【人教版】2012-2013学年九年级(全一册)数学小复习:第21章 二次根式 复习课件
(人教版新课标)九年级数学第21章《一元二次方程》知识小结
- 1 -一元二次方程是初中数学的重要内容,在初中数学中占有重要的地位,它和二次函数的联系非常密切.这部分内容是各地考试热点和同学们容易出错的地方,是历年各地中考的必考内容之一,在试卷中占有较大的分值比例.考试中不仅基础题会考查,更重要的是后面的综合题也会重点考查,一般以函数等知识为背景进行综合考查,因此同学们应对这部分内容予以高度重视. 【知识网络】【知识解读】1.一元二次方程的定义只含有一个未知数,并且未知数的次数是二次的整 式方程,叫做一元二次方程.它的一般形式:20ax bx c ++=(0a ≠). (1)判断一个方程是不是一元二次方程时应抓住三点:①只含有一个未知数;②未知数的最高次数是2;③方程是整式方程(即含有未知数的式子是整式).三者必须同时满足,否则就不是一元二次方程.(2)20ax bx c ++=(a ,b ,c 为常数,0a ≠)称为一元二次方程的一般形式,其中0a ≠是定义中的一部分,不可缺少,否则就不是一元二次方程. 2ax 叫做二次项,a 叫做二次项系数,二者是不同的概念,不可混淆.2.一元二次方程的解法注意事项:解一元二次方程常见的思维误区是忽略几个关键:用因式分解法解方程的关键是先使方程的右边为0;用公式法解方程的关键是先把一元二次方程化为一般形式,正确写出a、b、c的值;用直接开平方法解方程的关键是先把方程化为(mx-n) 2=h的形式;用配方法解方程的关键是先把二次项系数化为1,再把方程的两边都加上一次项系数一半的平方.解具体的一元二次方程时,要分析方程的特征,灵活选择方法.公式法是解一元二次方程的通法,而配方法又是公式法的基础(公式法是直接利用了配方法的结论).分解因式法可解某些特殊形式的一元二次方程.掌握各种方法的基本思想是正确解方程的根本.一般说来,先特殊后一般,即先考虑分解因式法,后考虑公式法.没有特别说明,一般不用配方法.4.一元二次方程的是实际应用方程是解决实际问题的有效模型和工具,解方程的技能训练要与实际问题相联系,在解决问题的过程中体会解方程的技巧,理解方程的解的含义.利用方程解决实际问题的关键是找出问题中的等量关系,找出题目中的已知量与未知量,分析已知量与未知量的关系,再通过等量关系,列出方程,求解方程,并能根据方程的解和具体问题的实际意义,检验解的合理性.列一元二次方程解应用题的一般步骤可归纳为审、设、列、解、验、答.审:读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的等量关系;设:设元,也就是设未知数;列:列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程;解:解方程,求出未知数的值;验:检验方程的解能否保证实际问题有意义;答:写出答语.相等关系的寻找应从以下几方面入手:①分清本题属于哪一类型的应用题,如行程问题,则其基本数量关系应明确(v t s=).②注意总结各类应用题中常用的等量关系.如工作量(工程)问题.常常是以工作量为基础得到相等关系(如各部分工作量之和等于整体1等).③注意语言与代数式之间的转化.题目中多数条件是通过语言给出的,我们要善于将这些语言转化为我们列方程所需要的代数式.④从语言叙述中寻找相等关系.如甲比乙大5应理解为“甲=乙+5”等.⑤在寻找相等关系时,还应从基本的生活常识中得出相等关系.总之,找出相等关系的关键是审题,审题是列方程的基础,找相等关系是列方程解应用题的关键.【易错点】一、忽视一元二次方程定义中的条件例 1 关于x的一元二次方程(01)122=-+++axxa的一个根为0,则a=_______.错解:∵0是一元二次方程的根,∴将0=x代入方程得,012=-a∴1±=a。
九年级数学上册 第21章 一元二次方程小节与复习课件1 (新版)新人教版
C.没有实数根
b24ac 0
D.根的情况无法
3. 关于x的一元二次方程 mx2-(3m-1)x+2m-1=0,其根的判别式的值为1,求m的 值及该方程的根。
解:b2-4ac=[-(3m-1)]2-4m(2m-1)=9m2-6m+1-8m2+4m =m2-2m+1=(m-1)2
∴ (m-1)2=1,即 m1=2, m2=0(二次项系数不为0,舍去)。
次项系数和次项系数.
回顾与复习 2
你学过一元二次方程的哪些解法?
开平方法
配方法
公式法
因式分解法
你能说出每一种解法的特点吗?
方程的左边是完全平方式,右边是非 负数;即形如x2=a(a≥0)
x1 a,x2 a
“配方法”解方程的基本步骤
1.化1:把二次项系数化为1; 2.移项:把常数项移到方程的右边; 3.配方:方程两边同加一次项系数
当m=2时,原方程变为2x2-5x+3=0, x=3/2或x=1.
下课了!
结束寄语
• 一元二次方程也是刻画现实世界的 有效数学模型.
• 用列方程的方法去解释或解答一些 生活中的现象或问题是一种重要的 数学方程方法——即方程的思想.
一半的平方;
4.变形:化成(x m )2 a
5.开平方,求解
★一除、二移、三配、四化、五解.
用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程:
ax2+bx+c=0(a≠0). 2.b2-4ac≥0.
xb2b2a 4a.bc24a0 c.
1.用因式分解法的条件是:方程左边能够 分解,而右边等于零;
2.理论依据是:如果两个因式的积等于零 那么至少有一个因式等于零.
【人教版】2012-2013学年九年级(全一册)数学小复习:第22章一元二次方程复习课件
(3)Δ<0⇔ax2+bx+c=0(a≠0)
Байду номын сангаас
没有 实数根.
[注意] (1)根的判别式是在一元二次方程的一般形式下得出 的,因此使用根的判别式之前,必须把一元二次方程化成一般 形式;(2)如果说一元二次方程有实根,应该包括有两个相等的 实数根与两个不相等的实数根两种情况,此时b2-4ac≥0,不能 丢掉等号;(3)在利用根的判别式确定方程中字母系数的取值范 围时,如果二次项系数含有字母,要加上二次项系数不为零这 个限制条件.
∴k≠-1,k>-2. ∴k 的取值范围是 k>-2 且 k≠-1.
方法技巧 根的判别式主要应用:(1)不解方程,判别一元二次方程根的情况; (2)已知一元二次方程根的情况,确定方程中某些字母的取值 (范 围).在解题时一定要注意不能忽略二次项系数不为 0.
数学·新课标(RJ)
► 考点四 变化率型应用题
数学·新课标(RJ)
[解析] 本题属于增长率问题,设年平均增长率为 x,可得 2012 年全市国民生产总值为 1376(1+x)2,从而列出方程求解.
解:(1)设年平均增长率为 x,根据题意,得 1376(1+x)2=1726, 解得 x1≈0.12,x2≈-2.12(不合题意,舍去). (2)1376×(1+0.12)≈1541.12, 1376+1541.12+1726≈4643(亿元). 答:年平均增长率为 12%,2010 年至 2012 年全市三年国民生产 总值为 4643 亿元.
例 4 2010 年某市实现国民生产总值为 1376 亿元,计划全市 国民生产总值以后三年都以相同的增长率来实现,在 2012 年全市 国民生产总值达到 1726 亿元.
(1)求全市国民生产总值的年平均增长率(精确到 1%); (2)求 2010 年至 2012 年全市三年可实现国民生产总值多少亿 元(精确到 1 亿元)?
人教版初三九年级数学第二十一单元一元二次方程知识点及单元测试
第二十一章一元二次根式一.知识框架二.知识概念一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。
(1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.介绍配方法时,首先通过实际问题引出形如的方程。
这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。
进而举例说明如何解形如的方程。
然后举例说明一元二次方程可以化为形如的方程,引出配方法。
最后安排运用配方法解一元二次方程的例题。
在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。
对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(3)一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,•将a 、b 、c 代入式子x=2b a-±就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
九年级数学上册 第二十一章 一元二次方程知识点总结 (新版)新人教版.doc
第二十一章一元二次方程21.1 一元二次方程知识点一一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
注意一下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二一元二次方程的一般形式一般形式:ax2 + bx + c = 0(a ≠ 0).其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
方程的解的定义是解方程过程中验根的依据。
典型例题:1、已知关于x的方程()x21m-+(m-3)-1=0是一元二次方程,求m的值。
21.2 降次——解一元二次方程21.2.1 配方法知识点一直接开平方法解一元二次方程(1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
一般地,对于形如x2=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=a-.(2)直接开平方法适用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。
(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:一移、二除、三配、四开。
(1)把常数项移到等号的右边;(2)方程两边都除以二次项系数;(3)方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4)若等号右边为非负数,直接开平方求出方程的解。
人教版九年级上册数学第21章一元二次方程 期末专题复习
一元二次方程 期末专题复习【课标要求】1. 了解一元二次方程的定义及一元二次方程的一般形式:20(0)ax bx c a ++=≠.2. 掌握一元二次方程的四种解法,并能灵活运用.3. 掌握一元二次方程根的判别式,并能运用它解相应问题.4. 掌握一元二次方程根与系数的关系,会用它们解决有关问题.5. 会解一元二次方程应用题. 【知识回顾】1.灵活运用四种解法解一元二次方程:一元二次方程的一般形式:20(0)ax bx c a ++=≠ 四种解法:直接开平方法,配方法,公式法, 因式分解法,公式法:12,x x = (24b ac -≥0) 注意:(1)一定要注意0a ≠,填空题和选择题中很多情况下是在此处设陷进;(2)掌握一元二次方程求根公式的推导;(3)主要数学方法有:配方法,换元法,“消元”与“降次”.2.根的判别式及应用(24b ac ∆=-):(1)一元二次方程20(0)ax bx c a ++=≠根的情况:①当0∆>时,方程有两个不相等的实数根;②当0∆=时,方程有两个相等的实数根;③当0∆<时,方程无实数根.(2)判定一元二次方程根的情况;(3)确定字母的值或取值范围。
3.根与系数的关系(韦达定理)的应用:韦达定理:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12c x x a ⋅= 适用题型:(1)已知一根求另一根及未知系数;(2)求与方程的根有关的代数式的值;(3)已知两根求作方程;(4)已知两数的和与积,求这两个数;(5)确定根的符号:(12,x x 是方程两根);(6)题目给出两根之间的关系,如两根互为相反数、互为倒数、两根的平方和或平方差是多少、两根是Rt ∆的两直角边求斜边等情况.注意:(1)222121212()2x x x x x x +=+-⋅(2)22121212()()4x x x x x x -=+-⋅;12x x -= (3)①方程有两正根,则1212000x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩;②方程有两负根,则1212000x x x x ∆≥⎧⎪+<⎨⎪⋅>⎩ ;③方程有一正一负两根,则1200x x ∆>⎧⎨⋅<⎩; ④方程一根大于1,另一根小于1,则120(1)(1)0x x ∆>⎧⎨--<⎩ (4)应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把所求作得方程的二次项系数设为1,即以12,x x 为根的一元二次方程为21212()0x x x x x x -++⋅=;求字母系数的值时,需使二次项系数0a ≠,同时满足∆≥0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和12x x +,•两根之积12x x ⋅的代数式的形式,整体代入。
【人教版】2012-2013学年九年级(全一册)数学小复习:第21章 二次根式 讲练课件
第21章讲练 ┃ 试卷讲练
2.下列与 3是同类二次根式的是( C ) A. 9 B. 6 C. 12 D. 18
数学·新课标(RJ)
第21章讲练 ┃ 试卷讲练 【针对第23题训练】
如图 21-3,由四个边长为 1 的小正方形构成一个大正方形, 连接小正方形的三个顶点,可得到△ABC,则△ABC 中 BC 边上的
第21章讲练 ┃ 试卷讲练 【针对训练 】
1.若 a、b 为实数,且满足│a-2│+ -b2=0,则 b-a 的值 为( C ) A.2 C.-2 B.0 D.± 2
0 2.化简: x-2- 2-x=________.
数学·新课标(RJ)
1 1 2 2+a -2= + a a
1 1 1 2 1 a - = + a - = a = . a a a 5
谁的解答是错误的?为什么?
数学·新课标(RJ)
第21章讲练 ┃ 试卷讲练
1 1 1 解:乙的解答是错误的.因为当 a= 时, =5, a- <0,所 5 a a 以
5,11,20
2,3,22 13 7,8,9,10,14,17,18, 15,16,21,23,24 15,21,23,24 6,11,24
亮点
16题根据二次根式的性质研究最大值问题; 22题以一种比较新颖的形式考查了对于二次根式的概念的理解与 运用; 23题让学生在动手实践中体验到二次根式与勾股定理的联系,并 会运用分类思想来解决实际问题.
1 1 2 a - ≠ a - ,而应是 a a 1 2 1 a - =a-a. a
数学·新课标(RJ)
第21章讲练 ┃ 试卷讲练 【针对第8题训练】
1.下列计算正确的是( A ) A. 18- 2=2 2 B.(2- 5)(2+ 5)=1 27- 12 C. = 9- 4=1 3 6- 2 D. =3 2 2
人教版九年级数学上册(RJ)第21章 一元二次方程 一元二次方程的根与系数的关系
第二十一章一元二次方程21.2 解一元二次方程*21.2.4 一元二次方程的根与系数的关系学习目标:1.探索一元二次方程的根与系数的关系.2.不解方程利用一元二次方程的根与系数的关系解决问题. 重点:探索一元二次方程的根与系数的关系.难点:不解方程利用一元二次方程的根与系数的关系解决问题.一、知识链接1.一元二次方程的求根公式是什么?2.如何用判别式b2-4ac来判断一元二次方程根的情况?算一算解下列方程并完成填空:(1)x2+3x-4=0; (2)x2-5x+6=0; (3)2x2+3x+1=0.想一想方程的两根x1,x2与系数a,b,c有什么关系?二、要点探究探究点1:探索一元二次方程的根与系数的关系猜一猜(1)一元二次方程 (x-x1)(x-x2) = 0 (x1,x2为已知数) 的两根是什么?若将此方程化为x2 + px + q = 0 的形式,你能看出 x1,x2与 p,q 之间的关系吗?(2)通过上表猜想,如果一元二次方程 ax2+bx+c=0(a≠0)的两个根分别是x1、 x2,那么,你可以发现什么结论?证一证:x1 + x2= x1·x2=归纳总结:一元二次方程的根与系数的关系如果ax2+bx+c=0(a≠0)的两个根为x 1、x2,那么12bx xa ,12cx xa.(前提条件是b2-4ac≥0).(1) x2–6x–15 = 0; (2) 3x2+7x-9 = 0; (3) 5x–1 = 4x2.归纳:在求两根之和、两根之积时,先把方程化为一般式,判别Δ≥0,如是则代入 a、b、c的值即可.例2 已知关于x的方程5x2+kx-6=0的一个根是2,求它的另一个根及k 的值.变式题已知关于的值.例3 不解方程,求方程2x2+3x-1=0的两根的平方和、倒数和.练一练设x1,x2为方程x2-4x+1=0的两个根,则:(1) 12x x , (2)12xx ,(3) 2212x x , (4)212()x x .归纳:求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.常见的求值式子如下: 12111.x x +=22122.x x += 12213.=x x x x + 124.(1)(1)x x ++= 125.||=x x -例4 设x 1,x 2是方程 x 2-2(k -1)x + k 2 =0的两个实数根,且2212x x 4,求k 的值.方法总结:根据一元二次方程两实数根满足的条件,求待定字母的值时,务必要注意方程有两实数根的条件,即所求的字母代入方程中,方程应该满足Δ≥0 .2b x a,1c x a.2221212()2x x x x x 2221212)()4x x x x x122121x x x x x......1.如果-1是方程2x 2- = .2.已知一元二次方程x 2+px+q=0的两根分别为-2和1,则p = , q = .3.已知关于 的值.4.已知x 1,x 2是方程2x 2+2kx+k -1=0的两个根,且(x 1+1)(x 2+1)=4.(1)求k的值; (2)求(x1-x2)2的值.5.设x1,x2是方程3x2+4x-3 = 0的两个根.利用根系数之间的关系,求下列各式的值:(1) (x 1 + 1)(x2 + 1); (2)2112.x xx x拓展提升6. 当k为何值时,方程2x2-kx+1=0的两根之差为1.7.已知关于-2=0(1)若方程有实数根,求实数m的取值范围;(2)若方程两根x1,x2满足|x1-的值.242bb ac xa.时,方程有两个相12-132课堂探究二、要点探究探究点1:探索一元二次方程的根与系数的关系 猜一猜=b a,x 1x 2证一证:(注:b221242b b ac x x a +-+=2b b a -+--= 22b a -=.ba=- 1222b b x x a a•-+--⋅=()()22244b b ac a ---=244ac a=.ca =例1 解:(1) a=1 , b= – 6 , c= – 15. Δ = b 2– 4ac =( – 6 )2 – 4 × 1 ×(– 15) = 96 > 0. ∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 = –( – 6 ) =6,x 1 x 2 = – 15 .(2)a = 3 , b =7, c = –9. Δ= b 2 - 4ac = 72 –4×3×(-9) =157 > 0,∴方程有两个实数根.设方程的两个实数根是x 1,x 2,那么x 1 + x 2 =73, x 1 x 2 =933.(3)方程可化为4x 2–5x +1 =0,a =4,b = – 5,c = 1.Δ = b 2- 4ac =(– 5)2 – 4×4×1=9>0.∴方程有两个实数根.设方程的两个实数根是x 1, x 2,那么x 1 + x 2 =5544,x 1 x 2 =1.4=6.5=3.5+ x 2=2+ 35=.5k 得k=答:方程的另一个根是3,5k=- 解:设方程的两个根分别是+ x 2=1+ x =5 .121231,.22x x x 222121122)2,x xx x x ∴22221212123113()22.224xxx x x x 121212131 3.22x x x x x练一练 (1)4 (2)1 (3)14 (4)12例4 解:由方程有两个实数根,得22221212()2x x x x x = 4(k 222x 4,得 2k +4 =4,解得k 1=0,k 2=4 . 当堂检测1.;-3. 2. 1 ; -2.1161.3c x a116.3x 12121,.2k x k x x 1()1 4.2kk 解得k = -7;4.-则222121212)()474(4)65.x x x x x12124, 1.3b c x x x aa)+1=441()1.33122221121221212()234.9x x x x x x x x x x x x 12121,.22kx x x 22121212()()4 1.x x x x x x 22141,3,2 3.222k k k7.解:(1)方程有实数根,所以Δ=b 2-4ac=(-2m)2-4·m·(m-2=4m 2-4m 2+8m=8m ≥0.∵m≠0,∴m 的取值范围为m >0. 121222,.m x x x m22121212()()4 1.x x x x x x 22241.m m解得m=8.经检验,解.。
人教版九年级数学上册第二十一章一元二次方程专题复习
一元二次方程复习(1)一、复习目标:1.能说出一元二次方程的概念。
2会用直接开平方法、配方法、公式法、因式分解法解简单的一元二次方程。
3.能由已知一元二次方程的一根去求另一根.4.会用根的判别式判断一元二次方程的根的情况5.会用一元二次方程根与系数的关系解决有关问题.二、知识回顾,展示交流(疏理知识点)1、一元二次方程的概念 ,一般形式 。
2、一元二次方程的解法:(1) (2) (3) (4)3、一元二次方程 20(0)ax bx c a ++=≠根的判别式:△= 当 △>0时,方程有 实数当△=0时,方程有 实数根当△<0时,方程有 实数根;4、根与系数的关系如果一元二次方程20(0)ax bx c a ++=≠有两个实数根12,x x ,那么1212.x x x x += 常见式子的变形:222121212()2x x x x x x +=+-; 12121211x x x x x x ++= 三、基础训练考点一、一元二次方程的概念1、下列方程中,是关于x 的一元二次方程的是 ( ).A .3(x +1)2=2(x +1)B .211x x +-2=0 C .ax 2+bx +c =0D .X 2+2x =x 2-1 考点二:一元二次方程根的概念2. 如果在-1是方程x 2+mx -1=0的一个根,那么m 的值为( )A .-2B .-3C .0D .2考点三:一元二次方程的解法。
3. 方程2(3)5(3)x x x -=-的解是( )12553 3, 322A xB xC x xD x ⋅=⋅=⋅==⋅=-4、解下列方程(1)2)32(-x -25=0 (2)x 2+2x-3=0(3)2x 2-7x-2=0 (4)3x (2x+1)=4x+2考点四:一元二次方程根的判别式5、 当_________m 时,方程032)1(2=+++-m mx x m 有两个实数根;变式:当_________m 时,方程032)1(2=+++-m mx xm 有实数根考点五:一元二次方程根与系数的关系 6、方程0132=+-x x 的两根是21,x x ;则:=+2111x x ,=+2221x x 四、拓展延伸7、关于x 的一元二次方程x 2+kx+4k 2-3=0的两个实数根分别是x 1、x 2, 且满足x 1+x 2=x 1x 2,求k 的值8、(2014湖北十堰)已知关于x 的一元二次方程x 2+2(m +1)x +m 2-1=0.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足(x 1-x 2)2=16-x 1x 2,求实数m 的值五、小结反思。
九年级数学人教版第二十一章一元二次方程整章知识(同步课本图文结合例题详解)
解:x+5=1或x-1=7,所以x1=-4,x2=8,你的看法如何?
【解析】上述解法是错误的,将 x1、x2 代入原方程等 式两边不相等,因此它们并不是原方程的解.
九年级数学上册第21章一元二次方程
1. 当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0 是一元二次方程?这时方程的二次项系数、一次项系数、 常数项分别是什么? 【解析】当a-1≠0,即a ≠1时,方程(a-1)x2-bx+c=0 是一元二次方程,这时方程的二次项系数、一次项系数、 常数项分别是a-1,-b,c.
(2)若x=2是方程 ax2 4x 5 0 的一个根,
你能求出a的值吗? (提示:根的作用:可以使等号成立.)
九年级数学上册第21章一元二次方程
例题
【例2】关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值
为( )
A.1
B . -1
C.2
D.-2
【解析】选A. 将x=3代入方程x2-kx-6=0得32-3k-6=0 ,解得
(1 x)2 100
求得方程的正整数解为 x 9.
九年级数学上册第21章一元二次方程
2.(眉山·中考)一元二次方程的解 2x2 6 0 为
.
【解析】∵一元二次方程 2x2 6 0 , ∴x2=3 ∴x= 3
∴x1= 3 ,x2= 3 答案:x1= 3 ,x2= 3 .
(3)变形得(x+2)2 = 4,所以x1=0 , x2= -4.
九年级数学上册第21章一元二次方程
跟踪训练
解下列方程:
(1)y2=0.49 (2)a2=0.5 (3)3x2 27
【解析】 (1)用直接开平方法解得 y=±0.7,所以y1=0.7, y2= -0.7
九年级上册第21章一元二次方程全章复习人教版
已知关于x的一元二次方程
x2-6x+2k-1=0有两个相
等的实数根,求k的值及方程的根. 例2 关于x的一元二次方程 (m-1)x2-2x+1=0.
的矩形?能围成一个面积为101 cm2的矩形吗?如 (2) 按照计划,求2020年底至2022年底,全省5G基站数量的年平均增长率.
3. 用一条长40 cm的绳子怎样围成一个面积为75 cm 若关于x的一元二次方程 (m-1)x2+x+m2-1=0有一根为0,则m=
② 一元二次方程根的概念. 一元二次方程的实际应用
若计划到2020年底,全省5G基站的数量是2019年的 倍;
③ 选用适当的方法解方程. △<0 方程无实数根.
一元二次方程 ax2+bx+c=0的根的判别式 (1) 计划到2020年底,全省5G基站的数量是多少万座? 列方程 增长 (降低) 率问题 ∵方程有一个根小于1, 分析: 设2020年底至2022年底,全省5G基站数量的年平均增长率为x. 若计划到2020年底,全省5G基站的数量是2019年的 倍; (2) 若方程有一个根小于1,求k的取值范围. 到2022年底,全省5G基站的数量将达到17.
例3 关于x的一元二次方程 x2-(k+3)x+2k+2=0. (1) 求证:方程总有两个实数根; (2) 若方程有一个根小于1,求k的取值范围.
例3 关于x的一元二次方程 x2-(k+3)x+2k+2=0. (1) 求证:方程总有两个实数根;
(1) 证明:△=[-(k+3)]2-4×1×(2k+2) =(k+3)2-8k-8 = k2-2k+1 =(k-1)2.
人教版数学九年级上册第二十一章二次根式复习小结导学教案
人教版九年级上册数学教案第二^一章二次根式一、教材分析本章是在第13章的基础上,进一步研究二次根式的概念和运算。
在本章中, 学生将学习二次根式的概念、性质、运算法则和化简的方法,通过对二次根式的概念和性质的学习,学生将对实数的概念有更深刻的认识,通过对二次根式的加、减、乘、除运算的学习,学生将对实数的简单四则运算有进一步的了解。
学习本章的关键是理解二次根式的概念和性质,它们是学习二次根式的化简与运算的依据,重点是二次根式的化简和运算,难点是正确理解二次根式的性质和运算法则的合理性。
本章内容分为三节,第一节主要学习二次根式的概念和性质,本节既是第10章相关内容的发展,同时又是后面两节内容的基础,因此本节起承上启下的作用;第二节是二次根式的乘除运算,主要研究二次根式的乘除运算法则和二次根式的化简;第三节是二次根式的加减,主要研究二次根式的加减运算法则和进一步完善二次根式的化简。
在第21.1节“二次根式”中,教科书首先给出四个实际问题,要求学生利用已学的平方根和算术平方根的知写出这四个问题的答案,并分析所得答案的表达式的共同特点引出二次根式的概念。
在二次根式的概念中,重要的一点是理解被开方数是非负数的要求,教科书结合例题对此进行了较详细的分析。
接下去,教科书依次探讨了关于二次根式的结论:T"是一个非负数、-二二-匚、■「」•:;© M::。
对于“- -1是非负数”,教科书是利用算术平方根的概念得到的;对于• 1 ='''',教科书则采用由特殊到一般的方法归纳得出的。
在研究这个结论时,教科书首先设置“探究”栏目,要求学生利用算术平方根的概念进行几个具体的计算,并对运算过程和运算结果进行进一步的分析,最后归纳给出这条结论;对于结论’:匕亠二“—,教科书同样采用了让学生通过具体计算,分析运算过程和运算结果,最后归纳得出一般结论的方法进行研究。
第一节的内容是学习后两节内容的直接基础。
新人教版九年级上册数学复习资料1--21章、22章、23章
第21章一元二次方程知识点1.一元二次方程的判断标准:(1)方程是整式方程(2)只有一个未知数——(一元)(3)未知数的最高次数是2——(二次)三个条件同时满足的方程就是一元二次方程1、下面关于x 的方程中:①ax 2+bx+c=0;②3x 2-2x=1;③x+3=1x;④x 2-y=0;④(x+1)2= x 2-1.一元二次方程的个数是 .2、若方程kx 2+x=3x 2+1是一元二次方程,则k 的取值范围是_________. 3、若关于x 的方程05122=+-+-x k xk 是一元二次方程,则k 的取值范围是_________.4、若方程(m-1)x |m|+1-2x=4是一元二次方程,则m=______. 知识点 2.一元二次方程一般形式及有关概念一般地,任何一个关于x 的一元二次方程,经过整理,都能化成一元二次方程的一般形式20 (0)ax bx c a ++=≠,2ax 是二次项,a 为二次项系数,bx 是一次项,b 为一次项系数,c 为常数项。
注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号1、将一元二次方程3(1)5(2)x x x -=+化成一般形式为_____________,其中二次项系数a =________,一次项系数b=__________,常数项c=__________知识点3.完全平方式1、说明代数式2241x x --总大于224x x --2、已知1a a+求1a a -的值.3、若x 2+mx+9是一个完全平方式,则m= ,若x 2+6x+m 2是一个完全平方式,则m 的值是 。
若942++kx x 是完全平方式,则k = 。
知识点4.整体运算1、已知x 2+3x+5的值为11,则代数式3x 2+9x+12的值为2、已知实数x 满足210x x +-=则代数式2337x x ++的值为____________ 知识点5.方程的解1、已知关于x 的方程x 2+3x+k 2=0的一个根是x=-1,则k=_ __. 2、求以12x 1x 3=-=-,为两根的关于x 的一元二次方程 。
最新人教版九年级全一册数学期末知识点复习第21章 一元二次方程
九年级全一册(RJ) 数学
知识点2 解一元二次方程 3.一元二次方程x2+2x=0的根是 x1=0,x2=-2 .
4.用配方法解方程x2-8x+2=0,则方程可变形为( C )
A.(x-4)2=5
B.(x+4)2=21
C.(x-4)2=14
D.(x-4)2=8
九年级全一册(RJ) 数学
5.用适当的方法解下列方程: (1)12x2=2; x1=2,x2=-2
九年级全一册(RJ) 数学
7.如果关于x的一元二次方程(k+2)x2-3x+1=0有实数根,
那么k的取值范围是 k≤14且k≠-2 .
8.关于x的一元二次方程x2-3x-k=0有两个不相等的实数 根. (1)求k的取值范围; (2)当k=4时,求一元二次方程的根.
九年级全一册(RJ) 数学
解:(1)∵方程x2-3x-k=0有两个不相等的实数根, ∴Δ=(-3)2-4×1×(-k)>0,解得k>-94. (2)将k=4代入方程,得x2-3x-4=0, 则(x+1)(x-4)=0, ∴x+1=0或x-4=0,解得x1=4,x2=-1.
九年级全一册(RJ) 数学
9.求证:不论m为任何实数,关于x的方程x2-2mx+6m- 10=0总有两个不相等的实数根. 证明:Δ=(-2m)2-4×1×(6m-10)=4m2-24m+40=4(m -3)2+4.
∵(m-3)2≥0,∴4(m-3)2+4>0,即Δ>0,
∴不论m为任何实数,关于x的方程x2-2mx+6m-10=0总 有两个不相等的实数根.
九年级全一册(RJ) 数学
解:(2)设每千克水果应涨价 x 元,依题意得 (500-20x)(10+x)=6 000,解得 x1=5,x2=10. 要使顾客得到实惠,应取 x=5. 答:每千克水果应涨价 5 元.
最新人教部编版九年级数学上册《第21章 一元二次方程【全章】》精品PPT优质课件
A. x-6=-4 B. x-6=4 C. x+6=4
2. 方程3x2+9=0的根为( D )
A. 3
B. -3 C. ±3
3. 若8x2-16=0,则x的值是
.
D. x+6=-4 D. 无实数根
4. 解关于x的方程(x+m)2=n. 解:①当n>0时,此时方程两边直接开方.得
x+m=± n ,方程的两根为x1= n -m, x2=- n -m. ②当n=0时,此时(x+m)2=0,直接开方得
p mn ,x2来自pnm,当p<0时,方程(mx+n)2=p 无实数根 .
课后作业
1.从教材课后习题中选取; 2.从练习册中选取。
课堂感想 1、这节课你有什么收获? 2、这节课还有什么疑惑? 说出来和大家一起交流吧!
谢谢观赏!
再见!
21.2 解一元二次方程
21.2.1 配方法 第2课时 配方法
分析:根据一元二次方程的根的定义,将这些数 作为未知数x的值分别代入方程x2+3x-10=0中,能够使 方程左右两边相等的数就是方程的根,通过代入检验 可知,当且仅当x=-5或2时,方程x2+3x-10=0左右两边 相等.
随堂演练
1. 一元二次方程3x2=5x的二次项系数和一次项系数分别 是( C ) A. 3,5 B. 3,0 C. 3,-5 D. 5,0
课堂小结
一个未知数
一 概念 最高次是2
元
整式方程
二
次 一般形式: ax2 + bx + c =0(a≠0)
方
程
二次项系数
常数项
一次项系数
课后作业
人教版 九年级数学 第21章 一元二次方程 综合复习(含答案)
人教版 九年级数学 第21章 一元二次方程 综合复习一、选择题(本大题共10道小题)1. 一元二次方程x 2-2x =0的根是( )A .0B .0,2C .2D .2,-22. 若方程ax 2+2x =bx 2-1是关于x 的一元二次方程,则a ,b 的值可以是( )A .1,1B.12,12 C .-3,3D .-3,-33. 一元二次方程2x 2-3x +1=0的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根4. 一元二次方程x(x -2)=2-x 的根是( )A .x =-1B .x =0C .x 1=1,x 2=2D .x 1=-1,x 2=25. 方程3x (2x +1)=2(2x +1)的两个根为( )A .x 1=23,x 2=0B .x 1=23,x 2=12C .x 1=32,x 2=-12D .x 1=23,x 2=-126. 2018·福建 已知关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx +a =0的根B .0一定不是关于x 的方程x 2+bx +a =0的根C .1和-1都是关于x 的方程x 2+bx +a =0的根D .1和-1不都是关于x 的方程x 2+bx +a =0的根7. 下列一元二次方程中,没有实数根的是()A.x2-2x=0 B.x2+4x-1=0C.2x2-4x+3=0 D.3x2=5x-28. 对于二次三项式-x2+4x-5的值,下列叙述正确的是()A.一定为正数B.一定为负数C.正、负都有可能D.一定小于-19. 当b+c=5时,关于x的一元二次方程3x2+bx-c=0的根的情况为() A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定10. 如图,某小区计划在一块长为32 m,宽为20 m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m2.若设道路的宽为x m,则下面所列方程中正确的是()A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=570二、填空题(本大题共7道小题)11. 若关于x的方程kx2-4x-4=0有两个不相等的实数根,则k的最小整数值为________.12. 对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2-(a-b)2.若(m+2)◎(m-3)=24,则m=________.13. 已知关于x的一元二次方程ax2+2x+2-c=0有两个相等的实数根,则+c的值等于.14. 一个三角形其中两边的长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则此三角形的周长是________.15. 根据下表中的数据写出方程x2+3x-4=0的一个根为________.x 0123 4x2+3x-4-406142416. 设a,b是方程x2+x-2020=0的两个实数根,则(a-1)(b-1)的值为________.17. 一个两位数,它的十位数字比个位数字大1,个位数字与十位数字的平方和比这个两位数小19,则这个两位数是________.三、解答题(本大题共4道小题)18. 某学校机房有100台学生用电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播得非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都将被感染?19. 三个连续的正奇数,最大数与最小数的积比中间的一个数的6倍多3,求这三个奇数.20. 《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”题意为已知长方形门的高比宽多6尺8寸,门的对角线长一丈,那么门的宽和高各是多少?(1丈=10尺,1尺=10寸)21. 已知关于x 的一元二次方程(x -1)(x -4)=p 2,p 为实数.(1)求证:不论p 为何实数,方程总有两个不相等的实数根;(2)当p 为何值时,方程有整数解?(直接写出三个,不需要说明理由)人教版 九年级数学 第21章 一元二次方程 综合复习-答案一、选择题(本大题共10道小题)1. 【答案】B2. 【答案】C3. 【答案】B【解析】代入数据求出根的判别式Δ=b 2-4ac 的值,根据Δ的正负即可得出结论.∵Δ=b 2-4ac =(-3)2-4×2×1=1>0,∴该方程有两个不相等的实数根.4. 【答案】D [解析] x(x -2)+(x -2)=0, (x +1)(x -2)=0,x +1=0或x -2=0,所以x 1=-1,x 2=2.故选D.5. 【答案】D [解析] 3x(2x +1)-2(2x +1)=0,(3x -2)(2x +1)=0,3x -2=0或2x +1=0,所以x 1=23,x 2=-12.6. 【答案】D [解析] ∵关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,∴⎩⎨⎧a +1≠0,Δ=(2b )2-4(a +1)2=0,∴b =a +1或b =-(a +1).当b =a +1时,有a -b +1=0,此时-1是方程x 2+bx +a =0的根; 当b =-(a +1)时,有a +b +1=0,此时1是方程x 2+bx +a =0的根. ∵a +1≠0,∴a +1≠-(a +1),∴1和-1不都是关于x 的方程x 2+bx +a =0的根.7. 【答案】C8. 【答案】B[解析] ∵-x 2+4x -5=-(x 2-4x +4)-1=-(x -2)2-1<0,∴原式的值一定为负数.9. 【答案】A [解析] 因为b +c =5,所以c =5-b.因为Δ=b 2-4×3×(-c)=b 2-4×3×(b -5)=(b -6)2+24>0,所以该一元二次方程有两个不相等的实数根.10. 【答案】A二、填空题(本大题共7道小题)11. 【答案】1 [解析] ∵关于x 的方程kx 2-4x -4=0有两个不相等的实数根, ∴k≠0且Δ=b 2-4ac >0,即⎩⎨⎧k≠0,16+16k>0, 解得k >-1且k≠0,∴k 的最小整数值为1.12. 【答案】-3或4 [解析] 根据题意,得[(m +2)+(m -3)]2-[(m +2)-(m -3)]2=24.整理,得(2m -1)2=49,即2m -1=±7,所以m 1=-3,m 2=4.13. 【答案】2[解析]根据题意得:Δ=4-4a(2-c)=0,整理得4ac-8a=-4,4a(c-2)=-4.∵方程ax2+2x+2-c=0是一元二次方程,∴a≠0,等式4a(c-2)=-4两边同时除以4a,得c-2=-,则+c=2.14. 【答案】13[解析] 解方程x2-6x+8=0,得x1=2,x2=4.∵2,3,6不能构成三角形,∴舍去x=2.当x=4时,三角形的周长=3+4+6=13.15. 【答案】x=116. 【答案】-2018[解析] 根据题意,得a+b=-1,ab=-2020,∴(a-1)(b -1)=ab-(a+b)+1=-2020+1+1=-2018.故答案为:-2018.17. 【答案】32[解析] 设这个两位数的十位数字为x,则个位数字为x-1.根据题意,得x2+(x-1)2=10x+(x-1)-19,解得x1=3,x2=3.5(舍去),∴10x+(x-1)=32.三、解答题(本大题共4道小题)18. 【答案】解:(1)设每轮感染中平均一台电脑会感染x台电脑.根据题意,得1+x+x(1+x)=16,解得x1=3,x2=-5(舍去).答:每轮感染中平均一台电脑会感染3台电脑.(2)三轮感染后,被感染的电脑台数为16+16×3=64,四轮感染后,被感染的电脑台数为64+64×3=256>101.答:若病毒得不到有效控制,四轮感染后机房内所有电脑都将被感染.19. 【答案】解:设这三个连续的正奇数分别为2n-1,2n+1,2n+3(n为正整数).根据题意,得(2n +3)(2n -1)-6(2n +1)=3,解得n 1=3,n 2=-1(舍去).当n =3时,2n -1=5,2n +1=7,2n +3=9.即这三个奇数分别为5,7,9.20. 【答案】解:设门的宽为x 尺,则高为(x +6.8)尺.根据题意,得x 2+(x +6.8)2=102,整理,得2x 2+13.6x -53.76=0,解得x 1=2.8,x 2=-9.6(舍去),所以x +6.8=9.6.所以门的宽为2尺8寸,高为9尺6寸.21. 【答案】解:(1)证明:原方程可化为x 2-5x +4-p 2=0.∵Δ=b 2-4ac =(-5)2-4(4-p 2)=4p 2+9>0,∴不论p 为何实数,方程总有两个不相等的实数根.(2)原方程可化为x 2-5x +4-p 2=0.由求根公式得方程的根为x =5±4p 2+92. ∵方程有整数解,∴找到p 的值,使5±4p 2+92为整数即可, ∴p 可取0,2,-2,10,-10等,此时方程有整数解(答案不唯一,写出三个即可).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的因数或因式.
第21章复习 ┃ 知识归类
4.二次根式的运算 a· b= b>0). 二次根式加减时,可以先将二次根式化成 最简二次根式 , 再将
ab
a (a≥0,b≥0); = b
a b
(a≥0,
被开方数相同
的二次根式进行合并.
第21章复习 ┃ 考点攻略
┃考点攻略┃
► 考点一
例 1 ________.
所以 xy=-2 3.
第21章复习 ┃ 考点攻略
方法技巧
初中阶段主要涉及三种非负数: a≥0,a≥0,a2≥0.如果
若干个非负数的和为 0, 那么这若干个非负数都必为 0.即由 a≥0, b≥0,c≥0 且 a+b+c=0,一定得到 a=b=c=0,这是求一个 方程中含有多个未知数的有效方法之一.
第21章复习 ┃ 知识归类
┃知识归纳┃
1.二次根式的概念 一般地,形如
a
(a≥0)的式子叫做二次根式;
(1)对于二次根式的理解:①带有根号;②被开方数是非负数. (2) a是非负数,即 a≥0. [易错点] (1)二次根式中, 被开方数一定是非负数, 否则就没有 意义; (2) 9是二次根式,虽然 9=3,但 3 不是二次根式.因此二次 根式指的是某种式子的“外在形态”.
a2 与 a2的联系:仅当 a≥0 时,有 a2= a2.
第21章复习 ┃ 考点攻略 ► 考点三 二次根式的化简
例 3 设 2=a, 3=b,用含 a,b 的式子表示 0.54,则下 列表示正确的是( C ) A.0.03ab B.3ab
C.0.1ab3 D.0.1a3b
第21章复习 ┃ 考点攻略 ► 考点四 二次根式的运算
例 4 计算下列各题: 3 (1) 10 5ab 5 · c 3 2ac · b -2 15bc ; a
(2)(1- 3+ 2)(1+ 3- 2).
[解析] 两个以上的二次根式相乘与两个二次根式相乘的方 法一样,把它们的系数、被开方数分别相乘,根指数不变.
第21章复习 ┃ 考点攻略
[解析] C
0.54=
9×6 32· 3· 2 54 54 = = = ,因为 100 10 10 10
ab3 2=a, 3=b,所以 0.54= =0.1ab3,故答案为 C. 10
第21章复习 ┃ 考点攻略
方法点拨 1. 化简二次根式时注意 ab= a· b(a≥0, b≥0)和 (a≥0,b>0)的综合运用. 2.整体代换或转化等数学思想的应用. a a = b b
第21章复习 ┃ 考点攻略 ► 考点二 二次根式性质的运用
例 2 如图 21-1 所示是实数 a、 在数轴上的位置, b 化简: a2 - b2- a-b2.
图 21-1
第21章复习 ┃ 考点攻略
[解析] 解决此问题需要确定a、b及a-b的正负.
解:根据实数 a、b 在数轴上的位置可知 a<0,b>0,所以 a -b<0,所以 a - b - a-b2=|a|-b-|a-b|=-a-b-[-
[答案] -2 3
二次根式的非负性
若实数 x,y 满足 x+2+(y- 3)2=0,则 xy 的值是
第21章复习 ┃ 考点攻略
[解析]
x+2≥0, 因为 y- 32≥0,
因此要使 x+2+(y- 3)2 =0
x+2=0, 成立,必须满足 y- 3=0,
x=-2, 解得 y= 3,
第21章复习 ┃ 考点攻略
易错方法点拨 1.在二次根式的运算中,一般要把最后结果化为最简二次根 式. 2.在二次根式的运算中,要灵活运用乘法公式.
1 1 1 a b 3.(a+b)÷ d=(a+b)·= + ,但 d÷ (a+b)≠d· + . a b d d d
第21章复习 ┃ 知识归类
2.二次根式的性质 2 a= ; a =
a
( a)2=
a
(a≥0)
a>0, 0 a=0, -a a<0.
3.最简二次根式 满足下列两个条件的二次根式,叫做最简二次根式. (1)被开方数不含
分母
;
(2)被开方数中不含能Fra bibliotek开得尽方
第21章复习 ┃ 考点攻略
3 5 解:(1)原式=- × ×2 10 3
5ab 2ac 15bc · · c b a
=- 5×2×15×3abc=-5 6abc. (2)原式=[1-( 3- 2)]· [1+( 3- 2)]=1-( 3- 2)2 =1-( 3)2+2· 3· 2-( 2)2=1-3+2 6-2=2 6-4.
2
2
(a-b)]=-a-b+a-b=-2b.
第21章复习 ┃ 考点攻略
易混辨析
a2 与 a2的区别:(1)表示的意义不同. a2 表示非负实数 a
的算术平方根的平方; a2表示实数 a 的平方的算术平方根.(2)运 算的顺序不同. a2 是先求非负实数 a 的算术平方根,然后再进行 平方运算; a2则是先求实数 a 的平方, 而 再求 a2 的算术平方根. (3) 取值范围不同. a2 中, 只能取非负实数, a≥0; 在 a 即 而在 a2中, a 可以取一切实数.