用层次分析法评选优秀学生进行数学建模

合集下载

挑选队员的模型

挑选队员的模型

挑选队员的策略模型摘要全国大学生建模竞赛已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛,各大高校对这项比赛都很重视,那么如何挑选出优秀的队员和如何将队员进行合理的组队就至关重要了。

本文将提出的问题转化为数学的模型以及合理的假设分析给出了妥帖的解决方案。

1、对于问题一我们用多元统计分析中的层次分析法首先建立了模型1.1,给各项条件指标一个权重,来计算加权函数i i ij j i iii W P L W ∑=∑===7161,αα,再求每个队员的综合水平,用Excel 整理数据,最后淘汰8、9两名队员。

然后在模型1.1的基础上建立了模型 1.2,从理论上按照层次分析法的步骤算出权重,再按模型 1.1的加权函数计算每个队员的综合水平,得出的结果也是淘汰8、9两名队员,充分的验证了模型的合理性。

2、对于问题二我们用逐项选优法和均衡模型法,由于学校参赛的目的不同给出两种模型。

我们把这个问题转化成求竞赛水平函数i j ml k ji m l k jW a W af ∑==61,,,,),(,模型2.1目的是使学校尽可能拿更高的奖项,用逐项求优法挑选竞赛水平高的队伍,重复挑选选取最优。

模型2.2目的是使学校尽可能多的获奖,也就是期望六支队伍都获奖,用均衡模型法,先选出竞赛水平最高的一组保证能够获奖,将剩下的队员均衡分配,从而竞赛水平都达到某一高度,这样六支队伍都能获奖。

综合这两种模型我们在不同的情况下做了合理的分析,认为模型2.1优于模型2.2. 3、对于问题三我们用求价值函数和仿真的方法,模型3.1是使每个教练挑选的队员的价值函数i i k q p o i i kq p o i kW d W dg ∑==613),,(3),,(3),(达到最大,同时保证他们之间相差不大,这样才能使教练相对满意。

模型3.2是用仿真的方法,通过仿真模拟出能够满足各个教练所需求的“最优”,又能使得他们所得队员差距更小,以取得使教练都尽可能满意的结果。

数学建模竞赛成绩的评价与预测

数学建模竞赛成绩的评价与预测

数学建模竞赛成绩的评价与预测摘要本文针对对以往的数学建模工作进行总结及对未来的发展进行预测两个问题,根据附件一二中各高校安徽赛区奖和全国奖的数据,运用层次分析法、模糊综合评价和BP 神经网络等方法,建立了模糊层次模型和BP神经网络模型,借助Excel、Matlab软件,给出安徽赛区各校和全国各院校建模成绩的科学、合理的排序,并且对安徽赛区各院校2012年建模成绩进行了预测,最后将模型结果与实际结合,提出了为科学、合理地进行评价和预测,除全国竞赛成绩、赛区成绩外,还需要考虑的因素。

针对问题一,根据附件一中安徽赛区各高校的数学建模获奖数据,给出安徽赛区各校建模成绩的科学、合理的排序,并对安徽赛区各院校2012年建模成绩进行预测。

首先,统计出安徽赛区16所高校的获奖数据,引入综合评价指数概念,运用层次分析法和模糊综合评价建立了模糊层次模型,由Matlab求的全国一二等奖和安徽赛区一二三等奖对数学建模成绩的权重,将安徽赛区奖归一化得到本问题中所需要的权重,算出各校综合评价指数,进而得出安徽赛区各校建模成绩的排序,前十名依次为安徽财经大学、安徽大学、安徽师范大学、中国科学技术大学、安庆师范学院、合肥工业大学、安徽工程大学、皖西学院、滁州学院、安徽建筑工业学院、宿州学院、铜陵学院、合肥师范学院、巢湖学院、淮南师范学院、合肥学院;再建立BP神经网络模型,借助Matlab软件求得安徽赛区16所高校2012年各奖项的获奖队数,具体数据见表3。

针对问题二,根据附件二中全国各高校的数学建模获奖数据,将问题一中的模糊层次模型推广,应用于全国各高校。

在问题求解时,本本文在本科组学校中选取49所,在专科组学校中40所学校,按一定的年份间隔来统计数据,最后运用Excel软件对这些学校进行排序,得出本科组排在前十的依次为解放军信息工程大学、国防科技大学、浙江大学、武汉大学、大连理工大学、海军航空工程学院、上海交通大学、山东大学、东南大学;专科组学校前五名依次为:石家庄经济学院、成都电子机械高等专科学校、海军航空工程学院、山西工程职业技术学院、深圳职业技术学院。

数学建模队员的选拔-层次分析法

数学建模队员的选拔-层次分析法

数学建模队员的选拔摘要一年一度的全国大学生数学建模竞赛是高等院校的重要赛事。

但在对参赛队员进行选拔时,往往会遇到很多难题,以致有时并不能选出真正优秀的队员代表学校参加全国竞赛。

本文通过对学生自身具备的与数学建模有关的素质的考察,解决了选拔参赛队员及确定最佳组队的问题。

本文主要采用层次分析法,通过对建模队员的综合能力以及专项能力的考察,综合考虑个人的指标以及整队的技术水平,给出了选拔队员的模型,并最终从15名队员中选出9名优秀队员组成三队,建立了最佳的组队方案。

问题一,我们给出了选拔队员时应考察的情况,并针对数学建模应具备的关键素质,给出了相关素质的权重。

问题二,我们全面考察了15名队员的六项指标,并利用层次分析法及matlab 编程求出了各指标的权重,然后根据权重得到15名队员的的综合排名,最后剔除后六名,得到前九名队员,依次是:2S ,1S ,14S ,8S ,11S ,4S 10S ,6S ,13S 。

为了组成3个队,使得这3队的整体水平最高,我们建立了求每个队竞赛水平的模型,根据题目要求,为使三名队员的技术水平可以互补,参赛学生最好来自不同专业,我们在多种组合方式下经计算比较后得到最佳组合方案。

如下表:问题三,我们如果只考察计算机而不考察其它能力,选出最佳队员S11和S13,其成绩分别为第五和第九,并非特别拔尖。

而且通过对计算机编程能力在关键素质中所占的比例24.9%分析(1/4不到),这种直接录用的选拔方式,有可能影响队伍的总体水平,而且有失公平,所以不可取。

问题四,我们在前几问的基础上,综合数学建模的关键素质所占的权重分析,给出了对数学建模教练组在选拔队员时的建议。

关键词:最佳组队;层次分析法;matlab 编程,权重一、问题重述由于竞赛场地、经费等原因,不是所有想参加竞赛的人都能被录用。

为了能够选拔出真正优秀的同学代表学校参加全国竞赛,数学建模教练组需要投入大量的精力,但是每年在参赛的时候还是有很多不如意之处:有的学生言过其实,有的队员之间合作不默契,影响了数学建模的成绩。

数学建模优秀论文基于层次分析法的模糊综合评价模型

数学建模优秀论文基于层次分析法的模糊综合评价模型

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):广东金融学院参赛队员(打印并签名) :1. 曾彬2. 曾庆达3. 陈佳玲指导教师或指导教师组负责人(打印并签名):日期: 2013 年8 月 22日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):高校学生评教系统改进的研究摘要本文是研究关于高等学校学生评价教师的评价系统问题,用层次分析法确定了十项指标的权值,并给出了一个新的评教分数的计分模型-模糊综合评价模型。

本文亮点在于采用基于层次分析法的模糊数学模型。

首先,建立层次分析模型,充分考虑每个指标对综合评价的贡献,并把贡献按权值进行分配;通过层次分析法中的归一化处理,得到两两指标间的相对重要性的定量描述,从而解决不同指标间的差异。

其次建立模糊综合评教模型,输入一组专家(同学)的模糊评价,通过最大隶属度原则把模糊评价输出为综合评价。

最后本文在难易程度不同的课程下(在专业必修课,专业选修课,公共选修课下进行评价),得出同一教师的综合评价,发现其在不同课程下的综合评价均相同。

于是得出结论,该模型的确能解决不同课程难易程度带来的对总体评教的影响。

因为一个教师的综合教学质量并不应该在不同的课程下得到变化较大的评教。

【数学建模浅谈层次分析法】

【数学建模浅谈层次分析法】

浅谈层次分析法摘要本文主要阐述层次分析法的定义、特点、基本步骤以及它的优缺点。

层次分析法是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。

由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围内得到重视。

它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。

关键词:层次分析多目标多准则成对比较一致性检验前言数学是一切科学和技术的基础,是研究现实世界数量关系、空间形式的科学。

随着社会的发展,电子计算机的出现和不断完善,数学不但运用于自然科学各学科、各领域,而且渗透到经济、管理以至于社会科学和社会活动的各领域。

众所周知,利用数学解决实际问题,首先要建立数学模型,然后才能在该模型的基础上对实际问题进行分析、计算和研究。

数学建模(Mathematical Modeling)活动是讨论建立数学模型和解决实际问题的全过程,是一种数学思维方式。

从学术的角度来讲,数学建模就是利用数学技术去解决实际问题;从价值的角度来讲,数学建模是一个思维过程,它是一个解决问题的过程(创新),更是一个升华理论方法的过程(总结);从哲学的角度来讲,数学建模是认识世界和改造世界的过程。

1 数学建模过程和技巧数学建模的过程是通过对现实问题的简化、假设、抽象,提炼出数学模型;然后运用数学方法和计算机工具等,得到数学上的解答;再把它反馈到现实问题,给出解释、分析,并进行检验。

若检验结果符合实际或基本符合,就可以用来指导实践;否则就再假设、再抽象、再修改、再求解、再应用。

构造数学模型不是一件容易的事,其建模过程和技巧具体主要包括以下步骤:⑴模型准备在建模前要了解实际问题的背景,明确建模的目的和要求;深入调研,去粗取精,去伪存真,找出主要矛盾;并按要求收集必要的数据。

数学建模,如何客观合理的评价学生学习状况

数学建模,如何客观合理的评价学生学习状况

如何客观、合理的评价学生学习状况摘要现行的以考试成绩衡量学生学习状况的方法比较主观,且评价方式单一,忽略了不同基础水平的同学的进步程度,为了激励优秀学生努力学习取得更好的成绩,同时鼓励基础相对薄弱的学生树立信心,不断进步,我们需要建立一个客观,合理的评价学生状况的数学模型。

考虑到以上情况,本文通过以下几步来达到目的。

步骤一:通过分析题目所给198名学生的整体成绩情况,包括大一两个学期每个学期的整体平均成绩、及格率、方差、标准差等多项指标有关,通过所给数据,得到图表。

分析数据充分理解学生的学习情况,更有利于以下两个模型的进行,为模型的建立提供参考.步骤二:对于全面、客观、合理的评价学生的学习状况,我们采用了二个模型:模型一:利用黑尔指数法求得的进步分数和层次分析法进行评价:设定适当的权系数,使最终成绩更为合理。

本专业为工科类专业,应更加重视专业学习能力,因此专业课程所占权系数较高,成绩也能更好的选拔专业能力强的学生。

同时为了激励进步学生,进步分也占有部分权限,能够起到很好的鼓励作用。

为此我们设置:最终成绩Y=0。

55*专业课程+0.4*其他课程+0.05*进步分数.模型二:采用成绩标准化模型对成绩进行评价:采用对数变换将负偏态的成绩分布正态化,并用Matlab进行了正态检验。

从而学生成绩的差距分布更为合理,成绩偏低的学生变换后将处于中等位置,得到适当的鼓励,改变了负偏态分布中较多学生成绩集中在高分段或低分段的现象。

然后,将正态分布归一化为标准正态分布,消除每个学期评价考核体系的不稳定性因素,得到每个学生各学期的“有效成绩”。

并基于”有效成绩"提出了等级评定子模型,确定了等级分数线,更清楚的表明了每个学生在整体位置。

关键词:黑尔指数层次分析成绩标准化有效成绩一.问题重述现行的评价方法相对比较局限、主观、有失公允,只能对学习基础好的学生产生激励作用,而不能对所有学生尤其是后进学生起到激励作用,这种评价弊端开始被越来越多的人关注。

层次分析法数学建模范例

层次分析法数学建模范例

对学生建模论文的综合评价分析摘要本文研究的是五篇建模论文的评价和比较问题。

首先,研读分析了五篇论文,并写出评语。

其次,进行综合量化评价,主要运用的方法是层次分析法和模糊综合评判.最后,依据所得权重大小对论文排序。

针对问题一,我们对论文进行了横向比较和纵向分析。

依据数学建模竞赛论文评分基本原则,首先,在研读论文的基础上,对论文分块进行了横向比较,并按照优、良、中、差四个等级作出评价。

其次,采取纵向分析的方法,找到论文的优点与不足,写出每篇论文的评语。

最后,结合横向比较和纵向分析对论文综合评价。

针对问题二,在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的二级评判模型把所给论文的建模摘要、模型与求解、模型评价与推广、其他作为第一级因素集,把问题描述等作为第二级因素集。

在用模糊综合评判方法时,确定评估数据(评判矩阵)和权重分配是两项关键性的工作,求权重分配时,我们通过往年评分标准确定数据后用层次分析法计算出二级权重和一级权重;对于评判矩阵,我们通过对五篇论文进行评阅打分(用平均分数作为每项得分),用每一项得分占五篇论文该项得分的比重(商值法),建立评价矩阵。

最终,我们通过matlab编程处理得出的综合量化比较结果是所给5篇论文由好到差依次为论文4,论文2,论文1,论文5,论文3。

并在模型结束时付上了对五篇论文的评语。

关键词:层次分析法;模糊综合评判;统计分析:matlab编程;论文评价一、问题重述数学建模是利用数学方法解决实际问题的一种实践。

即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。

将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一。

在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见下图。

数学建模成绩评价

数学建模成绩评价

E题数学建模竞赛成绩评价与预测摘要本体是关于评价比较与预测问题,是对数学建模开展以来各高校建模水平的评价和比较以及预测。

第一,分析给出的各高校的获奖数据,统计,进行综合量化评价,运用的方法是层次分析法,综合评判和线性分析。

最后,以学校的建模水平进评比。

对于四个问题,对各高校建模获奖数据进行了统计分析。

在建立数学模型时,首先从建模理念的应用意识、数学建模、创新意识出发利用模糊评判的一级评判模型把所给学校的国家一等奖、国家二等奖,省一等奖、省二等奖,省三等奖,成功参赛奖作为因素集。

在用模糊综合评判方法时,确定评判矩阵和权重分配是两项关键性的工作,求权重分配时,通过往年评分标准确定数据后用层次分析法计算权重;对于评判矩阵,通过对整理的各高校每个等级奖项数目对各高校获奖总数的比重建立评价矩阵。

通过C语言编程处理得出的各高校建模水平,通过线性回归,预测十二五期间的建模水平,从而解决问题。

关键字:综合评判;层次分析法;统计分析;线性回归;C语言编程;画图软件;一、问题的重述近20年来,CUMCM的规模平均每年以20%以上的增长速度健康发展,是目前全国高校中规模最大的课外科技活动之一。

2011 年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1251所院校、19490个队(其中本科组16008队、专科组3482队)、58000多名大学生报名参加本项竞赛。

在数学建模活动开展20周年之际,有必要对以往的数学建模工作进行总结及对未来的发展进行预测。

通过某高校2006-2011年数学建模成绩,建立合理的评价模型,对该校十一五期间数学建模工作进行评价,并对该校十二五期间的数学建模成绩进行预测;试建立评价模型,给出吉林赛区十一五期间各校建模成绩的科学、合理的排序;并给出吉林赛区各院校十二五期间的建模成绩进行预测;给出全国各院校的自建模竞赛活动开展以来建模成绩的科学、合理的排序;并对全国各院校十二五期间的建模成绩进行预测;你认为如果科学、合理地进行评价和预测,除全国竞赛成绩、赛区成绩外,还需要考虑那些因素?二、模型假设1、假设附表中的信息基本准确没有异常值并且数据是真实合理的。

从三个层次培养学生的数学建模能力

从三个层次培养学生的数学建模能力
的。而没有得 出公式的学生既有语言理解能力上 的不足 , 也有缺 1 . 既然数学建模能力基础 ( 初层 ) 是由诸多能力 因素构成 的 ,
乏想象创造力 的错误 , 当然 也有数学抽象归纳能力上的欠缺。 笔者 因此 日常教学 中就要有意识地进行针对性的渗透培养 。构建系列 当然 问题 一方面 认为数学建模能力是有结构层次的 , 初层结构是 由观察力 、 阅读力 、 有相 当针对性 的现实应用问题供 建模 教学使用 ,
中数学教学所重视 , 对建模能力 的研究 F I 渐深入 。这里我们以“ 货 行抽象形式化处理得到问题 3 : 试对问题 2进行 分析 , 从中你能得 币时 问价值模型 ” 的建立为例 , 分析数学建模能力 的三个层次 , 探 到什么样的投 资结论 。 讨在高 中教学 中如何培养学生的数学建模能力 。
因而笔者认为数学 建模 能力有第二层 次 , 即 中层 生的数学应用意识 作为课程 的基本理念之 一 , 要求 高中数学大力 结为数学模 型 , 加强数 学应用和联 系实际 , 增 强学生的应用 意识 , 扩展学生 的视 结构( 具体能力层 ) 问题 的数学能力 , 建模解模 的实践能力。 野 。作为解决实际应 用问题 的主要能力——建模能力也逐渐被高 3 . 为了继续探求数学建模能力 的结构 层次 , 笔者对问题 2进
公式 。
m∈ N 得到结论 : m越大 , B = n ( 1 + 生) m越 大 , 即每年结算利息 的
银行 付出的本利 和越多 , 对储户越有利 ( 银 行应避免该 高一年级 2个班 1 0 8 人 中正确导 出复利公 式( 模型) A - a ( 1 + 次数越多 , 。学生对上述问题的解决是在中层结构基础上 , 交叉运 ) 有9 6 人, 正确率为 8 8 . 8 %。在课本没有涉及金融投资知识 , 教 状况发生 ) 用 了逻辑思维和运算分析最 终上升为一种问题解决的综合能力 。 师也没有讲过该公式的前提下 , 能有 这么高的正确率出乎笔者 的 意料 。通过座谈发现一部分学生是通过课外 阅读记忆获取该模型 这应该是数学建模能力 的归宿——高层次结构。 二、 从三个层次在 高中数学教学中培养学生的数学建模能力 公式 ; 另一部分人则通过存 款观察并 通过对本问题思维运算获得

数学建模(层次分析法(AHP法))

数学建模(层次分析法(AHP法))

判断矩阵元素a 判断矩阵元素 ij的标度方法
标度 1 3 5 7 9 2 , 4 , 6, 8 倒数 含义 表示两个因素相比, 表示两个因素相比,具有同样重要性 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素稍微重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素强烈重要 表示两个因素相比, 表示两个因素相比,一个因素比另一个因素极端重要 上述两相邻判断的中值
层次分析法在经济、科技、文化、军事、 环境乃至社会发展等方面的管理决策中都 有广泛的应用。 常用来解决诸如综合评价、选择决策方案、 估计和预测、投入量的分配等问题。
层次分析法建模
一 、问题的提出 日常生活中有许多决策问题。 日常生活中有许多决策问题。决策是指 在面临多种方案时需要依据一定的标准选择 某一种方案。 某一种方案。 例1 某人准备选购一台电冰箱 他对市场上的6 他对市场上的6种不同类型的电冰箱进行了解 选取一些中间指标进行考察。例如电冰 指标进行考察 后,选取一些中间指标进行考察。例如电冰 箱的容量、制冷级别、价格、型式、耗电量、 箱的容量、制冷级别、价格、型式、耗电量、 外界信誉、售后服务等 外界信誉、售后服务等。
目标层
O(选择旅游地 选择旅游地) 选择旅游地
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
要比较各准则C1,C2,… , Cn对目标O的重要性 要比较各准则 对目标 的重要性
Ci :Cj ⇒aij
选 择 C1 旅 C2 游 C 3 地
C4 C5 C1
层次分析法(AHP法 层次分析法(AHP法)
Analytic Hierarchy Process

层次分析法及其应用数学建模

层次分析法及其应用数学建模
01
层次单排序
根据判断矩阵求解各因素对于上一层次因素的相 对重要性权重,得到层次单排序结果。
02
一致性检验
对判断矩阵进行一致性检验,检查各因素之间的 相对重要性是否合理。
层次总排序与一致性检验
层次总排序
根据各层次的权重和下一层因素相对于上一层因素的权重,计算出最底层因素相对于总目标的 权重。
一致性检验
判断矩阵的构造
确定比较标度
比较同一层次中各因素对于上一 层次因素的相对重要性,通常采 用1-9的标度法进行比较。
构造判断矩阵
根据比较标度,构造出判断矩阵, 矩阵中的元素表示对应因素的比 较结果。
求解判断矩阵
通过计算判断矩阵的特征向量, 得到各因素对于上一层次因素分析法可以根据问题 的实际情况调整层次结构 和判断矩阵,具有较高的 灵活性。
局限性
主观性
层次分析法在构造判断矩阵时依赖于专 家的主观判断,因此结果可能受到专家
主观因素的影响。
计算复杂度较高
对于大规模问题,层次分析法的计算 复杂度较高,需要借助计算机进行辅
助计算。
一致性检验困难
对于构造的判断矩阵,一致性检验是 一个难题,需要找到合适的检验方法。
层次分析法在数学建模中的应用
01 在数学建模中,层次分析法常用于解决多目标决 策问题,例如在资源分配、方案选择、风险评估 等方面。
02 通过构建层次结构模型,可以将复杂的决策问题 分解为多个层次,使得决策过程更加清晰和有条 理。
02 在应用层次分析法时,需要构建判断矩阵,并进 行一致性检验,以确保决策的合理性和准确性。
02
层次分析法的基本原理
层次结构模型的建立
01 明确问题
首先需要明确问题的目标,并确定相关的因素, 将因素按照属性不同分为不同的层次,形成层次 结构。

数学建模队员的选拔-层次分析法

数学建模队员的选拔-层次分析法

数学建模队员的选拔-层次分析法层次分析法(Analytic Hierarchy Process,简称AHP)是一种多准则决策方法,通过构造层次结构分析问题,通过对于决策中所涉及的因素和目标进行层次分解,将问题的各部分分解成若干层次,在该层次结构中使用定量和定性的方法来描述因素之间的关联和权重。

本文将利用层次结构模型,以及层次分析法,对数学建模队员的选拔进行分析。

层次结构模型在进行数学建模队员的选拔中,影响选拔的多个因素可以构建成一个层次结构模型。

例如:在数学建模队员选拔中,可以将最终选出的队员作为最终的目标,而影响选拔的因素可以分解成以下多个因素:1.专业水平:参赛者们的数学水平、学习能力、逻辑思维等问题。

2.团队合作能力:参赛者是否适应团队合作及与人组队互动等问题。

3.沟通和表达能力:参赛者的表达能力、口头和文字沟通交流等问题。

4.个人素质:如责任感、进取心、合作精神、团队协作精神等。

层次分析法在层次分析法中,问题通常首先进行分层,使用准则、子准则和指标以及目标来描述问题,并按照这种结构构造一个具有层次结构特征的问题描述。

接着,将问题中的各个层次之间的依赖关系描述出来,并将各个准则、子准则、指标和目标的重要性大小转化为数量化的比较关系。

比较矩阵是层次分析法中的核心概念。

比较矩阵是一种用于比较各个因素之间差异的矩阵视图,在比较矩阵中,每一个单元格代表两个不同的元素之间的相对权重。

比较矩阵的各行数值之和为1。

以数学建模队员选拔的专业水平为例:在该因素层面上考虑选择队员是否有良好的数学水平、学习能力、逻辑思维;在这些因素比较中,可以进行两两比较后形成下图所示的矩阵视图。

| 比较矩阵 | 数学水平 | 学习能力 | 逻辑思维 ||--------------|----------|----------|----------|| 数学水平 | 1 | 3 | 5 || 学习能力 | 1/3 | 1 | 3 || 逻辑思维 | 1/5 |1/3 | 1 |上表中的数字代表数量级:按比例表示数据之间的重要程度或优先级,并且满足归一化性质:对于矩阵中的每一列,它们的权重比之和应为1。

层次分析法-数学建模

层次分析法-数学建模
此外还有根法、最小二乘法等。
步骤5 层次总排序即求各方案的综合得分
前面我们求的都是在一层中各因素的权重,这个过程称为单
层次排序。不妨设准则层权向量W (w1, w2,L , wn ),T 而方案层有 l
个方案可供选择,且每个方案的权向量分别为 1, 2,L , l 。那么 每个方案对最终目标的影响程度(C1,C2,L ,Cl )T 就可以通过下面的 式子算出来了。
合理分配企业利润
准则层 调动积极性 提高企业质量 改善生活条件
方案层 发奖金 扩展福利设施 引进人才和设备
在层次划分及因素选取时,我们要注意三点:
(1)上层对下层有支配作用;
(2)同一层因素不存在支配关系(相互独立);
(3)每层因素一般不要超过9个。 (心理学家通过实验认为,人对许多东西优劣及优劣 程度判断能力,最多大致在9个以内,超过这个范围就 会判断失真。例如,人们在面对琳琅满目的商品常常会 眼花缭乱,难以抉择。)
23
9
重要性
xi比 x j 相同 稍重要 重要
绝对 很重要 重要
aij
1
3
5
7
9
在每两个等级之间有一个中间状态, aij 可分别 取值 2 , 4 ,L , 8 。
例如:评价电影的好坏
目标层
评价
准则层 娱乐性 x1 艺术性 x2 教育性 x3
方案层 电影1
电影2
……

个人认为:
x1 : x2 3
层次分析法是将定性问题定量化处理的一种有效手 段。
面临各种各样的方案,要进行比较、判断、评价、 最后作出决策。这个过程主观因素占有相当的比重给用 数学方法解决问题带来不便。T.L.saaty等人20世纪在七 十年代提出了一种能有效处理这类问题的实用方法。

数学建模的层次分析法

数学建模的层次分析法

1、层次分析法的基本概念
1、层次分析法的基本概念
层次分析法(Analytic Hierarchy Process,AHP)是一种广泛应用于数学 建模中的方法。它通过将复杂问题分解为多个层次,帮助我们更好地理解和解决 实际问题。层次分析法的基本原理是将一个复杂问题分解为多个相关因素,并根 据这些因素之间的相对重要性进行排序。
3、层次分析法的实际应用
(4)权重计算:通过计算判断矩阵的特征向量,得到每个因素的权重值。 (5)一致性检验:对判断矩阵进行一致性检验,以确保得到的权重值是合理的。
3、层次分析法的实际应用
(6)结果分析:根据权重值的大小,对每个因素进行分析,从而得到问题的解 决方案。层次分析法在多目标决策、资源分配、风险评估等领域有着广泛的应用。 例如,在多目标决策中,层次分析法可以帮助我们确定各目标的权重,从而得到 最优解。
三、大学生毕业设计质量评价的 数学模型建立
三、大学生毕业设计质量评价的数学模型建立
1、确定评价指标:根据模糊层次分析法的原理,我们首先需要确定评价指标 体系。选取与毕业设计质量相关的指标,建立多级递阶结构,其中一级指标为选 题质量、设计过程、成果质量等,二级指标为选题难度、选题新颖性、设计规范 性等。
2、数学建模在各领域的应用
在科学研究领域,数学建模被广泛应用于物理学、化学、生物学等学科。例 如,牛顿第二定律、万有引力定律等都是通过数学建模得到的。在工程技术领域, 数学建模也发挥着重要的作用。例如,桥梁设计、建筑设计等领域都需要用到数 学建模来分析结构稳定性和安全性。此外,数学建模在金融、经济、社会等领域 也有着广泛的应用。
参考内容
一、引言
一、引言
随着高等教育的普及化,大学生毕业设计的质量评价已成为一个重要的研究 领域。毕业设计是大学生综合素质和教育水平的直接体现,因此,对其质量进行 科学、客观的评价至关重要。本次演示将介绍一种基于模糊层次分析法(Fuzzy Analytic Hierarchy Process,FAHP)的大学生毕业设计质量评价数学建模方 法,旨在为提高毕业设计质量和评价效率提供有效手段。

学生的综合成绩排名问题数学建模

学生的综合成绩排名问题数学建模

三、问题的分析3.1问题一我们考察班级学生的综合成绩(包括考试课和考查课)排名问题,只需要对学生的平均绩点进行比较,其中考虑到每个学校计算平均绩点的方法不统一,为了认证我们的结果,我们利用Excel层次分析法对排名的公平性进行认证。

(是否有不考虑因素)3.2问题二3.3问题三3.4问题四对于奖学金的评定各院系或班级评定标准都或多或少的遇到了一些问题,造成学生参评热情不高,高校奖学金的评定一般存在以下问题四、模型的建立及求解4.1问题一模型的建立及求解4.1.1基本方法-绩点法绩点成绩与绩点对应表(表1)名称内容百分制90-100 80-89 70-79 60-69 60以下等级评价优秀良好中等及格不及格绩点 4 3 2 1 0每名同学的平均绩点的计算(公式1):每名同学平均绩点分 =()定的总学分数每学期专业教学计划规课程绩分数课程学分课程系数∑⨯⨯符号化公式:J平均=()MGXK∑••4.1.2问题一的改进优化-Excel 层次分析法问题简化:我们只计算班级前5排名情况,这样可以利用在平均绩点中前9名得成绩进行比较,足以保证前5名得公平性。

1-15阶正互反矩阵计算1000次得到的平均随机一致性指标(表二)层次分析图求出目标层的权数估计 用和积法计算判断矩阵将判断矩阵的每一列元素作归一化处理,其元素的一般项为∑=nijijij bb b 1()n j i ,2,1,=将每一列经归一化处理后的判断矩阵按行相加为:()n i ,2,1=求得Wi={1.2,0.8}t对向量W=( W 1, W 2…… W n )t 归一化处理:∑=niji b w 1∑=njii ww w 1()n i ,2,1=()tn w w w w ,,21=即为所求的特征向量的近似解。

W={0.6,0.4} tN<3不用考察判断矩阵一致性标准求出方案层对准则层的最大特征向量(同上),求得考试课之间绩点的层次表bij={18.5,5.285,7.4,3.363,5.285,7.4}Wi={0.324,1.135,0.810,1.783,1.135,0.810} W={0.054,0.189,0.135,0.297,0.189,0.135} 考察判断矩阵层次单排列的一致性标准 计算判断矩阵最大特征根λmax()∑=niinW BW 1max λBW={0.075,0.927,0.472,2.289,0.927,0.472}λmax =(0.138)/(6*0.054)+(1.691)/(6*0.189)+(0.863)/(6*0.135)+(4.175*0.297) /(6*0.297)+(1.691) /(6*0.189)+(0.863) /(6*0.135)=6.234判断矩阵一致性指标C.I.(Consistency Index)1..max --=n nI C λC.I.=(6.234-6)/(6-1)=0.0468随机一致性比率C.R.(Consistency Ratio)......I R I C R C =C.R.=0.0468/1.24=0.038<0.1考察判断矩阵层次单排列的一致性标准考查课之间绩点的层次表 bij={20,5,5,10,10,2.857}Wi={0.3,1.2,1.2,0.6,0.5,0.5}W={0.069,0.279,0.279,0.139,0.116,0.116} 考察判断矩阵一致性标准BW=max=(20*0.069)/(6*0.069)+(5*0.279)/(6*0.279)+(5*0.279)/(6*0.279)+(10*0.139)/(6*0. 139)+(10*0.116)/(6*0.116)+(2.857*0.116)/(6*0.116)求出方案层对指标层的最大特征向量(同上),求得每名同学考试课1的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课2的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课3的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课4的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课5的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课6的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课1的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课2的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课3的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课4的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课5的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课6的绩点层次表Wi=W=考察判断矩阵一致性标准利用层次单排序的计算结果,进一步综合出对更上一层次的优劣顺序,就是层次总排序的任务。

数学建模实验报告1,层次分析法

数学建模实验报告1,层次分析法

数学建模实验报告一、实验要求柴静的纪录片《穹顶之下》从独立媒体人的角度调查了席卷全国多个省份的雾霾的成因,提出解决的方法有:关停重污染的钢铁厂、提高汽柴油品质、淘汰排放不达标汽车、提高洗煤率等,请仔细观看该纪录片,根据雾霾的成因,选择你认为治理雾霾确实可行的几个方案,并用AHP方法给出这几个主要方案的重要性排序。

二、前期准备1、理解层次分析法(AHP)的原理、作用,掌握其使用方法。

2、观看两遍柴静所拍摄的纪录片《穹顶之下》,选出我认为可较为有效地治理雾霾的几个方法,初步确定各方法的有效性(即权重)。

3、初步拟定三个方案,每个方案中各个治理方法的权重不同。

三、思路&分析1、根据纪录片《穹顶之下》和个人的经验判断给出各个记录雾霾的方法对于治理雾霾的判断矩阵,以及三个不同方案对于五大措施的判断矩阵。

2、了解了AHP的原理后,不难发现MATLAB在其中的作用主要是将判断矩阵转化为因素的权重矩阵。

当然矩阵要通过一致性检验,得到的权重才足够可靠。

3、分别得到准则层对目标层、方案层对准则层的权重之后,进行层次总排序及一致性检验。

得到组合权向量(方案层对目标层)即可确定适用方案。

四、实验过程1、确定层次结构2、构造判断矩阵(1)五大措施对于治理雾霾(准则层对目标层)的判断矩阵(2)三个方案对于五大措施(方案层对准则层)的判断矩阵3、层次单排序及一致性检验该部分在MATLAB中实现,每次进行一致性检验和权向量计算时,步骤相同,输入、输出参数一致。

(虽然输入的矩阵阶数可能不同,但可以不把矩阵阶数作为参数输入,而通过[n,n]=size(A)来算得阶数。

)因此考虑将这个部分定义为一个函数judge,输入一个矩阵A,打印一致性检验结果和权向量计算结果,并返回权向量、一致性指标CI、平均随机一致性指标RI。

将此脚本存为judge.m,在另一脚本ahp.m中调用。

代码如下:调试通过后,下面便用此函数进行一致性检验及权向量计算:(1)准则层对目标层(A矩阵)(2)方案层对准则层(BB矩阵)代码:结果:注:实际实验时,一开始构造的五个矩阵中有两个没有通过一致性检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用层次分析法评选优秀学生
一.实验目的
运用层次分析法,建立指标评价体系,得到学生的层次结构模型,然后构造判断矩阵,求得各项子指标的权重,最后给出大学生综合评价得分计算公式并进行实证分析,为优秀大学生的评选提出客观公正,科学合理的评价方法。

二.实验内容
4.用层次分析法解决一两个实际问题;
(1)学校评选优秀学生或优秀班级,试给出若干准则,构造层次结构模型。

可分为相对评价和绝对评价两种情况讨论。

解:层次分析发法基本步骤:建立一套客观公正、科学合理的素质评价体系,对于优秀大学生的评选是至关重要的。

在此我们运用层次分析法(AHP),以德、智、体三个方面作为大学生综合评价的一级评价指标,每个指标给出相应的二级子指标以及三级指标,然后构造判断矩阵,得到各个子指标的权重,结合现行的大学生评分准则,算出各项子指标的得分,将这些得分进行加权求和得到大学生综合评价得分,根据分配名额按总分排序即可选出优秀大学生。

大学生各项素质的指标体系。

如下表所示:
11P =(1x ,2x ) 12P =(3x ,4x ) 21P =(5x ,6x ,7x )
22P =(8x ,9x ,10x ) 31P =(11x ,12x ) 31P =(13x ,14x )
建立两两比较的逆对称判断矩阵 从1x ,2x .....n x 中任取i
x 与
j
x ,令
=ij a i x /j
x ,比较它们对上一层某个因素的重要性时。

若=ij a 1,认为
i
x 与
j
x 对上一层因素的重要性相同; 若=ij a =3,认为i
x 比
j
x 对上一层因素的重要性略大;
若=ij a 5,认为i x 比j x 对上一层因素的重要性大; 若=ij a 7,认为i x 比
j
x 对上一层因素的重要性大很多;
若=ij a 9,认为
i
x 对上一层因素的重要性远远大于
j
x ;

=
ij a 2n ,n=1,2,3,4,元素
i
x 与
j
x 的重要性介于
=
ij a 2n − 1与
=
ij a 2n + 1之间;
用已知所有的
i x /j
x ,i ,j =1,2 ... n ,建立n 阶方阵P=n m j i x x ⨯)
/(,矩阵P 的第i 行与
第j 列元素为i x /j x
,而矩阵P 的第j 行与第i 列元素为j x /i x ,它们是互为倒数的,而对
角线元素是1。

判断矩阵
⎥⎥⎥⎥
⎦⎤⎢⎢⎢⎢⎣⎡
=11/51/4P 51341/31P P P 321
321P P P
0858.3max =λ 0740.0CI = 0359.6max =λ 0758.0=CI
max λ=6.2255 CI =0.0364 max λ=6.0359 CI =0.0758
max λ=15.1382 CI =0.0558 max λ=14.2080 CI =0.0102 max λ=14.3564 CI =0.0175 max λ=15.1972 CI =0.0758
max λ=14.1043 CI =0.0051 max λ=14.2017 CI =0.0099
利用加法迭代计算权重
即取判断矩阵ne 个列向量的归一化的算术平均值近似作为权重向量 具体为求向量迭代序列:
10/1...../1/1⨯⎥


⎥⎦⎤⎢⎢⎢⎢⎣⎡=n n n n e
1-'k k Pe e =
'
k
e 为
1-P k e 分量之和 k
e =
'k e
/'k e k=1、2、.....
可以证明,迭代的n 维列向量序列{
k
e }收效,记其极限为e,且
1
21.....a ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=
n n a a e 则权系数可取:
i i a w =,i=1,2,...n
计算时,当 k e =1-k e ,就取
k e e = 针对本问题中爱国守法, 集体观念等各项指标对学生评价的影响大小, 我们得出一个14 x14 的成对比较矩阵, 最终求得权系数分别为:
各评价指标对学生的影响程度公式为:
=
y ∑=n
i i
i x w 1
方案层中班主任考评, 学生自评, 班级考评对各评价指标的决策权重比例如下:
则方案层中各方案对学生评价的决策权为:
=j y ∑=n
i j
j w x 1i =1,2,....,14 j =1,2,3 1y =0.3064 2y =0.3532 3y =0.2864。

相关文档
最新文档