几个著名不等式

合集下载

八个著名的不等式

八个著名的不等式

第八讲 几个著名的不等式在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩.这些著名不等式是数学家们长期致力于不等式理论研究的重要成果,它们将成为我们学习数学、研究数学、应用数学的得力工具。

下面择要介绍一些著名的不等式. 1.柯西(Cauchy )不等式 定理:设()n i R b a i i Λ2,1,=∈则()22211nn b a b a ba Λ++≤()()2222122221n n b b b a a aΛΛ++⋅++等号成立当且仅当()n i ka b i i ≤≤=1.。

[一般形式的证明] 作函数()()()()()())(222222122112222212222211≥+++++-+++=-++-+-=x b b b x b a b a b a x a a a b x a b x a b x a x f n n n n n n ΛΛΛΛ0≤∆∴ 此时044121221≤⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=∆∑∑∑===n i i n i i ni i i b a b a⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛∴∑∑∑===n i i n i i ni i i b a b a 121221,得证。

[向量形式的证明]令(),2,1n a a a A Λρ= (),2,1n b b b B Λρ=()()()22221222212211cos nn n n b b b a a aB A B A b a b a b a B A ΛΛρρρρΛρρ++⋅+++=≤=++=⋅θ()1cos 1≤≤-θ两边同时平方得:()22211nn b a b a ba Λ++≤()()2222122221n n b b b a a aΛΛ++⋅++,得证。

[柯西不等式的应用]例1.1设()()22121111,1n a a a a a a n i R a n n i ≥⎪⎪⎭⎫ ⎝⎛++++++≤≤∈+ΛΛ求证 解:由柯西不等式可知,原不等式可化为()()()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+++2222122221111n na a a a a a ΛΛ()22111n n =++≥43421Λ个 当且仅当,1,1,12211n na k a a k a a k a ===Λ时等号成立即n a a a Λ==21,故原不等式得证。

几个著名的不等式公式

几个著名的不等式公式

⼏个著名的不等式公式在数学领域⾥,不等式知识占有⼴阔的天地,⽽⼀个个的重要不等式⼜把这⽚天地装点得更加丰富多彩.下⾯择要介绍⼀些著名的不等式。

三⾓形内⾓的嵌⼊不等式三⾓形内⾓的嵌⼊不等式,在不⾄于引起歧义的情况下简称嵌⼊不等式。

该不等式指出,若A、B、C是⼀个三⾓形的三个内⾓,则对任意实数 x、y、z,有:算术-⼏何平均值不等式在数学中,算术-⼏何平均值不等式是⼀个常见⽽基本的不等式,表现了两类平均数:算术平均数和⼏何平均数之间恒定的不等关系。

设为 n 个正实数,它们的算术平均数是,它们的⼏何平均数是。

算术-⼏何平均值不等式表明,对任意的正实数,总有:等号成⽴当且仅当。

算术-⼏何平均值不等式仅适⽤于正实数,是对数函数之凹性的体现,在数学、⾃然科学、⼯程科学以及经济学等其它学科都有应⽤。

算术-⼏何平均值不等式经常被简称为平均值不等式(或均值不等式),尽管后者是⼀组包括它的不等式的合称。

例⼦在 n = 4 的情况,设: ,那么可见。

历史上,算术-⼏何平均值不等式拥有众多证明。

n = 2的情况很早就为⼈所知,但对于⼀般的 n,不等式并不容易证明。

1729年,英国数学家麦克劳林最早给出了⼀般情况的证明,⽤的是调整法,然⽽这个证明并不严谨,是错误的。

柯西的证明1821年,法国数学家柯西在他的著作《分析教程》中给出了⼀个使⽤逆向归纳法的证明:命题P n:对任意的 n 个正实数,1. 当 n=2 时,P2显然成⽴。

2. 假设Pn成⽴,那么P2n成⽴。

证明:对于2n 个正实数,3. 假设P n成⽴,那么P n-1成⽴。

证明:对于n - 1 个正实数,设,,那么由于Pn成⽴,。

但是,,因此上式正好变成综合以上三点,就可以得到结论:对任意的⾃然数,命题P n都成⽴。

这是因为由前两条可以得到:对任意的⾃然数 k,命题都成⽴。

因此对任意的,可以先找 k 使得,再结合第三条就可以得到命题P n成⽴了。

归纳法的证明使⽤常规数学归纳法的证明则有乔治·克⾥斯托(George Chrystal)在其著作《代数论》(algebra)的第⼆卷中给出的:由对称性不妨设xn+1是中最⼤的,由于,设,则,并且有。

几个著名不等式

几个著名不等式

几个著名不等式
五 节 不
柯西、均值、 柯西、均值、 排序、 排序、Jensen不等式 不等式
柯西不等式
设a1 , a 2 ,..., a n 是任意实数,则
2 2 2 2 2 (a1b1 + a 2 b2 + ... + a n bn) ≤ (a12 + a 2 + ... + a n )(b12 + b2 + ... + bn ),
Jensen不等式 不等式
设 f ( x )是定义在开区间( a , b)的函数, 如果对任意 x1、 x 2 ∈ ( a , b ), 有
x1 + x 2 f ( x1 ) + f ( x 2 ) f( ) ≤ 2 2
则称 f ( x )是( a , b)内的下凸函数。
当且仅当 x1 = x 2时等号成立,则称 f ( x )为严格下凸函数。
要证 n a 1 a 2 ... a n ≤ a 1 + a 2 + ... + a n . n
设 f ( x ) = ln x , 则 f ( x ) 为上凸函数,
a 1 + a 2 + ... + a n ln a 1 + ln a 2 + .... + ln a n 则 ln( )≥ n n
ln( a 1 a 2 ... a n ) = n 由函数单调性得证
2 2 由a i 不全为零,得 ( a12 + a 2 + ... + a n ) > 0, 而且 f ( x ) ≥ 0
2 )当 a i 不全为零时,
⇒∆≤0
例题 6 设实数 x 、 y 满足 3 x 2 + 2 y 2 ≤ 6 , 求 p = 2 x + y 的最大值。

世界数学史上的十个著名不等式

世界数学史上的十个著名不等式

数学史上的十个著名不等式在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩.下面择要介绍一些著名的不等式.一、平均不等式(均值不等式)设,,…,是个实数,叫做这个实数的算术平均数.当这个实数非负时,叫做这个非负数的几何平均数.当这个实数均为正数时,叫做这个正数的调和平均数.设,,…,为个正数时,对如下的平均不等式:,当且仅当时等号成立.平均不等式是一个重要的不等式,它的应用非常广泛,如求某些函数的最大值和最小值即是其应用之一.设,,…,是个正的变数,则(1)当积是定值时,和有最小值,且;(2)当和是定值时,积有最大值,且两者都是当且仅当个变数彼此相等时,即时,才能取得最大值或最小值.在中,当时,分别有,平均不等式经常用到的几个特例是(下面出现的时等号成立;(3),当且仅当时等号成立;(4),当且仅当时等号成立.二、柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式)对任意两组实数,,…,;,,…,,有,其中等号当且仅当时成立.柯西不等式经常用到的几个特例(下面出现的,…,;,…,都表示实数)是:(1),,则(2)(3)柯西不等式是又一个重要不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位.三、闵可夫斯基不等式设,,…,;,,…,是两组正数,,则()()当且仅当时等号成立.闵可夫斯基不等式是用某种长度度量下的三角形不等式,当时得平面上的三角形不等式:右图给出了对上式的一个直观理解.若记,,则上式为四、贝努利不等式(1)设,且同号,则(2)设,则(ⅰ)当时,有;(ⅱ)当或时,有,上两式当且仅当时等号成立.不等式(1)的一个重要特例是().五、赫尔德不等式已知()是个正实数,,则上式中若令,,,则此赫尔德不等式即为柯西不等式.六、契比雪夫不等式(1)若,则;(2)若,则下面给出一个时的契比雪夫不等式的直观理解.如图,矩形OPAQ中,,,显然阴影部分的矩形的面积之和不小于空白部分的矩形的面积之和,(这可沿图中线段MN向上翻折比较即知).于是有,也即七、排序不等式设有两组数,,…,;,,…,满足,则有,式中的,,…,是1,2,…,的任意一个排列,式中的等号当且仅当或时成立.以上排序不等式也可简记为:反序和乱序和同序和这个不等式在不等式证明中占有重要地位,它使不少困难问题迎刃而解.八、含有绝对值的不等式为复数,则,左边的等号仅当的幅角差为时成立,右边的等号仅当的幅角相等时成立,这个不等式也称为三角形不等式,其一般形式是,也可记为绝对值不等式在实数的条件下用得较多。

世界数学史上的十个著名不等式

世界数学史上的十个著名不等式

数学史上的十个著名不等式在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这 片天地装点得更加丰富多彩•下面择要介绍一些著名的不等式.一、平均不等式(均值不等式)当这:个实数非负时叫做这-•个非负数的几何平均数.当这:个实数均为正数时, • • •叫做这;个正数的调和平均数. 设',—,•••,‘■•为'•个正数时,对如下的平均不等式: =—二,当且仅 当八 —J 时等号成立.平均不等式」;是一个重要的不等式,它的应用非常广泛,如求某些函数的 最大值和最小值即是其应用之一.设是'•个正的变数,贝U(1)当积是定值时,和I 】1 ■有最小值,且「是定值时,积有最大值,且设",-是」个实数, ■ 叫做这」个实数的算术平均数.两者都是当且仅当:个变数彼此相等时,即J时,才能取得最大值或最小值.a i + a2 > rr-在」;中,当「时,分别有;’,—①=»•• = a =—平均不等式」二经常用到的几个特例是(下面出现的-时等号成立;(口] + 十 * ・ * + + —卡.* * + 2 輕'(3)■■- ,当且仅当「卩〜…"<■时等号成立;^ + -1 > 2 _(4),当且仅当'「时等号成立.二、柯西不等式(柯西一许瓦兹不等式或柯西一布尼雅可夫斯基不等式)对任意两组实数',_,•••,「;;,•••,::,有(◎禹+码為+…£ +昇+…*<)•(獰+衬+…+盯)其中等号当且仅当丑.鱼生啓切%时成立.柯西不等式经常用到的几个特例(下面出现的 ''都表示实数)是:1磧席+…+盯=1贝*禹乜迟+-" + t3Al-1(1)(2) + 金尹了+a3cJ L£ E] + +(3)■-:「” -「・■-柯西不等式是又一个重要不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位.二、闵可夫斯基不等式设',‘ ,•••,「;;,•••,::是两组正数,;!…」,则[£他+駢]”空{严+(£們・- 一.一(’,:.).■-I .■-:.■-! (.-. 1)当且仅当「宀'时等号成立.闵可夫斯基不等式是用某种长度度量下的三角形不等式,当'…-时得平面上的三角形不等式:A右图给出了对上式的一个直观理解.若记厂心畧,则上式为a^b<a + H四、贝努利不等式(1)设 --- ”■' ,且同号,则(1十帀)(1+花)…(}+耳)〉1十吗(2)设〔,则(i)当〔m 时,有1■ ■ r - ■ ;(n)当:「或1•时,有i ,上两式当且仅当:|时等号成立.不等式(1)的一个重要特例是|“ -腸('—“—). 五、赫尔德不等式已知;•;r ■■■ )是•,个正实数,宀」,则+ +…吗<(口】+心+…扌务产©十&厂…+耳尸上式中若令「:,",二',则此赫尔德不等式即为柯西不等式.六、契比雪夫不等式玄…■金和%•昭…殂则—(ah -^ab + -■ • + ab) 2」- ------- 」——(2)若” •.…二■、' ] "1 ■'■ ■■ ■■ ■ ■ ■:则詬”必7+呦J*勺十…叫F面给出一个,:时的契比雪夫不等式的直观理解.如图,矩形OPAQK ' 「,匸,显然阴影部分的矩形的面积之和不小于空白部分的矩形的面积之和,(这可沿图中线段MN向上翻折比较即知)•于是有(曲+也)(囱十右打 < 维角+色為)也即七、排序不等式设有两组数',“,…,一;-,•,••;:满足::「-…-亠二-二-' -■■■贝q有拆夜+的占皆1 +…+耳外冬轉如+心如"・・+皱码£%血卡砌妇+…+爲A,式中的,二…;,是1,2,…;的任意一个排列,式中的等号当且仅当—---------------- •或「厂…:时成立.以上排序不等式也可简记为:反序和二乱序和二同序和这个不等式在不等式证明中占有重要地位,它使不少困难问题迎刃而解.八、含有绝对值的不等式':为复数,则I ' ’,左边的等号仅当’’的幅角差为『时成立,右边的等号仅当一…的幅角相等时成立,这个不等式也称为三角形不等式,其一般形式是同+①+…+叫卜|內卜忆|+…斗W也可记为ml j-1绝对值不等式在实数的条件下用得较多九、琴生不等式设’「是(-:)内的凸函数,贝U对于(-:)内任意的几个实数有/( _= --------- ) ■ -[f(X1) */(花)十…十了(耳)]等号当且仅当、时取得.琴生不等式是丹麦数学家琴生于1905年到1906年间建立的。

基本不等式题型大全

基本不等式题型大全

基本不等式题型大全知识点:1.几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤ ②(基本不等式)2a b+≥()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号). ⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号).⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号)⑦ban b n a m a m b a b <++<<++<1,其中(000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+2.几个著名不等式①平均不等式:1122a b a b --+≤≤≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++1122(,,,).x y x y R ∈④二维形式的柯西不等式: 22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.板块一 基本不等式及其变换一、“配、凑、拆”的技巧 ①基本不等式及变形1.函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1x (x ∈R )值域为________;2.函数f (x )=x 2+1x 2+1的值域为________.2.若x >1,则x +4x -1的最小值为________. 解:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:53.已知x <0,则f (x )=2+4x +x 的最大值为________. 解:∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x+-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x+-x ≤2-4=-2,∴f (x )的最大值为-2..54124,45.1的最大值求函数已知-+-=<x x y x 答案:1.,)0(312)(.2的值并求取最值时的最值求x x x xx f ≠+=答案:略223.,,()().a b y x a x b =-+-(三星)为实常数求的最小值解:(1)方法一:方法二:(1)函数f (x )=x (1-x )(0<x <1)的值域为____________; (2)函数f (x )=x (1-2x )⎝ ⎛⎭⎪⎫0<x <12的值域为____________.解:(1)∵0<x <1,∴1-x >0, x (1-x )≤⎣⎢⎡⎦⎥⎤x +1-x 22=14, ∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,14.(2)∵0<x <12,∴1-2x >0.x (1-2x )=12×2x (1-2x )≤12·⎣⎢⎡⎦⎥⎤2x +1-2x 22=18,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,18.8.已知0<x <1,则x (3-3x )取得最大值时x 的值为________. 解:由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.9.函数y =x 1-x 2的最大值为________.解:x 1-x 2=x 21-x 2≤x 2+1-x 22=12..)2)(12(,523.42222的最大值求已知++==+b a y b a答案:147162223.,1,1.2y x y R x x y +∈+=+(三星)设且求的最大值221y+≤2210.1,.x yx y xyx y+>=-(二星)若且求的最小值答案:23.设x,y∈R,且xy≠0,则⎝ ⎛⎭⎪⎫x2+1y2·⎝⎛⎭⎪⎫1x2+4y2的最小值为________.解:⎝⎛⎭⎪⎫x2+1y2⎝⎛⎭⎪⎫1x2+4y2=5+1x2y2+4x2y2≥5+21x2y2·4x2y2=9,当且仅当x2y2=12时“=”成立.14.在各项都为正数的等比数列{}n a中,若2018a=,则2017201912a a+的最小值为________.4 14.已知正数x y,满足2230x xy+-=,则2x y+的最小值是___________.3②二次分式有关12.已知t>0,则函数y=t2-4t+1t的最小值为________.答案-2解:∵t>0,∴y=t2-4t+1t=t+1t-4≥2-4=-2,且在t=1时取等号.13.当x>0时,则f(x)=2xx2+1的最大值为________.解:∵x>0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.14.(1)求函数f(x)=1x-3+x(x>3)的最小值;(2)求函数f(x)=x2-3x+1x-3(x>3)的最小值;解:(1)∵x>3,∴x-3>0.∴f(x)=1x-3+(x-3)+3≥21x-3·x-3+3=5.当且仅当1x-3=x-3,即x=4时取等号,∴f(x)的最小值是5.(2)令x-3=t,则x=t+3,且t>0.∴f(x)=t+32-3t+3+1t=t+1t+3≥2t·1t+3=5.当且仅当t=1t,即t=1时取等号,此时x=4,∴当x=4时,f(x)有最小值为5.15.设x>-1,求函数y=x+4x+1+6的最小值;解:∵x>-1,∴x+1>0.∴y=x+4x+1+6=x+1+4x+1+5≥2x+1·4x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.∴当x=1时,函数y的最小值是9.4.当x>0时,则f(x)=2xx2+1的最大值为________.解:(1)∵x >0,∴f(x)=2xx2+1=2x+1x≤22=1,当且仅当x=1x,即x=1时取等号.5.函数y=x2+2x-1(x>1)的最小值是________.解:∵x>1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2x-1+3x-1=x-12+2x-1+3x-1=x-1+3x-1+2≥2 x-13x-1+2=23+2.当且仅当x-1=3x-1,即x=1+3时,取等号.答案:23+2③平方平均数的应用228.,1,.x y R x y x y +∈+=+(一星)已知且求的最大值解:使用不等式变形2a b +≤.11.()0,0,1,.a b a b >>+=二星设答案:7.(三星)设,0,5,a b a b >+= _________. 解:因为,0,5,a b a b >+=所以()()139a b +++=由不等式2x y+≤2≤=,13.(四星)已知实数a b c ,,满足22201a b c a b c ++=++=,,则a 的最大值是 ____________. 解:∵222b c bc +≥,即()()2222222b c b c bc b c +++=+≥,∴()2222b c b c++≥,由0a b c ++=,得b c a +=-,由2221a b c ++=,得()22222122b c a a b c +-=+=≥,∴223a ≤,∴a ,故a .9.(三星)已知R k ∈,点(),P a b 是直线2x y k +=与圆22223x y k k +=-+的公共点,则ab 的最大值为( )BA .15B .9C .1D .53-1.(二星)若0,0x y >>的最小值为_________.2.)510)(51(.52的最值求函数≤≤-=x x x y答案:4675.cos sin ,.62的最大值求为锐角设θθθ=y答案:9二、附条件求最值:“1”的代换5:已知正数a ,b 满足a +2b =1,则1a +1b 的最小值是____. 解:1a +1b =a +2b a +a +2b b =3+2b a +ab ≥3+22b a ·ab =3+2 2.36.已知x >0,y >0,且2x +y =1,则1x +2y 的最小值是_________. 解 因为1x +2y =(2x +y )⎝ ⎛⎭⎪⎫1x +2y=4+y x +4x y ≥4+2y x ·4x y =8,等号当且仅当y =12,x =14时成立.37.已知x >0,y >0,且2x +y =1,则1x +1y 的最小值为________; 解 ∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y=3+y x +2xy ≥3+2 2.当且仅当y x =2xy 时,取等号.38.已知x >0,y >0,且9x +1y =1,求x +y 的最小值. 解:∵9x +1y =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫9x +1y =10+9y x +x y ≥10+29y x ·xy =16.当且仅当9y x =x y 且9x +1y =1,即x =12,y =4时取等号. ∴当x =12,y =4时,x +y 有最小值为16.39.已知x ,y 为正实数,且1x +16y =1,求x +y 的最小值. 解:∵1x +16y =1,∴x +y =(x +y )·⎝ ⎛⎭⎪⎫1x +16y =17+16x y +y x ≥17+216x y ·yx =25.当且仅当16x y =y x 且1x +16y =1时,等号成立. ∴x =5,y =20时,x +y 有最小值25.1.已知a >0,b >0,a +b =2,则y =1a +4b 的最小值是________. 解: ∵a +b =2,∴a +b2=1.∴1a +4b =⎝ ⎛⎭⎪⎫1a +4b ⎝⎛⎭⎪⎫a +b 2 =52+⎝ ⎛⎭⎪⎫2a b +b 2a≥52+22a b ·b 2a=92⎝ ⎛⎭⎪⎫当且仅当2a b =b 2a ,即b =2a 时,等号成立. 故y =1a +4b 的最小值为92.40.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245B.285 C .5 D .6解 ∵x >0,y >0,由x +3y =5xy 得15⎝ ⎛⎭⎪⎫1y +3x =1.∴3x +4y =15(3x +4y )⎝ ⎛⎭⎪⎫1y +3x=15⎝ ⎛⎭⎪⎫3xy +4+9+12y x =135+15⎝⎛⎭⎪⎫3x y +12y x ≥135+15×23x y ·12yx =5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5.41.正数x ,y 满足1x +9y =1. (1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9y ≥2 1x ·9y 得xy ≥36,当且仅当1x =9y ,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝ ⎛⎭⎪⎫1x +9y =19+2y x +9x y ≥19+22y x ·9xy =19+62,当且仅当2y x =9xy ,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2.9.,,280,.x y R x y xy x y +∈+-=+(二星)已知且求的最小值答案:18227.()01,,,().1a b x a b f x x x<<=+-三星设为常数求的最小值答案:2()a b +2.(二星)若直线()10,0x ya b a b+=>>过点(1,1),则a b +的最小值等于( )A.2B.3C.4D.5解:因为直线过点(1,1),所以111=+b a ,所以ba ab b a a b b a b a b a ++=+++=++=+211)11)((,因为0,0>>b a ,所以4222=⨯+≥++baa b b a a b ,当且仅当“a=b=2”时等号成立.14.(二星)若()42log 34log a b +=则a b +的最小值是( )DA .6+B .7+C .6+D .7+112511.0,0,1,:.4a b a b a b a b ⎛⎫⎛⎫>>+=++≥ ⎪⎪⎝⎭⎝⎭(三星)设求证1.(四星)已知20x y >>,且满足181022x y x y++=-,求实数x 的最大值. 答案:[]2,181.已知,x y 都是正数,且1x y +=,则4121x y +++的最小值为__________.941.(三星)设,x y 是正实数,且1x y +=,则2221x y x y +++的最小值是___________.141.(三星)已知1,,(0,1)4ab a b =∈,则1211a b+--的最小值是__________.20.(四星)函数()22log 1log 1x f x x -=+,若()()1221f x f x +=(其中1x 、2x 均大于2),则()12f x x 的最小值为_______。

53几个重要的不等式

53几个重要的不等式

5.3几个重要的不等式具备了不等式的基本知识和技能之后,就可以进一步欣赏一些优美而又魅力无限的重要结果。

正如音乐家能够将很少几组音符变化发展为动听美妙的旋律一样,数学家则往往能够通过不多几步逻辑推理揭示出简明优美的结果。

这里要介绍的一些有关不等式的结果就是数学家依靠并不复杂的逻辑推理得到的,然而在其来龙去脉被领悟以前,却常常象变戏法似的神秘莫测。

除了前面已经介绍的贝努利不等式之外,本节将讨论的一些重要不等式包括:柯西不等式,排序不等式,平均不等式等。

这些重要的不等式不仅形式优美、应用广泛,而且也是今后进一步学习高等数学的重要工具。

1. 柯西(Cauchy )不等式在上一节,我们已经粗略地了解了形如22222)())((bd ac d c b a +≥++的不等式,因其是由大数学家柯西(Canchy )发现的,故而一般称之为柯西不等式。

柯西不等式有着丰富的几何背景。

可以通过几何解释加深对其本质特征的认识与理解。

请同学们回忆一下我们曾经学过的余弦定理的内容?我们将利用它来解释柯西不等式。

如图,在三角形OPQ 中,θ=∠QOP d c Q b a P ),,(),,(,则 ,,2222d c OQ b a OP +=+=.)()(22d b c a PQ -+-=将以上三式代入余弦定理2222⋅-+=OP OQ OP PQ2222cos dc b a bdac +⋅++=θ或.))(()(cos 222222d c b a bd ac +++=θ 因为1cos 02≤≤θ,所以,1))(()(22222≤+++d c b a bd ac ,于是22222)())((bd ac d c b a +≥++.讨论:借助图形分析,柯西不等式中等号成立的条件是什么?柯西不等式应用相当广泛,我们先通过一些简单的例子加以体会。

例1.已知.1,12222=+=+y x b a 求证:.1≤+by ax (1) 证明:由柯西不等式,.1))(()(22222=++≤+y x b a by ax 所以(1)成立。

几个著名的不等式

几个著名的不等式
5.二项式定理的放缩
(1)
(1
x)n
1
nx( x
0)
,推广为
(1
x)n
1
nx
n(n 1) 2
x2(x
0)
等等.
(2) (1
x )n n
1
x
x2
xn (x
0) .
6.
2n 2n
1
的放缩
n
n
1
(2n 1)2 (2n)2
1
2n 1 2n
(2n 1)2 (2n)2 1
2n 2n
1 1
.
7.
2n 2n
b
2
.
特别地,
(1)若 a12 a22 an2 1 , b12 b22 bn2 1,则 a1 b1 a2bn anbn 1 . (2) a1a2 a2a3 a3a1 a12 a22 a32 . (3) (a1 a2 an )2 n(a12 a22 an2 ) . (二)推论
1
aikbik ) k

当且仅当 a1 a2 an 或 b1 b2 bn 时取等号.
特别地,若
a1
a2
, b1
b2
,则
a1b1
a2b2 2
(a1
a2 )(b1 22
b2
)


a1
a2
, b1
b2
,则
a1b1
a2b2 2
(a1
a2 )(bБайду номын сангаас 22
b2 )
.
推论 2. 多组正数 a1, a2 ,, an ;b1, b2 ,, bn ;…; z1, z2 ,, zn ;满足 a1 a2 an , b1 b2 bn , … , z1 z2 zn , 每 组 取 一 个 数 相 乘 再 求 和 S , 则 有

几个著名的不等式

几个著名的不等式

• 例 3:设 a, b, c ∈ R + ,且 a 2 + b 2 + c 2 = 1。
a b c 3 3 + + ≥ 。 • 求证: 2 2 2 1− a 1− b 1− c 2
a2 b2 c2 3 3 • 分析:即证 。 + + ≥ 2 2 2 a (1 − a ) b(1 − b ) c(1 − c ) 2 1 4 2 2 2 2 2 2 • a (1 − a ) = (2a )(1 − a )(1 − a ) ≤ , 2 27
• 易得最小值为 −17 + 12 2 ,此时 a = 3 − 2 2, b = 2 − 1, c = 2 。
先看几个简单问题
1 1 • 7 设 a, b > 0 且 a + b = 1,求 (a + ) 2 + (b + ) 2 的最小值。 a b
x2 + y 2 x+ y 2 • 分析:因为 ) , ≥( 2 2 1 1 1 1 1 1 1 1 1 • 所以, [(a + ) 2 + (b + ) 2 ] ≥ { [(a + ) + (b + )]}2 = [ (1 + + )]2 , 2 a b 2 a b 2 a b 1 1 • 又因为 ( + )( a + b) ≥ 4 , a b 25 • 故所求最小值为 。 2
2
α
2
1 1 γ 2 d2 2 • 三式相加, a + ( + β )b + ( + )c + ≥ ab + 2bc + cd , 2 2α β 2 2γ

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。

②传递性:a>b。

b>c则a>c。

③可加性:a>b等价于a+c>b+c,其中c为任意实数。

同向可加性:a>b,c>d,则a+c>b+d。

异向可减性:a>b,cb-d。

④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。

⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。

异向正数可除性:a>b>0,0bc。

a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。

⑧倒数法则:a>b>0,则1/a<1/b。

2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。

a^2+b^2>=2ab,当且仅当a=b时取等号。

a+b/2>=√ab,当且仅当a=b时取等号。

a+b+c/3>=∛abc,当且仅当a=b=c时取等号。

a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。

a+b+c>=3√abc,当且仅当a=b=c时取等号。

a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。

a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。

3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。

a+b)/2<=√(a^2+b^2),对任意实数a,b成立。

a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。

a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。

a+b)/2>=√ab,对任意正实数a,b成立。

高中数学不等式知识点

高中数学不等式知识点

1、不等式的基本性质①(对称性)②(传递性)③(可加性)(同向可加性)(异向可减性)④(可积性);⑤(平方法则)⑥(开方法则)⑦(倒数法则)2、几个重要不等式①,(当且仅当时取号). 变形公式:②(基本不等式) ,(当且仅当时取到等号).变形公式:用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.3、几个著名不等式平均不等式:,,当且仅当时取号).(即调和平均几何平均算术平均平方平均).变形公式:4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;①舍去或加上一些项,如②将分子或分母放大(缩小),如等.5、一元二次不等式的解法求一元二次不等式解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则(时同理)规律:把分式不等式等价转化为整式不等式求解.8、指数不等式的解法:⑴当时,⑵当时,规律:根据指数函数的性质转化.9、对数不等式的解法⑴当时,⑵当时,规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:⑵平方法:⑶同解变形法,其同解定理有:①②③④规律:关键是去掉绝对值的符号.12、含参数的不等式的解法解形如且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有:⑴讨论与0的大小;⑵讨论与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式的解集是全体实数(或恒成立)的条件是:①当时②当时⑵不等式的解集是全体实数(或恒成立)的条件是:①当时②当时⑶恒成立恒成立⑷恒成立恒成立15、线性规划问题常见的目标函数的类型:①“截距”型:②“斜率”型:或③“距离”型:或或在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。

吴文俊的几个不等式

吴文俊的几个不等式

吴文俊的几个不等式引言吴文俊(1919年-2014年)是中国著名的数学家和科学家,被誉为中国现代数学的奠基人之一。

他在数学领域做出了许多重要贡献,其中包括一些著名的不等式。

本文将介绍吴文俊提出的几个重要不等式,并对其背景、内容和应用进行详细阐述。

1. 吴文俊不等式吴文俊不等式是吴文俊在1962年提出的一组重要不等式,它们被广泛应用于数学、物理和工程领域。

这些不等式在优化问题、泛函分析、非线性偏微分方程等方面具有重要意义。

1.1 不等式一第一个吴文俊不等式是关于函数的凸性质的一个刻画。

设f(x)是定义在[a,b]上的连续函数,如果对于任意x1,x2∈[a,b]及任意λ∈[0,1]都有:f(λx1+(1−λ)x2)≤λf(x1)+(1−λ)f(x2)则称f(x)为[a,b]上的凸函数。

1.2 不等式二第二个吴文俊不等式是关于矩阵特征值的一个重要结果。

设A为n×n的实对称矩阵,其特征值按非降序排列为λ1≤λ2≤...≤λn,则对于任意正整数k≤n,有:|λ1λ2...λk|≤|λ1||λ2|...|λk|1.3 不等式三第三个吴文俊不等式是关于泛函的一个重要结果。

设Ω为定义在区间[a,b]上的可微函数集合,如果对于任意f,g∈Ω都有:∫(f′(x))2 ba dx−∫(f(x)g(x))badx+∫(g′(x))2badx≥0则称该不等式为吴文俊不等式。

2. 吴文俊不等式的应用吴文俊提出的这些不等式在科学研究和工程实践中具有广泛应用。

2.1 凸函数在优化问题中的应用凸函数的性质在优化领域中具有重要作用。

通过利用吴文俊提出的凸函数判定条件,可以判断一个函数是否是凸函数。

在数学规划、最优化理论和算法中,凸函数的性质被广泛应用于求解各种优化问题,如线性规划、二次规划和非线性规划等。

2.2 矩阵特征值在物理和工程中的应用矩阵特征值在物理和工程领域中具有重要意义。

通过吴文俊提出的不等式,我们可以对实对称矩阵的特征值进行估计和分析。

世界数学史上十个著名不等式

世界数学史上十个著名不等式

数学史上的十个著名不等式在数学领域里,不等式知识占有广阔的天地,而一个个的重要不等式又把这片天地装点得更加丰富多彩.下面择要介绍一些著名的不等式.一、平均不等式(均值不等式)设,,…,是个实数,叫做这个实数的算术平均数.当这个实数非负时,叫做这个非负数的几何平均数.当这个实数均为正数时,叫做这个正数的调和平均数.设,,…,为个正数时,对如下的平均不等式:,当且仅当时等号成立.平均不等式是一个重要的不等式,它的应用非常广泛,如求某些函数的最大值和最小值即是其应用之一.设,,…,是个正的变数,则(1)当积是定值时,和有最小值,且;(2)当和是定值时,积有最大值,且两者都是当且仅当个变数彼此相等时,即时,才能取得最大值或最小值.在中,当时,分别有,平均不等式经常用到的几个特例是(下面出现的时等号成立;(3),当且仅当时等号成立;(4),当且仅当时等号成立.二、柯西不等式(柯西—许瓦兹不等式或柯西—布尼雅可夫斯基不等式)对任意两组实数,,…,;,,…,,有,其中等号当且仅当时成立.柯西不等式经常用到的几个特例(下面出现的,…,;,…,都表示实数)是:(1),,则(2)(3)柯西不等式是又一个重要不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位.三、闵可夫斯基不等式设,,…,;,,…,是两组正数,,则()()当且仅当时等号成立.闵可夫斯基不等式是用某种长度度量下的三角形不等式,当时得平面上的三角形不等式:右图给出了对上式的一个直观理解.若记,,则上式为四、贝努利不等式(1)设,且同号,则(2)设,则(ⅰ)当时,有;(ⅱ)当或时,有,上两式当且仅当时等号成立.不等式(1)的一个重要特例是().五、赫尔德不等式已知()是个正实数,,则上式中若令,,,则此赫尔德不等式即为柯西不等式.六、契比雪夫不等式(1)若,则;(2)若,则下面给出一个时的契比雪夫不等式的直观理解.如图,矩形OPAQ中,,,显然阴影部分的矩形的面积之和不小于空白部分的矩形的面积之和,(这可沿图中线段MN向上翻折比较即知).于是有,也即七、排序不等式设有两组数,,…,;,,…,满足,则有,式中的,,…,是1,2,…,的任意一个排列,式中的等号当且仅当或时成立.以上排序不等式也可简记为:反序和乱序和同序和这个不等式在不等式证明中占有重要地位,它使不少困难问题迎刃而解.八、含有绝对值的不等式为复数,则,左边的等号仅当的幅角差为时成立,右边的等号仅当的幅角相等时成立,这个不等式也称为三角形不等式,其一般形式是,也可记为绝对值不等式在实数的条件下用得较多。

三项基本不等式

三项基本不等式

三项基本不等式
基本不等式是几何学中的常用工具,它既可用于分析几何图形,也可用于研究函数性质。

基本不等式有三类:
1. 欧几里得不等式:
欧几里得不等式是比较著名的一条基本不等式,它表述了一个虚数元素的平方和不可能大于等于该元素的模的平方。

它的标准形式为:ab ≤ a^2+b^2。

欧几里得不等式是整数解的有效工具,广泛应用于寻找整数解的方法,如拉格朗日方法。

2. 黎曼不等式:
黎曼不等式可以以两个三角形的周长和面积之比表示,它表示两个两个面积之比不可能大于该两个三角形的周长之比,即黎曼不等式可以表示为:ab ≤ A/B。

它用来比较两个相交的三角形的面积,如果周长和面积满足黎曼不等式,则这两个三角形为平行四边形的一个空心子图形。

3. 三角不等式:
三角不等式是比较著名的一条基本不等式,它表述了三个边长关系的特点,即任意两边之和都要大于第三边。

其具体格式为:a+b > c,它描述了三角形的最小外接圆是跨越任意两条边的最小圆,属于几何中
运用最广泛的基本不等式之一。

通常它用以确定某三角形是否是有效的三角形,或者判断某三角形是否满足一般三角形性质。

基本不等式有三类,它们都有各自独特的特点,分别用以证明几何图形、拉格朗日问题以及判断三角形是否有效等。

因此,对于研究几何图形,我们可以将欧几里得不等式、黎曼不等式和三角不等式并用,以此来佐证测算数学性质。

1691个代数不等式

1691个代数不等式

1691个代数不等式代数不等式在数学中占据着重要的地位,它们是解决许多实际问题的基础。

本文将讨论1691个代数不等式,并探讨它们的性质和解法。

1. 不等式1:x^2 > 0这个不等式告诉我们,任何非零实数的平方都大于零。

由此可知,x^2 > 0 对所有实数x成立。

2. 不等式2:a^2 + b^2 ≥ 2ab这是著名的平方差公式,它表明任何两个实数a和b的平方和大于或等于它们的二倍乘积。

3. 不等式3:(a+b+c)^2 ≥ 3(ab+bc+ca)这个不等式称为柯西-施瓦茨不等式,它对于任何实数a、b和c都成立。

它表明任何三个实数的平方和大于或等于它们的两两乘积之和的三倍。

4. 不等式4:(a+b+c)^3 ≥ 27abc这个不等式是由阿姆勒不等式推导得来的,它对于任何实数a、b 和c都成立。

它表明任何三个实数的立方和大于或等于它们的乘积的27倍。

5. 不等式5:a^3 + b^3 + c^3 ≥ 3abc这是著名的幂平均不等式,它对于任何非负实数a、b和c都成立。

它表明任何三个非负实数的立方和大于或等于它们的乘积的三倍。

...(继续介绍剩下的不等式)通过上述不等式的介绍,我们可以发现不等式在数学中有着广泛的应用。

它们可以用于证明其他数学定理,解决实际问题等。

在解决代数不等式问题时,可以采用以下几种方法:1. 数学归纳法:对于一些形如n阶代数不等式,可以通过数学归纳法逐步推导出解。

2. 利用基本不等式:许多代数不等式可以通过利用基本不等式,如阿姆勒不等式、柯西-施瓦茨不等式等,逐步化简得到解。

3. 代数转换:可以将代数不等式转化为等价的形式,如利用平方、立方等运算将其变为易于解决的形式。

4. 图像法:可以通过绘制函数的图像来分析不等式的解集。

总之,代数不等式是数学中一类重要的问题,其应用广泛,并且有多种解法。

通过研究和探索这1691个代数不等式,我们可以进一步深化对代数不等式的理解,提高解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几个著名不等式
1 著名不等式
柯西不等式对于任意两组实数和有
上述不等式只有当时,等号才能成立.证明因为对任意x,有
将上式展开得
上述二次三项式对任意x均大于等于0,故其判别式不能大于0,所以
当判别式等于0时,上述方程有重根,设重根为x=k,则
这时
所以上述不等式只有当
时等号才能成立。

如令,则得
柯西不等式在高等代数中的意义是:两个向量的数积不大于两个向量长度的乘积.若

其中
例1若都是正数,求证
证明构造两个实数列
则由柯西不等式得

*赫勒德尔不等式由柯西不等式
可得

所以有
同理有
一般地有
现在证明上述不等式对任意不等于2m的正整数也成立(假定所有数列均为正数列).设
共k个实数列设
共k个
再令
则有

所以
所以
即该不等式对任意不等于2m的整数k也成立.
上述不等式的证明有些麻烦,不好记,现用反归纳法给出一个简洁的证明.
由证明知,不等式
对无穷多个自然数k=2m成立.
现在假设不等式对m=k成立.
(是k个数列)≤
但是左边
所以
即不等式对m=k-1也成立。

由反归纳法知,不等式对任意整数k均成立.例2设非负实数满足
求证.
证明当n=1时,结论显然正确.
假设命题在n=k时正确,非负实数满足
则成立.
现设为k+1个非负实数,满足
+要证
令,则由归纳假设
但是,因为,所以
所以
证毕
如果令.
这里均为正实数,则得
现在证明下面不等式
其中均为正有理数,且
证明
上面的不等式称为赫勒德尔不等式.当为正无理数且满足条件时,上述不等式当然也成立,只要根据“每一无理数都有理数的极限”,便可证明.
最后,再应用“算术平均值大于几何平均值”来证明赫勒德尔不等式.
对于,得

于是有
所以
上式是两个实数列的赫勒德尔不等式.
对三个实数列情况,即

这时
即赫勒德尔不等式对三个实数列也成立.同理可得赫勒德尔不等式又四个…实数列也成立。


这里.则得
当时,上式就是柯西不等式.
由上述不等式可得
其中,所以

上述不等式称为明可夫斯基不等式.当k=2时,它的几何意义是两个向量和的模小于每个向量模的和.
2 凸函数
下面我们给出凸函数定义及其性质.
定义2.1如果函数f(x)满足以下条件:对任意x1和x2,有
其中,则称f(x)为下凸函数.
如果函数f(x)满足下面条件,对任意的x1和x2有
其中,则称f(x)为上凸函数.
凸函数的几何意义分别用图2-1和图2-2表示.
下凸函数的几何特征是曲线f(x)上的点均在相应弦的下方,而上凸函数的几何特征是曲线f(x)上的点均在弦的上方.
显然,当时,

是x1与x2中间的点.
反之,当x是x1与x2中间的点时,即x1<x< x2,令
有,且,有
所以闭区间中所有点均为的形式.反之,也是区间中的点.定理2.1若f(x)是下凸函数,则下面不等式成立:
其中
证明当n=2时,上式即为下凸函数定义,所以定理成立.现假设k=n时定理成立.
当k=n+1时,令
这时
所以
所以定理对k=n+1也成立.
同理,对上凸函数f(x)也有
其中
例3由图形知是上凸函数.所以
令,则有
除去对数符号,得
如果令,上式的意义即为算术平均值大于几何平均值.
例4设
这时(以后说明为什么下凸函数,所以是下凸函数
消去,得
除去对数符号,得
令,则得
即几何平均值大于等于的调和值.
例5求证圆内接n边形中,以正n边形面积为最大.
证明设圆的半径为R,内接n边形的面积为S,n边形各边所对应的圆心角为.则
因为都区间是上凸函数.
所以
上式只有在时等号才能成立,也就是说正n边形面积最大.
最后我们给出一些与分析有关的不等式.
例6若,求证
证明因为,令,所以
在上式中,如果令,则
令,得
另一方面,因为
所以
当,有
令,得
当时,.
练习2.2
1.设
求证.
提示
2.已知为实数,,求的极大值.
3.利用为凸函数性质,证明算术平均值大于等于几何平均值.。

相关文档
最新文档