随机过程 第二章
随机过程第二章

4、有限维分布族
定义:设
X t ; t T 为一个 S .P. ,其有限
维分布函数的全体(一维分布函数,二维分布函
数,n维分布函数)。
F Ft1 ,t2 ,,tn x1, x2 ,, xn ; xi R,ti T,n N, i 1,2,, n
称之为 S.P. X t 的有限维分布函数。
2、特点:
独立增量过程在零均值且二阶矩存在时,是正交增量过程。 注:独立增量过程在现实环境中大量存在(例2.10)
3、平稳独立增量过程(定义 2.8)
增量 X(t)-X(s) 的分布律仅依赖于区间长度t-s。(第三章) (三)马尔可夫过程(第四、五章) (四)正态过程 1、定义 2.10: X(t)的有限维分布律是n维正态随机向量的分布律. 2、特点: ①二阶矩过程 ②数字特征成为其参数。
状态空间:S .P. X t 的状态所有可能取值的 集合,称之为状态空间。
小结:
X e, t 是状态与参数的二元函数
若 若
e
t
确定 确定
X e, t 是时间函数
X e, t 是随机变量
是一个确定值 是随机过程 S .P.
r.v.
若 e, t 确定 若 e, t 不定
随机过程的分类
一维正态过程分布律:
X (t ) ~ N u(t ),
2 2
2
(t )
二维正态过程分布律:
X (t1 ), X (t2 ) ~ N u(t1 ),u(t2 ),
这里有5个参数。 其中 1
(t1 ), (t2 ), (t1 , t2 )
(t1 , t2 ) 1 为相关系数或归一化协方差函数
随机过程第二章

§2.1 基本概念
一、实际背景
在许多实际问题中,不仅需要对随机现象做特 定时间点上的一次观察,且需要做多次的连续不 断的观察,以观察研究对象随时间推移的演变过 程. Ex.1 对某城市的气温进行n年的连续观察, 记录得 { X ( t ), a t b},
当T=(1,2, … ,n,…),
时间序列
随机过程是n 维随机变量,随机变量序列的
一般化,是随机变量X(t), t T 的集合. 用 E表示随机过程X T X t , t T 的值域,称E为 过程的状态空间. Ex.5 设(Ω,F, P)是对应于抛均匀硬币的概
率空间: Ω ω1 ,ω2 ,
Байду номын сангаас
tn ) P X (t1 ) x1 , X (t2 ) x2 ,
X (t n ) xn ,
称为随机变量 X (t ), t T 的n维分布函数
FX ( x1 , x2 ,
tn ) ti T 称为 X (t ), t T 的n维分布函数族
xn ; t1 , t2 , tn ), n 1, 2, ti T
T ( t ,ω) 是一个 2)当固定ω Ω ,作为 t T 的函数,
定义在T上的普通函数.
X(t1,ω)
X(t2,ω)
X(t,ω1) X(t,ω2) X(t,ω3)
t1
t2
tn
定义 对每一固定ω Ω,称 X t ω是随机过程 { X ( t , ), t T } 的一个样本函数. 也称轨道, 路径,现实.
互相关函数
互协方差函数
如果二维随机过程 X (t ), Y (t ) 对任意的t1 , t2 T , 恒有CXY (t1 , t2 ) 0, 称X (t )和Y (t )是不相关的。
随机过程第二章

2.2 随机过程的分类和举例
2、离散参数、连续状态的随机过程 这类过程的特点是参数集是离散的,对于固定的t∈T, X(t)是连续性随机变量。
例 设Xn,n=…,-2,-1,0,1,2,…是相互独立同服从标准正态 分布的随机变量,则{Xn,n=…,-2,-1,0,1,2,…}为一随机
过程,其参数集T={…,-2,-1,0,1,2,…},状态空间 S=(﹣∞,+∞)
2.3 随机过程的有限维分布函数族
例2.3.2 令X(t)=Acost,﹣∞<t<+∞,其中A是随机变量,其
分布律为 试求
P(A=i)= 1 , i=1,2,3 3
(1) 随机过程{X(t),﹣∞<t<+∞}的一维分布函数
(x)
2,
1 2
0,其他
x
0
时X( )Vcos V,故 X
(
)
的概率密度
1,1x0 fX()(x)0,其他
2.1 随机过程的定义
(3) 当t
2
时,X(2)Vcos20,不论V取何值,
均有 X ( ) 0,因此,P(X( )0)1,从而X ( ) 的
2
2
2
分布函数为
1,x0
F
X(
(x)
…
exp[
j(u1x(t1)
u2x(t2)
…
unx(tn))]dF(t1,t2,? ,tn;x1,x2,…,xn) ui∈R,ti∈T,i=1,2,…,n,j= 1
为随机过程{X(t), t ∈T }的n维特征函数.
2.3 随机过程的有限维分布函数族
称 { ( t 1 , t 2 , … , t n ; u 1 , u 2 , … , u n ) , u i R , t i T , i 1 , 2 , … , n , n N }
随机过程讲义(第二章)(PDF)

第二章 随机过程的一般概念2.1 随机过程的基本概念和例子定义2.1.1:设(P ,,F )Ω为概率空间,T 是某参数集,若对每一个,是该概率空间上的随机变量,则称为随机过程(Stochastic Process)。
T t ∈),(w t X ),w t (X 随机过程就是定义在同一概率空间上的一族随机变量。
随机过程可以看成定义在),(w t X Ω×T 上的二元函数,固定Ω∈0w ,即对于一个特定的随机试验,称为样本路径(Sample Path),或实现(realization),这是通常所观测到的过程;另一方面,固定,是一个随机变量,按某个概率分布随机取值。
),(0w t X T t ∈0),(0w t X抽象一点:令,即∏∈=Tt T R R T R 中的元素为),(T t x X t t ∈=,为其Borel域(插乘)(T R B σ域),随机过程实质上是()F ,Ω到())(,T T R R B 上的一个可测映射,在())(,T TR RB 上诱导出一个概率测度:T P ()B X P B P R B T T T ∈=∈∀)(),(B 。
一般代表的是时间。
根据参数集T 的性质,随机过程可以分为两大类: t 1)为可数集,如T {}L ,2,1,0=T 或{}L L ,1,0,1,−=T ,称为离散参数随机过程,也称为随机序列;2)为不可数集,如T {}0≥=t t T 或{}∞<<∞−=t t T ,称为连续参数随机过程。
随机过程的取值称为过程所处的状态(State),所有状态的全体称为状态空间(State Space)。
通常以表示随机过程的状态空间。
根据状态空间的特征,一般把随机过程分为两大类:T t t X ∈),(S 1) 离散状态,即取一些离散的值; )(t X 2)连续状态,即的取值范围是连续的。
)(t X离散参数离散状态随机过程: Markov 链 连续参数离散状态随机过程: Poisson 过程 离散参数连续状态随机过程: *Markov 序列连续参数连续状态随机过程: Gauss 过程,Brown 运动例2.1.1:一醉汉在路上行走,以的概率向前迈一步,以q 的概率向后迈一步,以p r 的概率在原地不动,1=++r q p ,选定某个初始时刻,若以记它在时刻的位置,则就是直线上的随机游动(Random Walk)。
第二章 随机过程

T /2
(2-2-7)
16
如果平稳过程使下式成立
a = a
σ
2
=σ
2
(2-2-8)
R (τ ) = R (τ )
称该平稳过程ξ(t)具有各态历经性。 称该平稳过程 具有各态历经性。 具有各态历经性 意义:随机过程中的任一次实现都经历了随机过程的 意义:随机过程中的任一次实现都经历了随机过程的 实现 所有可能状态。 所有可能状态。 具有各态历经性随机过程一定是平稳过程, 具有各态历经性随机过程一定是平稳过程,反之不 一定成立。 一定成立。 求解各种统计平均时(实际中很难获得大量样本), 求解各种统计平均时(实际中很难获得大量样本), 无需作无限多次考察,只要获得一次考察, 无需作无限多次考察,只要获得一次考察,用一次 实现的时间平均值代替过程的统计平均即可。 实现的时间平均值代替过程的统计平均即可。
满足上式则称ξ(t)为广义平稳随机过程或宽平稳随机过 满足上式则称 为广义平稳随机过程或宽平稳随机过 程。 严平稳随机过程(狭义平稳随机过程) 严平稳随机过程(狭义平稳随机过程)只要 Eξ2(t) 均方值有界,它必定是广义平稳随机过程。 均方值有界,它必定是广义平稳随机过程。 反之不一定成立。 反之不一定成立。
C (t1 , t 2 ) = E {[ξ (t1 ) − a (t1 ) ][ξ (t 2 ) − a (t 2 ) ]} =
∞ ∞ −∞ −∞
∫ ∫ [x
1
− a (t1 ) ][ x 2 − a (t 2 ) ] f 2 ( x1 , x2 ; t1 , t 2 ) dx1 x 2
(2-1-5) 2-1-5
互相关函数(针对两个随机过程) 互相关函数(针对两个随机过程)
Cξ ,η (t1 , t2 ) = E {[ξ (t1 ) − a (t1 ) ][η (t2 ) − a (t2 ) ]}
随机过程 第2章

随机变量 随机变量族
e → x(e) (e, t) → xt(e)=x(e, t)
x=xt(ei)
x
e1 e2 e3
e
概率空间和随机对象
样本空间
概率空间
随机变量
随机向量
随机过程
2.1 随机过程的基本概念
定义:设(Ω, ö,P)为概率空间,T是参数集。 若对任意 t ∈T ,有随机变量X(t, e)与之 对应,则称随机变量族{X(t, e), t ∈T } 是(Ω, ö,P)上的随机过程,简记为 {X(t),t ∈T }或{Xt,t ∈T }。 ★ X(t)的所有可能的取值的集合称为状态空 间或相空间,记为I。
由此可将随机过程分为以下四类:
a. 离散参数离散型随机过程; b. 离散参数连续型随机过程; c. 连续参数离散型随机过程; d. 连续参数连续型随机过程。
2. 以随机过程的统计特征或概率特 征分类:
a. 独立增量过程; b. Markov过程; c. d. e. f. g. 二阶矩过程; 平稳过程; 鞅; 更新过程; Poission过程;
称之为随机过程X(t) 的二维概率密度。
2.3 随机过程的分布律
随机过程的二维分布函数比一维分布函数包含了随 机过程变化规律更多的信息,但它仍不能完整地反 映出随机过程的全部特性及变化规律。用同样的方 法,我们可以引入随机过程 X(t) 的 n 维分布函数和 n 维概率密度。
FX ( x1 , x2 , , xn ; t1 , t2 , tn )
• 又如移动某基站每天的通话次数,X 显然不 能确定,即为随机变量,进一步分析知这 个 X 还和时间 t 有关,即 X(t),所以 X(t) 也构成一个过程,即随机过程;类似地, 气温、气压、商店每天的顾客流量等都构 成一个随机过程。
通信原理第2章 随机过程

aa
则称该平稳随机过程具有各态历经性。 R() R()
“各态历经”的含义:随机过程中的任一实现(样本函数) 都经历了随机过程的所有可能状态。因此, 我们无需(实际中 也不可能)获得大量用来计算统计平均的样本函数,而只需从 任意一个随机过程的样本函数中就可获得它的所有的数字特征, 从而使“统计平均”化为“时间平均”,使实际测量和计算的 问题大为简化。
注意: 具有各态历经性的随机过程必定是平稳随机过程, 但平稳随机过程不一定是各态历经的。在通信系统中所遇到的 随机信号和噪声, 一般均能满足各态历经条件。
第2章 随 机 过 程
三、平稳随机过程自相关函数
对于平稳随机过程而言, 它的自相关函数是特别重要的一 个函数。(其一,平稳随机过程的统计特性,如数字特征等, 可通过自相关函数来描述;其二,自相关函数与平稳随机过程 的谱特性有着内在的联系)。因此,我们有必要了解平稳随机 过程自相关函数的性质。
E[(t1)] x1f1(x1,t1)d1x
第2章 随 机 过 程
注意,这里t1是任取的,所以可以把t1直接写为t, x1改为x, 这时 上式就变为随机过程在任意时刻的数学期望,记作a(t), 于是
a(t)E[(t)] x1(fx,t)dx
a(t)是时间t的函数,它表示随机过程的(n个样本函数曲线的) 摆动中心。
第2章 随 机 过 程
3. 相关函数
衡量随机过程在任意两个时刻获得的随机变量之间的关联 程度时,常用协方差函数B(t1, t2)和相关函数R(t1, t2)来表示。
(1)(自) 协方差函数:定义为 B(t1,t2)=E{[ξ(t1)-a(t1)][ξ(t2)-a(t2)]}
= [x1a(t1)]x2[a(t2)f]2(x1,x2; t1,t2)dx1dx2
随机过程第二章

例2.8利用掷一枚硬币的试验定义一个随机过程 2.8
cosπt,出现正面 X (t) = 2t, 出现反面
0 ≤ t < +∞
已知出现正面与反面的概率相等. ⑴ 求X(t)的一维分布函数F(1/2; x),F(1; x). F(1/2; ),F(1; ). ⑵ 求X(t) 的二维分布函数F(1/2,1; x1,x2).
A, 例2.5 设 S.P.X (t) = A+ Bt,其中 B 相互独 S 立同服从正态分布 (0,1) ,求.P.X (t) 的一 N 维和二维分布.
例2.6 设 其中
S.P.X (t) = Acos t, t ∈ R ,
A是 r.v. , 而且具有概率分布
A P 1 1/3 2 1/3 3 1/3
由于初位相的随机性, 由于初位相的随机性,在某时刻t = t0 , X (t0 )是一 个随机变量. 个随机变量. 若要观察任一时刻 描述. 变量 X (t ) 描述
t
的波形, 的波形,则需要用一族随机
为随机过程. 则称 { X (t ), t ∈ [0, +∞)}为随机过程.
例2 .4样本曲线与状态 样本曲线与状态 X(t) = Acos(ωt + Φ)
2.1: 热噪声电压) 例2.1:(热噪声电压)电子元件或器件由于内部微观粒子
(如电子)的随机热骚动所引起的端电压称为热噪声电压, 如电子)的随机热骚动所引起的端电压称为热噪声电压, 时刻的值是随机变量, 它在任一确定 t 时刻的值是随机变量,记为 V (t ) . 不同时刻对应着不同的随机变量,当时间在某区间, 不同时刻对应着不同的随机变量,当时间在某区间,譬如 [0, +∞)上推移时,热噪声电压表现为一簇随机变量.在无 上推移时,热噪声电压表现为一簇随机变量. 线电通讯技术中,接收机在接收信号时, 线电通讯技术中,接收机在接收信号时,机内的热噪声电 压要对信号产生持续的干扰,为消除这种干扰(假设没有 压要对信号产生持续的干扰,为消除这种干扰( 其它干扰因素), ),就必须考虑热噪声电压随时间变化的过 其它干扰因素),就必须考虑热噪声电压随时间变化的过 为此, 程.为此,我们通过某种装置对电阻两端的热噪声电压进
随机过程-第二章 随机过程

Ft j ,,t j ( x j1 , , x jn )
1
P X (t j1 ) x j1 , , X (t jn ) x jn P X (t1 ) x1 , , X (tn ) xn Ft1 ,,tn ( x1 , , xn )
(2)相容性 对于 m n ,有
1, X (t ) x Y (t ) 0, X (t ) x
1 n
j1 ,,t jn
(u j1 ,, u jn )
(2)相容性 对于 m n ,有
t ,,t
1
m ,tm1 ,,tn
(u1 ,, um ,0,,0) t1 ,,tm (u1 ,, um )
注:有限维分布族与有限维特征函数族互相唯一决定。
定理 2.1: 存在定理 (Kolmogorov 定理) : 设分布函数族 Ft1 ,,tn ( x1 ,, xn ), t1 ,, tn , n 1
CXY (s, t ) E[( X (s) X (s))(Y (t ) Y (t ))], s, t T
互相关函数
def
RXY (s, t ) E[ X (s)Y (t )], s, t T
二维随机过程的独立性 若满足
Ft ,,t
1
' ' n ;t1 ,,tm
( x1 ,, xn ; y1 ,, ym ) Ft1 ,,tn ( x1 ,, xn ) Ft ' ,,t ' ( y1 ,, ym ), m 1, n 1
i 1
1 k k Ft1 ,,t1 ;;t 2 ,,t 2 ( x1 ,, x1 n1 ; , x1 , , xnk )
1 n1 1 nk
随机过程第二章课件

0.7 0.3 设 0.7, 0.4 ,则一步转移概率矩阵为 P 0.4 0.6
于是,两步转移概率矩阵和四步转移概率矩阵分别为
p00 P p 10
p01 p11
1 1
2.1 马尔可夫过程的定义
【二】马尔可夫链定义:
【性质】对于马尔可夫链,它的联合概率具有如下性质:
PX n in X 0 i0 , X 1 i1,, X n1 in1PX 0 i0 , X 1 i1,, X n1 in1 PX n in X n1 in1PX 0 i0 , X 1 i1,, X n1 in1
f tm , xm t1 , t2 ,, tm1; x1 , x2 ,, xm1 f t1 , t2 ,, tm1; x1 , x2 ,, xm1 f tm , xm tm1 , xm1 f t1 , t2 ,, tm1; x1 , x2 ,, xm1 f xm xm1 f xm1 xm2 f x2 x1 f x1
0.61 0.39 P 2 P P 0.52 0.48
0.5749 P 4 P 2 P 2 0.5668
0.4251 0.4332
由此可知,今日有雨且第四日仍有雨的概率为
4 p00 0.5749
2.1 马尔可夫过程的定义
【三】转移概率:
【定义二】高步转移概率: 设X n , n 0 为一马尔可夫链,对任意的 整数 0, n 0 ,及状态 j I ,记 i, m
pijm n PX n m j X n i
称为 m 步转移概率。它表示在时刻 n 时, X n 的状态为 i 的条件 m 下,经过 m 步转移到状态 j 的概率。 pij n 具有如下性质:
第二章随机过程

第⼆章随机过程第 2 章随机过程2.1 引⾔确定性信号是时间的确定函数,随机信号是时间的不确定函数。
?通信中⼲扰是随机信号,通信中的有⽤信号也是随机信号。
描述随机信号的数学⼯具是随机过程,基本的思想是把概率论中的随机变量的概念推⼴到时间函数。
2.2 随机过程的统计特性⼀.随机过程的数学定义:设随机试验E 的可能结果为)(t g ,试验的样本空间S 为{x 1(t), x 2(t), …, x n (t),…}, x i (t)是第i 次试验的样本函数或实现,每次试验得到⼀个样本函数,所有可能出现的结果的总体就构成⼀随机过程,记作)(t g 。
随机过程举例:⼆.随机过程基本特征其⼀,它是⼀个时间函数;其⼆,在固定的某⼀观察时刻1t ,)(1t g 是随机变量。
随机过程具有随机变量和时间函数的特点。
●随机过程)(t g 在任⼀时刻都是随机变量;●随机过程)(t g 是⼤量样本函数的集合。
三.随机过程的统计描述设)(t g 表⽰随机过程,在任意给定的时刻T t ∈1, )(1t g 是⼀个⼀维随机变量。
1.⼀维分布函数:随机变量)(t g ⼩于或等于某⼀数值x 的概率,即})({);(1x t g P t x P ≤= 2.2.12.⼀维概率密度函数:⼀维概率分布函数对x 的导数.xt x P t x p ??=);(),(11 2.2.2 3.对于任意两个时间1t 和2t ,随机过程的对应的抽样值)(1t g )(2t g 为两个随机变量.他们的联合分布定义为)(t g 的⼆维分布})(;)({),;,(221121212x t g x t g P t t x x P ≤≤= 2.2.34.⼆维分布密度定义为212121221212),;,(),;,(x x t t x x P t t x x p = 2.2.4 四.随机过程的⼀维数字特征设随机过程)(t g 的⼀维概率密度函数为),(1t x p .1.数学期望(Expectation)dx t x xp t g E t g );()]([)(1?∞∞-==µ 2.2.5 2.⽅差(Variance)dx t x p t x t t g E t g Var t g g g ),()]([]))()([()]([)(1222µµσ-=-==?∞∞- 2.2.6五.随机过程的⼆维数字特征1.⾃协⽅差函数(Covariance)21212122211221121),;,())())((())]()())(()([(),(dx dx t t x x p t x t x t t g t t g E t t C g g g g g µµµµ--=--=??∞∞-∞∞- 2.2.72. ⾃相关函数(Autocorrelation)2121212212121),;,()]()([),(dx dx t t x x p x x t g t g E t t R g ∞∞-∞∞-== 2.2.83.⾃相关函数和⾃协⽅差函数的关系)]([)]([),(),(212121t g E t g E t t R t t C g g ?-= 2.2.94.设两个随机过程分别为)(),(t h t g ,在时刻1t 和2t ,对)(),(t h t g 抽样,两个随机过程的互相关函数(Cross-correlation)定义为)]()([),(2121t h t g E t t R gh = 2.2.105.两个随机过程的互协⽅差函数(Cross-covariance)定义为)]()())(()([(),(221121t t h t t g E t t C h g gh µµ--= 2.2.112.3 平稳随机过程⼀.狭义平稳的随机过程(严平稳的随机过程)对于任意的正整数n 和实数τ,若随机过程)(t g 的n 维概率密度函数满⾜ ),,;,,(),,;,,,(21212121n n n n n n t t t x x x p t t t x x x p=+???++???τττ 2.3.1 则称)(t g 为狭义平稳的随机过程.统计特性不随时间的推移⽽变化的随机过程称为平稳随机过程。
随机过程第二章

f (t ) = λe − λ t
X1 follows an exponential distribution with parameter λ
6
2.2 Properties of Poisson processes
For any s>0 and t>0, {X2>t|X1=s} ⇔{0 event in (s, s+t]|X1=s} P{X2>t|X1=s} = P{0 event in (s, s+t]|X1=s} = P{0 event in (s, s+t]} (independent-increment) = P{0 event in (0, t]} (stationary-increment) = P{N(t)=0}= e-λt P{ X2≤ t|X1= s} = 1- e-λt
12
2.2 Properties of Poisson processes
λh1e − λh ...λhn e − λh e − λ (t − h −...h ) = e − λt (λ t ) n
1 n1 1 n
(According to Eq.2-1-1)
n! = (Depends on the total number of subscribers and their arriving time)
Let N(t) denote the number of subscribers, and Si denote the arrival time of the ith customer. The revenue generated by this customer in (0,t] is t-Si. Adding the revenues generated by all arrivals in (0,t] N (t ) ⎡ N (t ) ⎤ ∑ (t − Si ) , E ⎢ ∑ (t − S i )⎥ ⎣ i =1 ⎦ i =1
随机过程第2章 平稳过程与二阶矩过程

2.1 相关函数
{
{
{
对于宽平稳过程 X (t )而言,其平均值定义为 η = E { X ( t )} = η x 其中 E ( X )表示对随机变量X取均值。 互相关函数为 R(τ ) = E{X(t +τ )X * (t)}= Rx (τ ) = Rxx(τ ) * 表示取共轭运算。 (τ ) 显然, R(−τ ) = R *。 若X(t) 是实的宽平稳过程,则R(τ)为偶函数。
R xy (t1 , t 2 ) = E ( X (t1 )Y (t 2 )) = R (t1 , t 2 + a ) − R (t1 , t 2 )
R yy (t1 , t 2 ) = E (Y (t1 )Y (t 2 )) = R xy (t1 + a, t 2 ) − R xy (t1 , t 2 ) = R (t1 + a, t 2 + a ) − R(t1 + a, t 2 ) − R(t1 , t 2 + a ) + R(t1 , t 2 )
平稳过程与二阶矩过程
第二章 平稳过程与二阶矩过程
授课教师:樊平毅 清华大学电子工程系 2012
内容简介
{ { { { { { { { { { {
2.1 相关函数 2.2 功率谱 2.3 功率谱与时域平均 2.4 线性系统 2.5 随机连续性 2.6 随机微分(均方意义) 2.7 Taylor级数 2.8 随机微分方程 2.9 随机积分 2.10 遍历性讨论 2.11 抽样定理与随机预测
推广 应用
思考: 0 在平稳分布中的作用
0 点的重要性,
1) 2) 3) 4)
连续性, 周期性, 有界性, 极值特性,
随机过程第二章

对于任意n=1,2, …事件A相继到达的时间间隔Tn的分布为
⎧1 − e − λ t , t ≥ 0 FTn (t ) = P{Tn ≤ t} = ⎨ t<0 ⎩0,
其概率密度为
fቤተ መጻሕፍቲ ባይዱTn
⎧λ e −λt , (t ) = ⎨ ⎩0,
t ≥ 0 t < 0
等待时间的分布
等待时间Wn是指第n次事件A到达的时间分布
或
n≥0
[ m X (t )] n P{ X (t ) = n} = exp{ − m X (t )}, n!
例题3.8
1 (1 + cos ω t ) 的非齐次泊 设{X(t),t≥0}是具有跳跃强度 λ ( t ) = 2 松过程(ω≠0),求E[X(t)]和D[X(t)]。
例题3.9 设某路公共汽车从早上5时到晚上9时有车发出,乘客流量如下:5时 按平均乘客为200人/时计算;5时至8时乘客平均到达率按线性增 加,8时到达率为1400人/时;8时至18时保持平均到达率不变;18时 到21时从到达率1400人/时按线性下降,到21时为200人/时。假定乘 客数在不相重叠时间间隔内是相互独立的。求12时至14时有2000人 来站乘车的概率,并求这两个小时内来站乘车人数的数学期望。
P{ X (t + h) − X (t ) ≥ 2} = o(h)
非齐次泊松过程的均值函数为
m
X
(t ) =
∫
t 0
λ ( s ) ds
定理: 设{X(t),t≥0}为具有均值函数 m 则有
X
(t ) =
∫
t 0
λ ( s ) ds
非齐次泊松过程,
P{ X (t + s ) − X (t ) = n} [ m X (t + s ) − m X (t )] n = exp{−[ m X (t + s ) − m X (t )]}, n!
第二章 随机过程

图2-1-1 噪声电压的输出波形
定义1 设随机试验E的样本空间为 ,如果 对于每一个样本 ,总可以依某种规则确定 一时间t的函数 (T是时间t的变化范 围 ) 与之对应。于是,对于所有的 来说, 就得到一族时间t的函数,称此族时间的函数为 随机过程(也称随机信号)X,而族中的每一个 函数称为该随机过程的样本函数。 注:随机过程是样本函数的集合 。
决定随机信号的主 要物理条件不变
3、主要性质 (1)、若 是严平稳随机过程,则它的一维概 率密度与时间无关。 证明 令 ,则一维概率密度函数
得证。
(2)、若 是严平稳随机过程,则它的均值、 均方值和方差都是与时间无关的常数。
证明: 根据题意有 (2.3.2) (2.3.3) (2.3.4)
(2)、若 是严平稳随机过程,则它的均值、 均方值和方差都是与时间无关的常数。
2.2.1、随机过程的概率分布
随机过程 ,在每一固定时刻 都是随机变量。 随机事件:
发生概率:
, 和
,
,
1、一维分布函数 与 和 都有直接的关系,是 和 的 二元函数,记为: (2.2.1) 被称为随机过程的一维分布函数。 2、一维概率密度函数 如果存在二元函数 ,使 (2.2.2) 成立,则称 为随机过程的一维概率密度函 数, 是 和 的二元函数,且满足 (2.2.3)
• 研究随机过程的概率密度函数的统计特性是 很困难的; • 随机过程一、二阶矩函数在一定程度上描述 了随机过程的一些重要特性。 (1) 噪声电压是一平稳过程 ,那么一、二阶 矩函数,就是噪声平均功率的直流分量、交 流分量、总平均功率等参数。 (2) 正态随机过程由数学期望和相关函数详 细描述。
1 定义 若随机过程
自协方差函数反映了随机过程 在两个不同 时刻的状态相对于数学均值之间的相关程 度。
第2章 随机过程

第2章
随机过程
随机信号分析
3 随机过程的定义:
定义1:设随机试验E的样本空间 S { } ,若对于 每个元素 S ,总有一个确知的时间函数 X (t , ) 与它对应,这样,对于所有的 S,就可以得 到一簇时间t的函数,称它为随机过程。簇中的 每一个函数称为样本函数。 定义2:若对于每个特定的时间 ti (i 1,2,) X (ti , ) , 都是随机变量,则称 X (t , ) 为随机过程.X (ti , ) 称为随机过程 X (t ) 在t t i 时刻的状态。
第2章 随机过程
随机信号分析
2 二维概率分布 二维随机变量[X(t1),X(t2)]的分布函数FX(x1,x2;t1,t2)为
FX(x1,x2;t1,t2)=P{ X(t1)≤x1,X(t2)≤x2}
若FX(x1,x2;t1,t2)对x1,x2的二阶混合偏导存在,则
2 FX ( x1 , x2 ; t1 , t 2 ) f X ( x1 , x2 ; t1 , t 2 ) x1x2
为随机过程X(t)的二维概率密度
第2章 随机过程
随机信号分析
3 n维概率分布 随机过程 X (t )在任意n个时刻 t1 , t2 ,, tn 的取值 X (t1 ), X (t2 ),, X (tn ) 构成n维随机变量 [ X (t1 ), X (t2 ),, X (tn )], 定义随机过程X (t ) 的n维分布函数和n维概率密 度函数为
n重
4 f X ( x1 , x2 ,, xn ; t1 , t 2 ,, t n )dx1dx2 dxn 1
5
n-m重
第二章随机过程基本概念.

为称使可积
}: ({ , ( , ( , (, 0 , (1111T t t X t x f dx
t x f t x F t x f x
Î=³ò¥-(2若有的一维概率分布。
为称满足}: ({}{1
, 0} ({T t t X p p
p p x t X P k k k k k
k Î=³==å
¥¥-k k iux X k k iux X p e
u t p x t X P t X dx t x f e u t t x f t X k , ( (( ( 2 , ( , ( , ( (111jj则有分布列若(,则
有密度若(
有时也需要利用常用的一些特征函数来求随机变量的分布函数,由特征函数与分布函数的一一对应性有:
cos(
(Q
+
=t
a
t
X w
的均值函数,方差函数和自相关函数。其中, a , w为常数, Q是在(0, 2p上均匀分布的随机变量。例4试求随机相位余弦波
2随机过程的特征函数
的一维特征函数。
为称为随机变量,记
由于给定( , ( ( ( , ( (, ( (t X u t u e
E u t t X T t X t X t iuX X jjjÙ==Îåò====
为X (t的有限维分布函数族。
为随机过程的n维分布函数。称关于随机过程X (t的所有有限维分布函数的集合
注意:随机过程的n维分布函数描述了随机过程在任意n不同时刻的状态之间的联系。
随机过程X (t的有限维分布函数族的意义何在?随机过程的n维分布函数(或概率密度能够近似地描述随机过程的统计特性,而且, n越大,则n维分布函数越趋完善地描述随机过程的统计特性。
第二章 随机过程

程孤 立的时间点上的统计特性。 • 随机过程孤立的时间点上的统计特性不能反
映随机过程的起伏程度, 故采用两时刻或更多 时刻状态的相关性去描述起伏程度。
4.自相关函数
设和
分别是随机过程 在时刻
和的状态,称它们的二阶原点混合矩
统计特性也可分为:
1、幅值域描述: 数学期望、均方值、方差 等; 2、时间域描述: 自相关函数、互相关函数 ; 3.频率域描述: 功率谱密度函数、互功率谱 密度函数;
2.2.1.随机过程的概率分布
随机过程 , 在任意固定时刻 , 都 是随机变量。 随机事件:
发生概率:
1.一维分布函数
与 和 都有直接的关系,是 二元函数,记为:
7、当平稳随机过程含有均值 , 那它的自相 关函数也将会含有一个常数项 。
8、平稳随机过程的自相关函数的傅里叶变换在 整个频率轴上是非负的,即
且对于所有 都成立。 注: 即不含有阶跃函数的因子,如: 平顶、垂
直边或幅度上的任何不连续。
用平稳过程的自相关函数表示数字特征: (1).数学期望
(2) 均方值 (3) 方差 (4).协方差
• 随机过程 具有以下四种含义:
1.若 和 在发生变 一族时间函数,或化一,族则随随机机变过量程,是构成 了随机过程的完整概念; 2.若和 都固定,则随机过程是一个 确定值;
3.若 取固定值,则随机过程是一个确定 的时间函数,即样本函数,对应于某次试 验的结果;
4.若 取固定值,则随机过程是一个随 机变量;
图 随机过程数字特征
例2-14.设随机过程 的自相关函数为
求它的均值、均方值、方差和自协函数方差。 解:
随机过程第二章

X (t)
Y (t)
mX (t)
mY (t)
其中 X (随t)时间变化缓慢,这个过程在两个不同 时刻的状态之间有较强的相关性; 而 Y的(样t) 本函数变化激烈,波动性大,其不同时刻 的状态之间的联系不明显,且时刻间隔越大,联系越
弱.
因此,必须引入描述随机过程在不同时刻 之间相关程度的数字特征。
自相关函数(简称相关函数)就是用来描 述随机过程两个不同时刻,状态之间内在联 系的重要数字特征。
随机过程数字特征之间的关系:
(1)
2 X
(t)
RX
(t,t)
(2)
2 X
(t)
BX
(t,t)
RX
(t,t)
m2 X
(t)
(3)
BX (t1,t2 ) RX (t1,t2 ) mX (t1)mX (t2 )
从这些关系式看出,均值函数
mX (t)
和相关函数 RX (t1,t是2 ) 最基本的两个数字特征,其它
称为样本函数,对应于e的一个样本轨道或实现,
变动e ,则得到一族样本函数, 样本函数的全e为一个数, 即在t时刻系统所
处的某一个状态。
对接收机的输出噪声电压,作一次“长 时间的观察”,测量获得的噪声电压Xt是一 个样本函数
e 1, x1(t) e 2, x2 (t) e 3, x3(t) e k, xk (t)
随机变量, 当t连续变化时, 即得一族随机变量,
所以X t,0 t 是一个连续参数, 连续状态
的随机过程, 称为随机相位正弦波。 例. 某电话交换台在时间段[0,t)内接收到的呼叫
次数X (t)是与t有关的随机变量, 对于固定的t, X (t)是一个取非负整数的随机变量,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F ( x, t ) f ( x, t ) x 相应的一维特征函数为
X ( , t ) E{e
i X
}
f ( x, t )ei x dx
n 维分布律
[定义] 设 XT ={X (t), t T } 是随机过程,对任意 n 1 和
t1, t2, …, tn T ,随机过程 XT 的 n 维分布函数为
证明:B (s, t ) E[( X (s) m (s))( X (t ) m (t ))] X X X
E[ X ( s) X (t )] E[ X ( s)]mX (t ) E[ X (t )]mX ( s ) mX ( s )mX (t )
RX (s, t ) mX (s)mX (t )
度、重量、速度等物理量。随机过程本来通称随机函
数,当参数 T 时间集时称为随机过程,但现在将参数 不是时间集的随机函数也称为随机过程,对参数集 T 不再有时间集的限制。
2.2 随机过程的分布律和数字特征
[定义] 随机过程XT ={X (t), t T }在时刻 t 的一维分布函
数为
F ( x, t ) P{ X (t ) x}
例3
天气预报问题: 在天气预报中, 若以Xt表示某地 区第t次统计所 得到的该天最 高气温,则Xt是 随机变量, {Xt , t =0, 1, … }是随 机过程。
例4
Brown运动:漂浮在液 体表面上的微小粒子 不断进行无规则的运 动,它是大量分子随
机碰撞的结果,若记
(X(t),Y(t))为粒子在平
归一化协方差函数——相关系数:
BX ( s , t ) X ( s, t ) X ( s) X (t )
几种关系
BX (s, t ) RX ( s, t ) mX ( s)mX (t )
2 DX (t ) BX (t , t ) RX (t , t ) mX (t )
(2)随机过程是随机变量的推广。随机变量是在固定时间t
上的试验结果,是一个数的集合。而当随机过程在tT上的 试验结果,是一个时间函数的集合。当t固定时,随机过程 就成为一个随机变量。
疑难解析
(3)随机变量X(e)是定义在Ω 上的函数,对每个e Ω,都有 确定的x与之相对应;而随机过程当e Ω时,对应的X(e,t)
几种关系
均值函数 mX (t) 和相关函数 RX (s, t) 是最基本的两个
数字特征。
“相关理论”——在随机过程理论中,仅研究 mX (t) 和 RX (s, t)有关的理论。
均值函数mX(t)是随机过程在时刻t的平均值。
方差函数DX(t)是随机过程在时刻t对均值mX(t)的偏离 程度。 协方差函数BX(s,t)和相关函数RX(s,t)反映随机过 程在时刻s和t时的线性相关程度。
面坐标上的位置,则
它是平面上的随机过
程{(X(t),Y(t)),t∈T}
例5
海浪分析:在海浪分 析中,需要观测某固 定点处的垂直振动。 设X(t)表示在时刻t该
处的海平面相对于平
均海平面的高度。则 X(t)是随机变量,而
{X(t),t∈[0,∞)}是随
机过程
例6
随机游动:一个 醉汉在路上行走, 以概率P前一步, 以概率1-p后退一 步(假设步长相 同)以X(t)记他 在t时刻在路上的 位置,则X(t)为 随机过程。
若对于任意时刻 t1, t2, …, tn T 和任意 n 1 ,随机过 程 X (t) 的 n维分布函数或概率密度都已知,则认为 该随机过程的统计描述是完全的或者具有全局统计特
征。
通常描述的是随机过程的局部统计特征(n 为有限 值),例如一维、 n维联合分布函数(及以下的数字 特征等)。
F ( x1 , x2 ,, xn ; t1 , t2 ,, tn ) F ( xi1 , xi2 ,, xin ; ti1 , ti2 ,, tin )
(2) 相容性:当 m<n 时,
F ( x1 , x2 ,, xm ; t1 , t2 ,, tm ) F ( x1 , x2 ,, xm , ,, ; t1 , t2 ,, tn )
例1
已知随机相位正弦波 X (t) = a cos(t + ),其
中 a >0, 为常数,为在(0, 2)内均匀分 布的随机变量。
求随机过程 { X (t), t (0, ) } 的均值函数 mX (t)
和相关函数 RX (s, t) 。
mX (t ) 0 a2 a2 R X ( s, t ) cos[ (t s)] cos , ( t s) 2 2
2 -
DX (t ) E{[ X (t ) m X (t )]2 } [ x m X (t )]2 f ( x, t )dx
标准差:
X (t ) DX (t )
(自)相关函数和协方差函数
相关函数
RX ( s, t ) E{ X ( s) X (t )}
xs xt f ( xs , xt ; s, t )dxs dxt
协方差函数
BX ( s, t ) E{[ X ( s) mX ( s)][ X (t ) mX (t )]}
[ xs mX ( s)][ xt mX (t )] f ( xs , xt ; s, t )dxs dxt
离散随机序列
参数离散,状态离散
疑难解析
1、怎样理解随机过程?它与函数及随机变量有何不同? 答(1)随机过程将普通函数的概念从实数与实数的对应关系
推广到实数与随机变量的对应关系。对普通函数而言,当
tT时,总有一个确定的实数x与之对应;而对随机过程而 言,当tT时,与之对应的X(e,t)是一个随机变量。
2 随机过程的概念与 基本类型
内容提要
随机过程的基本概念 随机过程的分布律和数字特征 复随机过程 几种重要的随机过程
2.1 随机过程的基本概念
初等概率论——研究的主要对象:一个或有限 个随机变量(或向量),虽然也讨论随机变量 序列,
2.1 随机过程的基本概念
例2
设 X (t) 为信号过程,Y (t) 为噪声过程,令 W (t) = X (t) + Y (t),
则 W (t) 的均值函数为
其相关函数为
mW (t ) mX (t ) mY (t )
RW (t ) E{[ X ( s ) Y ( s )][ X (t ) Y (t )]} E[ X ( s ) X (t )] E[ X ( s )Y (t )] E[Y ( s ) X (t )] E[Y ( s )Y (t )] RX ( s, t ) RXY ( s, t ) RYX ( s, t ) RY ( s, t )
[ x mX ( s )][ y my (t )] f ( x, s; y , t )dxdy
关系式:
BXY ( s, t ) RXY ( s, t ) mX ( s)mY (t )
当BXY (s,t) =0时,称{X (t), t T }与 {Y (t), t T } 互不相关 当RXY (s,t) =0时,称{X (t), t T }与 {Y (t), t T } 相互正交
2.3 复随机过程
在工程中,常把随机过程表示成复数形式来进行研究。 本节我们来研究复随机过程。 [定义] 两个实随机过程:{ Xt , t T }和 {Yt , t T },若对 于任意 t T,有
Kolmogorov定理
总结:柯尔莫哥洛夫定理说明:随机过程有限维 分布族是随机过程概率特征的完整描述。柯尔莫
哥洛夫定理是随机过程理论的基本定理。它是证
明随机过程存在性的有力工具。但在实际问题中,
要知道随机过程的全部有限维分布族是不可能的。
因此人们想到用随机过程的某些数字特征来刻画
随机过程。
全局特征与局部特征
示时间。
状态与样本函数
X (t, e) 是定义在 T 上的二元函数
状态——对于固定时刻 t T ,X (t, e) 是 (, F, P) 上
的随机变量,此时把 X (t) 所取的值称为随机过程X (t) 在时刻 t 所处的状态。 X (t) 的所有可能状态所构成的集合称为状态空间或 相空间,记为I。
又是t的函数,称为样本函数或样本曲线。所以随机过程将
随机变量从e与实数对应推广到e与实函数的对应。 (4)随机过程是一族随机变量,T中有多少个元素,X(e,t) 就含有多少个随机变量。随机变量又是一族样本函数,每 一e Ω对应一个样本函数, Ω 含有多少个事件,就有多少 个样本函数。
疑难解析
随机过程对参数集T有何要求? 随机过程定义中的参数 T 可以是时间集,也可以是长
互相关函数、互协方差函数
设有两个二阶矩过程{X (t), t T }和 {Y (t), t T } , 互相关函数
RXY ( s, t ) E{ X ( s)Y (t )}
xy f ( x, s; y, t )dxdy
互协方差 函数
BXY ( s, t ) E{[ X (s ) mX (s )][Y (t ) mY (t )]}
随机过程的数字特征
[定义] 设随机过程 XT ={X (t), t T }是二阶矩过程,即对任 意t T,E{X (t)}和E{X2(t)}存在,则其数字特征定义为 均值函数
mX (t ) E{ X (t )} xf ( x, t )dx