概率论与数理统计概率问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修2-3 2.2.1 条件概率
一、选择题
1.下列式子成立的是( )
A .P (A |
B )=P (B |A )
B .0
C .P (AB )=P (A )·P (B |A )
D .P (A ∩B |A )=P (B )
[答案] C
[解析] 由P (B |A )=P (AB )P (A )得P (AB )=P (B |A )·P (A ).
2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )
A.35
B.25
C.110
D.59
[答案] D
[解析] 设第一次摸到的是红球(第二次无限制)为事件A ,则P (A )=6×910×9=35
,第一次摸得红球,第二次也摸得红球为事件B ,则P (B )=6×510×9=13
,故在第一次摸得红球的条件下第二次也摸得红球的概率为P =P (B )P (A )=59,选D.
3.已知P (B |A )=13,P (A )=25,则P (AB )等于( )
A.56
B.910
C.215
D.115 [答案] C
[解析] 本题主要考查由条件概率公式变形得到的乘法公式,
P (AB )=P (B |A )·P (A )=13×25=215,故答案选C.
4.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( )
A.14
B.13
C.12
D.35
[答案] B
[解析] 抛掷红、黄两颗骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含4×6,6×4,6×5,6×6共4个基本事件.
所以其概率为4361236
=13.
5.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )
A.56
B.34
C.23
D.13
[答案] C
6.根据历年气象统计资料,某地四月份吹东风的概率为930,下
雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下
雨的概率为( )
A.911
B.811
C.25
D.89
[答案] D
[解析] 设事件A 表示“该地区四月份下雨”,B 表示“四月份
吹东风”,则P (A )=1130,P (B )=930,P (AB )=830,从而吹东风的条件
下下雨的概率为P (A |B )=P (AB )P (B )=830930
=89.
7.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是( )
A.23
B.14
C.25
D.15
[答案] C
[解析] 设A i 表示第i 次(i =1,2)取到白球的事件,因为P (A 1)=25,
P (A 1A 2)=25×25=425,
在放回取球的情况P (A 2|A 1)=25×2525
=25.
8.把一枚骰子连续掷两次,已知在第一次抛出的是偶数点的情况下,第二次抛出的也是偶数点的概率为( )
A .1
B.12
C.13
D.14
[答案] B
[解析] 设A i 表示第i 次(i =1,2)抛出偶数点,则P (A 1)=1836,P (A 1A 2)
=1836×918,故在第一次抛出偶数点的概率为P (A 2|A 1)=P (A 1A 2)P (A 1)=1836×9181836
=12,故选B.
二、填空题
9.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为________.
[答案] 0.3
10.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.
[答案] 9599
[解析] 设“第一次抽到次品”为事件A ,“第二次抽到正品”
为事件B ,则P (A )=5100,P (AB )=5100×9599,所以P (B |A )=P (AB )P (A )=9599.
准确区分事件B |A 与事件AB 的意义是关键.
11.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.
[答案] 12
[解析] 一个家庭的两个小孩只有3种可能:{两个都是男孩},{一个是女孩,另一个是男孩},{两个都是女孩},由题目假定可知这3个基本事件的发生是等可能的.
12.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.
[答案] 3350
[解析] 根据题意可知取出的一个数是不大于50的数,则这样
的数共有50个,其中是2或3的倍数共有33个,故所求概率为3350.
三、解答题
13.把一枚硬币任意掷两次,事件A =“第一次出现正面”,事件B =“第二次出现正面”,求P (B |A ).