隔5米栽1棵,则树苗缺21棵; 5(x+21-1), 每隔6米栽1棵,则树苗正好用完.6(x-1), 由题意得:5(211)6(1)x x+-=-.故选A.【点睛】本题考查列一元一次方程解应用题,抓住等量关系两种不同栽法总长度一样,总长度=(棵数-1)×每两棵之间的距离列方程是解题关键.10.C【解析】【详解】设正方形的边长为xcm,依题意有24×2+12×2=4x,解得x=18,故正方形的边长为18cm.11.30【解析】【详解】试题分析:设应截取这种钢锭的长度为x厘米,则截取的钢锭的体积为20×20x立方厘米,锻造成长方体后体积为40×30×10立方厘米,根据锻造前后体积不变列方程求解即可.解:设应截取这种钢锭的长度为x厘米,则截取的钢锭的体积为20×20x立方厘米,锻造成长方体后体积为40×30×10立方厘米,根据题意得20×20x=40×30×10,解得x=30(厘米).故答案为30.12.2【解析】【详解】试题分析:设要用长1.6米、宽1.2米的长方形红纸x张,求出x张长方形红纸的面积,根据等量关系:长方形红纸做成三角形小旗后总面积不变,列方程求解即可.解:设要用长1.6米、宽1.2米的长方形红纸x张,则长方形红纸面积为1.6×1.2x平方米,做成的三角形小旗总面积为12×0.4×0.3×64平方米,根据题意得1.6×1.2x=12×0.4×0.3×64,解得x=2.故答案为2.13.7 4 x-【解析】【详解】设计划做x个“中国结”,根据每人做6个,那么比计划多做了9个,每人做4个,那么比计划少7个,列方程即可.解答:解:设计划做x个“中国结”,由题意得,96x+=74x-.14.35+x=27+(28-x)【解析】【分析】设应调往甲队x人,乙队(28-x)人,根据人数相等可得.【详解】设应调往甲队x人,乙队(28-x)人.由题意得:35+x=27+(28-x),故答案为:35+x=27+(28-x)【点睛】考核知识点:一元一次方程应用.理解题意是关键.15.1.2a(或120%a)【解析】【分析】根据增加20%,列出代数式即可.【详解】解:①糯米做成年糕的过程中重量会增加20%,①a增加20%后为(1+20%)a=1.2a(或120%a).【点睛】本题考查了代数式的表示,属于简单题,将数学语言转换成符号语言是解题关键. 16.35【解析】【详解】解:设七言绝句有x首,根据题意,可列方程为:28x﹣20(x+13)=20.解得x=35故答案为35.17.12(x+10)=13x+60.【解析】【详解】解:设原计划每小时生产零件x个,则实际每小时生产零件(x+10)个.根据等量关系列方程得:12(x+10)=13x+60.故答案为12(x+10)=13x+60.点睛:此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,找出题目中的等量关系,然后再列出方程.18.32【解析】【详解】设这个长方体零件毛坯的高是xcm,由题意得:32×24=6×4×x,解得x=32,故答案为32.19.105【解析】【详解】设较大图形的面积为x2cm,则较小图形的面积为(150-x)2cm,由题意得:x:(150-x)=7:3,解得x=105,即较大图形的面积是1052cm20.小赵的设计符合要求.按他的设计养鸡场的面积是143米2.【解析】【分析】根据小王的设计可以设宽为x 米,长为(x +5)米,根据“墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆”即可列方程求得小王的设计,根据小赵的设计可以设宽为y 米,长为(y +2)米,根据“墙长14米,其它三边用竹篱笆围成,现有长为35米的竹篱笆”即可列方程求得小赵的设计,从而可以作出判断.【详解】解:根据小王的设计可以设宽为x 米,长为(x +5)米,根据题意得2x +(x +5)=35解得x=10.因此小王设计的长为x +5=10+5=15(米),而墙的长度只有14米,小王的设计不符合实际的.根据小赵的设计可以设宽为y 米,长为(y +2)米,根据题意得2y +(y +2)=35解得y=11.因此小王设计的长为y +2=11+2=13(米),而墙的长度只有14米,显然小赵的设计符合要求,此时鸡场的面积为11×13=143(平方米).【点睛】 本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.x =60【解析】【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则65234x x x ++= 解得:x =60;①有60个客人.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解22.11110024x x x x++++=【解析】【详解】试题分析:根据“如果再得这么一群羊,再得这么一群羊的一半,又得这群羊的四分之一,把你牵的羊也给我,我恰好有一百只”这一等量关系列出方程即可.试题解析:解:设这群羊有x只,根据题意得:x+x+12x+14x+1=100.23.飞机票价格应是1200元.【解析】【详解】试题分析:设飞机票价格应是x元,根据该旅客购买了180元的行李票,列方程求解.试题解析:解:设飞机票价格应是x元,由题意得:(30﹣20)×1.5% x=180,解之得:x=1200.答:飞机票价格应是1200元.24.(1)填表见解析;(2)﹣10x+15000;(3)﹣130x+3900=0.【解析】【详解】试题分析:(1)根据题意填写表格即可;(2)根据表格中的数据,以及已知的运费表示出总运费即可;(3)根据本次运送水泥总运费需要25900元列方程化简即可.试题解析:解:(1)设甲仓库运到A工地水泥的吨数为x吨,则运到B地水泥的吨数为(100﹣x)吨,乙仓库运到A工地水泥的吨数为(70﹣x)吨,则运到B地水泥的吨数为(x+10)吨,补全表格如下:(2)运送甲仓库100吨水泥的运费为140x+150(100﹣x)=﹣10x+15000,故答案为﹣(3)140x +150(100﹣x )+200(70﹣x )+80(x +10)=25900,整理得:﹣130x +3900=0. 点睛:此题考查了一元一次方程的应用,弄清题意找到相等关系是解本题的关键 25.每一个长条的面积都是2320cm .【解析】【详解】试题分析:经分析显然要设正方形的边长是xcm .根据“两次剪下的长条面积正好相等”这一关系列出方程即可.试题解析:设正方形的边长是cm x ,根据题意得()8108x x =-,解方程得40x =,()28320cm x =, 所以每一个长条的面积都是2320cm .。

应用一元一次方程水箱变高了定义

应用一元一次方程水箱变高了定义

应用一元一次方程水箱变高了定义一元一次方程是初中数学中的重要内容,它是直线的数学表达方式。

在实际生活中,我们常常会遇到与一元一次方程相关的问题。

水箱变高了定义问题,就是一个典型的应用一元一次方程的例子。

水箱变高了定义问题是指:如果一个正方形底面、高度为H的水箱,如果将水箱的底面变大,那么水箱的高度会如何改变?让我们来看一下水箱变高了定义问题的数学表达式。

假设原来水箱的底面边长为x,底面积即为x*x,高度为H。

那么水箱的容积V=底面积*高度=x*x*H。

现在,如果将水箱的底面变成2x,那么水箱的容积为V'=底面积*高度=2x*2x*H=4x^2*H。

在这个过程中,我们可以发现,水箱的高度发生了变化,由原来的H 变成了H/4。

根据这个过程,我们可以得到水箱变高了定义的一元一次方程:H/4 - H = -3H。

也就是说,水箱的高度减去原来的高度等于-3乘以原来的高度。

这就是这个问题的数学表达方式。

接下来,让我们来探讨一下这个问题,或者说一元一次方程在实际生活中的应用。

在实际生活中,我们可以通过解一元一次方程来计算这个问题。

假设原来水箱的高度为10米,根据上面的一元一次方程,如果水箱的底面变成原来的4倍,那么水箱的高度会变成多少呢?我们可以通过代入原来的高度H=10进行计算,H/4 - H = -3H,得到H=-30。

这就意味着,如果将水箱的底面变成原来的4倍,水箱的高度会变成-30米。

在实际生活中,这是不可能的,因此我们需要对这个问题进行重新审视。

从数学的角度来看,这个问题其实是一个反比例关系。

也就是说,底面积增大,高度减小;底面积减小,高度增大。

这个过程符合数学上的反比例关系,而不是一元一次方程所描述的线性关系。

要解决水箱变高了定义的问题,我们需要转而使用反比例关系的方法进行分析和计算。

通过反比例关系,我们可以得出结论:水箱的底面变大,高度会相应地变小,并且二者的变化是成反比例关系的。

在实际应用中,我们经常会遇到类似的问题。

5.3 一元一次方程的应用——水箱变高了

5.3 一元一次方程的应用——水箱变高了

5.3 一元一次方程的应用——水箱变高了知识回顾】1、边长分别为a 、b 的长方形的周长是_________,面积是_______________.2、边长为a 的正方形周长是_______________, 面积是_______________.3、半径为r 的 圆的周长是_______________, 面积是_______________.4、底面半径为r ,高为h 圆柱的体积(容积)是______________.探究新知】探究活动1:(形变,体积不变问题)例1 某居民楼顶有一个底面直径和高均为6m 的圆柱形储水箱。

现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由6m 减少为4m 。

那么在容积不变的前提下,水箱的高度将由原先的6m 变为多少米?在这个问题中的等量关系是: =解:设水箱的高度变为x m (请完成下面的表格来帮助分析).根据等量关系,列出方程:解得x =因此,水箱的高度变成了 m 。

答:探究活动2(形变,周长不变问题)例2用一根长10m 的铁丝围成一个长方形.(1)使得长方形的长比宽多1.4m ,此时长方形的长、 宽各为多少米?面积为多少? 解:设此时长方形的宽为 m ,则 根据题意,得 解这个方程,得 此时长方形的长为 ,宽为 ,面积为(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?面积呢?解:它所围成的长方形与(1)中所围长方形相比,面积有什么变化?设此时长方形的宽为,则根据题意,得解这个方程,得此时长方形的长为,宽为,面积为此时长方形的面积比(1)中面积 m².(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中相比又有什么变化?解:设根据题意,得解这个方程,得此时正方形的长为,面积为的面积比(2)中面积 m².课堂反馈】1.如图所示,将一个底面直径为10cm,高为36cm的“瘦长”形圆柱锻压成底面直径为20cm 的“矮胖”形圆柱.假设在锻压过程中圆柱的体积保持不变,那么高变成了多少?2.墙上钉着一根彩绳围成的梯形形状的饰物,如右图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示,小颖所钉长方形的长、宽各为多少厘米?课堂小结】列一元一次方程解应用题的一般步骤是:“审、设、列、解、验、答” .(1)“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意;(2)“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目);(3)“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程;(4)“解”就是解方程,求出未知数的值;(5)“验”就是验解,即检验方程的解能否保证实际问题有意义;(6)答”就是写出答案(包括单位名称).。

53应用一元一次方程——水箱变高了

53应用一元一次方程——水箱变高了

53应用一元一次方程——水箱变高了
假设有一个水箱,原来的高度为x,突然上升了h,现在的高度为
x+h。

我们知道,水箱的体积等于底面积乘以高度。

假设水箱的底面积为A,则原来的体积为V1=A*x,现在的体积为V2=A*(x+h)。

根据题意,水箱的体积变大了。

即V2-V1>0,即A*(x+h)-A*x>0,即
A*h>0。

由于A是一个正数(底面积不会为负),所以我们可以得到h>0。

这个结果告诉我们,水箱的高度变大了,即增加了一些高度。

现在,我们来解一元一次方程来计算出增加的高度h。

根据上面的推导,我们得到了方程A*h>0,我们可以通过将A*h除以
A来消去A,得到h>0。

这说明增加的高度必须大于0。

这样,我们可以得到结论,水箱的高度上升了。

例如,假设水箱原来的高度为2米,突然上升了1米。

那么现在的高
度就变成了2+1=3米。

通过解一元一次方程,我们可以计算出增加的高度为1米。

总结一下,应用一元一次方程可以帮助我们解决一些与高度变化、体
积变化相关的问题。

在这个例子中,我们解一元一次方程来计算出水箱增
加的高度。

当然,水箱变高了不仅仅可以用一元一次方程来解决,还可以用其他
方法解决,比如直接通过观察得出结论。

但是对于更复杂的问题,一元一次方程就是一种有效的解决方法。

我们可以通过列方程、化简方程、求解方程等步骤,得到问题的答案。

希望这个例子可以帮助你更好地理解应用一元一次方程的方法。

北师大版七年级数学上册《应用一元一次方程——水箱变高了》典型例题(含答案)

北师大版七年级数学上册《应用一元一次方程——水箱变高了》典型例题(含答案)

《应用一元一次方程——水箱变高了》典型例题例1用内径为90毫米的圆柱形玻璃杯装满水,向一个底面积为131×131(毫米)2,内高为81毫米的长方体容器倒水,玻璃杯里的水恰好倒满该容器,问玻璃杯的内高是多少( 取3.14)。

例2现有铁篱笆120米,靠墙围成一个长方形菜地(墙可做菜地的一个长边,其他三面用铁篱笆围成),要使菜地的长是宽的2倍,则菜地的长和宽各是多少米。

例3如图“□”“△”“○”各代表一种物质,其质量的关系由下面两个天平给出,如果“○”的质量是一千克,求“□”和“△”的质量.例4一个长方形如图所示,恰好分成六个正方形,其中最小的正方形面积cm,求这个长方形的面积.是12例5某农民准备利用一面旧墙围一长方形鸡舍,他编好了6米竹篱笆,考虑三种方案.(1)要使长比宽多0.6米,此时长方形的长和宽及面积各是多少?(2)要使长比宽多0.3米,此时长方形的长和宽及面积各是多少?(3)要使长和宽相等,此时长方形的边长是多少米?参考答案例1 分析 由题意可知,有如下相等关系:圆柱形玻璃杯的容积=长方体容器的容积若把玻璃杯的内高用x 表示出来,就可以得方程。

解 设玻璃杯的内高是x 毫米,依题意,得 81131131)290(2⨯⨯=⨯x π 解方程,得 61.218≈x答:玻璃杯的内高大约是218.61毫米。

说明:在列一元一次方程解应用题时,设和答必须标明单位,而解出的x 是一个数不需要再标单位。

如上题是61.218≈x ,不要写成61.218≈x 毫米。

例2 分析 由题意可知,相等关系是:某地的长边+菜地的宽×2=120米题中又给出了长和宽的关系,易得方程。

解 设菜地的宽是x 米,则菜地的长就是2·x 米,依题决,得12022=+x x 解方程,得 30=x所以602=x答:菜地的长是60米,宽是30米。

说明:这题给出了墙是菜地的长边,可得上面方程,如果没有说明墙是长边,还是宽,我们就必须分两种情况进行讨论。

53应用一元一次方程——水箱变高了1

53应用一元一次方程——水箱变高了1

5.3 应用一元一次方程——水箱变高了
1.
2.(8分)长方形纸片的长是15cm,长、宽上各剪去1个宽为3cm的长条,剩下的面积是原面积的.求原面积.
【拓展延伸】
答案解析
7.【解析】设圆柱体的高为x厘米.
根据题意得:25π×10=100πx,
解得:x=2.5.
答:高为2.5厘米.
8.【解析】设长方形纸片的宽是xcm,原面积是15xcm2,
长、宽上各剪去1个宽为3cm的长条,剩下的面积是12(x-3)cm2, 由题意得:15x×=12(x-3),
所以9x=12(x-3),
解方程得x=12,
12×15=180(cm2),
所以原面积是180cm2.
9.【解析】根据小王的设计可以设宽为x米,
则长为(x+5)米,
根据题意得:2x+(x+5)=35,
解方程得:x=10.
因此小王设计的长为x+5=10+5=15(米),而墙的长度只有14米,故小王的设计不符合实际.
根据小赵的设计可以设宽为y米,则长为(y+2)米,
根据题意得2y+(y+2)=35,
解方程得:y=11.
因此小赵设计的长为y+2=11+2=13(米),而墙的长度为14米,显然小赵的设计符合实际,此时鸡场的面积为13×11=143(平方米).。

应用一元一次方程—水箱变高了 同步练习题 2021-2022学年北师大版七年级数学上册

应用一元一次方程—水箱变高了 同步练习题 2021-2022学年北师大版七年级数学上册

5.3应用一元一次方程——水箱变高了同步练习题2021-2022学年北师大版七年级数学上册A组(基础题)一、填空题1.(1)要锻造直径为16 cm、高为5 cm的圆柱形毛坯,设需截取横截面边长为6 cm的方钢(横截面为正方形的钢材)x cm,则可得方程为________________.(2)一个长方体合金底面长为80 mm、宽为60 mm、高为100 mm,现要锻压成新的长方体合金,其底面是边长为40 mm的正方形,则新长方体合金的高为_____________.2.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多55人.设到雷锋纪念馆的人数为x人,可列方程为_____________.3.(1)李红用40 cm长的铁丝围成一个长方形,要使长方形的长比宽多4 cm.设宽为x cm,则可列方程为_____________,围成的长方形的面积为_____________.(2)如图,小明将一个正方形纸片剪去一个宽为4 cm的长条后,再从剩下的长方形纸片上剪去一个宽为5 cm的长条.如果两次剪下的长条面积正好相等,那么原来的正方形的面积是_______cm2.4.有一艘轮船的载重量是800吨,容积是795立方米.现要装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,则生铁装_______吨、棉花装_______吨才能充分利用船的载重量和容积.二、选择题5.把一个用铁丝围成的长方形改制成一个正方形,则这个正方形与原来的长方形相比( ) A.面积与周长都不变化B.面积相等但周长发生变化C.周长相等但面积发生变化D.面积与周长都发生变化6.根据图中给出的信息,可得正确的方程是( )A .π×(82 )2×x =π×(62 )2×(x +5) B .π×82×x =π×62×5C .π×(82 )2×x =π×(62)2×(x -5) D .π×82×x =π×62×(x -5)7.有一个底面半径为10 cm 、高为30 cm 的圆柱形大杯中存满了水,把水倒入一个底面直径为10 cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为( )A .6 cmB .8 cmC .10 cmD .12 cm8.如图所示,有一圆柱形的实心铁柱直立于一个内部装有水的圆柱形水桶内,水桶内的水面高度为12 cm ,且水桶与铁柱的底面半径比为2∶1.将铁柱移至水桶外部,过程中水桶内的水量未改变.若不计水桶的厚度,则水桶内的水面高度变为( )A .4.5 cmB .6 cmC .8 cmD .9 cm三、解答题9.(1)将一个底面半径为6 cm 、高为40 cm 的“瘦长”圆柱形钢材锻压成底面半径为12 cm 的“矮胖”圆柱形零件毛坯,请问毛坯的高是多少?(2)李明和他父亲年龄的和为55岁,又知父亲的年龄比他年龄的3倍少1岁,求李明和他父亲的年龄分别为多少岁?10.在一个底面直径为5 cm 、高为18 cm 的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径为6 cm 、高为10 cm 的圆柱形玻璃杯中,能否完全装下?若装不下,则瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.B组(中档题)四、填空题11.一个两位数,个位数字与十位数字的和是9.若将个位数字与十位数字对调后所得的新数比原数小9,则原来的两位数为_______.12.如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为_______平方厘米.(1毫升=1立方厘米)13.如图,水平地面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度分别为40 cm,50 cm,现将隔板抽出.若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,隔板抽出后水面静止时,箱内的水面高度为_______cm.五、解答题14.用总长30 m的篱笆和墙(墙足够长)围一个长方形鸡舍,除墙这一边外,其他三边(门除外)都用篱笆围成,且长方形的长是宽的2倍,并要求在墙的对边留2 m宽的门,则这个长方形的鸡舍的长和宽分别为多少米?C组(综合题)15.列方程解应用题:“乌鸦喝水”的故事我们都听过,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦就喝到了水.根据图中给出的信息,解答下列问题:(1)放入1个小球水面升高2cm,放入1个大球水面升高3cm;(2)如果放入10个球且使水面恰好上升到52 cm,那么应放入大球、小球各多少个?(3)若放入1个钢珠可以使水面上升k cm,当在玻璃桶内同时放入相同数量的小球和钢珠时,水面上升到41 cm,求k的整数值.(球和钢珠完全在水面以下)参考答案5.3应用一元一次方程——水箱变高了 同步练习题 2021-2022学年北师大版七年级数学上册A 组(基础题)一、填空题1.(1)要锻造直径为16 cm 、高为5 cm 的圆柱形毛坯,设需截取横截面边长为6 cm 的方钢(横截面为正方形的钢材)x cm ,则可得方程为(162)2π×5=62·x .(2)一个长方体合金底面长为80 mm 、宽为60 mm 、高为100 mm ,现要锻压成新的长方体合金,其底面是边长为40 mm 的正方形,则新长方体合金的高为300__mm .2.七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多55人.设到雷锋纪念馆的人数为x 人,可列方程为2x +55=589-x .3.(1)李红用40 cm 长的铁丝围成一个长方形,要使长方形的长比宽多4 cm.设宽为x cm ,则可列方程为2(x +4+x )=40,围成的长方形的面积为96__cm 2.(2)如图,小明将一个正方形纸片剪去一个宽为4 cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5 cm 的长条.如果两次剪下的长条面积正好相等,那么原来的正方形的面积是400cm 2.4.有一艘轮船的载重量是800吨,容积是795立方米.现要装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,则生铁装650吨、棉花装150吨才能充分利用船的载重量和容积.二、选择题5.把一个用铁丝围成的长方形改制成一个正方形,则这个正方形与原来的长方形相比( C )A .面积与周长都不变化B .面积相等但周长发生变化C .周长相等但面积发生变化D .面积与周长都发生变化 6.根据图中给出的信息,可得正确的方程是( A )A .π×(82 )2×x =π×(62 )2×(x +5) B .π×82×x =π×62×5C .π×(82 )2×x =π×(62)2×(x -5) D .π×82×x =π×62×(x -5)7.有一个底面半径为10 cm 、高为30 cm 的圆柱形大杯中存满了水,把水倒入一个底面直径为10 cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为( C ) A .6 cm B .8 cm C .10 cm D .12 cm8.如图所示,有一圆柱形的实心铁柱直立于一个内部装有水的圆柱形水桶内,水桶内的水面高度为12 cm ,且水桶与铁柱的底面半径比为2∶1.将铁柱移至水桶外部,过程中水桶内的水量未改变.若不计水桶的厚度,则水桶内的水面高度变为( D )A .4.5 cmB .6 cmC .8 cmD .9 cm三、解答题9.(1)将一个底面半径为6 cm 、高为40 cm 的“瘦长”圆柱形钢材锻压成底面半径为12 cm 的“矮胖”圆柱形零件毛坯,请问毛坯的高是多少? 解:设毛坯的高为x cm ,根据题意,得 π×62×40=π×122·x . 解得x =10.答:毛坯的高是10 cm.(2)李明和他父亲年龄的和为55岁,又知父亲的年龄比他年龄的3倍少1岁,求李明和他父亲的年龄分别为多少岁?解:设李明的年龄为x 岁,则他父亲的年龄为(3x -1)岁,可列方程为3x -1+x =55, 解得x =14.则3x -1=41.答:李明的年龄为14岁,他父亲的年龄为41岁.10.在一个底面直径为5 cm 、高为18 cm 的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径为6 cm 、高为10 cm 的圆柱形玻璃杯中,能否完全装下?若装不下,则瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.解:设圆柱形瓶内的水倒入玻璃杯中水的高度为x cm.由题意,得 (52 )2π×18=(62 )2πx . 解得x =12.5.因为12.5>10,所以不能完全装下. 设瓶内水还剩y cm 高.由题意,得 (52 )2π×18=(52 )2πy +(62 )2π×10. 解得y =3.6.答:瓶内水还剩3.6 cm 高.B 组(中档题)四、填空题11.一个两位数,个位数字与十位数字的和是9.若将个位数字与十位数字对调后所得的新数比原数小9,则原来的两位数为54.12.如图,一个酒瓶的容积为500毫升,瓶子内还剩有一些黄酒.当瓶子正放时,瓶内黄酒的高度为12厘米,倒放时,空余部分的高度为8厘米,则瓶子的底面积为25平方厘米.(1毫升=1立方厘米)13.如图,水平地面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度分别为40 cm,50 cm,现将隔板抽出.若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,隔板抽出后水面静止时,箱内的水面高度为44.5cm.五、解答题14.用总长30 m的篱笆和墙(墙足够长)围一个长方形鸡舍,除墙这一边外,其他三边(门除外)都用篱笆围成,且长方形的长是宽的2倍,并要求在墙的对边留2 m宽的门,则这个长方形的鸡舍的长和宽分别为多少米?解:设宽为x m,则长为2x m.∶当长方形的长与墙平行时,根据题意,得x+2x+x=30+2,解得x=8.则2x=16.故这个长方形鸡舍的长与宽分别为16 m,8 m.∶当长方形鸡舍的宽与墙平行时,根据题意,得x+2x+2x=30+2,解得x=6.4.则2x=12.8.故这个长方形鸡舍的长与宽分别为12.8 m,6.4 m.答:这个长方形的长和宽分别为16 m,8 m或12.8 m,6.4 m.C组(综合题)15.列方程解应用题:“乌鸦喝水”的故事我们都听过,聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦就喝到了水.根据图中给出的信息,解答下列问题:(1)放入1个小球水面升高2cm ,放入1个大球水面升高3cm ;(2)如果放入10个球且使水面恰好上升到52 cm ,那么应放入大球、小球各多少个? (3)若放入1个钢珠可以使水面上升k cm ,当在玻璃桶内同时放入相同数量的小球和钢珠时,水面上升到41 cm ,求k 的整数值.(球和钢珠完全在水面以下) 解:(2)设放入大球m 个,则放入小球(10-m )个, 根据题意,得3m +2(10-m )=52-26,解得m =6. 则10-m =10-6=4.答:应放入大球6个、小球4个.(3)设在玻璃桶内同时放入z 个小球和z 个钢珠时,水面上升到41 cm ,根据题意,得 zk +2z =41-26, 解得k =15-2z z.当z =1时,k =13;当z =3时,k =3;当z =5时,k =1. 故k 的整数值为13,3,1.。

03-第五章3应用一元一次方程——水箱变高了 (1)

03-第五章3应用一元一次方程——水箱变高了 (1)

3应用一元一次方程——水箱变高了基础闯关全练拓展训练1.一个圆柱,底面半径增加到原来的3倍,而高度缩短为原来的13,则变化后的圆柱体积是原来圆柱体积的( )A.8倍B.2倍C.3倍D.9倍答案C设原来圆柱底面半径为r,高为h,则体积为πr2h,半径增加到原来的3倍,高度缩短到原来的13,则此时圆柱的底面积为9πr2,高为13h,则体积为9πr2×13h=3πr2h.故选C.2.用一根小铁丝围成一个三条边长都为24cm的三角形,如果将该铁丝围成一个正方形,则正方形的边长是( )A.24cmB.18cmC.12cmD.9cm答案B设正方形的边长为xcm,则4x=24×3,解得x=18,故选B.3.用直径为4cm的圆钢,铸造三个底面直径为2cm,高为16cm的圆柱形零件,需要截取cm的圆钢.答案12解析设截取直径为4cm的圆钢xcm,则(42)2πx=(22)2π×16×3,解得x=12.4.要分别锻造底面直径为70mm,高为45mm和底面直径为30mm,高为30mm的圆柱形零件毛坯各一个,需要截取直径为50mm的圆钢多长?解析设截取直径为50mm的圆钢xmm,则(502)2πx=(702)2π×45+(302)2π×30.解得x=99.答:需要截取直径为50mm的圆钢99mm.能力提升全练拓展训练1.如图所示,将一个正方形纸条剪去一个宽为5cm的长条后,再从剩下的长方形条上剪去一个宽为3cm 的长条,且第一次剪下的长条面积是第二次剪下的长条面积的2倍,若设原正方形纸条的边长为xcm,则可列方程为( )A.5x=2×3(x-5)B.2×5x=3(x-5)C.5(x-3)=2×3xD.2×5(x-3)=3x答案A第一次剪下的纸条的面积为5xcm2,第二次剪下的纸条的面积为3(x-5)cm2,故有5x=2×3(x-5).2.如图,一个盛有水的圆柱形玻璃容器的底面半径为10cm,容器内水的高度为12cm,把一根半径为2cm 的玻璃棒垂直插入水中后,问容器内的水将升高多少cm?解析设容器内的水将升高xcm,则π·102×12+π·22(12+x)=π·102(12+x),.解得x=12cm.答:容器内的水将升高12三年模拟全练拓展训练1.(2017山东滕州期末,15,★★☆)用A、B两种规格的长方形纸板(如图①)无重合无缝隙地拼接可得如图②所示的周长为32cm的正方形,已知A种长方形的宽为1cm,则B种长方形的面积是( )A.10cm2B.12cm2C.14cm2D.16cm2答案B设B种长方形的宽为xcm,由已知得大正方形的边长为32÷4=8cm,则2x+4×1=8,解得x=2,所以B种长方形的长为8-2=6cm,所以B种长方形的面积为2×6=12cm2.2.(2017辽宁大石桥金桥管理区中学期末,17,★★☆)五个完全相同的小长方形拼成如图所示的大长方形,大长方形的周长是32cm,则小长方形的面积是cm2.答案 12解析 设小长方形的宽为xcm,则长为3xcm. 根据题意得,2×(3x+3x+2x)=32. 解得x=2.3x ·x=3×2×2=12,所以小长方形的面积为12cm 2.五年中考全练拓展训练(2015浙江绍兴中考,16,★★★)实验室里,水平桌面上有甲、乙、丙三个圆柱形的容器(容器足够高),如图所示,底面半径之比为1∶2∶1,用两个相同的管子在容器的5cm 高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm.答案 35,3320,17140解析 设注水时间为t 分钟. 由题意分为以下几种情况: (1)甲的水位比乙的水位高0.5cm. 要满足此条件,则1-56t=0.5,解得t=35. (2)乙的水位比甲的水位高0.5cm. 开始注水1分钟,乙的水位上升56cm, 则开始注水1分钟,丙的水位上升56÷14=103cm, 因为5÷103=32,32×56-1=0.25<0.5,所以当乙的水位比甲的水位高5cm 时,丙的水位达到5cm.①当丙的水位达到5cm,乙的水位低于5cm时,丙容器向乙容器溢水,要满足乙的水位比甲的水位高0.5cm,则56×2(t-32)+56×32=0.5+1,解得t=3320;②当丙的水位达到5cm,且乙的水位达到5cm时,乙容器向甲容器溢水,易知乙的水位刚到达5cm所用的时间为32+(5-56×32)÷56÷2=154(分钟),要使乙的水位比甲的水位高0.5cm,则(t-154)×103×2=5-1-0.5,解得t=17140.综上,满足题意的t=35或3320或17140.故答案为35,3320,17140.核心素养全练拓展训练图①是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体盒子的宽是高的2倍,则它的体积是cm3.答案1000解析设长方体盒子的高为xcm,由题图知,其宽为30-2x2cm,其长为(30-2x)cm.根据题意得,30-2x2=2x,解得x=5,故长方体盒子的宽为10cm,长为20cm,则长方体盒子的体积为20×10×5=1000(cm3).。

5-5 3应用一元一次方程——水箱变高了

5-5  3应用一元一次方程——水箱变高了
第五章 一元一次方程
1. (20分)一个长方形的周长为26cm,这个长方形的长减
少1cm,宽增加2cm,就可以成为一个正方形,设长方形的
长为xcm,则可列方程为( B )
A. x-1=(26-x)+2
B. x-1=(13-x)+2
C. x-1=(26-x)-2
D. x-1=(13-x)-2
A
3. (20分)要锻造直径为16 cm、高为5 cm的圆柱形毛坯, 设需截取横截面边长为6 cm的方钢(横截面为正方形的钢
解:(1)设小长方形的长为x cm,宽为(6-x) cm. 根据题意,得x=2(6-x). 解得x=4.所以6-x=2. 所以大长方形的周长为(4+4)×2+(4+2)×2=28(cm).
(2)因为小长方形的长为4 cm,宽为2 cm, 所以大正方形的边长为4+2=6(cm), 所以大正方形的面积为6×6=36(cm2). 所以,欣欣所拼的大正方形中间的小正方形的面积为 36-4×(2×4ቤተ መጻሕፍቲ ባይዱ=4(cm2).
谢谢
材)x cm,则可得方程为__________________________.
4. (40分)有若干张小长方形的纸片,已知小长方形纸片 的长和宽的和等于6 cm. 茗茗用6张这样的纸片拼出了如 图K5-3-1①所示的大长方形;欣欣用4张这样的纸片拼出 了如图K5-3-1②所示的大正方形. 求: (1)茗茗所拼的大长方形的周长; (2)欣欣所拼的大正方形中间的小 正方形的面积.

一元一次方程的应用之水箱变高

一元一次方程的应用之水箱变高

一元一次方程的应用之水箱变高1.在一个长50 cm、宽40 cm的长方体玻璃缸中放入一块棱长为2 dm(分米)的正方体铁块(铁块完全浸没水中且不溢出),水面会上升多少?2.底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降多少厘米?3.在一个长100 cm、宽80 cm的长方体水槽中放入一个长方体铁块,铁块完全浸入水中时,水面上升了4 cm,如果铁块的长是40 cm,宽是20 cm,那么它的高是多少厘米?4.有一个长方体玻璃鱼缸,长8 dm(分米),宽4 dm,高6 dm,鱼缸里原来有一些水,放入4个同样大的玻璃球后,水面上升了1 cm,每个玻璃球的体积是多少立方厘米?5.一个正方体容器,容器内部边长为24厘米,存有若干水,水深17.2厘米,现将一些碎铁块放入容器中,铁块沉入水底,水面上升2.5厘米,如果将这些铁块铸成一个和容器等高的实心圆柱,重新放入池中,则水面升高多少厘米?6.一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米,今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中,求这时容器的水深是多少厘米?7.有一个底面直径和高均为5米的圆柱形储水箱,现在为减少原有储水箱的占地面积,需要将它的底面直径由5米减少为4米,那么在容积不变的前提下,水箱的高度将由原先的5米变成多少米?8.一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米,现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后,现在水深多少厘米?9.有一个底面直径为6米和高为2米的圆柱形储水箱,现该将它的底面直径由6米减少为4米,那么在容积不变的前提下,水箱的高度将由原先的2米变成多少米?10.某居民楼顶有一个底面直径和高均为4米的圆柱形储水箱,现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4米减少为3.2米,那么在容积不变的前提下,水箱的高度将由原先的4米变成多少米?11.有一个底面直径为8米和高为4米的圆柱形储水箱,现该将它的底面直径由8米增加为10米,那么在容积不变的前提下,水箱的高度将由原先的4米变成多少米?12.一个底面半径为10 cm、高为30 cm的圆柱形大杯中存满了水,把水倒入底面直径为10 cm的圆柱形小杯中,刚好倒满12杯,则小杯的高为多少厘米?答案1.42. 1.53.404.8005.26.17.727.1258.109. 4.51610.6.2511.2.5612.10。

一元一次方程:水箱变高了练习题

一元一次方程:水箱变高了练习题

一元一次方程应用题水箱变高了一、水箱变高了:圆柱的体积=2π⨯⨯半径高例1:某居民楼顶有一个底面直径和高均为4m 的圆柱形储水箱。

现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m 减少为3.2m 。

那么在容积不变的前提下,水箱的高度将由原先的4m 增高为多少米?等量关系:旧水箱的容积=新水箱的容积根据等量关系,列出方程:()()224x ππ⨯⨯=⨯⨯解得:x= 答:变式练习:将一个底面直径是20厘米,高为9厘米的“矮胖”形圆柱锻压成底面直径是10厘米的“瘦长”形圆柱,高变成了多少?这个问题中的等量关系是: 解:例2:用一根长为10m 的铁丝围成一个长方形.(1)使得该长方形的长比宽多1.4m ,此时长方形的长、宽各为多少米?(2)使得该长方形的长比宽多0.8m ,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比、面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?它所围成的面积与(2)中相比又有什么变化?例3:(1)小明的爸爸想用10米铁线在墙边围成一个鸡棚,使长比宽大4米,问小明要帮他爸爸围成的鸡棚的长和宽各是多少呢?(2)若小明用10米铁线在墙边围成一个长方形鸡棚,使长比宽大5米,但在宽的一边有一扇1米宽的门,那么,请问小明围成的鸡棚的长和宽又是多少呢?课后练习:1、用直径为40mm 、长为1m 的圆钢,能拉成直径为4mm 、长为_______m 的钢丝。

2、用一根铁丝可围成一个长24厘米、宽12厘米的长方形。

若将它围成一个正方形,则这个 正方形的面积是( ) A 、81cm² B 、18cm² C 、324cm² D 、326cm²3、将底面直径为12厘米,高为30厘米的圆柱水桶装满水,倒人一个长方体水箱中,水只占水箱容积的32,设水箱容积为x 立方厘米,则可列方程_________________.4、将一个底面直径是10厘米,高为40厘米的圆柱锻压成底面直径为l5厘米的圆柱,求它的高?若设高为x 厘米,则所列的方程为_____________.5、把一块长、宽、高分别为5cm 、3cm 、3cm 的长方体铁块,浸入半径为4cm 的圆柱形水杯中(盛有水),水面将增高多少?(不外溢)3.填空:长方形的周长=_________. 面积=__________ .长方体的体积=_________. 正方体的体积=__________. 圆的周长=___________. 面积=_______________. 圆柱的体积=_______________. 解决以下问题:1.将一个底面直径是20厘米、高为9厘米的“矮胖”形圆柱锻压成底面直径为l0厘米的“瘦长”形圆柱,高变成了多少?假设在锻压过程中圆柱的体积保持不变,那么在这个问题中有如下的等量关系:锻压前的体积=锻压后的体积.解:设锻压后圆柱的高为x米,填写下表:根据等量关系,列出方程:___________________________________________.解得x_______________.答:高变成了__________厘米.2.用一根长为l0米的铁丝围成一个长方形.(1)使得该长方形的长比宽多1.4米,此时长方形的长为________米,宽为_________米.(2)使得该长方形的长比宽多0.8米,此时长方形的长为_______米,宽为_____米,它所围成的长方形与(1)中所围长方形相比,面积有什么变化?(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是______米,它所围成的面积与(2)中相比又有什么变化?二:典例讲练例1.请根据图5—3—2中给出的信息,可得正确的方程是( ) 【跟踪练习】1.长方形的长是宽的3倍,如果宽增加了4 m,而长减少了5 m,那么面积增加15㎡,设长方形原来的宽为x m,则所列方程是()2.一块矩形草坪的长比宽多l0米,它的周长是132米,求宽x.所列的方程是( )3.如图5—3—3,把一个长方形分成大小不等的6个小正方形,已知中间的最小的正方形的边长为1厘米,求这个长方形的面积.解:设正方形A的边长为x厘米,则99x正方形B的边长为________厘米;正方形C的边长为________厘米;正方形D的边长为________厘米;正方形E的边长为________厘米.由题意可得方程:______________________.解得x= ________,答:长方形的面积为___________平方厘米.【当堂达标】7.用直径为120 mm的圆钢铸造成5.9㎏的工件,已知每立方厘米的圆钢重7.8g,这样需截取圆钢的长是多少㎜?解题时,设需要截圆钢的长为x mm,那么下面列方程正确的是( )8.为了做一个试管架,在长为a cm(a>6 cm)的木板上钻3个小孔(如图5—3—4),每个小孔的直径为2cm,则x等于( )9.已知一个三角形三条边长的比为2:4:5,最长边比最短边长6㎝,则这个三角形的周长为( ) A.21㎝B.22㎝C.23㎝D.24㎝10.墙上钉着用一根彩绳围成的梯形形状的饰物,如图5—3—8实线所示.小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图5—3—8虚线所示.小颖所钉长方形的长、宽各为___________________厘米?11.要锻造直径为16厘米、高为5厘米的圆柱形毛坯.设需截取边长为6厘米的方钢x厘米,可得方程为___________________________.12.(2012.山西)图5—3—5是边长为30 cm的正方形纸板,裁掉阴影部分后将其折叠成如图5—3—5所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________.13·一个底面半径为4㎝,高为10㎝的圆柱形烧杯中装1 cm高的水.把烧杯中的水倒入底面半径为1㎝的圆柱形试管中,刚好倒满试管.问试管的高为多少㎝?三:巩固练习一、选择题1.周长为68的长方形ABCD被分成7个全等的长方形,如图5—3—6所示,则长方形ABCD的面积为( )A .98B .196C .280D .284 2.用长为20米的铁丝围成一个长方形方框,使长为6.2 米,宽为x 米,则可列方程为 ( )3.一个长方形的周长是40 cm ,若将长减少8 cm ,宽增加 2 cm ,长方形就变成了正方形,则正方形的边长为( )A .6 cmB .7 cmC .8 cmD .9 cm4.有一个底面半径为10 cm ,高为30 cm 的圆柱形大杯中存满了水,把水倒人一一个底面直径为lo cm 的圆柱形小杯中,刚好倒满12杯,则小杯的高为 ( )A .6 cmB .8 cmC .10 cmD .12 cm 二、填空题5.三角形三边长之比为7:5:4,若中等长度的一边长的两倍比其它两边长的和少3 cm ,则三角形的周长为_________________________.6.将底面直径为12厘米,高为30厘米的圆柱水桶装满水,倒人一个长方体水箱中,水只占水箱容积的32,设水箱容积为x 立方厘米,则可列方程_________________. 7.将一个底面直径是10厘米,高为40厘米的圆柱锻压成底面直径为l5厘米的圆柱,求它的高?若设高为x 厘米,则所列的方程为_____________.8.三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:㎝)如图5—3—7所示.则三个几何体的体积和为_____________3cm .(计算结果保留π)三、解答题9.将一个底面直径是10厘米,高为36厘米的“瘦长”形圆柱锻压成底面直径是20厘米的“矮胖’’形圆柱,高变成了多少?四、拓展应用10.从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《应用一元一次方程——水箱变高了》典型例题例1用内径为90毫米的圆柱形玻璃杯装满水,向一个底面积为131×131(毫米)2,内高为81毫米的长方体容器倒水,玻璃杯里的水恰好倒满该容器,问玻璃杯的内高是多少( 取3.14)。

例2现有铁篱笆120米,靠墙围成一个长方形菜地(墙可做菜地的一个长边,其他三面用铁篱笆围成),要使菜地的长是宽的2倍,则菜地的长和宽各是多少米。

例3如图“□”“△”“○”各代表一种物质,其质量的关系由下面两个天平给出,如果“○”的质量是一千克,求“□”和“△”的质量.
例4一个长方形如图所示,恰好分成六个正方形,其中最小的正方形面积cm,求这个长方形的面积.
是12
例5某农民准备利用一面旧墙围一长方形鸡舍,他编好了6米竹篱笆,考虑三种方案.
(1)要使长比宽多0.6米,此时长方形的长和宽及面积各是多少?
(2)要使长比宽多0.3米,此时长方形的长和宽及面积各是多少?
(3)要使长和宽相等,此时长方形的边长是多少米?
参考答案
例1 分析 由题意可知,有如下相等关系:
圆柱形玻璃杯的容积=长方体容器的容积
若把玻璃杯的内高用x 表示出来,就可以得方程。

解 设玻璃杯的内高是x 毫米,依题意,得 81131131)2
90(
2⨯⨯=⨯x π 解方程,得 61.218≈x
答:玻璃杯的内高大约是218.61毫米。

说明:在列一元一次方程解应用题时,设和答必须标明单位,而解出的x 是一个数不需要再标单位。

如上题是61.218≈x ,不要写成61.218≈x 毫米。

例2 分析 由题意可知,相等关系是:
某地的长边+菜地的宽×2=120米
题中又给出了长和宽的关系,易得方程。

解 设菜地的宽是x 米,则菜地的长就是2·x 米,依题决,得12022=+x x 解方程,得 30=x
所以602=x
答:菜地的长是60米,宽是30米。

说明:这题给出了墙是菜地的长边,可得上面方程,如果没有说明墙是长边,还是宽,我们就必须分两种情况进行讨论。

例 3 分析 由图形可以发现,如果“□”“△”“○”直接用它们表示它们的质量,我们可以发现2△=3○,2□=3△,若设△的质量是x ,则有312⨯=x ,由此求出的质量. 解 设“△”的质量是x 千克,依题意,得 312⨯=x ,所以2
11=x . 又由题意可知 □=23△=x 23,所以□=4
12)211(23=⨯. 答:“□”的质量是412千克,“△”的质量是2
11千克. 说明: 这类型的题,关键是通过观察图形,找出等量关系.
例 4 分析 本题要求长方形的面积,只要求出这个长方形的长与宽.本题中仅知其中最小正方形的面积是12cm ,即其边长为1cm .结合题设的正方形条件,可推出其他正方形的边长,如“正方形E 的边长=正方形F 的边长”,“正方形D 的边长=正方形E 的边长+1”等.
解 设正方形E 的边长为x cm ,则原长方形长为)13(+x cm ,宽为)32(+x cm ,根据题意,得
.3213+=-x x
解这个方程,得.4=x
当4=x 时,.1132,1314313=+=+⨯=+x x
所以.1431113=⨯=长方形S
答:这个长方形的面积为1432cm .
说明:与几何图形相关的问题,要观察、分析图形中隐含的等量关系,此时要结合几何图形的性质考虑.另外,几何图形的面积、体积公式应牢记.
例5 解 如图所示,设长方形的宽为x 米,
(1)根据题意,得6)6.0(=+++x x x ,
解得.32.44.28.1,4.26.08.1,8.1=⨯=+=x
这时长方形的长是2.4米,宽1.8米,面积是4.32平方米.
(2)根据题意,得6)3.0(=+++x x x ,
解得.18.42.29.1,2.23.09.1,9.1=⨯=+=x
这时长方形的长是2.2米,宽是1.8米,面积是4.18平方米.
(3)根据题意,得63=x ,
.422,2=⨯=x
这时长方形的边长是2米,面积是4平方米.
说明:当材料一定时,三种方案所围成的面积不同,其中第一种方案面积较大,值得选择,这是一个用解方程探究最优方案的问题.。

相关文档
最新文档