PKPM振型

合集下载

PKPM参数设置教程分析

PKPM参数设置教程分析

1.1.1 水平力与整体坐标夹角(度)规范规定:《抗震规范》5.1.1条和《高规》3.3.2条规定,“一般情况下,应允许在建筑结构的两个主轴方向分别计算水平地震作用并进形抗震验算”。

程序实现:该参数为地震作用力方向或风荷载作用方向与结构整体坐标的夹角,逆时针方向为正,如地震沿着不同方向作用,结构地震反映的大小一般也不相同,那么必然存在某个角度使得结构地震反应最为剧烈,这个方向称为最不利地震作用方向,从严格意义上讲,规范中所讲的主轴是指地震沿该轴方向作用时,结构只发生沿该轴方向的侧移而不发生扭转位移的轴线,当结构不规则时,地震作用的主轴方向就不一定时0°或90°,如最大地震力方向与主轴夹角较大时,可以输入该角度考虑最不利作用方向的影响。

操作要点:由于设计人员事先很难估算结构最不利地震作用方向,因此可以先取初始值0°,SATWE计算后在计算书WZQ.OUT中输出结构最不利方向角,如果这个角度与主轴夹角大于±15°,应将该角度重新计算,以考虑最不利地震作用方向的影响。

注意事项:(1)为避免填入该角度后图形旋转带来的不便,也可以将最不利地震作用方向在多方向水平地震参数中输入。

(2)本参数不是规范要求的,供设计人员选用。

(3)本参数也可以考虑最大风力作用的方向,但需要用户自行设定多个角度进行计算,比较多次计算结构取最不利值。

1.1.2 混凝土容重(kN/m3)规范规定:参看《荷载规范》附录A常用材料和构件的自重表。

容重是用来计算梁、柱、墙、板重力荷载用的。

操作要点:初始值钢筋混凝土容重为25.0 kN/m3,这适合于一般工程情况,若采用轻只混凝土或需要考虑构件装饰层重量时,应按实际情况修改此参数。

注意事项:如果结构分析是不想考虑混凝土构件自重荷载,可以填0。

1.1.3 对所有楼层强制采用刚性楼板假定规范规定:《高规》5.1.5条规定,“进行高层建筑内力与位移计算时,可假定楼板在其自身平面内均无限刚性”程序实现:选择该项后,程序可以将用户设定的弹性楼板强制为刚性楼板参与计算。

对pkpm参数设置的疑问解答

对pkpm参数设置的疑问解答

一、一般情况下模拟施工加载取模拟施工加载3比较符合逐层施工的实际情况。

模拟施工加载2则可以更合理的给基础传递荷载。

复杂结构设计人员可以指定施工顺序。

二、修正后的大体风压一般就是荷载规范规定的大体风压,对于沿海和强风地带对风荷载敏感的建筑可以在此基础上放大10%~20%,门刚中则规定按放大5%采用。

3、对于高度大于150M的高层混凝土建筑才要验算风振舒适度。

结构阻尼比取0.01~0.02,程序缺省0.02。

4、侧刚计算方式:一种简化计算法,计算速度快,但应用范围有限,当概念有弹性楼板或有不与楼板相连的构件时(如错层结构、空旷的工业厂房、体育馆等)用此法会有必然误差;总刚计算方式:精度高,适用范围广,计算量大。

对于没有概念弹性楼板且没有不与楼板相连构件的工程,两种方式结果一样。

(以下转贴)“刚性楼板”的适用范围:绝大多数结构只要楼板没有特别的减弱、不持续,都可采用这个假定。

相关注意:由于“刚性楼板假定”没有考虑板面外的刚度,所以可以通过“梁刚度放大系数”来提高梁面外弯曲刚度,以弥补面外刚度的不足。

一样原因,也可通过“梁扭矩折减系数”来适当折减梁的设计扭矩。

“弹性板6 ”的适用范围:所有的工程都可采用。

相关注意:由于已经考虑楼板的面内、面外刚度,则梁刚度不宜放大、梁扭矩不宜折减。

板的面外刚度将承担一部份梁柱的面外弯矩,而使梁柱配筋减少。

此时结构分析时间大大增加。

“弹性板3 ”的适用范围:需要保证楼板平面内刚度超级大,外刚度承担荷载,不使梁柱配筋减少,以保证梁柱设计的安全度。

“如厚板转换层中的厚板,板厚达到1m以上。

而面外刚度则需要按实际考虑。

相关注意:一般在厚板转换层不设梁,或用等代梁,并注意上下部轴线差别产生的传力问题。

“弹性膜”的适用范围:仅适用于梁柱结构,设计时不使楼板面相关注意:不能用于“板柱结构”。

设计时可以进行梁的刚度放大和扭矩折减。

(弹性楼板6:考虑楼板的面内刚度和面外刚度,采用壳单元.原则上适用于所有结构,但采用弹性楼板6计算时,楼板和梁一路承担面外弯矩,计算结果中梁的配筋小了,而楼板承担面外弯矩,计算的配筋又未考虑.另外计算工作量大.因此该模型仅适用于板柱结构;弹性楼板3:考虑楼板的面内刚度无穷大,并考虑楼板的面外刚度.适用于厚板转换层;弹性膜:考虑面内刚度,面外刚度为零.采用膜剪切单元.弹性板由用户人工指定,但对于斜屋面,若是没有指定,程序会缺省为弹性膜,用户可以指定为弹性板6或弹性膜,不允许概念为刚性板或弹性板3)五、按照高规(JGJ 3-2021)第3.7.3条注,抗震设计时SATWE计算结果中楼层层间最大位移与层高之比的限值可不考虑偶然偏心的影响。

PKPM参数调整

PKPM参数调整

1、抗震等级的确定:钢筋混凝土房屋应根烈度、结构类型和房屋高度的不同分别按〈抗规〉6.1.2条或〈高规〉4.8条确定本工程的抗震等级。

但需注意以下几点:(1)上述抗震等级是“丙”类建筑,如果是“甲”、“乙”、“丁”类建筑则需按规范要求对抗震等级进行调整。

(2)接近或等于分界高度时,应结合房屋不规则程度及场地、地基条件慎重确定抗震等级。

(3)当转换层〉=3及以上时,其框支柱、剪力墙底部加强部的抗震墙等级宜按〈抗规〉6.1.2条或〈高规〉4.8条查的抗震等级提高一级采用,已为特一级时可不调整。

(4)短肢剪力墙结构的抗震等级也应按〈抗规〉6.1.2条或〈高规〉4.8条查的抗震等级提高一级采用。

但注意对多层短肢剪力墙结构可不提高。

(5)注意:钢结构、砌体结没有抗震等级。

计算时可选“5”,不考虑抗震构造措施。

2、振型组合数的选取:在计算地震力时,振型个数的选取应是振型参与质量要达到总质量90%以上所需要振型数。

但要注意以下几点:(1)振型个数不能超过结构固有的振型总数,因一个楼层最多只有三个有效动力自由度,所以一个楼层也就最多可选3个振型。

如果所选振型个数多于结构固有的振型总数,则会造成地震力计算异常。

(2)对于进行耦联计算的结构,所选振型数应大于9个,多塔结构应更多些,但要注意应是3的倍数。

(3)对于一个结构所选振型的多少,还必需满足有效质量系列化大于90%。

在WDISP.OUT文件里查看。

3、主振型的判断;(1)对于刚度均匀的结构,在考虑扭转耦联计算时,一般来说前两个或前几个振型为其主振型。

(2)对于刚度不均匀的付杂结构,上述规律不一定存在,此时应注意查看SATWE 文本文件“周期、振型、地震力”WZQ.OUT。

程序输出结果中,给出了输出各振型的基底剪力总值,据此信息可以判断出那个振型是X向或Y向的主振型,同时可以了解没个振型对基底剪力的贡献大小。

4、地震力、风力的作用方向:结构的参考坐标系建立以后,所求的地震力、风力总是沿着坐标系的方向作用。

振型数与地振反应计算方法的确定

振型数与地振反应计算方法的确定

振型数与地振反应计算方法的确定
地震反应计算方法在pkpm软件中有侧刚法和总刚法两种选择,如何选择这也是一个pkpm 使用者必须知道的重要一环。

一、侧刚法用于结构每层楼板整体无限刚或分块无限刚,分块无限刚是指多塔结构中的分块无限刚。

侧刚法对应的振型数为全楼每层刚性楼板数之和*3。

二、总刚法用于楼层中存在独立于刚性楼板的节点的结构,并且它是一种通用的结构计算方法,可用于任何结构。

其振型数为全楼刚性楼板数*3+全楼弹性节点数*2
三、以上计算出的振型数不一定是振型数选取时要填入的那个数,但在确定了计算方法后可据以上算出的振型数来选择,最起码不得大于以上计算值,振型数量的确定要求质量参与系数赿大赿好,且规范要求不得小于90%.是不是振型数取的赿多质量参与系数就赿大呢?不是的。

取过多了,受高振型的影响,反而参与系数向小的方向改变,所以,要经几次试算确定合理的振理数,使质量参与系数赿高赿好。

四、总刚法是一种用于任何结构的算法,但对计算机资源要求高。

在自已确信满足侧刚法要求的情况下还是用侧刚法,两者计算结果基本一致。

如果你对地震计算方法不能确有把握地选择时那用总刚法吧,不会有错,但你要有一台配置比较高的微机哟。

pkpm计算振型个数和周期折减系数(精)

pkpm计算振型个数和周期折减系数(精)

pkpm计算振型个数和周期折减系数pkpm计算振型个数和周期折减系数1. 计算振型数NMODE)《抗规》5.2.2条2款,5.2.3条2款;《高规》5.1.13条2款;[耦联取3的倍数,且≤3倍层数,[非耦联取≤层数,参与计算振型的[有效质量系数应≥90%双向地震有扭转,单向地震也有扭转。

结构上某质点(层)有三个自由度:x,y,t,t就是转角反应,不同的是,当不计算扭转偶联的时候,就不考虑转角反应t。

双向地震、单向地震都不考虑扭转偶联的话,就是这样。

就是说,这个时候对于结构,不考虑其转角反应。

结构上的层质点只有2个自由度,要么是x, 要么是y。

最后求出来的地震效应也只是一个方向的反应,要么是x, 要么是y。

程序当然两个方向都算。

都是分开计算的,单独计算的。

当考虑扭转偶联的时候,结构和其上层质点就有三个自由度――不管是单向地震还是双向地震。

计算x方向的地震效应的时候,要考虑其它两个方向效应对x方向效应的影响,而不是只单独考虑x方向效应。

对y,t两个方向也同理。

扭转偶联的时候,单向地震的扭转效应,是考虑振型之间的组合效应。

双向地震扭转效应,是按x、y两个方向的方向组合,见抗规5.2.3-8式。

这个方向组合有一个0.85的系数,sap2k里面是没有这样的方向组合的,只有原始的SRSS组合,即系数是1.0。

etabs中文版里有修正的SRSS组合,是按中国规范的(其实仍是参考美日规范条文得来的)。

老版pkpm有偶联这个选项,设计者可选择偶联也可不选择。

新版没有这个选项,就是说,任何时候都是默认考虑偶联的。

因为考虑扭转效应,就必须进行偶联计算。

所以“扭转偶联效应”就是指“扭转效应”。

当不考虑偶联计算的时候,程序就没法进行扭转效应的分析,而只能人工对内力进行调整(或在程序里嵌套人工内力调整的步骤)。

2.振型组合方法:(CQC耦联;SRSS非耦联)CQC:《抗规》3.4.3条,5.2.3条;《高规》3.3.1条2款;一般工程选[耦联,规则结构用非耦联补充验算3.周期折减系数TC)框架:砖填充墙多0.6-0.7,砖填充墙少0.7-0.8;框剪:砖填充墙多0.7-0.8,砖填充墙少0.8-0.9;剪力墙 1.0;《高规》3.3.16条(强条),3.3.17条计算振型个数如何取?计算震型个数:这个参数需要根据工程的实际情况来选择。

pkpm中楼板自振频率计算_概述及解释说明

pkpm中楼板自振频率计算_概述及解释说明

pkpm中楼板自振频率计算概述及解释说明1. 引言1.1 概述本文旨在介绍与解释PKPM(Putong Keji Pingmian)中楼板自振频率计算的方法和步骤。

楼板的自振频率是建筑结构设计中一个重要的参数,它反映了楼板在受到外部激励下发生共振的能力。

通过准确计算楼板的自振频率,可以帮助工程师评估结构的稳定性和安全性,并合理设计相关材料和结构。

1.2 文章结构本文主要分为五个部分进行阐述。

首先,在引言部分,我们将对文章进行概述,明确研究目标及整体架构。

其次,在“PKPM中楼板自振频率计算”部分,将对PKPM软件进行简单介绍,并详细解释了楼板自振频率的概念。

然后,在“自振频率计算步骤与示例说明”部分,将逐步阐明计算自振频率所需执行的步骤,并附上实例说明以便读者更好地理解。

其次,在“结果分析与讨论”部分,我们将对影响自振频率的因素进行深入探讨,并通过结果对比与验证来评估模型的准确性。

最后,在“结论与展望”部分,将总结本文的重要发现,并提出对未来研究方向的展望和建议。

1.3 目的本文旨在全面介绍PKPM中楼板自振频率计算的方法和步骤,帮助读者深入理解该领域的相关知识,并为实际工程案例提供解决方案。

通过阐述自振频率计算及其影响因素,我们希望能够加深读者对于楼板设计稳定性与安全性评估的认识,进一步提高工程设计水平。

2. PKPM中楼板自振频率计算:2.1 PKPM简介:PKPM(混凝土楼盖设计软件)是中国建筑行业广泛使用的一种结构设计软件,它可以用于分析和设计各种楼板结构。

在PKPM中,计算楼板的自振频率是评估楼板整体性能和抗震性能的重要指标之一。

2.2 楼板自振频率概念解释:楼板自振频率指的是当给定一定边界条件下,楼板在垂直方向上固有的振动频率。

它与楼板结构的刚度和质量有关,通常以Hz(赫兹)为单位表示。

2.3 自振频率计算方法:PKPM中使用了简化计算方法来估算楼板的自振频率。

这个计算过程基于以下两个主要步骤:第一步,根据实际情况选择合适的单元类型和模型参数。

建筑结构设计中PKPM软件的运用及注意事项

建筑结构设计中PKPM软件的运用及注意事项

建筑结构设计中PKPM软件的运用及注意事项【摘要】PKPM系列软件是中国建筑科学研究院研发的建筑结构设计软件,包括建筑、结构、特种结构、设备、概预算五个方面的内容。

应用范围全面, 功能强大, 自动化程度高, 是众多建筑设计软件中最权威的设计软件之一。

其中尤以结构设计软件最受设计人员的青睐, 成为结构设计人员不可或缺的重要工具。

本文笔者主要对PMCAD 软件的运用及应注意到的问题进行简要的分析。

【关键词】结构设计;PKPM软件;注意事项;一、PKPM软件在建筑结构设计中的运用(一)结构计算振型数的确定采用振型分解反应谱法进行结构水平地震作用计算时,《抗规》第5.2.2条规定:不进行扭转耦联计算的结构, 确定水平地震作用标准值的效应,可只取前2-3个振型, 当基本自振周期大于1.5s或房屋高宽比大于5时,振型个数应适当增加。

《高层建筑混凝土结构技术规程》(以下简称《高规》)第3.3.10条规定: 对于不考虑扭转耦联振动影响的结构,结构计算振型数规则结构可取3;当建筑较高、结构沿竖向刚度不均匀时,可取5-6。

上述规范的条文说明均要求振型个数一般可以取振型参与质量达到总质量90%所需的振型数。

《高规》第5.1.13条规定:B级高度的高层建筑结构和复杂高层建筑结构抗震计算时,考虑平扭耦联计算结构的扭转效应,振型数不应小于15;对多塔结构的振型数不应小于塔楼数的9倍,且计算振型数应使振型参与质量不小于总质量的90%。

TAT 在TAT-4.out文件、SATWE在WZQ.out文件PMSAP在工程名TB.RPT文件中查看X,Y向的有效质量系数。

我们都知道,结构计算振型数增加, 水平地震作用效应增大,即内力和变形增大;振型数如取少了, 后续振型产生的地震作用效应未能计入, 导致计算结果不安全, 所以,振型数要尽量取得多。

但对大型结构, 过多的振型数,导致运算时间过长, 并对计算机的内存也要求大, 而最后的那些高振型对结构地震作用贡献也不大,因此,也不必所有的振型都计算, 当有效质量系数超过0.9,就意味着计算振型数够了;如果小于0.9,说明后续振型产生的地震作用效应不能忽略, 应增加振型数重算。

PKPM参数设置(个人总结)

PKPM参数设置(个人总结)

一、PMCAD中设计参数1、考虑结构设计使用年限的荷载调整系数,【高规5.6.1】设计使用年限为50年时取1.0,设计使用年限为100年时取1.1。

2、框架梁端负弯矩条幅系数,【高规5.2.3】在竖向荷载作用下,可考虑框架梁端塑性变形内力重分布对梁端负弯矩乘以调幅系数进行调幅,并应符合下列规定:装配整体式框架梁端负弯矩调幅系数可取为0.7~0.8,现浇框架梁端负弯矩调幅系数可取为0.8~0.9(一般取为0.85),且调幅后的跨中弯矩不应小于按简支计算的跨中弯矩的1/2。

3、保护层厚度,【砼规8.2.1】中有详细规定(新规范保护层厚度指以最外层钢筋的外边缘计算混凝土的保护层厚度)。

4、框架的抗震等级,【抗规6.1.2】中有详细规定(表6.1.2中确定的房屋的抗震等级为丙类建筑的抗震等级,甲、乙类建筑应提高一度查表6.1.2确定其抗震等级,但抗震设防烈度为9度时,乙类建筑的抗震等级应按特一级采用,甲类建筑应采取更有效的抗震措施,丁类建筑允许降低一度采取抗震措施,但已为6度时不应再降低)。

5、抗震构造措施和抗震等级,【抗规3.3.2】建筑场地为1类时,对甲、乙类建筑应允许仍按本地区抗震设防烈度的要求采取抗震构造措施,对丙类建筑应允许按本地区抗震设防烈度降低一度的要求采取抗震构造措施,但抗震设防烈度为6度时仍应按本地区抗震设防烈度的要求采取抗震构造措施。

(1类场地时,丁类建筑抗震构造措施也可降低一度同丙类;2类场地时,甲、乙类建筑应按本地区抗震设防烈度提高一度采取抗震构造措施,丙类建筑按本地区抗震设防烈度采取抗震构造措施,丁类建筑可按本地区抗震设防烈度降低一度采取抗震构造措施;3、4类场地时,甲乙类建筑应按本地区抗震设防烈度提高两个等级采取抗震构造措施,丙类建筑7度半和8度半分别按8度9度采取抗震构造措施,丁类建筑7度和8度分别按6度7度采取抗震构造措施)。

6、计算振型个数,【高规5.1.13】计算振型数应使各振型参与质量之和不小于总质量的90%(振型数应为3的倍数,与结构的自由度有关,所选振型数不应大于结构的自由度,当结构按侧刚模型分析时,每层的刚性楼板有三个自由度,总自由度为3n,当按总刚模型分析时,每个节点有两个自由度,总自由度为2mn)。

PKPM七大指标

PKPM七大指标

PKPM七大指标PKPM(简称:Prime Keat Pro Meter)是一种适用于建筑工程的设计软件,主要用于计算和评估建筑物的结构性能和安全性。

PKPM的设计指标可以帮助工程师在设计和施工过程中进行结构计算和分析。

下面将详细介绍PKPM的七大指标。

一、承载力指标承载力指标是PKPM中最基本的指标之一,它用于评估结构材料和构件的承载能力。

承载力指标主要包括强度和刚度两个方面。

在PKPM中,承载力指标可以通过计算结构材料的抗压、抗拉、抗弯等强度参数来确定。

二、稳定性指标稳定性指标用于评估结构体系在承受外部荷载或者其他外界因素作用下的稳定性能。

稳定性指标主要包括结构的整体稳定、局部稳定和构造稳定三个方面。

PKPM通过计算结构组件的刚度、弯曲承载力以及各个部位的变形极限等来评估结构的稳定性。

三、振动指标振动指标主要用于评估结构的抗震性能和减震效果,包括结构的自振频率、阻尼比、振型等参数。

PKPM通过计算结构材料的质量、刚度以及结构的支座刚度等来确定结构的振动特性。

四、疲劳指标疲劳指标用于评估结构在反复荷载下的疲劳性能,包括结构的疲劳寿命和安全系数等。

PKPM通过计算结构材料的疲劳强度、载荷作用频率以及结构的应力分布等来进行疲劳分析。

五、耐久指标耐久指标主要用于评估结构材料和构件在长期使用和环境作用下的耐久性能,包括结构的耐久寿命和耐久性等参数。

PKPM通过计算结构材料的抗裂性、抗腐蚀性以及结构的使用年限等来进行耐久性分析。

六、安全指标安全指标用于评估结构的安全性能和可靠性,包括结构的静态安全系数、动态安全系数、可修复性等参数。

PKPM通过计算结构的强度、刚度、稳定性以及荷载组合等来进行安全性分析。

七、经济指标经济指标主要用于评估结构设计的经济性和成本效益。

PKPM通过计算结构材料和构件的成本、施工周期以及施工难度等来进行经济性分析,帮助工程师在设计和施工过程中找到最经济、最合理的方案。

综上所述,PKPM的七大指标包括承载力指标、稳定性指标、振动指标、疲劳指标、耐久指标、安全指标和经济指标。

PKPM10差异

PKPM10差异
3.组合内力的 差异:根据新旧规范对于强柱弱梁、强剪弱弯的调整、转换构件等的组合内力调整的要求不同,造成组合 内力的差异
4.配筋差异
1)长度系数不同:10版取消了混凝土柱按7.3.11-3条计算长度系数的方式,长度 系数不同,造成柱设计结果的差异。
2)轴压力二阶效应新旧规范对偏压构件考虑轴压力的附加弯矩影响 的方式不同,造成柱设计结果的差异。
2.单工况内力差异
1)10版连梁仅在计算地震作用时进 行刚度折减,旧版在所有工况下均折减,造成恒、活、风荷载等工况下的内力差异。
2)薄弱层地震内力 放大系数,旧版取1.15,10版缺省值为1.25。
3)0.2V0调整、剪重比调整、框支柱剪力调整等、框筒结构 剪力调整、板柱结构风荷载剪力调整等,根据新旧规范要求不同,造成调整结果的差异。
3)保护层厚度的差异旧版保护层厚度含义为截面外缘到纵筋的厚 度,10使厚度一致。
4)规范相关的条文区 别规范有关构件设计、构造等要求不同,造成设计结果的差异。
由于10版针对规范进行了大量的改进,上 述仅列举了几条典型的可能造成差异的原因,如果新旧版本差异很大时,对结果有疑义时,应按上述顺序 ,从整体分析结果—〉单工况内力—〉组合内力—〉配筋结果逐级进行比较,确定产生差异的原因。
1.周期、振型的差异
1)剪力墙单元划分方式的改进08新版和10版采用与05版不同的剪力墙单元划分 方式,改进了墙元网格质量,造成有限元分析结果的差异,对于带剪力墙的结构,新旧版本的分析结果将 存在一定差异。
2)梁刚度系数10版如果勾选“梁刚度系数按2010规范取值”,每根梁的刚度系数将通过 计算确定,与旧版存在差异,造成结构刚度不同。

PKPM中的7个比值

PKPM中的7个比值

PKPM的熟练掌握在结构设计中也占据重要位置,那么如何控制比值和怎样熟练使用 PKPM操作软件,下面让我们一起看一下吧。

1、轴压比轴压比主要是控制结构的延性,具体要求见抗规6.3.6和6.4.5,高规6.4.2和7.2.14。

轴压比过大则结构的延性要求无法保证,此时应加大截面面积或提高混凝土强度;轴压比过小则结构的经济性不好,此时应减小截面面积。

轴压比不满足时的调整方法:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。

PKPM中的查看位置:2、周期比周期比控制的是结构侧向刚度与扭转刚度之间的相对关系,它的目的是使抗侧力构件的平面布置更合理,使结构不致于出现过大的扭转效应。

一句话,周期比不是要求结构足够结实,而是要求结构承载布置合理,具体要求见高规4.3.5。

刚度越大,周期越小。

抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比,意思是结构外围的抗侧力构件对结构的扭转刚度贡献最大。

结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。

当第一振型为扭转时,说明结构的扭转刚度相对于其两个主轴的侧移刚度过小,此时应沿两个主轴适当加强结构外围的刚度,或沿两个主轴适当削弱结构内部的刚度。

当第二振型为扭转时,说明结构沿两个主轴的侧移刚度相差较大,结构的扭转刚度相对于其中一主轴(第一振型转角方向)的侧移刚度是合理的,但对于另一主轴(第三振型转角方向)的侧移刚度过小,此时应适当削弱结构内部沿第三振型转角方向的刚度或适当加强结构外围(主要是沿第一振型转角方向)的刚度。

周期比不满足时的调整方法:通过人工调整改变结构布置,提高结构的抗扭刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度;利用结构刚度与周期的反比关系,合理布置抗侧力构件,加强需要减小周期方向(包括平动方向和扭转方向)的刚度,或削弱需要增大周期方向的刚度。

PKPM中的查看方法:3、位移比/位移角位移比是指采用刚性楼板假定下,端部最大位移(层间位移)与两端位移(层间位移)平均值的比,位移比的大小反映了结构的扭转效应,同周期比的概念一样都是为了控制建筑的扭转效应提出的控制参数。

pkpm专题之结构计算振型数_secret

pkpm专题之结构计算振型数_secret

结构计算振型数根据用户与培训意见反馈,采用振型分解反映谱法进行结构地震反映分析中,不少用户遇到的一个困惑问题是如何确定结构计算振型数。

为了确保不丧失高振型的影响,程序要求用户输入较多的结构计算振型数,从而保证结构的抗震安全性。

但是一旦输入的计算振型数过多而超过了结构的计算自由度数,则会引起计算的混乱以致造成严重的分析错误。

为了使用户自由地正确选取结构计算振型数,我们将概括地介绍结构计算振型数与结构自由度数的关系、结构计算振型数对结构抗震设计的影响,并且引入振型参与质量的概念,提出正确选取结构计算振型数的方法和程序操作步骤,最后用一个工程实例说明结构计算振型数选取不足带来结构抗震的不安全性。

1 规范、规程相关规定抗震规范第5.2.2条规定抗震计算时,不进行扭转耦联计算的结构,水平地震作用标准值的效应,可只取前2~3个振型,当基本自振周期大于1.5s或房屋高宽比大于5时,振型个数应适当增加。

其条文说明中还指出为使高柔建筑的分析精度有所改进,其组合的振型个数适当增加。

振型个数一般可以取振型参与质量达到总质量的90%所需的振型数。

高规5.1.13-2条规定,抗震计算时,宜考虑平扭耦联计算结构的扭转效应,振型数不应小于15,对多塔结构的振型数不应小于塔楼数的9倍,且计算振型数应使振型参与质量不小于总质量的90%。

2 结构自由度数用振型分解反映谱法分析计算地震作用时,要用到结构的自振周期和振型。

从工程实用和运行效率出发,振型分析计算提供了两种结构计算方法-侧刚计算方法和总刚计算方法,分别对应为侧刚模型和总刚模型,各自有不同的结构自由度数。

这里所称的“结构自由度数”是专指结构振型分析有质量的自由度,是与由结构每个节点6个自由度集合而成的结构自由度有区别的。

同样本节所称的“侧向刚度矩阵”和“总体刚度矩阵”都是专指结构振型分析的。

2.1 侧刚模型这是一种采用刚性楼板假定的简化的刚度矩阵模型,即把房屋理想化为空间梁、柱和墙组合成的集合体,并在平面内无限刚的楼板上互相连接在一起。

PKPM结构振型数的确定

PKPM结构振型数的确定

采用振型分解反应谱法进行结构地震反应分析时应确定合理的振型数。

要确保不丧失高振型的影响,程序要输入较多的计算振型数;但是输入的振型数过多超过了结构的自由度数,就会引起计算结果的不可靠.如何确定合适的振型数?1.《抗规》5.2.2 不进行扭转联合计算的结构,水平地震作用标准值的效应,可取前2-3个振型,当基本自振周期大于1.5S或房屋高宽比大于5时,振兴个数应适当增加。

《高规》5.1.13-2 抗震计算应考虑扭转联合,振兴数不应小于15,对于多塔结构,不应小于塔数的9倍,且计算振型数应使振型参与质量不小于总质量的90%。

上述规范给出的是计算振型数的下限!2.结构自由度的确定振型分析提供了两种结构计算方法:侧刚模型和总刚模型侧刚模型假定楼板为刚性楼板,对于无塔结构每层为一刚性楼板,有塔的结构一塔一层为一刚性楼板,每块刚性楼板有3个自由度,两个平动,一个转动。

侧向刚度就是建立在这些结构自由度上的。

例某n层无塔结构,侧刚模型结构的自由度为3*n。

有塔的结构如某30层3塔结构,第一塔1-30,第二塔6-25,第三塔3-28,则独立的刚性楼板数m=30+(25-6+1)+(28-3+1)=76,则结构自由度为3*76=228 总刚模型是一种真实的模型,不再有刚性楼板的假定。

每个独立于刚性楼板的节点有两个水平方向的自由度。

对某n层无刚性楼板的结构,每层节点数为m个,所以结构的自由度为2*n*m。

对于n 层有刚性楼板的结构每层独立的节点为m个,有k个刚性楼板,则结构自由度为n*(2*m+3*k)。

上述结构的自由度为振型数的上限!3.选取足够的振型数,对于一个大型结构计算所有的振型数,所花费的计算机资源相当大!故没有必要就算所有的振型数,因为最后的那些高振型对结构的地震作用贡献很小。

所以足够就可以了。

规范规定足够的振型数要保证有效质量系数超过90%,否则振型数不够!振型数不够也是造成剪重比不满足要求的一个原因。

4.总结先按规范初选振型数,计算,查看质量有效系数是否大于90%,不大于增加振型数重新计算,直至满足,但振型数不能大于结构的自由度总数。

PKPM振型个数的取值

PKPM振型个数的取值

抗震规范条‎文说明5.‎2.2:振‎型个数一般‎可以取振型‎参与质量达‎到总质量9‎0%所需的‎振型数!‎实际工程中‎选择多少才‎能确保,振‎型参与质量‎达到总质量‎90%的要‎求?我在‎北京学习P‎K PM的时‎候老师是这‎样说的:‎根据他们的‎计算经验,‎当有效质量‎系数大于0‎.8时,其‎底剪力误差‎一般小于5‎%,称有效‎质量系数大‎于0.8的‎情形为振型‎数足够,否‎则称振型数‎不够.谢‎谢cym1‎978!‎我了解到一‎条信息:[‎耦联]取3‎的倍数且≤‎3倍层数,‎[非耦联]‎≤层数;‎针对一个具‎体的工程:‎一个30层‎的建筑,考‎虑耦联,振‎型数最多9‎0个,若选‎择90则计‎算量增加很‎多,影响计‎算效率。

‎我想知道针‎对这个工程‎(30层)‎,振型数选‎择多少才能‎保证参与计‎算振型的[‎有效质量系‎数]应≥9‎0%?谢‎谢!振型‎数与楼的各‎层自由度有‎关,比如对‎于刚性楼板‎的层,只有‎3个自由度‎,而对于弹‎性楼层就要‎根据弹性质‎点的数量来‎定,一个弹‎性质点2个‎自由度,振‎型数=总自‎由度时,有‎效质量系数‎一定≥90‎%,振型数‎与楼的结构‎布置有关,‎一般通过试‎算来决定选‎择振型数‎补充一点:‎在有些结构‎中,如跃层‎较多或者空‎旷的结构,‎振型数会大‎于3倍层数‎,故具体工‎程要通过不‎断调整振型‎数直至满‎足要求.影‎响计算效率‎还是其次.‎规范要‎求,地震作‎用有效质量‎系数要大于‎等于0.9‎;基底的地‎震剪力误差‎已很小,可‎认为取的振‎型数已满足‎。

按侧刚‎计算时:单‎塔楼考虑耦‎联时应大于‎等于9;复‎杂结构应大‎于等于15‎;N 个塔‎楼时,振型‎个数应大于‎等于N×9‎。

(注意各‎振型的贡献‎由于扭转分‎量的影响而‎不服从随频‎率增加面递‎减的规律)‎一般较规则‎的单塔楼结‎构不考虑耦‎联时取振型‎数大于等于‎3就可,顶‎部有小塔楼‎时就大于等‎于6。

PKPM振型

PKPM振型

PKPM中振型数量取值请列出各种结构中振型数怎样取值。

无所谓多少,通常以满足振型系量参与系数>=90%(用SATWE等相关软件计算时,其结果中会给出这个结果)所需要的振型数即可,其取值通常为3的倍数,也不能大于总层数的3倍,一般的民用建筑在9~30范围里即可满足要求。

但如果是空旷的结构以及层概念不太明显的结构,可能要受到高阶振型的影响比较大,取的计算振数也可能比较多,有60~90的都见过。

一般为结构层数的3倍,不包含地下室,多塔一般不应小于15,太大也没有多大意义,一般只要让XY两个方向的质量参与都达到90%就可以了,如果达不到就在加大计算振型个数如何取?计算震型个数:这个参数需要根据工程的实际情况来选择。

对于一般工程,不少于9个。

但如果是2层的结构,最多也就是6个,因为每层只有三个自由度,两层就是6个。

对复杂、多塔、平面不规则的就要多选,一般要求“有效质量系数”大于90%就可以了,证明我们的震型数取够了。

这个“有效质量系数”最先是美国的WILSON教授提出来的,并且将它用于著名的ETABS程序。

《高层建筑混凝土结构技术规程》的5.1.13-2条要求B级高度的建筑和复杂的高层建筑“抗震计算时,宜考虑平扭藕连计算结构的扭转效应,振型数不应小于15,对多塔楼结构的振型数不应少于塔数的9倍,且计算振型数应使振型参与质量不少于总质量的90%”-------------------------------------------规范规定要求震型参与质量达到总质量的90%以上这句话怎么理解?s一些概念,希望对你有帮助有关振型的几个概念振型参与系数:每个质点质量与其在某一振型中相应坐标乘积之和与该振型的主质量(或者说该模态质量)之比,即为该振型的振型参与系数。

一阶振型自振频率最小(周期最长),二阶,三阶....振型的自振频率逐渐增大.地震力大小和地面加速度大小成正比,周期越长加速度越小,地震力也越小。

自振振型曲线是在结构某一阶特征周期下算得的各个质点相对位移(模态向量)的图形示意.在形状上如实反映实际结构在该周期下的振动形态.振型零点是指在该振型下结构的位移反应为0。

PKPM中的地震周期知识

PKPM中的地震周期知识

Pkpm:场地卓越周期,结构自振周期,基本振型,高阶振型基本概念自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构固有的特性。

基本周期T1:结构按基本振型完成一次自由振动所需的时间。

通常需要考虑两个主轴方向的和扭转方向的基本周期。

设计特征周期T g:抗震设计用的地震影响系数曲线的下降阶段起始点所对应的周期值,与地震震级、震中距和场地类别等因素有关。

场地卓越周期T s:根据场地覆盖层厚度H和土层平均剪切波速V s计算的周期,表示场地土最主要的振动特征。

场地卓越周期只反映场地的固有特征,不等同于设计特征周期。

场地脉动周期T m:应用微震仪对场地的脉动、又称为”常时微动”进行观测所得到的振动周期。

场地脉动周期反映了微震动情况下场地的动力特征,与强地震作用下场地的动力特性既有关系又有区别。

场地卓越周期:地震波在某场地土中传播时,由于不同性质界面多次反射的结果,某一周期的地震波强度得到增强,而其余周期的地震波则被削弱。

这一被加强的地震波的周期称为该场地土的卓越周期。

结构自振周期:自振周期是结构的动力特性之一。

单质点体系在谐波的作用下,都会按一定形状作同频率同相位的简谐运动,其相应的周期就称为自振周期。

当建筑物的自振周期与场地土卓越周期接近时,其地震反应就大,反之则小。

设计特征周期Tg:抗震设计用的地震影响系数曲线中,反映地震震级、震中距和场地类别等因素的下降段起始点对应的周期值,应根据其所在地的设计地震分组和场地类别确定。

当结构的自振周期超过设计特征周期时,地震作用就会随其自振周期的增大而减小。

当结构的自振周期小于0.1s时,地震作用会随其自振周期的增大而急剧增大。

实际的建筑结构的自振周期大都会大于设计特征周期,但一般不大于6.0s。

基本振型:单质点体系在谐波的作用下的振型称为基本振型。

任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。

PKPM减震设计常见问题1

PKPM减震设计常见问题1

PKPM减震设计常见问题Q1: BRB (屈曲约束支撑)如何在软件中模拟?A1:软件中模拟BRB时需要先在模型中布置斜杆,再定义消能器,然后将消能器布置到斜杆上。

布置完消能的器的斜杆上会显示消能器的参数文字(如图1所示)。

(图1 BRB布置示意图)Q2:模拟BRB (屈曲约束支撑)的斜杆截面对于BRB的弹性刚度是否有影响?A2:当定义斜杆为位移型消能器,且勾选启用消能器后(如图2所示)。

程序将采用输入的初始刚度来计算BRB的弹性刚度,与定义BRB的斜杆截面无关。

(图2启用消能器示意图)Q3:位移型消能器力学参数中的有效刚度和有效阻尼比(如图3所示) 是否需要输入?A3:位移型消能器中当填写了消能器的基本力学参数(初始刚度、屈 服后刚度比、屈服力),并采用反应谱迭代或时程分析确定减震结构 的阻尼比(或消能器附加阻尼比)时,无需再输入消能器的有效刚度 和有效阻尼比。

只有当采用其它软件分析得到的消能器有效刚度和有效阻尼比,进行减震结构计算时,才需要填写这两个参数,并且要在 前处理参数中勾选“采用输入的等效线性属性”(如图4所示)。

(图3位移型消能器有效刚度及有效阻尼比)区良常;才标计・造孽 。

卖茶由牙里塞(HKaS )用足比的谯■,者眸幅Q 施联而程年均里夏带重牙霹法二组自) 户.旦W 号柳刚理和等的殂尼 | 与里阳卷%曲等融魏jl 星住。

塞州“定口桢购折 时整分林方站:结;弗尼比正身看孙山革遗度工™(图4减震信息“采用输入的等效线性属性”参数)毡苜颠 丹就空度日至 蝎・叫晌黑 电互。

息 也1甘原 沽・假他耻 二附量应 ・整①急密电巡急计必需 曼本值息 用狗"没计 丁向.; QLD4ZD0 |o,03!;5D0情能器参邕定义三能六;型:立塔型消能器有敢刚度 有皴电尼比 khl/m.krd'm/rad 卜4 初始刚度后屈眼力tM/m.kfd-'m/rai :EL 度比 [则产品库工解也息君宫因思 地下上两总 胜假设计 离变》忖 ■计谭周丽田用Q4:反应谱迭代计算时如何查看计算得到的阻尼比?这个阻尼比是消能器附加的阻尼比还是结构总的阻尼比?A4:反应谱迭代计算时,可以在计算结果“结构周期及振型方向”中查看阻尼比的计算结果(如图5所示)。

PKPM振型分解平动系数如何组合最合理

PKPM振型分解平动系数如何组合最合理

PKPM振型分解平动系数如何组合最合理PKPM中振型分解法中平动系数的组成,其通常是X+Y形式的,那么就存在一个问题,这个系数怎么组成才是合理的呢?
举个例子:一工程的平动系数是1.0,其X提供了0.5,Y 方向提供了0.5.通过模型的调整后,该工程的平动系数还是1.0,但此时我X向提供了1.0,Y 向提供为0.那么试问我那个组合更合理呢?
当扭转方向因了大于0.5时,可判断该振型为扭转为主的振型;否则,可认为是平动为主的振型。

当扭转因子等于1时,即为纯扭转振型;当扭转因子等于0时,即为纯平动振型。

扭转因大于0.5的物理意义可理解为楼层扭转中心与质心的距离在楼层转动半径之内。

对特定的结构,平动因子Dxj和Dyj的相对大小,与整体坐标系水平轴的方向有关,不同的水平坐标轴取向,会得到不同的
Dxj和Dyj值。

也就是说,平动系数看和就行了。

pkpm四轮计算法

pkpm四轮计算法

新版pkpm软件的四轮结构计算步骤(请与新规对比)计算各主要指标不满足规范要求,也就新版pkpm软件的四轮结构计算步骤根据新规范的要求设计人员在完成计算后,必须首先仔仔细细审核计算书和受力分析图,在这两项不满足新规范要求前就不能进行后续计算。

对一个典型工程通常至少要进行四轮计算。

第一轮计算:完成整体参数的正确设定计算开始前,首先在建模及SATWE软件的“分析与设计参数补充定义”菜单中,据规范的具体规定,软件手册对参数的描述等对参数进行设置。

这些参数关系到整体计算结果,有些值在计算前又很难估计,经反复试算才能知道。

这主要是指振型组合数、最大地震力作用方向和结构基本周期等。

1,振型组合数是软件在做抗震计算时考虑振型的数量。

该值不能太大也不能太少。

太少计算结果失真,大大浪费时间,有时计算结果发生畸变。

《高规》5.1.13-2条规定,抗震计算时,宜考虑平扭耦联计算结构的扭转效应,振型数不少于15个。

对多塔结构的振型数不应小于塔数的9倍。

且计算振型数应使振型参予质量不小于总质量的90%。

一般而言结构层数较多`,结构刚度突变较大时,振型数也应取得多一些。

振型组合数是否取得合理,可看SATWE计算书《周期、振型、地震力》中X,Y 方向的有效质量数是否大于0.9。

如小于0.9可逐步加大振型个数,直到X,Y两方向的有效质量数都大于0.9为止。

但振型组合数并不是越大越好,其最大值不能超过结构总自由度数。

例如对采取刚性楼板假定的单塔结构,考虑扭转耦联作用时,其振型不得少于结构层数的三倍。

如果该结构的振型组合数已增加到结构层数的三倍后,其有效质量系数仍不能满足要求,再增加振型数就会使计算结果失真。

此时就应分析原因,考虑结构方案是否合理。

2,最大地震力作用方向是指地震沿不同方向的作用,结构地震反映的大小一般各向不同,地震反映值最大的那方向的方向角,就称该结构的最不利地震作用方向角。

如在SATWE计书《周期、振型、地震力》中发现该角度大于±15度,应将该数值回填到“总信息”的“水平力与整体坐标夹角”里并重新计算,以体现最不利地震作用方向的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PKPM中振型数量取值
请列出各种结构中振型数怎样取值。

无所谓多少,通常以满足振型系量参与系数>=90%(用SATWE等相关软件计算时,其结果中会给出这个结果)所需要的振型数即可,其取值通常为3的倍数,也不能大于总层数的3倍,一般的民用建筑在9~30范围里即可满足要求。

但如果是空旷的结构以及层概念不太明显的结构,可能要受到高阶振型的影响比较大,取的计算振数也可能比较多,有60~90的都见过。

一般为结构层数的3倍,不包含地下室,多塔一般不应小于15,太大也没有多大意义,一般只要让XY两个方向的质量参与都达到90%就可以了,如果达不到
就在加大
计算振型个数如何取?
计算震型个数:这个参数需要根据工程的实际情况来选择。

对于一般工程,不少于9个。

但如果
是2层的结构,最多也就是6个,因为每层只有三个自由度,两层就是6个。

对复杂、多塔、平面不
规则的就要多选,一般要求“有效质量系数”大于90%就可以了,证明我们的震型数取够了。

这个“有效质量系数”最先是美国的WILSON教授提出来的,并且将它用于著名的ETABS程序。

《高层建筑混凝土结构技术规程》的5.1.13-2条要求B级高度的建筑和复杂的高层建筑“抗震计算
时,宜考虑平扭藕连计算结构的扭转效应,振型数不应小于15,对多塔楼结构的振型数不应少于
塔数的9倍,且计算振型数应使振型参与质量不少于总质量的90%”
-------------------------------------------
规范规定要求震型参与质量达到总质量的90%以上
这句话怎么理解?
s一些概念,希望对你有帮助
有关振型的几个概念
振型参与系数:每个质点质量与其在某一振型中相应坐标乘积之和与该振型的主质量(或者说该模态质量)之比,即为该振型的振型参与系数。

一阶振型自振频率最小(周期最长),二阶,三阶....振型的自振频率逐渐增大.
地震力大小和地面加速度大小成正比,周期越长加速度越小,地震力也越小。

自振振型曲线是在结构某一阶特征周期下算得的各个质点相对位移(模态向量)的图形示意.在形状上如实反映实际结构在该周期下的振动形态.振型零点是指在该振型下结构的位移反应为0。

振型越高,周期越短,地震力越大,但由于我们地震反应是各振型的迭代,高振型的振型参与系数小。

特别是对规则的建筑物,由于高振型的参与系数小,一般忽略高振型的影响。

振型的有效质量:这个概念只对于串连刚片系模型有效(即基于刚性楼板假定的,不适用于一般结构。

)。

某一振型的某一方向的有效质量为各个质点质量与该质点在该一振型中相应方向对应坐标乘积之和的平方((∑mx)2)。

一个振型有三个方向的有效质量,而且所有振型平动方向的有效质量之和等于各个质点的的质量之和,转动方向的有效质量之和等于各个质点的转动惯量之和。

有效质量系数:如果计算时只取了几个振型,那么这几个振型的有效质量之和与总质量之比即为有效质量系数。

这个概念是由WILSON E.L. 教授提出的,用于判断参与振型数足够与否,并将其用于ETABS程序。

振型参与质量:某一振型的主质量(或者说该模态质量)乘以该振型的振型参与系数的平方,即为该振型的振型参与质量。

振型参与质量系数:由于有效质量系数只实用于刚性楼板假设,现在不少结构因其复杂性需要考虑楼板的弹性变形,因此需要一种更为一般的方法,不但能够适用于刚性楼板,也应该能够适用于弹性楼板。

出于这个目的,我们从结构变形能的角度对此问题进行了研究,提出了一个通用方法来计算各地震方向的有效质量系数即振型参与质量系数,规范即是通过控制有效质量振型参与质量系数的大小来决定所取的振型数是否足够。

(见高规(5.1.13)、抗规(5.2.2)条文说明)。

这个概念不仅对糖葫芦串模型有效。

一个结构所有振型的振型参与质量之和等于各个质点的质量之和。

如果计算时只取了几个振型,那么这几个振型的振型参与质量之和与总质量之比即为振型参与质量系数。

由此可见,有效质量系数与振型参与质量系数概念不同,但都可以用来确定振型叠加法所需的振型数。

我们注意到:ETABS6.1中,只有有效质量系数(effective mass ratio)的概念,而到了ETABS7.0以后,则出现了振型质量参与系数(modal participating mass ratio),可见,振型参与质量系数是有效质量系数的进一步发展,有效质量系数只适用于串连刚片系模型,分别有x方向、y方向、rz 方向的有效质量系数。

振型参与质量系数则分别有x、y、z、rx、ry、rz六个方向的振型参与质量系数。

注释:
1)这里的“质量”的概念不同于通常意义上的质量。

离散结构的振型总数是有限的,振型总个数等于独立质量的总个数。

可以通过判断结构的独立质量数来了解结构的固有振型总数。

具体地说:
每块刚性楼板有三个独立质量Mx,My,Jz;
每个弹性节点有两个独立质量mx,my;
根据这两条,可以算出结构的独立质量总数,也就知道了结构的固有振型总数。

2)若记结构固有振型总数是NM,那么参与振型数最多只能选NM个,选参与振型数大于NM是错误的,因为结构没那么多。

3)参与振型数与有效质量系数的关系:
3-1)参与振型数越多,有效质量系数越大;
3-2)参与振型数=0 时,有效质量系数=0
3-3)参与振型数=NM 时,有效质量系数=1.0
4)参与振型数NP 如何确定?
4-1)参与振型数NP 在1-NM 之间选取。

4-2)NP应该足够大,使得有效质量系数大于0.9。

有些结构,需要较多振型才能准确计算地震作用,这时尤其要注意有效质量系数是否超过了0.9。

比如平面复杂,楼面的刚度不是无穷大,振型整体性差,局部振动明显的结构,这种情况往往需要很多振型才能使有效质量系数满足要求。

看看你的SATWE计算书里面,在周期的计算里面有一个计算结果,分为X方向和Y方向,分别给出了两个方向的计算结果,只有两个方向都达到了90%以上,才能说明你的震型数取得足够了
关于对计算振型个数的要求:
规范要求如下:
《抗规.条文》:振型个数一般可以取振型参与质量达到总质量90%所需的振型数。

《措施》8.8.4:振型数的多少与结构层数及结构形式有关,高层建筑地震作用振型数应至少取9;当考虑扭转耦连计算时,振型数不应小于15;对多塔结构则振型数不应小于多塔数×9,且计算振型数应保证振型参与质量不小于总质量的90%。

《手册》:一般计算振型数应大于9,多塔结构计算振型数应取更多些,但不能超过结构固有振型数(一般为层数的3倍)。

振型个数不是简单的与结构的层数有关。

对一般规则的结构,结构振型个数在刚性楼板假定的情况下,是结构层数的3倍,即每层3个,两个平动振型和一个转动振型。

然而,有些振型可能是局部振型(可以在WZQ.out文件中看出,也可在SAT12结构整体空间振动简图中逐阶演示出来),其阶数低,但对地震作用的贡献却较小。

而要满足振型参与质量达到总质量的90%以上,即基底的地震剪力误差已经很小,才可以认为所取振型个数已满足。

也就意味着只取到这个振型是不足够的,需要再取振型以满足要求。

振型参与质量不少于总质量的90%以上时,我们认为计算的地震力足够了,小于这个数,我们认为地震力偏小了;震型参与质量不小于90%,是为了保证震型分解反映谱法的到的结果不至于失真。

本身震型分解反映谱也是一种近似的计算。

相关文档
最新文档