立体几何垂直证明的题目常见模型及方法

合集下载

立体几何平行垂直的证明方法

立体几何平行垂直的证明方法

立体几何平行垂直的证明方法在立体几何中,平行和垂直是两个重要的概念。

平行指的是两条直线或两个平面在平面内没有交点,而垂直则表示两条直线或两个平面之间存在90度的夹角。

在解决立体几何问题时,我们常常需要证明两条线段或两个平面是否平行或垂直。

本文将介绍几种常用的证明方法,帮助读者更好地理解立体几何中平行和垂直的性质。

一、平行线的证明方法1. 共面法:若两条直线在同一个平面内且没有交点,则它们是平行线。

要证明两条直线平行,我们可以找到一个共同的平面,使得这两条直线在该平面内且没有交点。

通过构建图形或使用法向量等方法,可以证明两条直线共面且没有交点,从而得出它们是平行线的结论。

2. 平行线定理:若两条直线与第三条直线分别平行,则这两条直线也是平行线。

这一方法常用于证明平行线的性质,通过构建平行线与其他直线的交点关系,可以得出所求结论。

3. 平行线的性质:在平面几何中,平行线具有很多性质。

常见的平行线定理包括等角定理、同位角定理、内错角定理等。

通过运用这些性质,可以证明两条直线平行。

二、垂直关系的证明方法1. 垂直定理:若两条直线互相垂直,则构成的四个角中有两个互为相应角。

根据这一定理,我们可以通过证明两个角互为相应角,从而得出两条直线互相垂直的结论。

2. 垂线定理:若两条直线互相垂直,则它们的斜率之积等于-1。

这一方法常用于证明两条直线垂直的情况。

通过计算两条直线的斜率,如果它们的斜率之积等于-1,则可以得出它们垂直的结论。

3. 垂直角的性质:在平面几何中,垂直角的性质是我们常用的性质之一。

两条直线垂直时,其错角是互相垂直的。

通过构建直线的错角,可以证明所求的两条直线垂直关系。

三、平面的平行和垂直关系的证明方法1. 共面定理:在空间几何中,三条或三条以上的直线如果在同一个平面内,则它们是共面的。

通过在空间中构建直线和平面的关系,可以证明所求直线是否共面。

2. 平行平面定理:若两个平面各与第三个平面平行,则这两个平面也是平行的。

方法技巧专题05立体几何中平行与垂直证明

方法技巧专题05立体几何中平行与垂直证明

方法技巧专题05立体几何中平行与垂直证明平行与垂直证明是立体几何中的重要内容之一,本文将介绍一些方法和技巧用于解决平行与垂直的证明问题。

一、平行性的证明方法:1.公共光线法:如果两条直线分别与第三条直线相交,在相交点处的两个对应的内角相等,则这两条直线是平行的。

例如,如果直线AB和CD都与直线EF相交,在交点F处的∠AFC=∠DFB,则AB,CD。

2.反证法:假设AB和CD不平行,然后通过构造形式,证明得到矛盾。

例如,如果直线AB和CD不平行,则可以证明存在一条直线EF与这两条直线分别相交于F和G,且所形成的内角∠FAG=π/2-∠DAF≠π/2,则与直线EF平行,这是与已知条件矛盾的,所以AB,CD。

3.平行线性质法:利用平行线的性质来证明其他线段平行。

例如,根据平行线的交角性质可证明,如果一条直线与一对平行线之一形成等于直角的角,则与另一条平行线也形成等于直角的角。

二、垂直性的证明方法:1.垂直线性质法:利用垂直线的性质来证明其他线段垂直。

例如,如果直线AB与直线CD相交于点E,且∠AED=∠BEC=π/2,则直线AB垂直于直线CD。

2.垂直线段法:如果两条线段的斜率之积为-1,则这两条线段垂直。

例如,如果直线AB和直线CD的斜率之积为-1,则AB⊥CD。

3.反证法:假设AB和CD不垂直,然后通过构造形式,证明得到矛盾。

例如,如果直线AB和CD不垂直,则可以证明存在一条直线EF与这两条直线相交于点G,且所形成的两个内角∠GAC和∠GDB之和小于π/2,这与直线EF垂直的性质矛盾,所以AB⊥CD。

综上所述,平行与垂直证明可以通过公共光线法、反证法、平行线性质法、垂直线性质法、垂直线段法等方法和技巧来解决。

在实际问题中,可以根据已知条件选择合适的方法和技巧,灵活运用来解决平行与垂直的证明问题。

立体几何中平行与垂直证明方法归纳

立体几何中平行与垂直证明方法归纳

c c ∥∥b a ba ∥⇒本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。

是一份不可多得的好资料。

一、“平行关系”常见证明方法(一)直线与直线平行的证明1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质3) 利用空间平行线的传递性(即公理4):平行于同一条直线的两条直线互相平行。

4)利用直线与平面平行的性质定理:如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

5) 利用平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行.6) 利用直线与平面垂直的性质定理:垂直于同一个平面的两条直线互相平行。

abαβba a =⋂⊂βαβα∥ba ∥⇒b a b a ////⇒⎪⎭⎪⎬⎫==γβγαβα βα⊥⊥b a ba ∥⇒αab7) 利用平面内直线与直线垂直的性质:在同一个平面内,垂直于同一条直线的两条直线互相平行。

8) 利用定义:在同一个平面内且两条直线没有公共点(二)直线与平面平行的证明1) 利用直线与平面平行的判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。

2) 利用平面与平面平行的性质推论:两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。

3) 利用定义:直线在平面外,且直线与平面没有公共点(三)平面与平面平行的证明常见证明方法:1) 利用平面与平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

αbaβαaβαα∥⊂a β∥a ⇒ααββ////∩⊂⊂b a P b a b a =αβ//⇒αβbaPb∥a b a αα⊂⊄α∥a ⇒2)利用某些空间几何体的特性:如正方体的上下底面互相平行等3)利用定义:两个平面没有公共点二、“垂直关系”常见证明方法(一)直线与直线垂直的证明1)利用某些平面图形的特性:如直角三角形的两条直角边互相垂直等。

完整版)立体几何中平行与垂直证明方法归纳

完整版)立体几何中平行与垂直证明方法归纳

完整版)立体几何中平行与垂直证明方法归纳本文系统总结了立体几何中平行与垂直证明方法,适合高三总复时学生构建知识网络、探求解题思路、归纳梳理解题方法。

以下是常见证明方法:一、“平行关系”常见证明方法一)直线与直线平行的证明1.利用平行四边形的对边互相平行的特性;2.利用三角形中位线性质;3.利用空间平行线的传递性(即公理4);4.利用直线与平面平行的性质定理;5.利用平面与平面平行的性质定理;6.利用直线与平面垂直的性质定理;7.利用平面内直线与直线垂直的性质;8.利用定义:在同一个平面内且两条直线没有公共点。

二)直线与平面平行的证明1.利用直线与平面平行的判定定理;2.利用平面与平面平行的性质推论;3.利用定义:直线在平面外,且直线与平面没有公共点。

三)平面与平面平行的证明1.利用平面与平面平行的判定定理;2.利用某些空间几何体的特性;3.利用定义:两个平面没有公共点。

二、“垂直关系”常见证明方法一)直线与直线垂直的证明1.利用直角三角形的两条直角边互相垂直的特性;2.看夹角:两条共(异)面直线的夹角为90°,则两直线互相垂直;3.利用直线与平面垂直的性质:如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。

1.利用空间几何体的特性:例如长方体侧棱垂直于底面。

2.观察直线与平面所成角度:若直线与平面所成角为90度,则该直线垂直于平面。

3.利用直线与平面垂直的判定定理:若一条直线与一个平面内的两条相交直线垂直,则该直线垂直于此平面。

4.利用平面与平面垂直的性质定理:若两个平面互相垂直,则在这两个平面内分别作垂直于交线的直线,则这两条直线互相垂直。

5.利用常用结论:例如若一条直线平行于一个平面的垂线,则该直线也垂直于此平面。

立体几何垂直证明题常见模型和方法

立体几何垂直证明题常见模型和方法

立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。

垂直转化:线线垂直 线面垂直 面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。

例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A . 求证:'A D EF ⊥;变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º证明:AB ⊥PC类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,BE 'ADFG2,CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =类型3:面面垂直的证明。

2017年__高二年级立体几何垂直证明题常见模型和方法

2017年__高二年级立体几何垂直证明题常见模型和方法

立体几何垂直证明题常见模型及方法垂直转化:线线垂直线面垂直面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。

例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A. 求证:'A D EF ⊥;类型二:线面垂直证明BE 'ADFG方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =C○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。

立体几何线线垂直的证明方法

立体几何线线垂直的证明方法

立体几何线线垂直的证明方法在立体几何中,线线垂直是一种非常重要的关系,它在很多问题中都有着重要的应用。

本文将介绍几种线线垂直的证明方法,希望能够帮助读者更好地理解和运用这一关系。

一、垂线段的垂线段垂直首先介绍的是垂线段的垂线段垂直的证明方法。

具体来说,如果有两个垂直于同一个平面的线段AB和CD,且它们之间有一条垂线段EF,则EF和CD垂直。

证明如下:1、连接AE和CF,得到平面ACEF。

2、由于AB和CD垂直于平面ACEF,所以它们的交点O在平面ACEF 内。

3、由于EF垂直于平面ACEF,所以它与平面ACEF的任意一条交线都垂直,特别地,它与CF垂直。

4、因此,EF和CD垂直。

二、平面的法线和平面内的任意直线垂直接下来介绍的是平面的法线和平面内的任意直线垂直的证明方法。

具体来说,如果有一个平面P和一条直线L在平面P内,且L与P垂直,则L与P的法线垂直。

证明如下:1、连接L和P的交点O。

2、在平面P内任意取一点A,连接OA。

3、由于L与P垂直,所以OA与L垂直,即OA和L在点O处垂直。

4、由于P的法线垂直于P,所以它与P内任意一条直线都垂直,特别地,它与OA垂直。

5、因此,L与P的法线垂直。

三、垂线段和平面的法线垂直最后介绍的是垂线段和平面的法线垂直的证明方法。

具体来说,如果有一条垂直于平面P的直线L,且L与平面P上的一条线段AB相交于点O,则OA和OB的中垂线与P的法线垂直。

证明如下:1、连接OA和OB,得到线段AB的中垂线CD。

2、连接CO和DO,得到平面COD。

3、由于L垂直于平面P,所以L和P的法线在平面P内的交点O 处垂直。

4、由于OA和OB在点O处相交,所以它们的中垂线CD也经过点O。

5、因此,CD与P的法线垂直。

以上就是三种线线垂直的证明方法,它们都非常简单易懂,但是能够解决很多实际问题。

在实际应用中,我们可以根据具体情况选择不同的证明方法,以便更好地解决问题。

立体几何证垂直的方法

立体几何证垂直的方法

立体几何证垂直的方法垂直是立体几何中一个非常重要的概念,常常用于判断两个直线、两个平面或者一个直线和一个平面之间的关系。

本文将介绍几种常见的方法来证明两个线段、两个直线、两个平面或者一个线段和一个平面之间的垂直关系。

1. 定义证明法:垂直可以通过定义来证明。

垂直的定义是:两条直线相交,互相垂直。

这个定义可以用来判断两条直线之间是否垂直。

如果已知两条直线相交,并且相交角度为90度,则可以得出两条直线垂直的结论。

2. 重叠线证明法:当两个线段的一个端点重合,并且两个线段的另一个端点也重合时,可以得出这两个线段垂直的结论。

这是因为,当两个线段垂直时,它们的端点将构成一个直角,而直角的两条边重合时,会得到一个重叠的线段,从而可以推出两个线段垂直。

3. 垂直性质证明法:根据垂直性质来证明两个直线或者平面之间的垂直关系。

例如,两个直线垂直的性质之一是:直线的斜率相乘为-1。

如果已知两个直线的斜率,且斜率的乘积等于-1,则可以得出这两条直线垂直的结论。

类似地,两个平面之间垂直的性质之一是:平面上两个垂直的直线在平面上的投影线也垂直。

如果已知两个平面上的直线的投影线垂直,则可以得出这两个平面垂直的结论。

4. 垂直线性等式证明法:当两个线段、直线或平面上的点坐标可以满足垂直线性等式时,可以证明它们之间的垂直关系。

例如,对于两个直线L1:y = a1x + b1和L2:y = a2x + b2,如果它们的斜率满足a1 * a2 = -1,则可以得出这两条直线垂直的结论。

5. 三角形几何证明法:在三角形中,垂直性质也可以用来证明两个线段或直线之间的垂直关系。

例如,如果一条线段平分了一个角,并且与另一条线段垂直相交,那么可以得出这两个线段垂直的结论。

同样地,如果一个直角三角形中的两条边互相垂直,那么可以得出这两条边垂直的结论。

总结起来,证明垂直关系的方法有很多种,包括基于定义、重叠线、垂直性质、线性等式和三角形几何的方法。

立体几何证垂直的方法

立体几何证垂直的方法

立体几何证垂直的方法
证明两条线段垂直的方法通常有以下几种:
1. 垂直线段的定义:根据垂直线段的定义,如果两条线段的斜率乘积为-1,则它们是垂直的。

可以通过计算两条线段的斜率并判断它们的乘积是否为-1。

2. 垂直平分线:如果一条线段上的点到另一条线段的距离都相等且垂直于另一条线段,则它们是垂直的。

可以通过计算两条线段上的某个点到另一条线段的距离,并判断这些距离是否相等。

3. 垂直平行线:如果两条平行线段与第三条互相垂直,则它们本身也是垂直的。

可以通过找到与两条平行线段都垂直的第三条线段,并判断它们之间的关系。

4. 正交投影:如果两条线段在平面上的正交投影相交,则它们是垂直的。

可以将两条线段的正交投影投影到平面上,并判断它们是否相交。

以上是一些常见的证明两条线段垂直的方法,具体证明方法还要根据具体的题目和条件来进行选择和应用。

立体几何中平行与垂直证明方法归纳

立体几何中平行与垂直证明方法归纳

a ∥
a∥
α
a a
β
3) 利用定义:直线在平面外,且直线与平面没有公共点
(三)平面与平面平行的证明
常见证明方法:
1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
3
a ⊂ b ⊂
a ∩b P
a // b //
⇒ /性:如正方体的上下底面互相平行等
一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面。
a
b
ab
A
l
l a l b
l
b
Aa
4) 利用平面与平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
5
l
a
a
a l
l
5) 利用常用结论:
① 一条直线平行于一个平面的一条垂线,则该直线也垂直于此平面。
在同一个平面内,垂直于同一条直线的两条直线互相平行。
8) 利用定义:在同一个平面内且两条直线没有公共点
(二)直线与平面平行的证明
1) 利用直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
a
a
b a∥
a∥b
b
2) 利用平面与平面平行的性质推论:
两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。
a b ba
b a
α
4) 利用平面与平面垂直的性质推论:
如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这
两条直线互相垂直。
4
l a b al
bl
ab
β b

高中立体几何证明线垂直的方法(学生)

高中立体几何证明线垂直的方法(学生)

PE D CB A高中立体几何证明线线垂直方法(1)通过“平移”,根据若αα平面则平面且⊥⊥a b b a ,,// 1.在四棱锥P —ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=21DC ,中点为PD E 。

求证:AE ⊥平面PDC 。

2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD ,∠PDA=45°,点E 为棱AB 的中点. 求证:平面PCE ⊥平面PCD ;3。

如图所示,在四棱锥P ABCD -中,AB PAD ⊥平面,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点,且12DF AB =,PH 为PAD ∆中AD 边上的高. (1)证明:PH ABCD ⊥平面;(2)若121PH AD FC ===,,,求三棱锥E BCF -的体积;(3)证明:EF PAB ⊥平面。

EF BA C DP(第2题图)4。

如图所示, 四棱锥P -ABCD 底面是直角梯形,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD 。

证明: BE PDC ⊥平面;5。

在三棱锥P ABC -中,2AC BC ==,90ACB ∠=,AP BP AB ==,PC AC ⊥.(Ⅰ)求证:PC AB ⊥;(Ⅱ)求二面角B AP C --的大小;6。

如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 º 证明:AB ⊥PC(3)利用勾股定理7。

如图,四棱锥P ABCD -的底面是边长为1的正方形,,1, 2.PA CD PA PD ⊥==求证:PA ⊥平面ABCD ;_ D_ C_ B_ A_ PACBPCADBOE8。

如图1,在直角梯形ABCD 中,CD AB //,AD AB ⊥,且121===CD AD AB .现以AD 为一边向形外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使平面ADEF 与平面ABCD 垂直,M 为ED 的中点,如图2.(1)求证:AM ∥平面BEC ; (2)求证:⊥BC 平面BDE ;图1图29。

立体几何(垂直关系的证明)

立体几何(垂直关系的证明)

立体几何(垂直关系的证明)1. 什么是垂直关系垂直关系是指两条线、两个平面或者一条线和一个平面之间的互相垂直的关系。

在立体几何中,垂直关系是非常重要的,它涉及到角度、边长和面积等概念。

2. 垂直关系的证明方法证明两条线或者一个线和一个平面垂直可以采用不同的方法,以下是一些常见的证明方法:2.1. 利用垂直的性质证明当两个线段的斜率乘积为-1时,这两个线段就互相垂直。

这是一个常用的方法来证明两条直线的垂直关系。

例如,如果两条直线的斜率分别为m1和m2,并且m1 * m2 = -1,则可以证明这两条直线是垂直的。

2.2. 利用垂直线段的性质证明对于一个平面内的几条垂直线段来说,其平分线是相交于一个点,并且平分线与原始线段之间的夹角为90度。

这可以用来证明两条线段是垂直的。

2.3. 利用垂直平分线的性质证明对于一个多边形来说,如果一条线段能够将另外两条线段的中点连接起来并且垂直于它们,那么这条线段就是垂直于这两条线段的平分线。

这个原理可以用来证明线段和平面的垂直关系。

2.4. 利用垂直距离的性质证明如果一个点到一直线的距离为0,并且这个点在另外一条直线上,那么这两条直线是垂直的。

这个方法可以用来证明直线和平面的垂直关系。

3. 如何选择合适的证明方法在选择合适的证明方法时,需要根据具体问题的要求和条件进行判断。

通常来说,可以根据已知的条件和所需证明的结论来选择并结合不同的证明方法。

4. 总结在立体几何中,垂直关系的证明是一个重要的内容。

通过掌握不同的证明方法,我们可以更好地理解和应用垂直关系,进一步深入研究立体几何的问题。

高三数学一轮复习立体几何中垂直的证明讲义

高三数学一轮复习立体几何中垂直的证明讲义

立体几何中垂直证明一、 “垂直关系”常见证明方法1直线与直线垂直的证明1.1 利用某些平面图形的特性:如直角三角形的两条直角边互相垂直,等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂直等。

1.2 看夹角:两条共(异)面直线的夹角为90°,则两直线互相垂直。

1.3 利用直线与平面垂直的性质:如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。

1.4 利用平面与平面垂直的性质推论:如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这两条直线互相垂直。

1.5 利用常用结论:① 如果两条直线互相平行,且其中一条直线垂直于第三条直线,则另一条直线也垂直于第三条直线。

② 如果有一条直线垂直于一个平面,另一条直线平行于此平面,那么这两条直线互相垂直。

2 直线与平面垂直的证明2.1 利用某些空间几何体的特性:如长方体侧棱垂直于底面 等2.2 看直线与平面所成的角:如果直线与平面所成的角是直角,则这条直线垂直于此平面。

2.3 利用直线与平面垂直的判定定理:bβαlb l a b a l ⊥⊥⊂⊂=⋂⊥βαβαβαba ⊥⇒ca ba ⊥∥cb ⊥⇒baαcabαα⊥⊂b a ab ⊥⇒αb αα∥b a ⊥ba ⊥⇒一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面。

2.4 利用平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

2.5 利用常用结论:① 一条直线平行于一个平面的一条垂线,则该直线也垂直于此平面。

② 两个平面平行,一直线垂直于其中一个平面,则该直线也垂直于另一个平面。

3 平面与平面垂直的证明3.1 利用某些空间几何体的特性:如长方体侧面垂直于底面等3.2 看二面角:两个平面相交,如果它们所成的二面角是直二面角(即平面角是直角的二面角),就说这连个平面互相垂直。

3.3 利用平面与平面垂直的判定定理一个平面过另一个平面的垂线,则这两个平面垂直。

立体几何垂直证明

立体几何垂直证明

立体几何垂直证明方法技巧类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:掌握几种模型①等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④ 直角梯形⑤利用相似或全等证明直角。

例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心, E 为1CC 中点,求证: (1) 1A O OE ⊥ (2) 1A O BDE ⊥平面(2) 异面垂直(利用线面垂直来证明)例1 在正四面体ABCD 中, 求证:AC BD ⊥变式1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知ο60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△DCF分别沿,DE DF折起,使,A C两点重合于'A.求证:'A D EF⊥;变式3如图,在三棱锥P ABC-中,⊿PAB是等边三角形,∠P AC=∠PBC=90 º证明:AB⊥PC类型二:直线与平面垂直证明BE'ADFG方法○1利用线面垂直的判断定理例:在正方体1111ABCD A B C D -中,,求证:11AC BDC ⊥平面变式1:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;变式2:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的P中点,2,CA CB CD BD AB AD ====== 求证:AO ⊥平面BCD ;变式3 如图,在底面为直角梯形的四棱锥P ABCD -中,(1) 求证://AF 平面BCE ;(2) 求证:平面BCE ⊥平面CDE ;例2 如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,FADPEE是PC的中点.⊥;(2)证明PD⊥平面ABE;(1)证明CD AE变式1已知直四棱柱ABCD—A′B′C′D′的底面是菱形,∠60ABC,E、F分别是棱CC′与BB′上的点,=︒且EC=BC=2FB=2.(1)求证:平面AEF⊥平面AA′C′C;类型三:平面与平面垂直证明1.AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上任意一点,AN⊥PM,点N为垂足,求证:平面PAM⊥平面PBM2.如图,在空间四边形ABCD中,AB=BC,CD=DA,E,F,G分别为CD,DA和对角线AC的中点。

高中数学必修2立体几何常考题型:平面与平面垂直的判定

高中数学必修2立体几何常考题型:平面与平面垂直的判定

高中数学必修2立体几何常考题型:平面与平面垂直的判定总的来说,本文介绍了平面与平面垂直的基本概念和判定方法,并通过例题演示了具体应用。

在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD长度为a,PA和PC长度均为2a。

需要证明以下三点:(1) PD垂直于平面ABCD;(2) 平面PAC垂直于平面PBD;证明:(1) 由勾股定理可得PC的平方等于PD的平方加上DC的平方,因此PD垂直于DC。

同理可证PD垂直于AD。

又因为AD和DC都在平面ABCD内,所以PD垂直于平面ABCD。

(2) 由(1)可知PD垂直于平面ABCD,而AC在平面ABCD内,因此PD垂直于AC。

又因为ABCD是正方形,所以AC垂直于BD。

又因为BD在平面PBD内,而AC在平面PAC内,所以平面PAC垂直于平面PBD。

(3) 由(1)可知PD垂直于BC,而BC垂直于DC,且PD和DC在平面PDC内相交,因此BC垂直于平面PDC。

因为PC是平面PDC的子集,所以BC垂直于PC,从而得到∠PCD是二面角P-BC-D的平面角。

在直角三角形PDC中,因为PD=DC=a,所以∠PCD=45°,也就是二面角P-BC-D是45°的二面角。

这道题涉及到线面垂直、面面垂直和二面角的求解方法等多个知识点,解决这类问题的关键是进行转化:线线垂直→线面垂直→面面垂直。

在正三角形ABC中,EC垂直于平面ABC,BD平行于CE,且CE=CA=2BD,M是EA的中点。

需要证明:(1) DE=DA;(2) 平面BDM垂直于平面ECA;(3) 平面DEA垂直于平面ECA。

证明:(1) 设BD=a,作DF平行于BC与CE相交于F,则CF=DB=a。

因为CE垂直于平面ABC,所以BC垂直于CF,DF垂直于EC,因此DE=EF²+DF²=5a。

又因为DB垂直于平面ABC,所以DA=DB²+AB²=5a,因此DE=DA。

立体几何中平行与垂直证明方法归纳

立体几何中平行与垂直证明方法归纳

1) 利用直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
a
a
b a∥
a∥b
b
2) 利用平面与平面平行的性质推论:
两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。
a ∥
a∥
α
a a
β
3) 利用定义:直线在平面外,且直线与平面没有公共点
l a b al
bl
ab
β b
l
α
a
5) 利用常用结论:
① 如果两条直线互相平行,且其中一条直线垂直于第三条直线,则另
一条直线也垂直于第三条直线。
a∥b ac bc
c
a
b
② 如果有一条直线垂直于一个平面,另一条直线平行于此平面,那么
b
a
这两条直线互相垂直。
a
(二) b∥
ab
α
直线与平面垂直的证明
1) 利用某些空间几何体的特性:如长方体侧棱垂直于底面等
2) 看直线与平面所成的角:如果直线与平面所成的角是直角,则这条直线垂
直于此平面。
3) 利用直线与平面垂直的判定定理:
一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面。
a
b
ab
A
l
l a l b
4) 利用平面与平面垂直的性质定理:
(三)平面与平面平行的证明
常见证明方法: 1) 利用平面与平面平行的判定定理:
一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
a ⊂ b ⊂
a ∩b P
a // b //
⇒ //
பைடு நூலகம்

高中数学必修二《立体几何垂直证明题常见模型及方法》优秀教学设计

高中数学必修二《立体几何垂直证明题常见模型及方法》优秀教学设计

立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。

垂直转化:线线垂直 线面垂直 面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直○1 等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④1:1:2 的直角梯形中 ⑤ 利用相似或全等证明直角。

例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为的正方形中,点是的中点,点是的中点,将△AED,△DCF 分别沿折起,使两点重合于.求证:;变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形, ∠P AC =∠PBC =90 º证明:AB ⊥PC类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O BDE ⊥平面变式1:在正方体1111ABCD A B C D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;2ABCD E AB F BC ,DE DF ,A C 'A 'A D EF ⊥变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2, 2.CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,23AB =,6BC =()1求证:BD ⊥平面PAC○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。

立体几何大题中的垂直证明方法 (1)

立体几何大题中的垂直证明方法 (1)
3
线面垂直的性质定理: 如果两条直线垂直于同一个平面,那么这两条直线平行.
1
2
• 三垂线定理&其逆定理 • 三垂线定理: • 平面内的一条直线,如果和穿过这也和这条斜线垂直. • 逆定理: • 如果平面内一条直线和穿过该平面的一条斜线垂直,
那么这条直线也垂直于这条斜线在平面内的射影. • 证明异面垂直.
立体几何大题中的垂直证明方法
一.线线垂直 如果两条直线相交于一点或经过平移后相交于一点, 并且交角为直角,则称这两条直线互相垂直. 垂直有相交垂直和异面垂直.
二.线面垂直
定义:如果一条直线和一个平面相交于点O,并且和这 个平面内过交点的任何直线都垂直,则称这条直线与 这个平面互相垂直.
这条直线叫做平面的垂线,这个平面叫做直线的垂面, 交点叫垂足.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。

垂直转化:线线垂直线面垂直面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1)共面垂直:实际上是平面内的两条直线的垂直(只需要同学们掌握以下几种模型)○1等腰(等边)三角形中的中线○2菱形(正方形)的对角线互相垂直○3勾股定理中的三角形○4 1:1:2 的直角梯形中○5利用相似或全等证明直角。

例:在正方体1111ABCDA B C D 中,O 为底面ABCD 的中心,E 为1CC ,求证:1A OOE(2)异面垂直(利用线面垂直来证明,高考中的意图)例1 在正四面体ABCD 中,求证AC BD变式 1 如图,在四棱锥ABCD P 中,底面A B C D是矩形,已知60,22,2,2,3PABPD PA ADAB .证明:AD PB ;变式 2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A .求证:'A DEF;变式3如图,在三棱锥P ABC 中,⊿PAB 是等边三角形,∠PAC =∠PBC =90 o 证明:AB ⊥PC类型二:线面垂直证明方法○1利用线面垂直的判断定理例2:在正方体1111ABCDA B C D 中,O 为底面ABCD 的中心,E 为1CC ,求证:1A OBDE平面变式1:在正方体1111ABCD A B C D 中,,求证:11AC BDC 平面变式2:如图:直三棱柱ABC -A 1B 1C 1中,AC =BC =AA 1=2,∠ACB =90.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,BE'ADFGPCBADE2, 2.CA CB CD BD AB AD 求证:AO平面BCD ;变式 4 如图,在底面为直角梯形的四棱锥P ABCD 中,AD BC ∥,90ABC°,PA平面ABCD .3PA,2AD,23AB,6BC1求证:BD平面PAC○2利用面面垂直的性质定理例3:在三棱锥P-ABC 中,PA ABC 底面,PACPBC 面面,BC PAC 求证:面。

方法点拨:此种情形,条件中含有面面垂直。

变式1, 在四棱锥PABCD ,底面ABCD是正方形,侧面PAB 是等腰三角形,且PAB ABCD 面底面,求证:BC PAB面变式2:类型3:面面垂直的证明。

(本质上是证明线面垂直)例1 如图,已知AB平面ACD ,DE平面ACD ,△ACD 为等边三角形,2AD DE AB ,F 为CD 的中点.(1) 求证://AF 平面BCE ;(2) 求证:平面BCE平面CDE ;例 2 如图,在四棱锥PA B C 中,PA 底面A B C D,60AB AD ACCD ABC ,,°,PA ABBC ,E 是PC 的中点.(1)证明CDAE ;(2)证明PD平面ABE ;变式1已知直四棱柱ABCD —A ′B ′C ′D ′的底面是菱形,60ABC ,E 、F 分别是棱CC ′与BB ′上的点,且EC=BC =2FB =2.(1)求证:平面AEF⊥平面AA ′C ′C ;举一反三ABCDEFABCDPE1.设M 表示平面,a 、b 表示直线,给出下列四个命题:①M b Mab a //②ba MbM a //③baM a b ∥M ④baM a //b ⊥M .其中正确的命题是 ( )A.①②B.①②③ C.②③④ D.①②④2.下列命题中正确的是( )A.若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面B.若一条直线垂直于一个平面内的无数条直线,则这条直线垂直于这个平面C.若一条直线平行于一个平面,则垂直于这个平面的直线必定垂直于这条直线D.若一条直线垂直于一个平面,则垂直于这条直线的另一条直线必垂直于这个平面3.如图所示,在正方形ABCD 中,E 、F 分别是AB 、BC 的中点.现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .那么,在四面体P —DEF中,必有 ( )A.DP ⊥平面PEFB.DM ⊥平面PEFC.PM ⊥平面DEFD.PF ⊥平面DEF 4.设a 、b 是异面直线,下列命题正确的是( )A.过不在a 、b 上的一点P 一定可以作一条直线和a 、b 都相交B.过不在a 、b 上的一点P 一定可以作一个平面和a 、b 都垂直C.过a 一定可以作一个平面与b 垂直D.过a 一定可以作一个平面与b 平行5.如果直线l ,m 与平面α,β,γ满足:l =β∩γ,l ∥α,m α和m ⊥γ,那么必有( )A.α⊥γ且l ⊥mB.α⊥γ且m ∥βC.m ∥β且l ⊥mD.α∥β且α⊥γ6.AB 是圆的直径,C 是圆周上一点,PC 垂直于圆所在平面,若BC =1,AC =2,PC =1,则P到AB 的距离为 ( )A.1B.2C.552 D.5537.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直其中正确命题的个数为( )A.0B.1C.2D.38.d 是异面直线a 、b 的公垂线,平面α、β满足a ⊥α,b ⊥β,则下面正确的结论是( )A.α与β必相交且交线m ∥d 或m 与d 重合B.α与β必相交且交线m∥d 但m 与d 不重合C.α与β必相交且交线m 与d 一定不平行D.α与β不一定相交9.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题①若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m⊥α,其中真命题...的序号是 ( )第3题图A.①②③B.①②④C.②③④D.①③④10.已知直线l ⊥平面α,直线m 平面β,给出下列四个命题:①若α∥β,则l ⊥m ;②若α⊥β,则l ∥m ;③若l ∥m ,则α⊥β;④若l ⊥m ,则α∥β.其中正确的命题是 ( ) A.③与④ B.①与③ C.②与④ D.①与②二、思维激活11.如图所示,△ABC 是直角三角形,AB 是斜边,三个顶点在平面α的同侧,它们在α内的射影分别为A ′,B ′,C ′,如果△A ′B ′C ′是正三角形,且AA ′=3cm ,BB ′=5cm ,CC′=4cm ,则△A ′B ′C ′的面积是 . 12.如图所示,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD满足条件时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)13.如图所示,在三棱锥V —ABC 中,当三条侧棱VA 、VB 、VC 之间满足条件时,有VC ⊥AB .(注:填上你认为正确的一种条件即可)三、能力提高14.如图所示,三棱锥V -ABC 中,AH ⊥侧面VBC ,且H 是△VBC 的垂心,BE 是VC 边上的高. (1)求证:VC ⊥AB ;(2)若二面角E —AB —C 的大小为30°,求VC 与平面ABC 所成角的大小.15.如图所示,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点. (1)求证:MN ∥平面PAD . (2)求证:MN ⊥CD .(3)若∠PDA =45°,求证:MN ⊥平面PCD . 16.如图所示,在四棱锥P —ABCD 中,底面ABCD 是平行四边形,∠BAD =60°,AB =4,第11题图第12题图第13题图第14题图AD=2,侧棱PB=15,PD=3.(1)求证:BD⊥平面PAD.(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小.第16题图17.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.18.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.(3)求点C到平面D′MB的距离.第18题图第4课线面垂直习题解答1.A 两平行中有一条与平面垂直,则另一条也与该平面垂直,垂直于同一平面的两直线平行.2.C 由线面垂直的性质定理可知.3.A 折后DP ⊥PE ,DP ⊥PF ,PE ⊥PF .4.D 过a 上任一点作直线b ′∥b ,则a ,b ′确定的平面与直线b 平行.5.A ,m ⊥γ且m α,则必有α⊥γ,又因为l =β∩γ则有lγ,而m ⊥γ则l ⊥m ,故选 A. 6.DP 作PD ⊥AB 于D ,连CD ,则CD ⊥AB ,AB=522BCAC ,52ABBC AC CD,∴PD =55354122CDPC. 7.D 由定理及性质知三个命题均正确.8.A 显然α与β不平行.9.D 垂直于同一平面的两直线平行,两条平行线中一条与平面垂直,则另一条也与该平面垂直.10.B ∵α∥β,l ⊥α,∴l ⊥m 11.23cm 2设正三角A ′B ′C ′的边长为a .∴AC 2=a 2+1,BC 2=a 2+1,AB 2=a 2+4,又AC 2+BC 2=AB 2,∴a 2=2.S△A ′B ′C ′=23432acm 2.12.在直四棱柱A 1B 1C 1D 1—ABCD中当底面四边形ABCD满足条件AC ⊥BD (或任何能推导出这个条件的其它条件,例如ABCD 是正方形,菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).点评:本题为探索性题目,由此题开辟了填空题有探索性题的新题型,此题实质考查了三垂线定理但答案不惟一,要求思维应灵活.13.VC ⊥VA ,VC ⊥AB . 由VC ⊥VA ,VC ⊥AB 知VC ⊥平面VAB . 14.(1)证明:∵H 为△VBC 的垂心, ∴VC ⊥BE ,又AH ⊥平面VBC ,∴BE 为斜线AB 在平面VBC 上的射影,∴AB ⊥VC . (2)解:由(1)知VC ⊥AB ,VC ⊥BE ,∴VC ⊥平面ABE ,在平面ABE 上,作ED ⊥AB ,又AB ⊥VC , ∴AB ⊥面DEC .∴AB ⊥CD ,∴∠EDC 为二面角E —AB —C 的平面角,∴∠EDC =30°,∵AB ⊥平面VCD , ∴VC 在底面ABC 上的射影为CD .∴∠VCD 为VC 与底面ABC 所成角,又VC ⊥AB ,VC ⊥BE , ∴VC ⊥面ABE ,∴VC ⊥DE , ∴∠CED =90°,故∠ECD=60°,∴VC 与面ABC 所成角为60°.15.证明:(1)如图所示,取PD 的中点E ,连结AE,EN ,则有EN ∥CD ∥AB ∥AM ,EN =21CD =21AB =AM ,故AMNE 为平行四边形.∴MN ∥AE .∵AE 平面PAD ,MN 平面PAD ,∴MN ∥平面PAD . (2)∵PA ⊥平面ABCD ,∴PA ⊥AB .又AD ⊥AB ,∴AB ⊥平面PAD . ∴AB ⊥AE ,即AB ⊥MN . 又CD ∥AB ,∴MN ⊥CD .(3)∵PA ⊥平面ABCD ,∴PA ⊥AD . 又∠PDA =45°,E 为PD 的中点. ∴AE ⊥PD ,即MN ⊥PD .又MN ⊥CD ,∴MN ⊥平面PCD .16.如图(1)证:由已知AB =4,AD =2,∠BAD =60°,故BD 2=AD 2+AB 2-2AD ·AB cos60°=4+16-2×2×4×21=12.又AB 2=AD 2+BD 2,∴△ABD 是直角三角形,∠ADB =90°,即AD ⊥BD .在△PDB 中,PD =3,PB =15,BD =12,∴PB 2=PD 2+BD 2,故得PD ⊥BD .又PD ∩AD =D ,∴BD ⊥平面PAD .(2)由BD ⊥平面PAD ,BD 平面ABCD . ∴平面PAD ⊥平面ABCD .作PE ⊥AD 于E ,又PE 平面PAD ,∴PE ⊥平面ABCD ,∴∠PDE 是PD 与底面ABCD 所成的角. ∴∠PDE =60°,∴PE =PD sin60°=23233. 作EF ⊥BC 于F ,连PF ,则PF ⊥BF ,∴∠PFE 是二面角P —BC —A 的平面角. 又EF =BD =12,在Rt △PEF 中,tan ∠PFE =433223EFPE .故二面角P —BC —A 的大小为arctan43.17.连结AC 1,∵11112263A C CC MC AC .∴Rt △ACC 1∽Rt △MC 1A 1,∴∠AC 1C =∠MA1C 1,第15题图解第16题图解∴∠A 1MC 1+∠AC 1C =∠A 1MC 1+∠MA 1C 1=90°. ∴A 1M ⊥AC 1,又ABC -A 1B 1C 1为直三棱柱,∴CC 1⊥B 1C 1,又B 1C 1⊥A 1C 1,∴B 1C 1⊥平面AC 1M . 由三垂线定理知AB 1⊥A 1M .点评:要证AB 1⊥A 1M ,因B 1C 1⊥平面AC 1,由三垂线定理可转化成证AC 1⊥A 1M ,而AC 1⊥A 1M 一定会成立.18.(1)证明:在正方形ABCD 中,∵△MPD ∽△CPB ,且MD =21BC ,∴DP ∶PB =MD ∶BC =1∶2. 又已知D ′N ∶NB =1∶2,由平行截割定理的逆定理得NP ∥DD ′,又DD ′⊥平面ABCD ,∴NP ⊥平面ABCD . (2)∵NP ∥DD ′∥CC ′,∴NP 、CC ′在同一平面内,CC ′为平面NPC 与平面CC ′D ′D 所成二面角的棱.又由CC ′⊥平面ABCD ,得CC ′⊥CD ,CC ′⊥CM ,∴∠MCD 为该二面角的平面角.在Rt △MCD 中可知∠MCD =arctan21,即为所求二面角的大小.(3)由已知棱长为a 可得,等腰△MBC 面积S 1=22a ,等腰△MBD ′面积S 2=246a ,设所求距离为h ,即为三棱锥C —D ′MB 的高.∵三棱锥D ′—BCM 体积为h S D D S 213131,∴.3621a S a S h空间中的计算_A _B _D _C _O 基础技能篇类型一:点到面的距离方法1:直接法—把点在面上的射影查出来,然后在直角三角形中计算例1:在正四面体ABCD 中,边长为a ,求点A 到面BCD 的距离。

相关文档
最新文档