1.伯努利方程的解法
伯努利方程伯努利Bernoulli
则 dz (1 n) yn dy ,
dx
dx
代入上式 dz (1 n)P( x)z (1 n)Q( x), dx
求出通解后,将 z y1n 代入即得
y1n z
e ( (1n)P( x)dx Q( x)(1 n)e (1n)P( x)dxdx C ).
例 10
解 两端除以 y,得 1 dy 4 y x2 , y dx x
即 du f (u) u .
dx
x
可分离变量的方程
当
f (u) u
0时,
得
du f (u) u
ln C1 x ,
即 x Ce(u) ,
( (u) du )
f (u) u
将 u y 代入, x
得通解
x
(
Ce
y) x
,
当 u0 , 使 f (u0 ) u0 0, 则 u u0是新方程的解,
所求曲线为 y 3(2ex x2 2x 2).
思考题1
求微分方程
y
cos
y
cos sin 2 y
y
x
sin
y
的通解.
思考题解答
dx cos y sin 2 y x sin y sin 2 y x tan y,
dy
cos y
dx tan y x sin 2 y,
dy
x elncos y sin2 y e lncos ydy C
积分得 一阶线性非齐次微分方程的通解为:
对应齐次 方程通解
非齐次方程特解
例8
解 P( x) 1 , Q( x) sin x ,
x
x
y
e
1 x
dx
几种常见的微分方程简介,解法
第十二章:微分方程教学目的:1.了解微分方程及其解、阶、通解,初始条件和特等概念。
2.熟练掌握变量可分离的微分方程及一阶线性微分方程的解法。
3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。
4.会用降阶法解下列微分方程:()()n y f x =, (,)y f x y '''+和(,)y f y y '''=5.理解线性微分方程解的性质及解的结构定理。
6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
7.求自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解和通解。
8.会解欧拉方程,会解包含两个未知函数的一阶常系数线性微分方程组。
9.会解微分方程组(或方程组)解决一些简单的应用问题。
教学重点:1、可分离的微分方程及一阶线性微分方程的解法2、可降阶的高阶微分方程()()n y f x =, (,)y f x y '''+和(,)y f y y '''=3、二阶常系数齐次线性微分方程;4、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程;教学难点:1、齐次微分方程、伯努利方程和全微分方程;2、线性微分方程解的性质及解的结构定理;3、自由项为多项式、指数函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程的特解。
4、欧拉方程§12. 1 微分方程的基本概念函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程.几个概念:微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程.偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程.微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x 3 y '''+x 2 y ''-4xy '=3x 2 ,y (4) -4y '''+10y ''-12y '+5y =sin2x ,y (n ) +1=0,一般n 阶微分方程:F (x , y , y ', ⋅ ⋅ ⋅ , y (n ) )=0.y (n )=f (x , y , y ', ⋅ ⋅ ⋅ , y (n -1) ) .微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y =ϕ(x )在区间I 上有n 阶连续导数, 如果在区间I 上, F [x , ϕ(x ), ϕ'(x ), ⋅ ⋅ ⋅, ϕ(n ) (x )]=0,那么函数y =ϕ(x )就叫做微分方程F (x , y , y ', ⋅ ⋅ ⋅, y (n ) )=0在区间I 上的解.通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解.初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如x =x 0 时, y =y 0 , y '= y '0 .一般写成00y y x x ==, 00y y x x '='=. 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解.初值问题: 求微分方程满足初始条件的解的问题称为初值问题.如求微分方程y '=f (x , y )满足初始条件00y y x x ==的解的问题, 记为⎩⎨⎧=='=00),(y y y x f y x x . 积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线.例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程.解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程)x dxdy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件:x =1时, y =2, 简记为y |x =1=2. (2)把(1)式两端积分, 得(称为微分方程的通解)⎰=x d x y 2, 即y =x 2+C , (3)其中C 是任意常数.把条件“x =1时, y =2”代入(3)式, 得2=12+C ,由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x 2+1.例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程?解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式4.022-=dt s d . (4) 此外, 未知函数s =s (t )还应满足下列条件:t =0时, s =0, 20==dtds v . 简记为s |t =0=0, s '|t =0=20. (5)把(4)式两端积分一次, 得14.0C t dtds v +-==; (6) 再积分一次, 得s =-0.2t 2 +C 1t +C 2, (7)这里C 1, C 2都是任意常数.把条件v |t =0=20代入(6)得20=C 1;把条件s |t =0=0代入(7)得0=C 2.把C 1, C 2的值代入(6)及(7)式得v =-0.4t +20, (8)s =-0.2t 2+20t . (9)在(8)式中令v =0, 得到列车从开始制动到完全停住所需的时间504.020==t (s ). 再把t =50代入(9), 得到列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).解 设列车在开始制动后t 秒时行驶了s 米,s ''=-0.4, 并且s |t =0=0, s '|t =0=20.把等式s ''=-0.4两端积分一次, 得s '=-0.4t +C 1, 即v =-0.4t +C 1(C 1是任意常数),再积分一次, 得s =-0.2t 2 +C 1t +C 2 (C 1, C 2都C 1是任意常数).由v |t =0=20得20=C 1, 于是v =-0.4t +20;由s |t =0=0得0=C 2, 于是s =-0.2t 2+20t .令v =0, 得t =50(s). 于是列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).例3 验证: 函数x =C 1cos kt +C 2 sin kt是微分方程0222=+x k dt x d 的解.解 求所给函数的导数:kt kC kt kC dtdx cos sin 21+-=, )s i n c o s (s i n c o s 212221222kt C kt C k kt C k kt C k dtx d +-=--=. 将22dtx d 及x 的表达式代入所给方程, 得 -k 2(C 1cos kt +C 2sin kt )+ k 2(C 1cos kt +C 2sin kt )≡0.这表明函数x =C 1cos kt +C 2sin kt 满足方程0222=+x k dtx d , 因此所给函数是所给方程的解. 例4 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程0222=+x k dtx d 的通解, 求满足初始条件 x | t =0 =A , x '| t =0 =0的特解.解 由条件x | t =0 =A 及x =C 1 cos kt +C 2 sin kt , 得C 1=A .再由条件x '| t =0 =0, 及x '(t ) =-kC 1sin kt +kC 2cos kt , 得C 2=0.把C 1、C 2的值代入x =C 1cos kt +C 2sin kt 中, 得x =A cos kt .§12. 2 可分离变量的微分方程观察与分析:1. 求微分方程y '=2x 的通解. 为此把方程两边积分, 得y =x 2+C .一般地, 方程y '=f (x )的通解为C dx x f y +=⎰)((此处积分后不再加任意常数).2. 求微分方程y '=2xy 2 的通解.因为y 是未知的, 所以积分⎰dx xy 22无法进行, 方程两边直 接积分不能求出通解.为求通解可将方程变为x d x dy y 212=, 两边积分, 得 C x y +=-21, 或Cx y +-=21, 可以验证函数C x y +-=21是原方程的通解. 一般地, 如果一阶微分方程y '=ϕ(x , y )能写成g (y )dy =f (x )dx形式, 则两边积分可得一个不含未知函数的导数的方程G (y )=F (x )+C ,由方程G (y )=F (x )+C 所确定的隐函数就是原方程的通解对称形式的一阶微分方程:一阶微分方程有时也写成如下对称形式:P (x , y )dx +Q (x , y )dy =0在这种方程中, 变量x 与y 是对称的.若把x 看作自变量、y 看作未知函数, 则当Q (x ,y )≠0时, 有),(),(y x Q y x P dx dy -=. 若把y 看作自变量、x 看作未知函数, 则当P (x ,y )≠0时, 有),(),(y x P y x Q dy dx -=. 可分离变量的微分方程:如果一个一阶微分方程能写成g (y )dy =f (x )dx (或写成y '=ϕ(x )ψ(y ))的形式, 就是说, 能把微分方程写成一端只含y 的函数和dy , 另一端只含x 的函数和dx , 那么原方程就称为可分离变量的微分方程.讨论: 下列方程中哪些是可分离变量的微分方程?(1) y '=2xy , 是. ⇒y -1dy =2xdx .(2)3x 2+5x -y '=0, 是. ⇒dy =(3x 2+5x )dx .(3)(x 2+y 2)dx -xydy =0, 不是.(4)y '=1+x +y 2+xy 2, 是. ⇒y '=(1+x )(1+y 2).(5)y '=10x +y , 是. ⇒10-y dy =10x dx . (6)xy y x y +='. 不是. 可分离变量的微分方程的解法:第一步 分离变量, 将方程写成g (y )dy =f (x )dx 的形式;第二步 两端积分:⎰⎰=dx x f dy y g )()(, 设积分后得G (y )=F (x )+C ;第三步 求出由G (y )=F (x )+C 所确定的隐函数y =Φ(x )或x =ψ(y )G (y )=F (x )+C , y =Φ (x )或x =ψ(y )都是方程的通解, 其中G (y )=F (x )+C 称为隐式(通)解.例1 求微分方程xy dxdy 2=的通解. 解 此方程为可分离变量方程, 分离变量后得x d x dy y21=, 两边积分得⎰⎰=x d x dy y 21, 即 ln|y |=x 2+C 1,从而 2112x C C x e e e y ±=±=+. 因为1C e ±仍是任意常数, 把它记作C , 便得所给方程的通解2x Ce y =.解 此方程为可分离变量方程, 分离变量后得x d x dy y21=, 两边积分得 ⎰⎰=x d x dy y 21,即 ln|y |=x 2+ln C ,从而 2x Ce y =.例2 铀的衰变速度与当时未衰变的原子的含量M 成正比. 已知t =0时铀的含量为M 0, 求在衰变过程中铀含量M (t )随时间t 变化的规律.解 铀的衰变速度就是M (t )对时间t 的导数dtdM . 由于铀的衰变速度与其含量成正比, 故得微分方程M dtdM λ-=, 其中λ(λ>0)是常数, λ前的曲面号表示当t 增加时M 单调减少. 即0<dt dM . 由题意, 初始条件为M |t =0=M 0.将方程分离变量得dt MdM λ-=. 两边积分, 得⎰⎰-=dt M dM)(λ, 即 ln M =-λt +ln C , 也即M =Ce -λt .由初始条件, 得M 0=Ce 0=C ,所以铀含量M (t )随时间t 变化的规律M =M 0e -λt .例3 设降落伞从跳伞塔下落后, 所受空气阻力与速度成正比, 并设降落伞离开跳伞塔时速度为零. 求降落伞下落速度与时间的函数关系.解 设降落伞下落速度为v (t ). 降落伞所受外力为F =mg -kv ( k 为比例系数). 根据牛顿第二运动定律F =ma , 得函数v (t )应满足的方程为kv mg dtdv m -=, 初始条件为v |t =0=0.方程分离变量, 得mdt kv mg dv =-, 两边积分, 得⎰⎰=-mdt kv mg dv , 1)l n (1C m t kv mg k+=--, 即 t m k Ce k m g v -+=(ke C kC 1--=), 将初始条件v |t =0=0代入通解得km g C -=, 于是降落伞下落速度与时间的函数关系为)1(t m k e km g v --=. 例4 求微分方程221xy y x dxdy +++=的通解. 解 方程可化为)1)(1(2y x dxdy ++=, 分离变量得dx x dy y )1(112+=+, 两边积分得⎰⎰+=+dx x dy y )1(112, 即C x x y ++=221arctan . 于是原方程的通解为)21tan(2C x x y ++=.例5有高为1m 的半球形容器, 水从它的底部小孔流出, 小孔横截面面积为1cm 2. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面高度h 随时间t 变化的规律.解 由水力学知道, 水从孔口流出的流量Q 可用下列公式计算:gh S dtdV Q 262.0==, 其中0. 62为流量系数, S 为孔口横截面面积, g 为重力加速度. 现在孔口横截面面积S =1cm 2, 故 gh dtdV 262.0=, 或dt gh dV 262.0=. 另一方面, 设在微小时间间隔[t , t +d t ]内, 水面高度由h 降至h +dh (dh <0), 则又可得到dV =-πr 2dh ,其中r 是时刻t 的水面半径, 右端置负号是由于dh <0而dV >0的缘故. 又因222200)100(100h h h r -=--=,所以 dV =-π(200h -h 2)dh .通过比较得到dh h h dt gh )200(262.02--=π,这就是未知函数h =h (t )应满足的微分方程.此外, 开始时容器内的水是满的, 所以未知函数h =h (t )还应满足下列初始条件:h |t =0=100.将方程dh h h dt gh )200(262.02--=π分离变量后得dh h h g dt )200(262.02321--=π. 两端积分, 得⎰--=dh h h g t )200(262.02321π,即 C h h g t +--=)523400(262.02523π, 其中C 是任意常数.由初始条件得C g t +⨯-⨯-=)100521003400(262.02523π, 5101514262.0)52000003400000(262.0⨯⨯=-=g g C ππ. 因此 )310107(262.05335h h g t +-⨯=π.上式表达了水从小孔流出的过程中容器内水面高度h 与时间t 之间的函数关系.§12. 3 齐次方程齐次方程:如果一阶微分方程),(y x f dxdy =中的函数f (x , y )可写成 x y 的函数, 即)(),(xy y x f ϕ=, 则称这方程为齐次方程. 下列方程哪些是齐次方程?(1)022=---'x y y y x 是齐次方程.1)(222-+=⇒-+=⇒x y x y dx dy x x y y dx dy . (2)2211y y x -='-不是齐次方程.2211x y dx dy --=⇒. (3)(x 2+y 2)dx -xydy =0是齐次方程. x y y x dx dy xy y x dx dy +=⇒+=⇒22. (4)(2x +y -4)dx +(x +y -1)dy =0不是齐次方程.142-+-+-=⇒y x y x dx dy . (5)0ch 3)ch 3sh 2(=-+dy xy x dx x y y x y x 是齐次方程. x y x y dx dy xy x x y y x y x dx dy +=⇒+=⇒th 32ch 3ch 3sh 2齐次方程的解法:在齐次方程)(xy dx dy ϕ=中, 令x y u =, 即y =ux , 有 )(u dx du x u ϕ=+, 分离变量, 得xdx u u du =-)(ϕ.两端积分, 得⎰⎰=-xdx u u du )(ϕ. 求出积分后, 再用xy 代替u , 便得所给齐次方程的通解. 例1 解方程dx dy xy dx dy x y =+22. 解 原方程可写成1)(222-=-=x y x y x xy y dx dy , 因此原方程是齐次方程. 令u x y =, 则 y =ux ,dxdu x u dx dy +=, 于是原方程变为12-=+u u dx du x u , 即 1-=u u dx du x . 分离变量, 得xdx du u =-)11(. 两边积分, 得u -ln|u |+C =ln|x |,或写成ln|xu |=u +C . 以xy 代上式中的u , 便得所给方程的通解 C xy y +=||ln . 例2 有旋转曲面形状的凹镜, 假设由旋转轴上一点O 发出的一切光线经此凹镜反射后都与旋转轴平行. 求这旋转曲面的方程.解 设此凹镜是由xOy 面上曲线L : y =y (x )(y >0)绕x 轴旋转而成, 光源在原点. 在L 上任取一点M (x , y ), 作L 的切线交x 轴于A . 点O 发出的光线经点M 反射后是一条平行于x 轴射线. 由光学及几何原理可以证明OA =OM ,因为 x y y OP PM OP AP OA -'=-=-=αcot , 而 22y x OM +=. 于是得微分方程22y x x y y +=-', 整理得1)(2++=yx y x dy dx . 这是齐次方程. 问题归结为解齐次方程1)(2++=y x y x dy dx . 令v y x =, 即x =yv , 得12++=+v v dy dv y v , 即 12+=v dydv y , 分离变量, 得y dy v dv =+12, 两边积分, 得 C y v v ln ln )1ln(2-=++, C y v v =++⇒12, 1)(22+=-⇒v v Cy , 1222=-Cyv C y , 以yv =x 代入上式, 得)2(22C x C y +=. 这是以x 轴为轴、焦点在原点的抛物线, 它绕x 轴旋转所得旋转曲面的方程为)2(222C x C z y +=+. 这就是所求的旋转曲面方程. .例3 设一条河的两岸为平行直线, 水流速度为a , 有一鸭子从岸边点A 游向正对岸点O , 设鸭子的游速为b (b >a ), 且鸭子游动方向始终朝着点O , 已知OA =h , 求鸭子游过的迹线的方程. 解 取O 为坐标原点, 河岸朝顺水方向为x 轴, y 轴指向对岸. 设在时刻t 鸭子位于点P (x , y ), 则鸭子运动速度) ,() ,(dtdy dt dx v v y x ==v , 故有y x v v dy dx =. 另一方面, ) ,()0 ,(2222y x y y x x b a +-+-+=+=b a v , ) ,(2222y x by y x bx a +-+-=v . 因此yx y x b a v v dy dx y x ++-==1)(2, 即y x y x b a dy dx ++-=1)(2. 问题归结为解齐次方程y x y x b a dy dx ++-=1)(2. 令u y x =, 即x =yu , 得 12+-=u ba dy du y , 分离变量, 得dy by a u du -=+12, 两边积分, 得 )ln (ln arsh C y ab u +-=, 将yx u =代入上式并整理, 得])()[(2111b a b a Cy Cy C x +--=. 以x |y =h =0代入上式, 得hC 1=, 故鸭子游过的轨迹方程为 ])()[(211b a b a hy h y h x +--=, 0≤y ≤h . 将y x u =代入)ln (ln arsh C y ab u +-=后的整理过程: )ln (ln arsh C y ab y x +-= a b Cy y x -=⇒)ln(sh ])()[(21a ba b Cy Cy y x -=⇒- ])()[(2a b a b Cy Cy y x -=⇒-])()[(2111b b Cy Cy C x +--=⇒.§12.4 线性微分方程一、 线性方程线性方程:方程)()(x Q y x P dxdy =+叫做一阶线性微分方程. 如果Q (x )≡0 , 则方程称为齐次线性方程, 否则方程称为非齐次线性方程. 方程0)(=+y x P dx dy 叫做对应于非齐次线性方程)()(x Q y x P dxdy =+的齐次线性方程. 下列方程各是什么类型方程? (1)y dx dy x =-)2(⇒021=--y x dx dy 是齐次线性方程. (2) 3x 2+5x -5y '=0⇒y '=3x 2+5x , 是非齐次线性方程.(3) y '+y cos x =e -sin x , 是非齐次线性方程.(4)y x dxdy +=10, 不是线性方程. (5)0)1(32=++x dxdy y ⇒0)1(23=+-y x dx dy 或32)1(x y dy dx +-, 不是线性方程. 齐次线性方程的解法:齐次线性方程0)(=+y x P dx dy 是变量可分离方程. 分离变量后得 dx x P ydy )(-=, 两边积分, 得1)(||ln C dx x P y +-=⎰,或 )( 1)(C dx x P e C Ce y ±=⎰=-, 这就是齐次线性方程的通解(积分中不再加任意常数).例1 求方程y dxdy x =-)2(的通解. 解 这是齐次线性方程, 分离变量得2-=x dx y dy , 两边积分得ln|y |=ln|x -2|+lnC ,方程的通解为y =C (x -2).非齐次线性方程的解法:将齐次线性方程通解中的常数换成x 的未知函数u (x ), 把⎰=-dx x P e x u y )()(设想成非齐次线性方程的通解. 代入非齐次线性方程求得)()()()()()()()()(x Q e x u x P x P e x u e x u dx x P dx x P dx x P =⎰+⎰-⎰'---, 化简得 ⎰='dx x P e x Q x u )()()(,C dx e x Q x u dx x P +⎰=⎰)()()(,于是非齐次线性方程的通解为])([)()(C dx e x Q e y dx x P dx x P +⎰⎰=⎰-, 或 dx e x Q e Ce y dx x P dx x P dx x P ⎰⎰⎰+⎰=--)()()()(. 非齐次线性方程的通解等于对应的齐次线性方程通解与非齐次线性方程的一个特解之和.例2 求方程25)1(12+=+-x x y dx dy 的通解. 解 这是一个非齐次线性方程.先求对应的齐次线性方程012=+-x y dx dy 的通解. 分离变量得12+=x dx y dy , 两边积分得ln y =2ln (x +1)+ln C ,齐次线性方程的通解为y =C (x +1)2.用常数变易法. 把C 换成u , 即令y =u ⋅(x +1)2, 代入所给非齐次线性方程, 得2522)1()1(12)1(2)1(+=+⋅+-+⋅++⋅'x x u x x u x u 21)1(+='x u ,两边积分, 得C x u ++=23)1(32. 再把上式代入y =u (x +1)2中, 即得所求方程的通解为 ])1(32[)1(232C x x y +++=. 解: 这里12)(+-=x x P , 25)1()(+=x x Q . 因为 )1ln(2)12()(+-=+-=⎰⎰x dx x dx x P , 2)1l n (2)()1(+==⎰+-x e e x dx x P , 2321225)()1(32)1()1()1()(+=+=++=⎰⎰⎰⎰-x dx x dx x x dx e x Q dx x P , 所以通解为])1(32[)1(])([232)()(C x x C dx e x Q e y dx x P dx x P +++=+⎰⎰=⎰-. 例3 有一个电路如图所示, 其中电源电动势为E =E m sin ωt (E m 、ω都是常数), 电阻R 和电感L 都是常量. 求电流i (t ).解 由电学知道, 当电流变化时, L 上有感应电动势dt di L-. 由回路电压定律得出 0=--iR dt di LE , 即 LE i L R dt di =+. 把E =E m sin ω t 代入上式, 得t LE i L R dt di m sin ω=+. 初始条件为i |t =0=0.方程t LE i L R dt di m sin ω=+为非齐次线性方程, 其中 L R t P =)(, t L E t Q m s i n )(ω=. 由通解公式, 得])([)()()(C dt e t Q e t i dt t P dt t P +⎰⎰=⎰-) s i n (C dt e t L E e dt L Rm dt L R +⎰⎰=⎰-ω )s i n (C dt te e LE t L R t L Rm +=⎰-ω t L R m Ce t L t R LR E -+-+=) cos sin (222ωωωω. 其中C 为任意常数.将初始条件i |t =0=0代入通解, 得222 LR LE C m ωω+=, 因此, 所求函数i (t )为) c o s s i n ( )(222222t L t R L R E e L R LE t i m t L R m ωωωωωω-+++=-. 二、伯努利方程伯努利方程: 方程n y x Q y x P dxdy )()(=+ (n ≠0, 1) 叫做伯努利方程.下列方程是什么类型方程?(1)4)21(3131y x y dx dy -=+, 是伯努利方程. (2)5xy y dxdy +=, ⇒5xy y dx dy =-, 是伯努利方程. (3)x y y x y +=', ⇒11-=-'xy y x y , 是伯努利方程.(4)x xy dxdy 42=-, 是线性方程, 不是伯努利方程. 伯努利方程的解法: 以y n 除方程的两边, 得 )()(1x Q y x P dx dy y n n=+-- 令z =y 1-n , 得线性方程)()1()()1(x Q n z x P n dxdz -=-+. 例4 求方程2)(ln y x a xy dx dy -+的通解. 解 以y 2除方程的两端, 得x a y xdx dy y ln 112=+--, 即 x a y x dx y d ln 1)(11=+---, 令z =y -1, 则上述方程成为x a z xdx dz ln 1-=-. 这是一个线性方程, 它的通解为 ])(l n 2[2x aC x z -=.以y -1代z , 得所求方程的通解为1])(l n 2[2=-x a C yx .经过变量代换, 某些方程可以化为变量可分离的方程, 或化为已知其求解方法的方程. 例5 解方程yx dx dy +=1. 解 若把所给方程变形为y x dydx +=, 即为一阶线性方程, 则按一阶线性方程的解法可求得通解. 但这里用变量代换来解所给方程. 令x +y =u , 则原方程化为u dx du 11=-, 即uu dx du 1+=.分离变量, 得dx du u u =+1, 两端积分得u -ln|u +1|=x -ln|C |.以u =x +y 代入上式, 得y -ln|x +y +1|=-ln|C |, 或x =Ce y -y -1.§12. 5 全微分方程全微分方程:一个一阶微分方程写成P (x , y )dx +Q (x , y )dy =0形式后, 如果它的左端恰好是某一个函数u =u (x , y )的全微分:du (x , y )=P (x , y )dx +Q (x , y )dy ,那么方程P (x , y )dx +Q (x , y )dy =0就叫做全微分方程. 这里),(y x P x u =∂∂, ),(y x Q yu =∂∂, 而方程可写为du (x , y )=0.全微分方程的判定:若P (x , y )、Q (x , y )在单连通域G 内具有一阶连续偏导数, 且xQ y P ∂∂=∂∂, 则方程P (x , y )dx +Q (x , y )dy =0是全微分方程,全微分方程的通解:若方程P (x , y )dx +Q (x , y )dy =0是全微分方程, 且du (x , y )=P (x , y )dx +Q (x , y )dy则 u (x , y )=C ,即 )),(( ),(),(00000G y x C dx y x Q dx y x P yy x x ∈=+⎰⎰.是方程P (x , y )dx +Q (x , y )dy =0的通解例1 求解(5x 4+3xy 2-y 3)dx +(3x 2y -3xy 2+y 2 )dy =0.解 这里xQ y xy y P ∂∂=-=∂∂236, 所以这是全微分方程. 取(x 0, y 0)=(0, 0), 有 ⎰⎰+-+=y x dy y dx y xy x y x u 020324)35(),( 332253123y xy y x x +-+=.于是, 方程的通解为C y xy y x x =+-+332253123.积分因子:若方程P (x , y )dx +Q (x , y )dy =0不是全微分方程, 但存在一函数μ=μ(x , y ) (μ(x , y )≠0), 使方程μ(x , y )P (x , y )dx +μ(x , y )Q (x , y )dy =0是全微分方程, 则函数μ(x , y )叫做方程P (x , y )dx +Q (x , y )dy =0的积分因子.例2 通过观察求方程的积分因子并求其通解:(1)ydx -xdy =0;(2)(1+xy )ydx +(1-xy )xdy =0.解 (1)方程ydx -xdy =0不是全微分方程.因为2)(y x d y y d x y xd -=, 所以21y 是方程ydx -xdy =0的积分因子, 于是 02=-y xdy ydx 是全微分方程, 所给方程的通解为C y x =. (2)方程(1+xy )ydx +(1-xy )xdy =0不是全微分方程.将方程的各项重新合并, 得(ydx +xdy )+xy (ydx -xdy )=0,再把它改写成0)()(22=-+y dy x dx y x xy d , 这时容易看出2)(1xy 为积分因子, 乘以该积分因子后, 方程就变为 0)()(2=-+ydy x dx xy xy d , 积分得通解C yx xy ln ||ln 1=+-, 即xy Ce y x 1=. 我们也可用积分因子的方法来解一阶线性方程y '+P (x )y =Q (x ).可以验证⎰=dx x P e x )()(μ是一阶线性方程y '+P (x )y =Q (x )的一个积分因子. 在一阶线性方程的两边乘以⎰=dx x P e x )()(μ得 ⎰=⎰+⎰'dx x P dx x P dx x P e x Q e x yP e y )()()()()(, 即 ⎰='⎰+⎰'dx x P dx x P dx x P e x Q e y e y )()()()(][, 亦即 ⎰='⎰dx x P dx x P e x Q ye )()()(][.两边积分, 便得通解C dx e x Q ye dx x P dx x P +⎰=⎰⎰)()()(,或 ])([)()(C dx e x Q e y dx x P dx x P +⎰⎰=⎰-. 例3用积分因子求x xy dxdy 42=+的通解. 解 方程的积分因子为22)(x x d x e e x =⎰=μ.方程两边乘以2x e 得22242x x x xe y xe e y =+', 即224)(x x xe y e =',于是 C e dx xe y e x x x +==⎰22224. 因此原方程的通解为2224x x Ce dx xe y -+==⎰. §12. 6 可降阶的高阶微分方程一、y (n )=f (x )型的微分方程解法: 积分n 次1)1()(C dx x f y n +=⎰-, 21)2(])([C dx C dx x f y n ++=⎰⎰-, ⋅ ⋅ ⋅.例1 求微分方程y '''=e 2x -cos x 的通解.解 对所给方程接连积分三次, 得12s i n 21C x e y x +-='',212c o s 41C x C x e y x +++=',3221221s i n 81C x C x C x e y x ++++=,这就是所给方程的通解.或 122sin 21C x e y x +-='',2122c o s 41C x C x e y x +++=',32212s i n 81C x C x C x e y x ++++=,这就是所给方程的通解.例2 质量为m 的质点受力F 的作用沿Ox 轴作直线运动. 设力F 仅是时间t 的函数:F =F (t ). 在开始时刻t =0时F (0)=F 0, 随着时间t 的增大, 此力F 均匀地减小, 直到t =T 时, F (T )=0. 如果开始时质点位于原点, 且初速度为零, 求这质点的运动规律.解 设x =x (t )表示在时刻t 时质点的位置, 根据牛顿第二定律, 质点运动的微分方程为)(22t F dtx d m =. 由题设, 力F (t )随t 增大而均匀地减小, 且t =0时, F (0)=F 0, 所以F (t )=F 0-kt ; 又当t =T 时, F (T )=0, 从而)1()(0Tt F t F -=.于是质点运动的微分方程又写为)1(022T t mF dt x d -=, 其初始条件为0|0==t x , 0|0==t dt dx . 把微分方程两边积分, 得120)2(C Tt t m F dt dx +-=. 再积分一次, 得21320)621(C t C Tt t m F x ++-=. 由初始条件x |t =0=0,0|0==t dt dx , 得C 1=C 2=0.于是所求质点的运动规律为 )621(320Tt t m F x -=, 0≤t ≤T . 解 设x =x (t )表示在时刻t 时质点的位置,根据牛顿第二定律, 质点运动的微分方程为mx ''=F (t ).由题设, F (t )是线性函数, 且过点(0, F 0)和(T , 0),故 1)(0=+T t F t F , 即)1()(0Tt F t F -=. 于是质点运动的微分方程又写为)1(0Tt m F x -=''. 其初始条件为x |t =0=0, x '|t =0=0.把微分方程两边积分, 得120)2(C Tt t m F x +-=', 再积分一次, 得2320)621(C Tt t m F x +-=, 由初始条件x |t =0=0, x '|t =0=0,得C 1=C 2=0.于是所求质点的运动规律为)621(320Tt t m F x -=, 0≤t ≤T . 二、y ''= f (x , y ')型的微分方程解法:设y '=p 则方程化为p '=f (x , p ).设p '=f (x , p )的通解为p =ϕ(x ,C 1), 则),(1C x dxdy ϕ=. 原方程的通解为21),(C dx C x y +=⎰ϕ.例3 求微分方程()2xy''y'x 12=+满足初始条件 y |x =0=1, y '|x =0=3的特解.解 所给方程是y ''=f (x , y ')型的. 设y '=p , 代入方程并分离变量后, 有dx x x p dp 212+=. 两边积分, 得ln|p |=ln(1+x 2)+C ,即 p =y '=C 1(1+x 2) (C 1=±e C ).由条件y '|x =0=3, 得C 1=3,所以 y '=3(1+x 2).两边再积分, 得 y =x 3+3x +C 2.又由条件y |x =0=1, 得C 2=1,于是所求的特解为y =x 3+3x +1.例4 设有一均匀、柔软的绳索, 两端固定, 绳索仅受重力的作用而下垂. 试问该绳索在平衡状态时是怎样的曲线?三、y ''=f (y , y ')型的微分方程解法: 设y '=p ,有dydp p dx dy dy dp dx dp y =⋅==''. 原方程化为 ),(p y f dydp p=. 设方程),(p y f dy dp p =的通解为y '=p =ϕ(y , C 1), 则原方程的通解为 21),(C x C y dy +=⎰ϕ.例5 求微分yy ''-y '2=0的通解. 解 设y '=p , 则dy dp py ='', 代入方程, 得02=-p dydp yp . 在y ≠0、p ≠0时, 约去p 并分离变量, 得ydy p dp =. 两边积分得ln|p |=ln|y |+ln c ,即 p =Cy 或y '=Cy (C =±c ).再分离变量并两边积分, 便得原方程的通解为ln|y |=Cx +ln c 1,或 y =C 1e Cx (C 1=±c 1).例6 一个离地面很高的物体,受地球引力的作用由静止开始落向地面. 求它落到地面时的速度和所需的时间(不计空气阻力).§12. 7 高阶线性微分方程一、二阶线性微分方程举例例1 设有一个弹簧, 上端固定, 下端挂一个质量为m 的物体. 取x 轴铅直向下, 并取物体的平衡位置为坐标原点.给物体一个初始速度v 0≠0后, 物体在平衡位置附近作上下振动. 在振动过程中, 物体的位置x 是t 的函数: x =x (t ).设弹簧的弹性系数为c , 则恢复力f =-cx .又设物体在运动过程中受到的阻力的大小与速度成正比, 比例系数为μ, 则dtdx R μ-, 由牛顿第二定律得dt dx cx dtx d m μ--=22. 移项, 并记mn μ=2, m c k =2, 则上式化为 02222=++x k dt dx n dt x d , 这就是在有阻尼的情况下, 物体自由振动的微分方程.如果振动物体还受到铅直扰力F =H sin pt的作用, 则有pt h x k dt dx n dt x d sin 2222=++, 其中mH h =. 这就是强迫振动的微分方程. 例2 设有一个由电阻R 、自感L 、电容C 和电源E 串联组成的电路, 其中R 、L 、及C 为常数, 电源电动势是时间t 的函数: E =E m sin ωt , 这里E m 及ω也是常数.设电路中的电流为i (t ), 电容器极板上的电量为q (t ), 两极板间的电压为u c , 自感电动势为E L . 由电学知道dt dq i =, Cq u c =, dt di L E L -=, 根据回路电压定律, 得0=---Ri Cq dt di LE , 即 t E u dt du RC dt u d LC m c c c ωsin 22=++, 或写成t LC E u dt du dt u d m c c c ωωβsin 22022=++,其中L R 2=β, LC10=ω. 这就是串联电路的振荡方程. 如果电容器经充电后撤去外电源(E =0), 则上述成为022022=++c c c u dt du dtu d ωβ. 二阶线性微分方程: 二阶线性微分方程的一般形式为y ''+P (x )y '+Q (x )y =f (x ),若方程右端f (x )≡0时, 方程称为齐次的, 否则称为非齐次的.二、线性微分方程的解的结构先讨论二阶齐次线性方程y ''+P (x )y '+Q (x )y =0, 即0)()(22=++y x Q dx dy x P dxy d . 定理1 如果函数y 1(x )与y 2(x )是方程y ''+P (x )y '+Q (x )y =0.的两个解, 那么y =C 1y 1(x )+C 2y 2(x )也是方程的解, 其中C 1、C 2是任意常数.齐次线性方程的这个性质表明它的解符合叠加原理.证明 [C 1y 1+C 2y 2]'=C 1 y 1'+C 2 y 2',[C 1y 1+C 2y 2]''=C 1 y 1''+C 2 y 2''.因为y 1与y 2是方程y ''+P (x )y '+Q (x )y =0, 所以有y 1''+P (x )y 1'+Q (x )y 1=0及y 2''+P (x )y 2'+Q (x )y 2=0,从而 [C 1y 1+C 2y 2]''+P (x )[ C 1y 1+C 2y 2]'+Q (x )[ C 1y 1+C 2y 2]=C 1[y 1''+P (x )y 1'+Q (x )y 1]+C 2[y 2''+P (x )y 2'+Q (x )y 2]=0+0=0.这就证明了y =C 1y 1(x )+C 2y 2(x )也是方程y ''+P (x )y '+Q (x )y =0的解函数的线性相关与线性无关:设y 1(x ), y 2(x ), ⋅ ⋅ ⋅ , y n (x )为定义在区间I 上的n 个函数. 如果存在n 个不全为零的常数k 1, k 2, ⋅ ⋅ ⋅ , k n , 使得当x ∈I 时有恒等式k 1y 1(x )+k 2y 2(x )+ ⋅ ⋅ ⋅ + k n y n (x )≡0成立, 那么称这n 个函数在区间I 上线性相关; 否则称为线性无关.判别两个函数线性相关性的方法:对于两个函数,它们线性相关与否,只要看它们的比是否为常数,如果比为常数,那么它们就线性相关,否则就线性无关.例如, 1, cos2x, sin2x在整个数轴上是线性相关的.函数1,x,x2在任何区间(a, b)内是线性无关的.定理2 如果如果函数y1(x)与y2(x)是方程y''+P(x)y'+Q(x)y=0的两个线性无关的解,那么y=C1y1(x)+C2y2(x) (C1、C2是任意常数)是方程的通解.例3 验证y1=cos x与y2=sin x是方程y''+y=0的线性无关解,并写出其通解.解因为y1''+y1=-cos x+cos x=0,y2''+y2=-sin x+sin x=0,所以y1=cos x与y2=sin x都是方程的解.因为对于任意两个常数k1、k2,要使k1cos x+k2sin x≡0,只有k1=k2=0,所以cos x与sin x在(-∞, +∞)内是线性无关的.因此y1=cos x与y2=sin x是方程y''+y=0的线性无关解.方程的通解为y=C1cos x+C2sin x.例4 验证y1=x与y2=e x是方程(x-1)y''-xy'+y=0的线性无关解,并写出其通解.解因为(x-1)y1''-xy1'+y1=0-x+x=0,(x-1)y2''-xy2'+y2=(x-1)e x-xe x+e x=0,所以y1=x与y2=e x都是方程的解,因为比值e x/x不恒为常数,所以y1=x与y2=e x在(-∞, +∞)内是线性无关的.因此y1=x与y2=e x是方程(x-1)y''-xy'+y=0的线性无关解.方程的通解为y=C1x+C2e x.推论如果y1(x),y2(x),⋅⋅⋅,y n(x)是方程y(n)+a1(x)y(n-1)+⋅⋅⋅+a n-1(x)y'+ a n(x)y=0的n个线性无关的解,那么,此方程的通解为y=C1y1(x)+C2y2(x)+⋅⋅⋅+ C n y n(x),其中C1,C2,⋅⋅⋅,C n为任意常数.二阶非齐次线性方程解的结构:我们把方程y''+P(x)y'+Q(x)y=0叫做与非齐次方程y''+P(x)y'+Q(x)y=f(x)对应的齐次方程.定理3 设y*(x)是二阶非齐次线性方程y''+P(x)y'+Q(x)y=f(x)的一个特解,Y(x)是对应的齐次方程的通解,那么y=Y(x)+y*(x)是二阶非齐次线性微分方程的通解.证明提示: [Y(x)+y*(x)]''+P(x)[ Y(x)+y*(x)]'+Q(x)[ Y(x)+y*(x)]=[Y ''+P(x)Y '+Q(x)Y ]+[ y* ''+P(x)y* '+Q(x)y*]=0+ f(x)= f(x).例如,Y=C1cos x+C2sin x是齐次方程y''+y=0的通解,y*=x2-2是y''+y=x2的一个特解,因此y=C1cos x+C2sin x+x2-2是方程y''+y=x2的通解.定理4 设非齐次线性微分方程y''+P(x)y'+Q(x)y=f(x)的右端f(x)几个函数之和,如y''+P(x)y'+Q(x)y=f1(x)+f2(x),而y1*(x)与y2*(x)分别是方程y''+P(x)y'+Q(x)y=f1(x)与y''+P(x)y'+Q(x)y=f2(x)的特解,那么y1*(x)+y2*(x)就是原方程的特解.证明提示:[y1+y2*]''+P(x)[ y1*+y2*]'+Q(x)[ y1*+y2*]=[ y1*''+P(x) y1*'+Q(x) y1*]+[ y2*''+P(x) y2*'+Q(x) y2*]=f 1(x )+f 2(x ).§12. 8 二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程:方程 y ''+py '+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ''+py '+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2422,1q p p r -±+-=求出. 特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时,函数x r e y 11=、x r e y 22=是方程的两个线性无关的解.这是因为,函数x r e y 11=、x r e y 22=是方程的解, 又x r r xr x r e e e y y )(212121-==不是常数. 因此方程的通解为x r x r e C e C y 2121+=.(2)特征方程有两个相等的实根r 1=r 2时,函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解.这是因为, x r e y 11=是方程的解, 又x r x r x r x r x r x r q x e e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+''0)()2(121111=++++=q pr r xe p r e x r x r ,所以xr xe y 12=也是方程的解, 且x e xe y y x r x r ==1112不是常数. 因此方程的通解为x r x r xe C e C y 1121+=.(3)特征方程有一对共轭复根r 1, 2=α±i β时,函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解.函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解.函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α-i β)x =e αx (cos βx -i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y ix e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y =e αx (C 1cos βx +C 2sin βx ).求二阶常系数齐次线性微分方程y ''+py '+qy =0的通解的步骤为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.例1 求微分方程y ''-2y '-3y =0的通解.。
12-04一阶线性微分方程
dt
因此有 E L di R i 0 , 即 di R i Em sin t
dt
dt L
L
初始条件: i t 0 0
6
四川大学数学学院 邓瑾
di R i Em sin t
R
dt L
L
i t0 0 解方程:
LE
K
∼
利用一阶线性方程解的公式可得
i (t)
四川大学数学学院 邓瑾
2. 设有微分方程 y y f ( x), 其中
2, 0 x1 f (x) 0 , x 1
试求此方程满足初始条件 y x0 0 的连续解.
解: 1) 先解定解问题 利用通解公式, 得
y y 2, y x0 0
0 x1
y e dx 2e dx dx C1
1
代入非齐次方程得 u ( x 1) 2
解得
2
3
u ( x 1) 2 C
3
故原方程通解为
y
(x
1)2
2(x 3
3
1) 2
C
4
四川大学数学学院 邓瑾
例2. 求方程
dx xy
2 y
x y3
d
y
0
的通解
.
解: 注意 x, y 同号,当 x 0 时, dx 2d x ,故方程可
5
四川大学数学学院 邓瑾
例3. 有一电路如图所示, 其中电源
R
电动势为 E Em sin t, 电阻 R 和电
感 L 都是常量, 求电流 i (t) .
伯努利方程
2. 一阶线性非齐次方程的通解先考虑线性齐次方程(1.35),注意这里“齐次”的含意与1.3节中的不同,这里指的是在(1.34)中不含()0f x ≡ .显然,(1.35)是一个变量可分离方程,由1.2节易知它的通解是()p x dxy Ce -⎰=下面使用常数变易法再求线性非齐次方程(1.34)的解.其想法是:当C 为常数时,函数(1.36)的导数,恰等而(1.36)为齐次 方程(1.35)的解.现在要求非齐次方程(1.34)的解,则需要该函数的导数还 要有一 项等于(f 数的公式,可将(1.36)中的常数 C 变易为 函数C (x ),即令()()p x dx y C x e -⎰=为方程(1.34)的解,其中C (x )待定.将(1.37)代入(1.34),有()()()()()()()()()p x dx p x dx p x dxC x e p x C x e p x C x e f x ---⎰⎰⎰'-+= 即()()()p x dxC x f x e ⎰'=积分后得()()()p x dxC x f x e dx C ⎰=+⎰把上式代入(1.37),得()()()()p x dx p x dxp x dxy Ce e f x e dx --⎰⎰⎰=+⎰(1.下证(1.38)为(1.34)的通解,且包含了(1.34)的所有解。
由通解定义知(1.38)为(1.34)的通解,设1y 为(1.34)的任一解,则易知()()2()p x dx p x dx y e f x e dx -⎰⎰=⎰也为(1.34)的解,则12y y -为 (1.35)的解,从而存在确定的常数C ,使得()12p x dxy y Ce ⎰-=,即()12.p x dxy y Ce ⎰=+在求解具体方程时,不必记忆通解公式,只要按常数变易法的步骤来求解即可.注:1)(1)的通解有两部分组成。
2)第二部分中()p x dx e -⎰不能放到积分号里边去。
浅析气体动力学原理——伯努利方程例解
浅析气体动力学原理——伯努利方程例解气体动力学作为一门研究物体运动的科学,是研究物理学的重要组成部分。
在气体动力学中有许多定律,伯努利方程是其中最基础也最重要的定律之一。
本文将对伯努利方程的原理及其在例题中的解法进行浅析。
一、伯努利方程原理伯努利方程(Bernoulli equation),又称为贝纳方程,是气体动力学的基本方程,由拉丁物理学家Daniel Bernoulli于1738年发现,他发现在一个恒定的系统中,当沿着系统上流动的流体(一般情况下是气体)改变速度和高度,其内能总量是不变的,这一定律叫做伯努利定律。
伯努利方程可以概括为:P +γV +gh = k(γ是气体的比容系数,V是气体流速,h是气体高度,P是气体压强,g是重力加速度,k是常数)式中,其中P +γV体现了气体的动能,gh表示气体的位能,两者之和即为气体的总能量,而k则表示该总能量在系统中是恒定的。
二、伯努利方程在例题中的解法1.设有一个气体在一定的容器中,容器的高度是 h1,而此时气体的压强为P1,流速为V1,则由伯努利方程可知:P1 +γV1 +gh1 = k2.气体流出容器时,留下来的气体高度为h2,压强为P2,流速为V2,由伯努利方程可知:P2 +γV2 +gh2 = k3.上面两公式代入可得:P1 +γV1 +gh1 = P2 +γV2 +gh24.两边中的P1,V1,h1分别消去可得:P2 =γ(V2 - V1) +(h2 - h1)5.此可以看出,当流体从一个容器流出到另一容器时,流体的压强受其高度的变化以及流体的流速变化的影响。
三、结论伯努利方程是气体动力学中重要的基础定律,它描述了在一定系统中流体运动时总能量保持不变的定律。
本文通过一个具体的例子,讲解了伯努利方程的原理及其在例题中的解法,从而使我们对伯努利方程有了更深的理解。
伯努利方程的解法
伯努利方程的解法伯努利方程是一种形如 y' + p(x)y = q(x)y^n (n ≠ 0, 1) 的一阶微分方程,它可以通过变量替换的方法化为一阶线性微分方程求解。
具体的解法步骤如下:1. 两边同时乘以y^(-n),得到y^(-n)y' + p(x)y^(1-n) = q(x)。
2. 令 z = y^(1-n),则有 z' = (1-n)y^(-n)y',代入上式,得到 (1-n)^(-1)z' + p(x)z = q(x)。
3. 这是一个一阶线性微分方程,可以用常数变易法或积分因子法求解,得到 z 的通解。
4. 将 z = y^(1-n) 代回,得到 y 的通解。
下面是一个例题,用伯努利方程求解 y' + xy = x^2y^2。
解:将方程化为标准形式,得到 y' + xy - x^2y^2 = 0。
1. 两边同时乘以 y^(-2),得到 y^(-2)y' + xy^(-1) - x^2 = 0。
2. 令 z = y^(-1),则有 z' = -y^(-2)y',代入上式,得到 -z' + xz - x^2 = 0,即 z' - xz + x^2 = 0。
3. 这是一个一阶线性微分方程,可以用常数变易法或积分因子法求解,得到 z 的通解。
这里我们用积分因子法,先求出积分因子 u(x) = e^(-∫xdx) = e^(-x^2/2)。
4. 两边同时乘以u(x),得到u(x)z' - xu(x)z + xu(x)^2 = 0,即 (u(x)z)' = xu(x)^2。
5. 两边同时积分,得到 u(x)z = ∫xu(x)^2dx + C,即 e^(-x^2/2)z = ∫xe^(-x^2)dx + C。
6. 利用误差函数的定义,可以将右边的积分化简,得到 e^(-x^2/2)z = -e^(-x^2/2)/2 + C',其中 C' = C + √(π/2)/2。
常微分方程初等积分法解法研究(二)伯努利方程
例题: 求解方程:
方程两端同除以 :令有:ຫໍສະໝຸດ 利用常数变易法求出其通解为:
代换
得原方程通解为:
例题:
解以下微分方程:
两边除以 ,得:
利用分离变量法,可得:
他可以用积分因子方法求解:
两边乘以
,得:
等式的左边是
的导数,两边积分
于是:
伯努利微分方程
伯努利微分方程是形如 的常微分 方程。其中 、 为 的连续函数, 为常数 且 0,1。
求解方法:变量替换法
利用变量替换法可将伯努利方程化为线性方程。
步骤如下: ⑴ 方程两端同除以 ,得:
⑵令
即可化为一阶线性微分方程:
⑶ 通过常数变易法求得一阶线性非齐次方程 的通解。
⑷ 最后经变量代换得原方程的通解:
高数下册笔记精
第七章微分方程§ 1 微分方程的基本概念 一. 基本概念 :1. 微分方程 ; 凡表示未知函数 , 未知函数的导数与自变量之间的关系式称为微分方程.2. 常微分方程 ; 如果微分方程中的未知函数是一元函数,则称此类方程为常微分方程.3. 偏微分方程 ;如果微分方程中的未知函数是多元函数,则称此类方程为偏微分方程.4. 微分方程的阶 ; 微分方程中所出现的未知函数的最高阶导数的阶数,就称为此微分方程的阶.5. 微分方程的解 ; 将某个已知函数代入到微分方程的左右两边可使其成为恒等式,那么就称此已知函数为此微分方程的解.6. 微分方程的通解 : 如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相等,则这样的解就称为此微分方程的通解.7. 微分方程的初始条件与特解 .8. 微分方程的积分曲线 : 微分方程的解的图象是一条平面曲线,称此曲线为微分方程的积分曲线. 二.例题分析P263. 5.写出由下列条件所确定的曲线所满足的微分方程 :例 1.曲线在点处( x, y)的切线的斜率等于该点横坐标的平方.解:设该曲线的方程为yf (x) , 则由题意得 : y ' x 2 .--------这就是所需确定的曲线应满足的微分方程.例 2.曲线上点P( x, y) 处的法线与 x 轴的交点为 Q , 且线段 PQ 被 y 轴平分 .解:设该曲线的方程为yf (x) , 且设曲线在点 P 处的法线记为 L ,则其斜率为1/ y' ;设法线L与Y轴的交点为点A,再设法线L上任意一点M的坐标为 M ( X ,Y) ,进而得法线L的方程为:Y y k( X x) 且 k1/ y '即Y y (Xx) / y ' ;则易求得:X Q x y y ' 且 Y A yx / y ' ........①由题意知点A为线段PQ的中点知:X Q X P 2X A 且 Y Q Y P 2Y A ..........②由上述①,②两式最终可得:2xy y ' --------这就是所需确定的曲线应满足的微分方程.§ 2.可分离变量的一阶微分方程(注:它是一类最易求解的微分方程! )一.一阶微分方程的一般形式和一阶微分方程的对称形式:一般形式:F (x, y, y') 0对称形式:P( x, y)dx Q ( x, y)dy 0二.何为可分离变量的一阶微分方程?如果某一阶微分方程由对称式:P(x, y) dx Q(x, y)dy 0 ,可等价地转化为f (x)dx g( y)dy 0 的形式,则称原方程为可分离变量的微分方程.三.可分离变量的一阶微分方程的基本解法:(可由如下两步来完成求解过程)第一步:进行自变量x , dx 与因变量 y , dy 的左右分离;第二步:方程两边同时作不定积分即可求得原方程的隐式通解. §3.一阶齐次微分方程(注:它是一类经变量代换之后,可转化为"变量左右分离的一阶微分方程! )一.一阶齐次微分方程的定义:在某个一阶微分方程也即原方程形如:dy f ( x y ) 中,如果方程右边的函数 f ( x, y) 可写成 y的函数式即 f ( x y )( y ) , ,,dxxx dy ( y) ,则称此微分方程为一阶齐次微分方程.dxx二.一阶齐次微分方程的基本解法:转化求解法 ―――即首先将原一阶齐次微分方程转化为变量分离方程;然后再按变量分离方程的解法去求解即可!具体地说, 第一步,作变量代换令uy,则 y ux,dyu xdu,代入原一阶齐次微分方程x dx dx du dx 第二步,进行变量 u 与 x 的左右分离得:u;(u) xdy( y ) 得: u x du(u) ;dxx dx第三步,两边求不定积分即可得其解. ...三.例题分析参见P 271.例1.又如.P 276 .1.( 4).求方程(x 3 y 3 )dx3xy 2 dy 0 的通解.解:原方程可转化为 3dyx 3y 3x 2y,作变量代换令 uy,则 y ux,dyu xdu;dxxy 2 y 2x x dxdx则原方程转化为:3(uxdu) 1 u (注意:齐次方程在进行变量代换之后,一定是可以进行变量分离的! )dx u 2紧接着就进行自变量与因变量的左右分离§4.一阶线性微分方程 一.一阶线性微分方程的定义:x du1 2uu 2dudx.最后两边作不定积分即可. ..dx u 21 2uxP x y Qx ) 的方程为一阶线性微分方程.称形如:dy( )(dx(注:因为方程的左边对未知函数y 及其导数 y ' 来说是一次线性组合的形式,所以称上述方程为"线性"方程!)( i ). 当 Q (x)0 时,则称dyP( x) y 0 为一阶线性齐次微分方程.dx( ii ) . 当 Q ( x)0 时,则称dyP(x) y Q ( x) 为一阶线性非齐次微分方程.dx二.一阶线性微分方程的解法(常数变易法是求解线性非齐次方程的基本方法)1.所谓的"常数变易法":就是为了求解某一阶线性非齐次方程,可先去求解与其所对应的齐次方程;然后在所得齐次方程的通解中, 将任意常数C代换成一个待定的未知函数u(x) 来构造生成非齐次方程的解;最后再将由此法构造生成的解, 代回原非齐次方程中去确定那个待定函数 u( x) 的表达式.―――整个这样的求解过程就称为非齐次方程的常数变易法.(可参考P278.例1)dyP( x) y Q (x) 的通解公式如下: y ep ( x )dxQ( x) ep( x) dxc] ―――请牢记!2.一阶线性微分方程:[ dxdx三.伯努利方程(注:它是一类经变量代换之后可转化为可分离变量的一阶微分方程! )1.伯努利方程的定义我们称形如:dyP( x) y Q ( x) y n ....(*)的方程为"伯努利方程"(或称" n 级伯努利方程") .dx2.伯努利方程的解法(变量代换转化法)只要令z y1n ,则dz (1 n) y1 ndy,将其代入原 n 级伯努利方程(*)可得dzdxdxn) p( x) z (1 n) Q (x) ----- 这是一个一阶线性非齐次方程 !(1 dx进而可由一阶线性非齐次方程的通解公式求出其解, 这样也就求出原伯努利方程(*)的解!3.变量代换法在求解微分方程中的运用利用变量代换(包括自变量的变量代换和因变量的变量代换),把一个微分方程转化为可分离变量方程,或转化为一个已知其求解步骤的方程,这是解微分方程的常用方法. 例1.解方程.P 282. 9.( 1).dy (x y)2dx解:可令 ux y ,则原方程转化为 dydu 1 u 2du u 2 1dudx 两边积分就可得其解. ....dxdxdxu 2 1例2.P 282.9. ( 3)解方程 xy ' y y(ln x ln y)解:可令uln x ln yln xy xy e u两边关于自变量X求导得 y xy ' eudu代入原方程得:du ,dudu dx两边积分就可得其解.....dxue u x 1e u ux 1dxdxux§6.可降阶的高阶微分方程 (本节着重掌握三种容易降阶的高阶微分方程的解法)一.y (n)f (x) 型微分方程――――这类高阶微分方程的解法很简单,只要两边积分 n 次,就可得其通解.二. y ''f ( x, y ') 型微分方程首先此方程 y '' f ( x, y ') 的类型是二阶显微分方程,且此这类二阶显微分方程的特征是"不显含因变量y ".此类方程的解法:运用变量代换进行降阶求解.具体地,可令pdy ,则d 2 y dpdx dx 2,dx进而原方程转化为:dpf ( x, p) ―――这是一个一阶显微分方程.根据其具体形式,可按前几节所介绍的求解一阶方程的dx解法去求解.....得其通解设为p( x, c 1 ) 又 pdy ,也即有dy ( x, c 1 )dy(x,c 1) dx ,最后只要两边再作dx dx一次积分,就可得原二阶显微分方程的解.三.y '' f ( y, y ')型微分方程首先方程 y ''f ( y, y ') 的类型也是二阶显微分方程,且此这类二阶显微分方程的特征是"不显含自因变量x ". 此类方程的解法:也是运用变量代换进行降阶求解.具体地,可令pdy ,则 d 2y dp dp dypdp,进而原方dxdx 2dx dy dxdy程转化为pdpf ( y, p) ――这也是一个一阶显微分方程.根据其具体形式,可按前几节所介绍的求解一阶方程的解法去dy求解...设得其通解为 p( y,c 1 ) 又 pdydy dy,也即有( y, c 1 )dx,最后只要两边再作一次积分,dx dx( y, c 1 )就可得原二阶显微分方程的解.四.例题分析P 292. 1.( 5)求解方程:y'' y ' x解:第一步:判定此方程的类型是二阶显微分方程且不显含因变量y ,即 y'' f (x, y ') 型.接着可令pdy d 2 y dp dp x p .―――这是一阶线性非齐次方程dp ,则dx 2dx,进而原方程转化为:p x .dxdxdxp 1dxx e1dxc] e x [ xe x dx c] x e2 x ce x;由一阶线性非齐次方程的通解公式知: e [ dx进而知:p dy x e2x ce x dy (e2 x ce x x)dx ,最后只要两边再作一次积得原方程的通解.....dx五.微分方程的参数方程形式的隐式通解及其在有关问题中的运用所谓"微分方程的参数方程形式的隐式通解"就是将微分方程的通解用参数方程形式来刻画.即将微分方程的自变量 x 与因变量 y 都表达成某个参数p 的函数式的形式.例如:P 292 .1.(4)求解方程:y '' 1 y '2 .解:首先判定此方程的类型是二阶显微分方程且不显变量x 和y,它同属 y '' f ( x, y ') 与 y '' f ( y, y ') 型;所以解法相对由自.以下我们来介绍微分方程的参数方程形式的隐式通解给大家!先设p dy ,则 d 2 y dp.进而原方程转化为:dp 1 p21dp dx1dp dx.dx dx2 dx dx p2 p2 x arctan p c1―――这就求得了自变量x 关于参数p的函数式;以下再来求出因变量y 关于参数 p 的函数式,进而就可得原方程的参数方程形式的隐式通解.由p dy dy pdx1 pdp ,所以y1ln(1 p2 ) c2;dx p2 2x arctan p c1从而原方程的参数方程形式的隐式通解为:1 p2 ) .y ln(1 c22注:运用同样的方法,大家可以尝试一下去求解P292 .1.( 8);(9);(10).§7.高阶线性微分方程(主要的是学习二阶线性微分方程的有关理论!)一.二阶线性微分方程的定义:称形如: y '' P( x) y ' Q (x) y f ( x) ......(*)的方程为二阶线性微分方程.(注:方程的左边对未知函数y 及其导数y ', y ''这三者来说,是一次线性组合形式!)( i ). 当f (x) 0 时,则称 y '' P(x) y ' Q ( x) y 0 为二阶线性齐次微分方程.( ii ) . 当f ( x) 0 时,则称 y '' P( x) y ' Q( x) y f ( x) 为二阶线性非齐次微分方程.二.二阶线性微分方程的解的结构1.二阶线性齐次微分方程"解的叠加原理"定理1:设y1 (x) 与 y2 (x) 都是二阶线性齐次微分方程y '' P( x) y ' Q(x) y 0 的解,则此两解的任意线性组合y A c1 y1 ( x) c2 y2 ( x) 也是此二阶线性齐次微分方程的解.―――定理1揭示了齐次方程的解所满足的一种性质.此性质常称为齐次方程"解的叠加原理".2.多个函数间的线性相关性与线性无关性的定义(参见教材P296 从略)特别地,两个函数y1 ( x) 与 y2 (x) 在区间I上线性相关y1 (x)常数,x I.y2 (x)3.二阶线性齐次微分方程的通解的结构定理2:设y1 (x) 与 y2 (x) 是二阶线性齐次微分方程y '' P(x) y ' Q ( x) y 0 的解,且 y1 (x) 与 y2 (x) 线性无关,则此两解的任意线性组合y A c1 y1 ( x) c2y2 ( x) 就是原二阶线性齐次微分方程的通解.―――定理2揭示了如何用齐次方程的两个线性无关的特解去构造生成齐次方程的通解!4.二阶线性非齐次微分方程通解的结构定理3:设y* ( x) 是二阶线性非齐次微分方程y '' P(x) y' Q (x) y f ( x) ...(*)的一个特解,且Y( x)是对应的二阶线性齐次方程y '' P( x) y 'Q( x) y 0 的通解,则y A Y( x) y* ( x) 就是原二阶线性非齐次微分方程(*)的通解.―――定理3揭示了如何用齐次方程的通解去构造非齐次方程的通解!即:非齐次通解y =齐次通解Y +非齐次特解y * .5.二阶线性非齐次微分方程解的叠加原理(P297定理4)定理4:设有二阶线性非齐次微分方程y '' P(x) y 'Q ( x) y f (x) ,(其中 f ( x) f1( x) f 2 ( x) .)而 y1 (x) 是 y '' P( x) y ' Q(x) y f1( x) 的特解,且y2 ( x) 是y '' P(x) y ' Q( x) y f 2 ( x) 的特解则 Y (x) A y1 ( x) y2 ( x) 就是原二阶线性非齐次方程y '' P( x) y ' Q( x) y f ( x) 的一个特解.―――定理4揭示了如何去求非齐次方程特解的一种方法.它通常又称为非齐次方程解的叠加原理!6.定理5:设y1 (x) 与y2 (x) 是二阶线性非齐次微分方程y '' P( x) y ' Q(x)yf ( x) ...(*)的两个不相等的特解,则 Y( x) A y2 (x) y1 (x) 是对应的二阶线性齐次方程y ''P( x) y ' Q ( x) y 0 的一个非零特解.―――此定理揭示了如何用二阶线性非齐次方程的二个特解去构造生成对应的齐次方程的特解!7.例题分析P326. 1. (4) .已知y1 1, y2 x, y3 x2是某二阶线性非齐次微分方程的三个解,试求该方程的通解?分析与解答:设此二阶线性非齐次微分方程为y'' P( x) y 'Q( x) y f ( x) ....(*),则由定理3知:非齐次通解 y =齐次通解 Y +非齐次特解y *,现由题意知"非齐次特解y *"可取y1 1, y2 x, y3 x2 之中的任意一个,故以下只要求出"齐次通解Y "来即可.再由定理2知:"齐次通解Y "是两个线性无关的齐次特解的任意线性组合即:Y( x) c1 Y1( x) c2 Y2 ( x) (其中Y1 (x), Y2 (x) 是两个线性无关的齐次特解).而现在又应如何来求得两个线性无关的齐次特解呢?这可根据"定理5"来得到!由"定理5"知,可令:Y1 (x) @y2 ( x) y1 (x) x1 且 Y2 ( x) @y3 ( x) y1( x) x2 1 ,且显然两者线性无关,所以原非齐次方程的通解为y Y ( x) y1 ( x) c1 Y1 (x) c2 Y2 ( x) y1( x) c1 (x 1) c2 (x 2 1) 1.三.二阶线性非齐次微分方程的求解过程中的常数变易法与二阶线性非齐次微分方程的通解公式1.二阶线性非齐次微分方程求解过程中的"常数变易法".为了求解二阶线性非齐次微分方程y'' P( x) y ' Q( x) y f ( x) ...(1),可先求解与之对应的齐次方程;第一步:先求得对应的二阶线性齐次微分方程y'' P( x) y ' Q( x) y 0 ...(2)的两个线性无关特解y1( x) 与 y2 ( x) ,则由定理2知: y A c1 y1( x) c2 y2 ( x) ....(3)就是原二阶线性齐次微分方程(2)的通解;第二步:对齐次方程的通解(3)作常数变易,去构造生成非齐次微分方程(1)的解为 y A u( x) y1 (x) v( x)y2 (x) ...(4) (其中 u( x), v(x) 是两个待定的未知函数);第三步:接下来将(4)式代入原非齐次方程(1)并设法去求出u(x), v(x) ,这样也就求出了原非齐次方程(1)的解了!――――这就是二阶线性非齐次微分方程求解过程中的常数变易法.2.二阶线性非齐次微分方程的通解公式定理6.设y1 (x) 与 y2 (x) 是二阶线性齐次方程y '' P( x) y' Q (x) y0 .....(1)的两个线性无关的特解,y1 y20 ,则与之对应的二阶线性非齐次方程y '' P( x) y ' Q( x) y f ( x) .....(2)记 Wy1'y1'有通解公式:y y2 f y1 dx y1 fy2dx.W W§8.常系数齐次线性微分方程(重点是掌握二阶线性常系数微分方程的有关理论!)一.二阶线性常系数微分方程的定义:在二阶线性微分方程:y '' P(x) y' Q (x) y 0 ....(1)之中,(i) .如果 y ', y 的系数 p(x), Q( x) 都是常数,即(1)式成为y '' py ' qy 0 (其中p, q为常数),则称其为二阶线性常系数微分方程;(ii) .如果 p,q 不全为常数,则称y '' py ' qy 0 为二阶线性变系数微分方程.二.二阶常系数齐线性微分方程y'' py ' qy 0 的解法:(如下方法通常称为"特征根公式法")第一步,写出原微分方程的特征方程r 2 pr q 0 ,并求出此方程的二个特征根r1, r2;第二步,根据特征根r1, r2的不同情形,原方程y '' py ' qy 0 的通解公式如下:(i).若特征根 r1 , r2不相等,则原方程的通解为:y c1e r1x c2 e r2x;(ii) .若特征根r1, r2为相等,则原方程的通解为:y (c1 c2 x)e r1x;(iii) .若特征根r1 ,r2为一对共轭复根 r1,2 i ,则原方程的通解为:y e x (c1 cos x c2 sin x) .三.二阶常系数齐次线性微分方程y '' py ' qy 0 的求解举例:参见教材P304--305 例1 ; 例2 ; 例3等.§9.常系数非齐次线性微分方程(重点只需掌握如下关于二阶线性常系数非齐次微分方程的通解公式!)一.关于二阶线性常系数非齐次微分方程y'' py ' qy f ( x) (其中p,q为常数)有如下结论:定理6':设y1( x) 与 y2 ( x) 是二阶线性常系数非齐次微分方程 y '' py ' qy 0 .....(1)的两个线性无关的特解,y1 y20 ,则与之对应的二阶线性非齐次方程y '' py ' qy f (x) .....(2)记Wy1'y1'有通解公式: y y f y1dx y f y2 dx ―――请记牢!2 W 1 W――――注:此定理6'只不过是第七节中介绍的"定理6"的一个特例而已!二.常系数二阶非齐次线性微分方程求解举例例如P 313. 例2.求方程y'' 5 y ' 6y xe2x的通解.解:由定理5'应首先求对应的齐次方程y '' 5y ' 6 y 0 的通解,再运用定理5'来求原非齐次方程的通解.易知齐次方程 y'' 5 y ' 6y 0 的特征方程为 r 2 5r 6 0 ,特征根 r1 2, r2 3 .于是,齐次方程的两个线性无关的特解为y1 e2 x, y2 e3x W y1 y2 e5 x;y' y '1 1进而原非齐次方程的通解为:y y2 fy1 dx y1 f y2 dx e3x xe2 x e2 x dx e2 x xe2 x e3 x dx W W e5x e5xy e3x( xe x e x c1) e2 x ( 1x2 c2 ) d1e2x d2e3x 1 ( x2 x)e2 x.2 2三.本章杂例P 327. 7.设有可导函数( x) 满足( x)cos x 2x(t)sin tdt x 1 ,求 (x) ? 0分析与解答:这是一个"积分方程",求解"积分方程"的思路:首先我们把它转化为一个与其对应的微分方程,再来求解.现由( x)cos x x (t )sin tdt x 1 两边关于自变量X求导数得:2'(x)cos x ( x)sin x 2 (x)sin x 1 '(x)cos x ( x)sin x 1现记 y (x) ,则有 y 'cos x y sin x 1 y' y tan x secx ――这是"一阶线性非齐次微分方程".y p ( x) dxQ( x) ep( x)dxc] y etan xdxsec x etan xdxc] sin x c cosx .由通解公式得: e [ dx [ dx( x)cos x 2 x x 1 知,当x 0 时,则y (0) 1,所以c 1.又由条件(t )sin tdt综上得原方程的解为:y sin x cos x.四.综述"求解微分方程的一般程序"如下:第一步,判定方程的类型,它是一阶微分方程还是二阶微分方程?(我们知道标准求解步骤的一阶方程类型包括:①可分离变量方程;②齐次方程;③一阶线性(非)齐次方程;④贝努利方程);第二步,根据我们在本章所讲的各种方程的标准解法去求解!补充说明:如果方程类型是我们很陌生的形式,那么就首先考虑运用"变量代换法"将其转化为我们所熟悉的方程类型;然后再按上面的标准步骤去解决问题.第八章空间解析几何§1向量及其线性运算一 .一些基本概念①向量与自由向量; ②单位向量与零向量; ③向量的共线与共面; ④向量的模 , 方向角 , 以及投影等 .二 .向量的加法运算与数乘运算的定义三 . 向量的线性运算在空间直角坐标系下的表达借助于空间直角坐标系,向量间的线性运算可以转化为它们坐标之间的线性运算.§2向量的数量积向量积混合积一.两个向量的数量积r r r r 为向量r r 之间的夹角)1.数量积的定义 a b |a | |b | cos , (其中a,bAr r r r r r2.数量积与投影之间的关系――― a b | a | Pr j a b | b | Pr j b ar r3.数量积的运算规律二.两个向量的向量积r r r rr r 1.向量积的定义 a b | a | | b | sin , (其中 为向量 a,b 之间的夹角)Ar r2.向量积的模的几何意义:它表示以向量a, b 为邻边所成的平行四边形的面积. 三.三个向量的混合积r r r r r r1.混合积的定义[a,b,c] A (a b) cr r r 2.三个混合积的模的几何意义:它表示以向量a,b, c 为邻边所成的平行六面体的"有向体积".r r rV ; (i) r r rr r r1.即 [ a,b, c]当 a, b, c 呈右手系时,1;(ii) 当 a,b, c 呈左手系时,§3 曲面及其方程 一 . 曲面方程的概念r r rV 与某个三元方程 F (x, y, z) 0 的解之间能构成一一对应1.如果某曲面 S 上的点的坐标 M ( x, y, z)[ a, b, c], 则称这个三元方程F (x, y, z)0 为此曲面 S 的方程 ;2. 建立曲面方程的一般方法 : 首先在所求曲面上任取一点 M ,记其坐标为 M (x, y, z) , 然后利用该曲面的特征并将其等价地表达为点 M ( x, y, z) 的坐标应满足的条件式即可 !例如: 试求球心在点 M 0 ( x 0 , y 0 , z 0 ) , 半径为 R 的球面方程 ?uuuuuur解 : 设 M (x, y, z) 为所求球面上任意一点 , 则由 | M 0 M | Ruuuuuur(x x 0 ) 2 ( y y 0 ) 2 ( z z 0 )2即| M 0M |R所以 ( x x 0 )2( y y 0 )2 ( z z 0 )2R 2二 . 旋转曲面1. 旋转曲面的定义 ( 参见 P312)2.坐标平面内的平面曲面绕坐标轴旋转所成旋转曲面的方程及其特点:例如 : 将 yoz 坐标平面内的曲线C:f ( y, z) 0 绕Z轴旋转所成旋转曲面S z 的方程只要将平面曲线C: f ( y, z) 0 的方程中的y代换为x 2 y 2 ,即得旋转曲面 S z 的方程为 f ( x 2 y 2 , z) 0 .又如 : 将 zox 坐标平面内的曲线C:g( x, z) 0 绕X轴旋转所成旋转曲面 S x 的方程只要将平面曲线C: g ( x, z) 0的方程中的 z 代换为z 2 y 2 ,即得旋转曲面 S x 的方程为 g( x, z 2 y 2 ) 0.三. 柱面1. 柱面的定义 ( 参见 P314)2. 四种常见的柱面 :①圆柱面 x 2 y 2 2x 2 y 21; ③抛物柱面 y 22 px ; ④双曲柱面 x 2 y 21a ; ②椭圆柱面 a 2b 2 a 2 b 23. 二元方程在空间直角坐标系中的几何意义:二元方程在空间直角坐标系中的总表示一个母线平行于坐标轴的柱面. 例如 : 方程 f (x, y)0 表示的就是一个以 xoy 坐标平面内的曲线C:f (x, y) 0 为准线,母线平行于Z轴的柱面.四 . 二次曲面1. 九种二次曲面的标准方程及其大致的曲面形状2.掌握运用对旋转曲面伸缩变形来认识一般的二次曲面形状的思想方法;例如: 椭圆锥面:x 2y 2 z 2的大致形状可以按如下方式分析:首先将曲面方程中的a 改成b,易知方程:x 2y 2 z 2a 2b 2a 2a 2表示的是一个旋转曲面,且它可以由xoz 平面内的两条对称直线: x 2z 2xaz 绕Z轴旋转来生成;进而把a 2此旋转曲面沿y 轴方向伸或缩 b倍,即得椭圆锥面:x 2 y 2 z 2 的形状!aa 2b 2§ 4 空间曲线及其方程一 . 空间曲线的一般方程:即将空间曲线看成两张曲面的交线形式.设F ( x, y, z) 0 和G ( x, y, z) 0 是某两张曲面的方程,则它们的交线为F (x, y, z)G(x, y, z);x x(t)二 . 空间曲线的参数方程yy(t) ,(有关定义参见P320)z z(t)三 . 空间曲线向坐标平面的投影曲线与投影柱面(定义参见P323)四 . 二个三元方程联立消元的几何意义联立消元的几何意义:实际上就是在求这两个方程联立的方程组所表示的空间曲线向某个坐标面内的投影柱面的方程.例如:试求球面 x2y 2 z 2 9 与平面 x z 1的交线在 xoy 坐标面上的投影柱面与投影曲线的方程?解:即需求空间曲线x 2y 2 z 2 9x z1,向 xoy 坐标面内的投影柱面与投影曲线的方程.为此,只要在上述方程组中消去变量Z, 得x2y 2 (1 x)29 即为所需求的投影柱面的方程, 而上述空间曲线向 xoy坐标面的投影曲线的方程为x 2 y 2 (1 x) 2 9z 0.§ 5 平面及其方程r一 . 平面的点法式方程设某平面过一定点M 0 ( x 0 , y 0 , z 0 ) 且以 n { A, B,C}为其法向量,则所求平面的点法式方程为:A( x x 0 ) B( y y 0 ) C ( z z 0 ) 0Ax ByCz D 0r{ A, B, C} 为其法向量的某一张平面)二 . 平面的一般式方程:(应知此平面是以向量 n 三 . 平面的截距式方程:xy z 1;数值 a, b,c 分别称为该平面在X,Y,Z轴上的截距.a b c四 . 两个平面的夹角两个平面的夹角是指这两个平面的法向量之间的夹角 (当其是锐角时) ,或者是指这两个平面的法向量之间的夹角的补角 (当其是钝角时).五 . 点到面的距离公式设P 0 ( x 0 , y 0 , z 0 ) 是空间中的任意一点,记其到平面:AxBy Cz D 0的距离为d,则d| Ax 0 By 0Cz 0D |.A 2B 2C 2§ 6 空间直线及其方程一 . 空间直线的一般方程A 1 xB 1 yC 1 zD 1 0( 或称交线式方程 ) :.A 2 xB 2 yC 2 zD 2 0二 . 空间直线的点向式方程 ( 或称对称式方程 ) :xx 0 y y 0 zz0 .m np三 . 空间直线的参数式方程x x 0 mt由空间直线的点向式方程:x x 0y y 0z z 0@t ,得 yy 0nt 此即为该直线的参数式方程;mnpz 0 ptz 四 . 空间直线的两点式方程设有直线过两点M 1( x 1 , y 1 , z 1 ), M 2 ( x 2 , y 2 , z 2 ) ,则此直线的两点式方程为x x 1 y y 1 z z 1 .x 2 x 1 y 2 y 1z 2 z 1五 . 两直线的夹角两直线的夹角是指这两条直线的方向向量之间的夹角 (当其是锐角时) ,或者是指这两条直线方向向量之间的夹角的补角 (当其是钝角时).六 . 直线与平面的夹角(定义参见P333) 七 . 平面束的方程及其在解题中的运用1.所谓"平面束"就是指经过某一定直线的所有平面的全体;平面束的方程可由此定直线的方程构造而得.A 1 xB 1 yC 1 zD 1 0A 1 ,B 1,C 1 与 A 2 , B 2 , C 2 不成比例,具体地说,若设直线L的方程为A 2 xB 2 yC 2 zD 2,其中系数则以直线L为轴的平面束的方程为:( A 1 x B 1 y C 1zD 1)( A 2 x B 2 y C 2 z D 2 ) 0.(注:不同位置的平面对应于不同的参数 ,的取值.)2.平面束的概念在解题中的运用例1:参见P335例7.例2:P336.8.求过点P(3,1, 2) 且过直线L: x4 y 3z的平面方程?5 2 1x 4 y 3 z ,得直线L的一般式方程为 2x 5 y 23 0 解:由直线L的对称式:21,5y 2 z 3 0从而由平面束的概念知:可设所求平面的方程为:(2 x 5y23) ( y 2z 3) 0 .(其中 ,为待定系数!)........(1)现由点 P(3,1,2) 在此平面上,所以应有 (2 3 5 1 23) [1 2 ( 2) 3] 0,解得 /11/ 4.最后,将此值代入方程(1)即得所需求的平面方程.八.点到直线的距离公式r设 点 M 0 ( x 0 , y 0 , z 0 ) 是 直 线 L 外 一 点 , s 是 直 线 L 的 方 向 向 量 且 点 M (x, y, z) 是 直 线 L 上 任 意 一 点 , 则 点uuuuuur r M 0 ( x 0 , y 0 , z 0 ) 到直线L的距离d的计算公式为: | M M s |d0 r(注:此式只要运用向量积模的几何意义即可证明! )| s |九.直线与平面的位置关系―――线与面的位置关系有如下四种:①线在面内;②线面平行;③线面垂直;④线面斜交.r r现设直线L的方向向量为s ,平面 的法向量为 n ,则有如下结论:1.线在面内:2.线面平行:3.线面垂直:r rL s n 且A( x 0 , y 0 , z 0 ) L 但 A( x 0 , y 0 , z 0 ) ; L P r r s n , A(x 0 , y 0 , z 0 ) L 且 A(x 0, y 0 , z 0 ) ;Lr r 4.线面斜交: Lr rs Pn ;不成立s Pn 不成立;十.本章有关的一些解题技巧1.求交点类问题: 在此类问题中,运用直线的参数式方程来求解常常过程要简单一些.x 2 y3 z 42xy z6 0的交点?例如:试求直线L:1 1与平面 2x t 2解:易知直线L的参数为y t3 ,将其代入平面 2x y z 6 0 的方程,z 2t 4得2(t 2) (t 3)(2t 4)6 0,解得t1 ,进而知交点的坐标为 (1,2,2) .2.求距离类问题有时也可用直线的参数式来求解.例如:P336.13.求点P(3, 1,2) 到直线L:xy z 1 0的距离d=?2xyz 4解:直线L: x y z 1 0x y z 1 0 x y z 1 0y 2 z2x y z 4 03x 3 0x 1,x 1x1 y 2z 0 x 1 y t 2;11z t设点M为直线L上的一动点其坐标可设为M (1,t 2, t) ,uuur 2(1 3) 2(t 2 1) 2(t 2)22t 26t 9 2(t3 ) 29则有|MP |2 ,uuur2知当t 32 为最短!此时,点M的坐标M (1,t 2, t )(1, 1,3) . 时,距离 d=|MP|=3222 2――― ( 注:本题中也演示了空间直线的三种方程形式之间的互化技巧,以后可做参考!)3.已知平面上一点时求平面的方程时,点法式写方程是我们求解平面方程的基本思路.x 2 y z 1 0 和L 2: 2x y z 0例如:P336.11.求过点 A(1,2,1)而与直线L 1 :yz 1 0 x y z 都平行的平面方程?x分析:现已知平面上一点A(1,2,1) ,所以只需求得此平面的一个法向量来即可得此平面的点法式方程.ur uur r 解:记这两条直线的方向向量分别为n1, n2 ,而所以平面的法向量设为n ,ur{1,2, 1} {1, 1,1} {1, uur1,1} {1, 1,1} {0, 1, 1},则由n2, 3}, n {2,1 2r ur uur( x 1) ( y 2) ( z 1) 0.进而n n1 n2 { 1,1, 1} ,所以所求平面的方程为:。
第27讲 一阶线性微分方程、伯努利方程
1、主要教学目标 1、一阶线性微分方程的标准形式及其解法; 2、三种可降阶微分方程的解法;
2、重点内容 1、一阶线性微分方程的解法及解的结构; 2、常数变易法; 3、三种可降阶微分方程的解法。
3、难点分析 1、用变量代换将伯努利方程转化为线性方程并求解; 2、常数变易法、用变量代换法求解微分方程。
1. 型微分方程
ቤተ መጻሕፍቲ ባይዱ例1
2. 型方程
例2
3. 型方程
例3 解答要点:代入原方程得 原方程通解为 例4 解答要点:将方程写成 积分后得通解
四、小结
1、线性非齐次方程;2、伯努利方程。
解答要点: 例2 如图所示,平行与轴的动直线被曲线与 PQ之长数值上等于阴影部分的面积, 求曲线.
解答要点:两边求导得 解此微分方程 所求曲线为
二、伯努利方程
1、伯努利方程 方程为线性微分方程; 方程为非线性微分方程.
2、解法
截下的线段
需经过变量代换化为线性微分方程, 例3 解答要点:
三、三种可降阶微分方程的解法
4、对教材的处理及其教学提示 微分方程求解重在掌握思想方法,积分运算不宜过难,淡化伯努
利(Bernoulli)方程的标准形式及其解法 5、作业布置P315-1(1); 2(1);3; P323-1(1、5、7);4
一、线性方程
1、通解公式 2、非齐次线性方程的解法----常数变易法 实质: 未知函数的变量代换。 作变换,求导 积分得 3、非齐通解公式 注意:对应齐次方程通解,非齐次方程特解 例1
伯努利(Bernoulli)方程的求解研究
指导教师:冯录祥作者简介:朱升军(1986-),男,陕西商洛人,数学与应用数学专业2006级1班.伯努利(Bernoulli )方程的求解研究朱升军(宝鸡文理学院 数学系,陕西 宝鸡 721013)摘 要: 通过对伯努利(Bernoulli )方程的常规的解法进行进一步的探讨,总结出使求解过程简化的具体做法.通过几种不同的解法从而更深了解和掌握伯努利(Bernoulli )方程.关键词 :伯努利方程;常数变易法;分离变量法;一阶线性微分方程;恰当方程1 引言形如()()nd y P x y Q x y d x=+(1)的方程,称为伯努利(Bernoulli )方程.这里()P x 、()Q x 为x 的连续函数,0n ≠、1是常数.它是一个应用较广的微分方程,它的解法也比较多,下面我们介绍它的几种不同的解法.2 常数变易法方程(1)可写成()()nd y P x y Q x yd x-=我们先解出齐次方程()0d y P x y d x-= (2)的解,即()d y P x yd x= (3)对(3)两边同时求积分得1ln ()y P x dx c =+⎰即()P x d xy ce ⎰= (其中c 为常数) (4)把(2)的解(4)中的常数变易为函数()c x ,即()()P x d xy c x e ⎰= (5)假如(5)是(1)的解,则()()()()()()()()()()()P x dxP x dxP x dxn P x dx nc x e c x e P x c x e P x Q x c x e ⎰⎰⎰⎰'+=+,整理得(1)()()()()n P x dxnc x Q x c x e-⎰'=,解得(1)()1()(1)()n P x dx ncx n Q x edx c--⎰=-+⎰,即1(1)()1()[(1)()]n P x dxnc x n Q x ed x c --⎰=-+⎰,伯努利方程(1)的通解为1(1)()()1[(1)()]n P x dxP x dxn y n Q x ed x c e--⎰⎰=-+⎰.此外方程还有解0y=. 例1 求方程33d y xy x yd x+=的通解.解 方程对应的齐次方程为0d y xy d x+=.当0y ≠时,有变量分离法得通解为212xyce-=,设原方程的通解为212()xyc x e-=,微分得221122()()xxy c x ec x ex--''=-把上式代入原方程并两边微分233()()xc xd x x ed xcx -'=⎰⎰得22211()22xcx x d e---=-⎰,即2222()xxcx x eec---=++,代入所设的通解中得原方程的通解为222(1)1xx cey ++=此外,0y =也是方程的解.上列举出了伯努利方程中存在0y=的解,但有的方程中则不存在.如432d y x y d xxy+=,将其化简在化为齐次方程得d y y d xx=求得通解为y cx =.常数变易为()y c x x=,代入原方程得2()()()()c x x c x c x xcx -'+=+即2()()c x cx -'=,解得3()c x x c=+.所以原方程的通解为33()y x x c =+.此方程得通解中虽然包含有0y =的情况,但代回原式就不成立了,因为原式中就隐含有0y≠的情况.3 转化成一阶线性微分方程在方程(1)中令1ny z-=,从而(1)nd z d y n yd xd x-=-代入(1)得(1)()(1)()d z n P x z n Q x d x=-+- (6)解方程(6)得(1)()(1)()[(1)()]n P x d xn P x d x z e n Q x ed x c ---⎰⎰=-+⎰而1nzy-=,即1()(1)()1[(1)()]P x d xn P x d xny en Q x ed x c --⎰⎰=-+⎰为伯努利方程的通解,此外还有解0y=.例2 求方程26d y y xyd xx =-的通解.解 这是2n=时的伯努利方程,令1z y-=,算得2d z d y yd xd x=-代入原方程得到6d z z xd xx =-+这是线性方程,求得它的通解为268c xz x=+代回原来的变量y ,得到2618c xy x=+或者688xxcy-=这就是原方程的通解,此外方程还有解0y =.4 化为恰当方程在方程(1)两端同时乘以n y -得 1()()nnd y yP x yQ x d x--=+ (7)对(7)式进行整理得 1[()()]0nnP x y Q x dx ydy --+-=(8)其中记1()()nM P x y Q x -=+nN y-=-(1)()(1)()n nM N n yP x yxn P x Ny--∂∂--∂∂==--这样记(1)()1n P x dxeμ-⎰=为(8)的积分因子,把1μ乘以(8)的左右两端得(1)()(1)()(1)()1()()0n P x dxn P x dxn P x dxnnP x ye dx Q x e dx ye dy -----⎰⎰⎰+-=,整理得(1)()(1)()(1)()1()()n P x dx n P x dxn P x dx nn P x ye dx y e dy Q x e dx -------⎰⎰⎰-+=,对左右两端凑微分得(1)()(1)()1(1)()n P x dx n P x dx ndye n Q x e dx----⎰⎰=-,两端同时积分化简得1()(1)()1[(1)()]P x d xn P x d xny en Q x ed x c --⎰⎰=-+⎰,由以上可以看出1μ是(8)的积分因子,而(8)是由(1)两端乘以n y -得到的,所以(1)的积分因子为μ=n y -1μ,即(1)()n P x d xnye μ=--⎰因此,在求(1)的通解时可直接使用积分因子1z μ.例3 求上例的通解解 该方程为伯努利方程,两边同乘以2y -得26d y yxd xxy-=-即26()0x d x yd y xy---= (9)其中26,Mx N yxy-=-=-2266M N yxxyNyx-∂∂--∂∂==-.所以该方程的积分因子为6226d xx y eyxμ--⎰=-=,用μ乘以(9)的两边得5172660x y dx x dx yx dy ----=,凑微分得6181()8d x yd x-=即8618xxyc-=+或者688xxcy=+.此外0y =也是该方程的解.5 微积分法定理〔4〕 设()P x 、()Q x 是两个可积函数,则伯努利方程()()nd y P x y Q x yd x+=的通解是()P x d xye μ-⎰=,其中()x μ是方程(1)()1()n P x d xnd Q x ed xμμ-⎰=⎰⎰的通解.证明 由()P x d xye μ-⎰=得()()''()P x dxP x dx y e P x e μμ--⎰⎰=-代入伯努利方程整理得'(1)()()n P x d xnQ x eμμ-⎰=积分得(1)()1()n P x d xnd u Q x ed xμ-⎰=⎰⎰这就是()x μ所要满足的方程.例4 解微分方程22(ln )d y y x y d xx+=解 原方程中的1()P x x=-则设原方程的解为1d xx y exμμ-⎰==则''2x yxμμ-=代入原方程得'2ln 2x xμμ=积分得21ln c xμ=-从而原方程的解为2(ln )1yx c x -=.最后指出,一般的一阶微分方程不一定都能用初等解法来解.下面介绍一种方程就是这样,而且是经过证明的.形如2()()()d y P x y Q x y f x d x=++ (10)的方程叫Riccati 方程,右端是y 的二次式,()P x ,()Q x ,()f x 是x 的连续函数.设方程(10)的一个特解为()y x ϕ=,这时利用变换可以求出方程(10)的所有解.令()yu x ϕ=+,于是由方程(10),有2()[()]()[()]()d u d P x u x Q x u x f x d xd xϕϕϕ+=++++=2()[2()()()]P x u P x x Q x u ϕ++2()()()()()P x x Q x x f x ϕϕ+++因为()yx ϕ=是方程(10)的解,所以有2()()()()()()d x P x x Q x x f x d xϕϕϕ=++代入上式得到2()[2()()()]d u P x u P x x Q x ud xϕ=++这是Bernoulli 方程,可解出该方程的解u ,从而()y u x ϕ=+为方程(10)的所有解.然而求方程(10)的一个特解,并没有一个统一的方法,只能凭观察等方法找到. 致谢:本论文在写作过程中的到冯录祥老师的大力指导,在此表示衷心的感谢.参考文献:[1] 王高雄,周之铭,朱思铭,王涛松.常微分方程[M ].北京:高等教育出版社,1983. [2] 时空,皇朝炎.微分方程基础及其应用[M ].北京:科学出版社,2007. [3] 蔡燧林. 常微分方程[M ].武昌:武汉大些出版社,2003.[4] 樊映川.高等数学讲义(下册)[M ].北京:高等教育出版社,1975.The research on the solution of Bernoulli equationZHU Sheng-jun(Department of Mathematics, Baoji University of Arts and Sciences, Baoji 721013, Shannxi, China )Abstract : By doing the further research on the routine solution of Bernoulli equation, we cansummarize the specific methord which can make the solution simplify.By discussing several different solutions,we can have a better understanding of Bernoulli equation.Key words: Bernoulli equation;Constant variation;Separation of variables;First order lineardifferential equations;Appropriate equation。
2几种可求解的一阶微分方程
CO2的改变量 CO2的通入量CO2的排出量
12000dx% 2000 dt 0.03% 2000 dt x(t)%,
dx 1 ( x 0.03),
1t
x 0.03 Ce 6 ,
dt 6
y
ln
|
u(
x
)
|,
ln y ln | u( x) | P( x)dx,
即
y u( x)e P( x)dx .
非齐次方程通解形式与齐次方程通解相比:
C u( x),
即,常数变易法:
把齐次方程通解中的常数易为函数的方法.
.
作变换 y u( x)e P( x)dx
将y和y代入原方程得 u( x)e P( x)dx Q( x),
dx
解 令 x y u, dy du 1 代入原方程
dx dx
du 1 u2 解得 arctanu x C, dx 代回 u x y,得 arctan( x y) x C,
原方程的通解为 y tan( x C) x.
思考题
方程
x
2 y(t)
t2 y2(t) dt xy( x)
解1 令 x y u,
dy du 1,
dx dx
代入原式
du 1 1 ,
dx u
分离变量法求解得 u ln(u 1) x C,
将 u x y 代回, 所求通解为
y ln( x y 1) C ,
解2 原方程: dx x y. dy
小结与思考题3
1.一阶线性非齐次方程 令 y u( x)e P( x)dx;
x |t0 0.1, C 0.07,
浅谈伯努利方程的几种解法与应用
本科毕业论文题目:浅谈伯努利方程的几种解法与应用学院:数学与计算机科学学院班级:数学与应用数学2011级专升本班姓名:***指导教师:王通职称:副教授完成日期: 2013 年 5 月25 日浅谈伯努利方程的几种解法与应用摘要: 本文在研究已经公认的多种伯努利方程解法的前提下,把这些方法进行整合.首先,将各种解法进行分析归类,并总结出几种常见的求解伯努利方程的方法;其次,比较各种解法的优缺点;再次,利用一题多解来巩固文中所介绍的各种解法;最后,略谈伯努利方程在求解里卡蒂方程中的重要应用.关键词: 伯努利方程;变量代换法;常数变易法;积分因子法目 录引言 ....................................................................................................................................... 1 1 伯努利方程的解法 ........................................................................................................... 1 1.1 代换法 ....................................................................................................................... 1 1.1.1 变量代换法、常数变易法的混合运用 ........................................................... 1 1.1.2 函数代换法 ....................................................................................................... 2 1.1.3 求导法 ............................................................................................................... 3 1.1.4 恰当导数法 ....................................................................................................... 3 1.2 直接常数变易法 . (4)1.2.1 对0)(=+y x P dx dy的通解中c 的常数进行常数变易 .................................... 4 1.2.2 对n y x Q dx dy)(=通解中的常数c 进行常数变易 ............................................ 4 1.3 积分因子法 ............................................................................................................... 5 1.4 各种方法的比较 ....................................................................................................... 6 1.5 解法举例 ................................................................................................................... 6 2 伯努利方程在里卡蒂方程中的应用 ............................................................................. 10 3 总结 ................................................................................................................................. 11 参考文献 .. (12)引言在高等数学数学分析科学体系中,微分方程是其中非常重要的一个组成部分,而伯努利方程又是一类很重要的一阶非线性常微分方程,在很多学科中都有广泛的应用, 尤其是在物理和化工方面应用非常广.伯努利方程的表达式:n y x Q y x P y )()(=+',这里)(x P 、)(x Q 是关于n 的连续函数,n 为不等于0和1的任意常数.一般地,该方程可以通过一些特殊的方法转化为线性微分方程,进而用解线性微分方程的方法来求解.许多学者在探求伯努利方程解法这方面做出了卓著的贡献,本文在充分分析这些贡献的基础上,根据各种解法的特点,将它们进行了归类总结,有利于我们对各种解法进行深刻的理解和认识.在数学学习过程中,一题多解不仅能帮助学生很好地掌握所学知识,而且还能扩散学生的思维,进而培养学生的创新精神、提高创新能力,这正符合新课标对学生的要求.为了更进一步地掌握各种解法,在本文中我采用了一题多解,上下对比,一目了然.同时,探讨了伯努利方程在求解里卡蒂方程中的应用.本文主要有两大板块构成,具体如下:首先,是伯努利方程的解法及举例,主要浅谈了伯努利方程的变量代换法、常数变易法、积分因子法三种方法;其次,是伯努利方程的应用,主要浅谈了伯努利方程在里卡蒂方程求解中的应用. 1 伯努利方程的解法 1.1 代换法1.1.1 变量代换法、常数变易法的混合运用伯努利方程()()ndyP x y Q x y dx+=(n ≠0,1). (1.0) 求解步骤如下(1) (1.0)式两端同除以n y 得 )()(1x Q y x P dxdyy n n=+--. (*) (2) 变量代换令n y z -=1即可将上式化为一阶线性非齐次微分方程)()1()()1(x Q n z x P n dx dz-=-+ . (1.1)(3) 常数变易首先,通过对(1.1)式所对应的齐次方程通解中的常数1c 进行常数变易变为1()c x ;然后,经过一系列的求解过程求得方程(1.1)式的通解.① 先求z x P n dx dz)()1(-=的通解.经变量分离后对方程两边一起积分求得一阶线性齐次微分方程的通解(1)()1n P x dxz c e -⎰=⋅. (a)② 再对(a)式中的1c 进行常数变易变为1()c x ,得(1.1)式的通解,将此通解代入 (1.1)式得(1)()12()(1)()n P x dxc x n Q x edx c -⎰=-+⎰,从而得(1.1)式通解(1)()(1)()2[(1)()]n P x dxn P x dxz en Q x edx c --⎰⎰=-+⎰.(4) 变量代换令21cc n=-,接下来将n y z -=1代到上式得(1.0)式的通解])([)1()()1()()1(1⎰+⎰⎰-=---c dx e x Q e n y dxx P n dx x P n n (c 为任意常数).当0>n 时,方程还有解0=y . 1.1.2 函数代换法定理 若)()(x g x f y =是(1.0)式的通解且⎰=-dxx P e x g )()(,则(1.0)式的通解为])([)1()()1()()1(1⎰+⎰⎰-=---c dx e x Q en y dxx P n dx x P n n . 证明 对)()(x g x f y =两边求导得)()()()(x g x f x g x f y '+'=',将上式代入(1.0)式得)()()()()()()()()()(x g x fx Q x g x f x P x g x f x g x f n n=+'+',整理得)()()()]()()()[()()(x g x fx Q x g x P x g x f x g x f n n=+'+' . (1.2)因为⎰=-dxx P e x g )()(,所以0)()()(=+'x g x P x g . 将上式代入(1.2)式得)()()()()(x g x f x Q x g x f n n=',整理得⎰='--dxx P n nex Q x f x f )()1()()()( ,两边积分得⎰+⎰-=--])()[1()()()1(1c dx e x Q n x f dxx P n n,则(1.0)式的通解为 ])([)1()()1()()1(1⎰+⎰⎰-=---c dx ex Q e n y dxx P n dx x P n n (c 为任意常数).当0>n 时,方程还有解0=y . 1.1.3 求导法令)()(1x N yx M z n+=-,则)()(1x M x N z y n -=-.对上式两边求导得)()()1()(1x N y y x M n y x M z n n '+'-+'='--,即有11[()()].(1)()n n y y z N x M x y n M x --''''=---,代入(*)式得0)()()1()()]()()()1[(1=--'-'--+'-x M x Q n x N y x M x P x M n z n .令0)()()()1(='--x M x P x M n ,0)()()1()(=-+'x M x Q n x N . 则上式变为0='z ,解得1z c =. 解得⎰=-dxx P n ex M )()1()( , ⎰⎰-=-dx ex Q n x N dxx P n )()1()()1()(.从而(1)()(1)()11[(1)()]n P x dxn P x dxn y en Q x edx c ---⎰⎰=-+⎰,令11c c n=-则(1.0)式的通解为 ])([)1()()1()()1(1⎰+⎰⎰-=---c dx e x Q e n y dxx P n dx x P n n (c 为任意常数).当0>n 时,方程还有解0=y .1.1.4 恰当导数法令⎰=-dx x P e x v )()(,有⎰-='-dxx P e x P x v )()()(,即)()()(x v x v x P '-=, 则(1.0)式变形为)()()()()(11x v y x v x Q y x v x v y n n n --='-', 11])()[()()()(--='-'n n x v y x v x Q x v x v y y , ()()11])()[()()(ln ln --='-'n n x v y x v x Q x v y ,11])()[()()(ln --='⎪⎪⎭⎫ ⎝⎛n n x v y x v x Q x v y ,设z x v y )(=得11)()()(ln --='n n zx vx Q z ,)()(1x v x Q zz n n -=',两边积分解之得])()()[1(11⎰+-=--c dx x v x Q n z n n ,则(1.0)式的通解为])([)1()()1()()1(1⎰+⎰⎰-=---c dx ex Q en y dxx P n dxx P n n (c 为任意常数).当0>n 时,方程还有解0=y .1.2 直接常数变易法1.2.1 对0)(=+y x P dx dy的通解中的常数进行常数变易 ()0dyP x y dx+=的通解为 ()1P x dxy c e -⎰=,经常数变易得()1()P x dx y c x e -⎰=.令上式为(1.0)式的通解,将其代入(1.0)式得 ()()11()()()P x dx n P x dxn c x e c x e Q x --⎰⎰'=⋅,即得(1)()11()()()n P x dx n c x e Q x c x -'⎰=⋅, 两边同时积分得(1)()11()(1)()n P x dx n c x n Q x e dx c --⎡⎤⎰=-+⎢⎥⎣⎦⎰, 则(1.0)式的通解为])([)1()()1()()1(1⎰+⎰⎰-=---c dx ex Q en y dxx P n dxx P n n (c 为任意常数).当0>n 时,方程还有解0=y .1.2.2 对n y x Q dxdy)(=通解中的常数c 进行常数变易 该方法的独特之处是先解方程n y x Q dx dy)(= , (1.3)再经常数变易求(1.0)式的通解. 基本步骤为(1)利用变量分离法解式(1.3)得11(1)[()]n y n Q x dx c -=-+⎰.(2)经常数变易后(1.0)式的通解为11(1)[()()]n y n Q x dx c x -=-+⎰ . (1.4)(3)同时对 (1.4) 式两边进行求微分得1()()n dc x dyy Q x dx dx -=+ . (1.5) (4)将 (1.4)、(1.5)代入(*)式得11()(1)()()()dc x n P x Q x dx c x dx ⎡⎤=-+⎣⎦⎰.(5)仔细观察后发现上式为关于1()c x 的一阶线性非齐次方程,则(1)()(1)()1()[(1)()()]n P x dxn P x dxc x en P x Q x dx edx c --⎰⎰=⋅-⋅⋅+⎰⎰. (1.6)(6)将(1.6)式代到 (1.4) 式得⎰⎰⎰+⎰⋅-⎰-+-=---])()()1([)1()()1()()1()()1()1(c dx e dx x Q x P n e n dx x Q n y dxx P n dx x P n n .(7)由数学分析中常用的分部积分公式⎰⎰-=vdu uv udv ,令⎰=dx x Q u )(, ⎰=-dxx P n e v )()1(,则(1.0)式的通解为])([)1()()1()()1(1⎰+⎰⎰-=---c dx ex Q en y dxx P n dxx P n n(c 为任意常数).当0>n 时,方程还有解0=y . 1.3 积分因子法对(1.0)式两端同乘以n y -,经过一系列的整理得0))()((1=+---dy y dx x Q y x P n n , (1.7)从而有)()(),(1x Q y x P y x M n -=- ,nyy x N -=),(.则)()1(),(),(),(1x P n x y x N y y x M y x N -=⎥⎦⎤⎢⎣⎡∂∂-∂∂⋅. 则由课本所学知(1.7)式的积分因子为⎰=-dxx P n ex u )()1()(,将⎰=-dxx P n ex u )()1()(乘以(1.7)式得dx ex P y dy ey dx e x Q dxx P n n dxx P n n dxx P n ])([][])([)()1(1)()1()()1(⎰+⎰=⎰-----, (1.8)对(1.8)式右边进行凑微分得][])()1[()()1(1)()1(⎰⋅=⎰⋅⋅----dxx P n n dxx P n ey d dx ex Q n ,两边同时积分得⎰⋅=+⎰⋅⋅----⎰dxx P n n dxx P n ey c dx ex Q n )()1(11)()1()()1(,整理得⎰+⎰-⋅⎰=---])()1[(1)()1()()1(1c dx ex Q n ey dxx P n dxx P n n .令)1(1n c c -=,则(1.0)式的通解为 ])([)1()()1()()1(1⎰+⎰⋅⎰⋅-=---c dx ex Q e n y dxx P n dxx P n n (c 为任意常数).当0>n 时,方程还有解0=y . 1.4 各种方法的比较由上述讲解可以看出:总的来说讲解了三种方法.1.1.1所介绍的解法的解题思路是:首先,将伯努利方程(一阶非线性微分方程)化为我们比较熟悉的一阶线性非齐次方程;其次,通过一阶线性非齐次方程的求解步骤求其通解,然后再将变量回代,求伯努利方程的通解.1.2.1介绍的解法解题思路是把伯努利方程所对应的齐次方程的通解中的常数c 变成)(x c ,将其代到(1.0)式,经过一系列的计算求出)(x c ,再把)(x c 带回去求出伯努利方程的通解;1.2.2介绍的解法关键是利用分部积分法将通解简化.1.3介绍的解法关键就是找到积分因子,将伯努利方程进行凑微分,然后再求解.在前面七种解法中,最容易先想到的就是1.1.1和1.2.1所介绍的解法,1.1.1介绍的方法计算过程稍微有点复杂,1.2.1介绍的方法则相对简单一些;1.2.2介绍的这种方法虽然简单,但一般由于思维定势我们不容易想到这种方法;而 1.1.4所介绍的方法计算过程复杂且不易想到.1.1.2、1.1.3所介绍的这两种方法虽然计算过程稍微简单些但技巧性比较强.1.3所介绍的方法使用比较巧妙,它的巧妙之处在于将(1.0)式化为(1.7)式,其计算过程简洁,方法简单.本人推荐大家使用积分因子法和第一种常数变易法,或者第一种方法.1.5 解法举例例1 利用上面所介绍的不同方法求2y y x y ='-的通解解 现将方程2y y x y ='-变为标准型的伯努利方程, 即x y x y dx dy 2-=- , ① 则有x x P 1)(-= , xx Q 1)(-=. 解法一(变量代换法、常数变易法的混合运用) 在①两边同除以2y 得x xydx dy y 1112-=-. 令yz 1=,则 x x z dx dz 1=+.将0=+x z dx dz 通解中的常数变易后得xx z dx dz 1=+的通解 ⎪⎪⎭⎫ ⎝⎛+⎰⎰=⎰-c dx e x e z dx x dx x 111,即)(1c x xz +=, 故原方程的通解cx xy +=(c 为任意常数). 解法二(函数代换法) 令)()(x g x f y =为①式的通解, 由上述讲解知x ex g dxx =⎰=1)(,⎥⎥⎦⎤⎢⎢⎣⎡+⎰--=⎰-1111)(c dx e x x fdx x .令1c c -=,则c x x f+=-)(1,故原方程的通解cx xy +=(c 为任意常数). 解法三(求导法) 令)()(1x N y x M z +=-, 由上述讲解知xex M dxx =⎰=1)(,x dx e xx N dxx -=⎰-=⎰11)(. 从而xc x x M x N c y +=-=)()]([1. 故原方程的通解cx xy +=(c 为任意常数). 解法四(恰当导数法) 令 1()()dx P x dxxv x e e x -⎰⎰===,由上述讲解知11[()()]z Q x v x dx x c -==-⎰.令1c c -=,则c x z+=-1.从而111()x cy z v x x---+==. 故原方程的通解cx xy +=(c 为任意常数). 解法五(直接常数变易法)(一)、对①式所对应的齐次方程的通解中的常数进行常数变易得①式的通解由于0=-x ydx dy 的通解为cx ce y dxx P =⎰=-)(. 经常数变易后则x x c y )(=为①式的通解 从而)()(2x c x c -='.整理得1)()(2=-'x c x c , 即c x x c +=)(1, 从而cx x c +=1)( . 故原方程的通解cx xy +=(c 为任意常数). (二)、先解方程x y dx dy 2-=,然后经常数变易求①式的通解 由上述讲解知cx xy +=(c 为任意常数). 解法六(积分因子法) 整理得方程01)11(2=--dy ydx x xy . ② x xy y x M 11),(-= , 21),(y y x N -=.21),(xy y y x M -=∂∂ , 0),(=∂∂yy x N .21),(),(xy x y x N y y x M -=∂∂-∂∂.x y x N xy x N y y x M 1),(),(),(=∂∂-∂∂. ②式的积分因子为x ex u dxx =⎰=1)(.②式乘以积分因子得0)11(2=--dy yxdx y .经凑微分得c x yx=-.所以cx xy +=(c 为任意常数). 注 由以上例题的各种解法的解题过程可以清晰的看出解法二、三、四的解题步骤均很少,但它们的技巧性比较强,一般我们不容易想到;解法一、五(一)、六我们在学习其它微分方程时有涉略,我们很容易接受;解法五(二)虽然也是常数变易法,但是由于我们之前都是对一阶线性齐次微分方程的通解中的常数进行常数变易,所以不太容易想到这个办法.总之,最好用的是解法五(一)、六,实在想不到就直接用解法一.2 伯努利方程在里卡蒂方程中的应用里卡蒂方程 )()()(2x R y x Q y x P dx dy++= , (2.0)其中)(x P ,)(x Q ,()R x 都是连续函数.当0)(=x R 时, (2.0)式是伯努利方程,由前面几种方法均可求得其通解.当0)(≠x R 时,若(2.0)式的一个特解为1()y y x =,作变量替换1()()()y x z x y x =+,则1dy dy dz dx dx dx =+, 代入原方程得)())(())((1211x R y z x Q y z x P dxdy dx dz ++++=+ [])()()()()(2)(12112x R y x Q y x P z x Q y x P z x P +++++=. 所以1()y y x =是原方程的特解.)()()(1211x R y x Q y x P dx dy ++=. []21)()()(2z x P z x Q y x P dx dz ++=.上式是一个关于z 的伯努利方程且2n =,则上式的通解为()()⎰+⎰⎰-=---])([)1()(11)(1111c dx e x Q e n z dxx P n dx x P n n , 这里[]11()2()()P x P x y Q x =-+,1()()Q x P x =. 可求得[][]⎥⎦⎤⎢⎣⎡+⎰⎰-=⎰++--c dx e x P e z dx x Q y x P dx x Q y x P )()(2)()(2111)(, 即[][]⎥⎦⎤⎢⎣⎡+⎰⎰-=-⎰++-c dx e x P e x y x y dx x Q y x P dx x Q y x P )()(2)()(2111)()()(1. 从而原方程的通解为[][]1)()(2)()(2111)()()(-++⎥⎦⎤⎢⎣⎡+⎰⎰-=⎰c dx e x P e x y x y dx x Q y x P dx x Q y x P (c 为任意常数). 例2 2)(22=+'y y x . 解 整理得 222xy dx dy +-= ③ 由③式1)(-=x P ,0)(=x Q ,22)(x x R =.原方程的一个特解为xy 11-=,作变量代换xx z y 1)(-=, 则有21)(xdx x dz dx dy +=, 将上式代入③得222121)()(x x x x z dx x dz -+⎥⎦⎤⎢⎣⎡--=. 整理得)()(2)(2x z x z xdx x dz -=为伯努利方程,由伯努利通解公式得⎪⎭⎫⎝⎛+--=-1321311)(c x x x z , 即13233)(c x x x z -=.令13c c -=,从而cx x x z +=323)(. 又由xx z y 1)(-=得原方程的通解为 xc x x y 1332-+= (其中c 是任意常数).3 总结文中所阐述的解法对一般伯努利方程都适用.在使用变量代换法时,可根据实际采用合适的变量替换.由于变量代换法、常数变易法的混合运用法我们在课本中学习伯努利方程时就已经讲过如何使用常数变易法解一阶线性非齐次方程,从而用变量代换法、常数变易法的混合运用法解伯努利方程也就比较容易.对于积分因子法,它对伯努利方程来说是一种独特的方法,具有较好的实际应用价值.总之,在求解方程时,可采用简单的解法或你熟练掌握的解法.关于应用方面,本文只是给出了在求解一阶非线性微分方程——里卡蒂方程中的应用,但在实际生活中,伯努利方程在物理和化工方面都有很广泛的应用,这些都有待于我们进一步去探讨,从而进一步了解伯努利方程在常微分方程这门学科中的重要地位,只有很好地掌握了伯努利方程的各种解法才能很好地解决一些用到伯努利方程的实际问题.参考文献[1] 艾英.伯努利(Bernoulli)方程的几种解法[J].焦作大学学报(综合版),1997,34(3):57-58.[2] 李信明.Bernoulli方程通解的一种简捷求法[J].昌潍师专学报,2000,19(2):87.[3] 常季芳,李高.关于伯努利方程的几种新解法[J].雁北师范学院学报,2007,23(2):89-91.[4] 王高雄,周之铭,等.常微分方程(第三版)[M].北京:高等教育出版社,2006:45-48.[5] 王克,潘家齐.常微分方程[M].北京:高等教育出版社,2005:27.[6] 胡劲松,郑克龙.用“积分因子法”求解Bernoulli方程[J].四川理工学院学报,2005,12(3):86-87.[7] 张玉平.用变量替换求解几类常见的一阶线性微分方程[J].企业家天地(理论版),2010,129(4):199.[8] 王玮.一阶线性微分方程与贝努利方程的解法[J].焦作大学学报(综合版),1994,21(2):39-41.[9] A garwal R P, Bohner M, Oregand, etc. Dynamic equations on time scales: A survey[J]. J. compAppl math, 2002, 141(12): 22-26.[10] Agarmal R P, Wong Fu-shsiang. Existence of positive solution for nonpositive higher orderVBVPS [J]. J. comp. Appl math, 1988, 12(88): 12-14.Talking on Several Solutions and Application ofBernoulli EquationAbstract::On the basis of referring and studying a variety of existing Bernoulli equation solutions, this article integrates them. Firstly, it analyzes and classifies all kinds of solutions, and summarizes several common methods of solving Bernoulli equation. Secondly, it compares the advantages and disadvantages of the various solutions. Then, it uses multiple solutions of an example to consolidate a variety of solutions described in this article. Finally, it talks the important application of the Bernoulli equation in solving Ricatti equation.Key words: Bernoulli equation; substitution method; constant variation; an integration factor.。
常见的常微分方程的一般解法
常见的常微分方程的一般解法总结了常见常微分方程的通解。
如无意外,本文将不包括解的推导过程。
常微分方程,我们一般可以将其归纳为如下n类:1.可分离变量的微分方程(一阶)2.一阶齐次(非齐次)线性微分方程(一阶),包含伯努利3.二阶常系数微分方程(二阶)4.高阶常系数微分方程(n阶),包含欧拉1.可分离变量的微分方程(一阶)这类微分方程可以变形成如下形式:f ( x ) d x =g ( y ) d y f(x)dx=g(y)dy f(x)dx=g(y)dy函数可以通过同时整合两边来解决。
难点主要在于不定积分,不定积分是最简单的微分方程。
p.s. 某些方程看似不可分离变量,但是经过换元之后,其实还是可分离变量的,不要被这种方程迷惑。
2.一阶齐次(非齐次)线性微分方程(一阶)形如d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x)的方程叫做一阶线性微分方程,若 Q ( x ) Q(x) Q(x)为0,则方程齐次,否则称为非齐次。
解法:直接套公式:y ( x ) = e − ∫ P ( x ) d x ( ∫ e ∫ P ( x ) d x Q ( x ) d x + C ) y(x)=e^{-\int{P(x)}dx}(\int{e^{\int{P(x)dx}}Q(x)}dx+C)y(x)=e−∫P(x)dx(∫e∫P(x)dxQ(x)dx+C)多套几遍熟练就好。
伯努利方程形如d y d x + P ( x ) y = Q ( x ) y n , n ∈R , n ≠ 1\frac{dy}{dx}+P(x)y=Q(x)y^{n},n\in\mathbb{R},n\ne1dxdy+P(x)y=Q(x)yn,n∈R,n=1的方程称为伯努利方程,这种方程可以通过以下步骤化为一阶线性微分方程:y − n d y d x + P ( x ) y 1 − n = Q ( x ) y^{-n}\frac{dy}{dx}+P(x)y^{1-n}=Q(x) y−ndxdy+P(x)y1−n=Q(x)1 1 − n ⋅ d y 1 − n d x + P ( x ) y 1 − n = Q ( x ) \frac{1}{1-n}·\frac{dy^{1-n}}{dx}+P(x)y^{1-n}=Q(x)1−n1⋅dxdy1−n+P(x)y1−n=Q(x)令 y 1 − n = u y^{1-n}=u y1−n=u,方程两边同时乘以 1 − n 1-n 1−n,得到d u d x + ( 1 − n ) P ( x ) u = ( 1 − n ) Q ( x )\frac{du}{dx}+(1-n)P(x)u=(1-n)Q(x) dxdu+(1−n)P(x)u=(1−n)Q(x)即 d u d x + P ′ ( x ) u = Q ′ ( x )\frac{du}{dx}+P'(x)u=Q'(x) dxdu+P′(x)u=Q′(x)这是一个可以公式化的一阶线性微分方程。
高数下册第七章第五节一阶线性方程全微分方程
x
2). 3
25
五、1、( x y)2 2x C ;
2、 y 1 sin x 1 ; xC
2、2x ln y ln2 y C ;
3、 x Cy3 1 y2. 2
二、1、 y sin x 5ecos x 1;
2、2 y
x3
x
3e
1 x2
1
.
三、v
k1 k2
t
k1m k22
(1
k0
em
t
).
四、1、 xy x C ;
2、
x2 y2
C
2 3
x3 (ln
即
两端积分得对应齐u次 方Q程( x通)e解 P
(
x
)yd x C dx
e P C
(
x
)d
x
故原方程的通解
y
e
P(
x)d
x
Q(
x
)
e
P
(
x
)
d
x
d
x
C
即
y Ce P( x)d x
e P(x)d x
Q(
x
)
e
P
(
x
)d
x
d
x
齐次方程通解
u
2(x
3
1)2
C
3
4
例2. 求方程
dx xy
2 y
x y3
d
y
一阶线性微分方程及伯努利方程
3
例1. 解方程
dy
2y
5
(x 1) 2 .
dx x 1
解:
先解
dy 2y 0 , 即 dx x 1
dy 2dx y x 1
积分得 ln y 2 ln x 1 ln C , 即 y C(x 1)2
用常数变易法求特解. 令 y u (x) (x 1)2 , 则
y u (x 1)2 2u (x 1)
y
两边积分得 ln y P(x)dx ln C
故通解为
y C e P(x)dx
2
2. 解非齐次方程 dy P(x) y Q(x) dx
用常数变易法: 作变换 y(x) u(x) e P(x) d x , 则
ue P(x)d x P(x)u e P(x)d x P(x) u e P(x)d x Q(x)
求出此方程通解后, 换回原变量即得伯努利方程的通解.
8
例3. 求方程 dy y a ( ln x)y2 的通解. dx x
解: 令 z y1, 则方程变形为
dz z a ln x dx x
其通解为
z
e
1 x
dx
(a
ln
x)
e
1 x
dx
dx
C
x C a ( ln x)2
2 将 z y1代入, 得原方程通解:
dy y
dy y
将 x 看作 y 的函数,则是形如 x p( y)x q( y)
的线性微分方程
p( y) 1 q( y) y2
y
5
dx 1 x y2 dy y
通解为 4xy y4 C
6
例3. 求方程
dx xy
2 y
高数下册 第七章 第四、五节 一阶线性方程全微分方程
2) 再解定解问题
y′ + y = 0 , x > 1
y x =1 = y(1) = 2 − 2e−1
此齐次线性方程的通解为 y = C2e−x ( x ≥ 1) 利用衔接条件得 C2 = 2(e − 1) y = 2(e − 1) e−x ( x ≥ 1) 因此有 3) 原问题的解为 2(1 −e−x ), 0 ≤ x ≤ 1 y= −x 2(e − 1) e , x ≥ 1
4.求微分方程 x ln xdy + ( y − ln x)dx = 0 满足条件 求微分方程 1 1 y = (ln x + ) y x=e = 1 的解。 2 ln x 19
= 0 的解。 x 1 y= − 2 x
2
x y′ + y = xex 满足条件 y x=1 = 1的特解。 5.求微分方程 1 1 x −1 x 1 6. y = x ln x − x y= e + x x 3 9 1 6.求微分方程 xy′ + 2 y = xln x , y x=1 = − 求微分方程 的特解。 的特解。 9 y 1 7.过点 ( , 0 ) 且满足关系式 y′ arcsin x + 1 − x2 = 1 过点 1− 2 1 yarcsin x = x − 的曲线方程为 2 的一个解, y = ex 是微分方程 x y′ + p( x) y = x 的一个解,则 8.设 设
1 2y + − 3x = 0 y
21
练 习 题
一、求下列微分方程的通解: 求下列微分方程的通解: 1、 1、 y ′ + y cos x = e − sin x ; 2、 2、 y ln ydx + ( x − ln y )dy = 0 ; dy 2 3、 3、( y − 6 x ) + 2 y = 0 . dx 二、求下列微分方程满足所给初始条件的特解: 求下列微分方程满足所给初始条件的特解: dy 1、 1、 + y cot x = 5e cos x , y π = −4 ; x= dx 2
伯努利方程解法
伯努利方程解法
贝叶斯伯努利方程是一种用于求解给定系统的最优解的数学方法。
它由Thomas Bayes在1763年提出,用来解决一类统计问题,即求解给定条件下条件概率的最大值。
贝叶斯伯努利方程的一般形式如下:
P(A|B) = P(B|A) * P(A) / P(B)
其中,P(A|B)表示A在B的条件下的概率,P(B|A)表示B在
A的条件下的概率,P(A)表示A的概率,P(B)表示B的概率。
贝叶斯伯努利方程可以用来解决一些复杂的统计问题,比如:
1. 假设有一组数据,其中包含两个变量A和B,可以用贝叶
斯伯努利方程来求出A在B的条件下的概率,从而更好地分
析数据。
2. 假设有一个系统,其中包含多个变量,可以用贝叶斯伯努利方程来求出系统中每个变量的最优解。
3. 假设有一组数据,其中包含多个变量,可以用贝叶斯伯努利方程来求出每个变量之间的相关性,从而更好地分析数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目 录中文摘要 .......................................... 错误!未定义书签。
ABSTRACT .......................................... 错误!未定义书签。
引言 ............................................................... 1 1.伯努利方程的解法 ................................................. 1 1.1变量代换法 .................................................... 1 1.1.1一般解法 .................................................. 1 1.1.2函数变换法 ................................................ 2 1.1.3 求导法 .................................................... 3 1.1.4恰当导数法 ................................................ 3 1.2常数变易法 .................................................... 4 1.3积分因子法 .................................................... 6 1.4解法举例 ...................................................... 7 2.伯努利方程的应用 ................................................ 10 2.1在一阶微分方程中的应用 ....................................... 10 2.1.1在形如()()()()()y x y x ny y p x y dy q x y dy 'ϕ()=ϕ()+ϕ()⎰⎰(()y x y dy ϕ()⎰存在且不为零)方程中的应用 (10)2.1.2在形如1[()()]()()y y y yf x h yg yxh x x x xαα-'+=+方程中的应用 (11)2.1.3在黎卡提方程中的应用 (12)3.总结 ........................................................... 13 参考文献 .......................................................... 14 致谢 .............................................. 错误!未定义书签。
引言在数学科学体系中,微分方程是其中的一类,而伯努利方程又是微分方程中的一个类型,这类方程形如()()n y P x y Q x y '+=,其中()P x 、()Q x 为x 的连续函数,n 为常数且n ≠0,1。
伯努利方程是一种特殊的一阶非线性常微分方程,一般地,该方程可以通过某些数学方法转化为线性微分方程,进而用初等积分法来求解。
在数学发展史上,常有一种问题多种解决办法的传统,因此,许多学者都致力于研究伯努利方程的求解[]41-。
本文在充分分析这些参考文献的基础上,根据其解法特征,将它们进行了分类整理,便于对各种解法的理解和认识。
同时,探讨了伯努利方程在求解其他类型常微分方程中的应用。
本文主要分成两个部分,结构如下:第一部分是伯努利方程的解法,主要给出了伯努利方程的变量代换法、常数变易法、积分因子法等三种方法;第二部分是伯努利方程的应用,主要探讨了伯努利方程在一阶微分方程和高阶微分方程的求解中的应用。
1.伯努利方程的解法1.1变量代换法1.1.1、变量代换法、常数变易法的混合运用 伯努利方程:()()n dyP x y Q x y dx+=(n ≠0,1)………(1.0) 其一般解法步骤如下:⑴ 方程两端同除以n y 得:1()()nn dyy p x y Q x dx--+=.⑵ 变量代换令z =1n y -即可化为一阶线性微分方程:(1)()(1)()dzn P x z n Q x dx+-=-. ⑶ 常数变易通过对一阶线性齐次方程的通解进行常数变易求得一阶线性非齐次方程的通解.⑷ 变量代换最后将z 代换1n y -得原方程的通解:(1)()(1)()1(1)[()]n px d xn p x d xn y n e Q x ed x c---⎰⎰=-+⎰.[1]C 为任意常数 1.1.2函数变换法设()()y u x v x =是(1.0)式的解,则对()()y u x v x =两边求导得:()()()()y u x v x u x v x '''=+,将上式代入方程得:()()()()()()()()()()n n u x v x u x v x p x u x v x Q x u x v x ''++=,整理得:()()()[()()()]()(n n u x v x u x v x p x v x Q x u x v x ''++= ……… (1.1)令()()()0v x p x v x '+=解得:()()p x dxv x e -⎰=,将其代入(1.1)式得:()()()()()p x dx n p x dxn u x e Q x u x e --⎰⎰'=,整理得:(1)()()()()n p x dxn u x u x Q x e--⎰'=,两边积分得:(1)()1()(1)[()]n p x dxn u x n Q x edx c --⎰=-+⎰,故伯努利方程的通解为:(1)()(1)()1(1)[()]n p x dxn p x dxn y n e Q x edx c ---⎰⎰=-+⎰.[2]C 为任意常数1.1.3 求导法令1()()n z A x y B x -=+, 对上式两边求导得:1()()(1)()n n z A x y A x n y y B x --''''=+-+,即有:11[()()](1)()n n y y z B x A x y n A x --''''=--⋅-,代入(1.0)式得:1[(1)()()()]()(1)()()0n z n A x p x A x y B x n Q x A x -'''+-----=.令(1)()()()0n A x p x A x '--= , ()(1)()()0B x n Q x A x '+-=. 解得:(1)()()n p x dxA x e-⎰= , (1)()()(1)()n px d xB x n Q x ed x-⎰=-⎰. 这时伯努利方程变为0z '=,解得z c =.于是得到伯努利方程的通解为:(1)()(1)()1[(1)()]n p x dxn p x dxn y en Q x edx c ---⎰⎰=-+⎰.[3]C 为任意常数1.1.4恰当导数法令()()p x dx u x e -⎰=,有()()()p x dxu x p x e -⎰'=-,即:()()()u x p x u x '=-. 则(1.0)式变形为:11()()()()()n n n u x y y y Q x u x u x u x --''-=⋅,11()()()[]()()n n y u x y Q x u x y u x u x --''-=, 11()()()()[]()n n y lny lnu Q x u x u x --''-=,11()()()[]()n n y y ln Q x u x u u x --'=, 设y uz =得:11()()()n n lnz Q x u x z --'=,1()()n n z Q x u x z-'=(可分离变量微分方程). 两边积分解之得:11(1)[()()]n n z n Q x u x dx c --=-+⎰,用yz u=,()()p x dx u x e -⎰=,回代得伯努利方程的通解为: (1)()(1)()1(1)[()]n p x dx n p x dxn y n e Q x e dx c ---⎰⎰=-+⎰.[]4C 为任意常数1.2直接常数变易法常数变易法一:(1.0)式的齐次方程的通解为:()p x dxy ce -⎰=.设原方程(1.0)式的通解为:()()p x dx y c x e -⎰=,代入(1.0)式得:()()()()()p x dx n p x dxn c x e c x e Q x --⎰⎰'=.这是一个可分离变量的微分方程,可求出1()n c x -.即: (1)()1()(1)[()]n p x dxn c x n Q x e dx c --⎰=-+⎰,则原方程的通解为:(1)()(1)()1(1)[()]n p x dxn p x dxn y n eQ x edx c ---⎰⎰=-+⎰.[]5C 为任意常数常数变易法二:本方法的创新之处是先解方程()=Q ndyx y dx ………(1.2),利用变量分离法解式(a )得:yn-1=(1-n)∙[()c dx x Q +⎰],现把常数c 变易为待定的函数c( x),即yn-1=(1-n)∙[()c dx x Q +⎰(x )]………(1.3),对式(b)两边求微分得:()()ndc x dyy Q x dx dx -=+……(1.4),由(1.0)、(1.3)、(1.4)式得()()()()()1dc x n p x Q x dx c x dx ⎡⎤=-+⎣⎦⎰。
利用一阶线性方程的通解公式得()()()()()()()()111n p x dxn p x dx c x en p x Q x dxe dx c --⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰⎰………(1.5),把式( 1.5)代入式(1.3)得()()()()()()()()()111(1)(1)[1]n p x dxn p x dxn y n Q x dx n e n p x Q x dxedx c ---⎰⎰=-+--+⎰⎰⎰,利用分部积分公式udv uv vdu =-⎰⎰,令()u Q x dx =⎰,()()1n p x dxv e -⎰=,则伯努利方程的通解为()()()()1(1)1(1)n p x dxn p x dx n y n eQ x e dx c ---⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰.[]6C 为任意常数。