小专题(一)_平行线中的“拐点”问题
22、几何专题:平行线拐点问题
平行线拐点问题
一、平行线拐点基本模型
模型一“铅笔”模型
点P在EF右侧,在AB、CD内部“铅笔”模型
模型二“猪蹄”模型(M模型)
点P在EF左侧,在AB、CD内部“猪蹄”模型
模型三“臭脚”模型
点P在EF右侧,在AB、CD外部“臭脚”模型
模型四“骨折”模型
点P在EF左侧,在AB、CD外部“骨折”模型
二、平行线拐点模型的证明
三、平行线拐点模型的进阶
1、处理方法
⎩⎨⎧拐点作平行
构造三角形关键作有效截线“铅笔”模型“铅笔”模型
3、模型二“猪蹄”模型(M 模型)
“猪蹄”模型
注意:铅笔模型与M 模型在一定程度可以相互转换。
4、核心
平行线拐点模型的核心在于平行线间的点,这些点有一个,两个和多个,这些点决定模型的类型和处理手段。
例1、平行线拐点模型的简单应用
例2、平行线拐点模型的探究问题
∠,F A平分HAD ECD
∠,若
例3、平行线拐点模型的具体应用
的度数为.
课后作业。
平行线中的拐点(拐角)问题
专题一平行线中的拐点问题【学习目标】1.复习巩固平行线的性质和判定,找到解决平行线间拐点问题的基本方法,学会运用平行线转移角,建立分散的角之间的练习,提高几何推理能力。
2.在探究的过程中,体会观察-猜想-实验-证明的探究过程,初步体会添加辅助线的目的。
【学习过程】一、复习填空.平行线的判定:①_____________________________________________.②_____________________________________________.③_____________________________________________.④_____________________________________________.平行线的定理:①_____________________________________________.②_____________________________________________.③_____________________________________________.二、探究新知假设,两根木杆AB与CD平行放置,木杆的两端B、D用一根橡皮筋连接,现在在橡皮筋BD上任取一点P,将点P向里压:例1.如图,在平行线AB,CD内任取一点P,连接DP,BP.(1)若∠ABP=45°,∠CDP=15°则∠BPD=__________.(2)若∠BPD=50°,∠CDP=10°则∠ABP=__________.(3)试猜想∠BPD与∠ABP、∠CDP之间的数量关系,并说明理由.变式练习:1.如图,直线AB∥CD,∠A=40°,∠D=45°,则∠1的度数是__________. 2.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1的度数是_____________.(1)(2)拓展提升:如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.(2)如果将折一次改为折三次,如图3,则∠BEO、∠O、∠P、∠Q、∠QFD之间会满足怎样的数量关系(直接写出结果不需证明)假设,现在在橡皮筋BD上任取一点P,将点P水平向外拉:例2.如图,在平行线段AB、CD外取一点P,连接BP,DP,刚才的结论还成立吗?若不成立,你又有新的发现吗?变式练习:1.某小区地下停车场入口门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=110°,则∠ABC=__________.2.如图,如果a∥b,∠1=55°,∠2=130°,则∠3=___________.(1)(2)拓展提升:已知:如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=_;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.假设,现在在橡皮筋BD上任取一点P,将点P斜上右上方拉或者斜上左上方拉:例3.如图①②,在平行线AB、CD外取一点P,连接BP,DP,这时∠ABP,∠CDP,∠BPC之间又有怎样的数量关系呢?变式训练:1.如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为__________.2.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=100°,∠CDE=15°,则∠DEF的度数是___________.3.如图,已知直线a∥b,则∠1、∠2、∠3的关系是______________.(1)(2)(3)三、课后练习1.如图,直线l2∥12,∠A=125°,∠B=85°,则∠1+∠2=.2.如图,如果AB∥CD,则角α、β、γ之间的关系为.3.如图,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=140°.则∠BFD的度数为____________.(1)(2)(3)4.如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD的度数为.5.直线l1∥l2,∠A=125°,∠B=105°,则∠1+∠2=____________.(4)(5)6.如图,已知AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=75°.求∠BFD的度数.7.如图,一条公路修到湖边时需绕道,第一次拐角∠B=110°,第二次拐角∠C=150°,为了保持公路AB与DE平行,则第三次拐角∠D的度数为__________.8.如图,AB∥EF,BC⊥CD于C,∠ABC=30°,∠DEF=45°,则∠CDE等于()A.105°B.75°C.135°D.115°9.如图所示,两平面镜α、β的夹角为60°,入射光线AO平行于β入射到α上,经两次反射后的反射光线O′B平行于α,则∠1的度数为()A.60°B.45°C.30°D.75°10.如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20°B.40°C.30°D.25°(8)(9)(10)11.阅读第(1)题解题过程,解答第(2)题.(1)如图1,AB∥CD,E为AB、CD之间的一点,已知∠B=40°,∠C=30°,求∠BEC的度数.解:过点E作EM∥AB,∴∠B=().∵AB∥CD,AB∥EM,∴EM∥().∴∠2=().∴∠BEC=∠1+∠2=∠B+∠C=40°+30°=70°.(2)如图2,AB∥ED,试探究∠B、∠BCD、∠D之间的数量关系.。
平行线中的拐点(拐角)问题专题
证明: 过点E作EF,使得EF∥AB
B
A
∵AB∥CD
1
F
E
∴EF∥CD
2
∴∠A+∠1=180°,∠C+∠2=180°
D
C
∵∠1+∠2=∠AEC ∴∠A+∠C+∠AEC=∠A+∠1+∠C+∠2=360°
②已知:∠AEC+∠A+∠C=360°,结论:AB∥CD
B
A 证明: 过点E作EF,使得EF∥AB
∴∠A=∠1
E1
F
2
∵∠AEC=∠1+∠2 ,且∠AEC=∠A+∠C ∴∠2=∠C
D
C
∴EF∥CD
∴AB∥CD
模型1:平行线间的“M”模型(猪手)
模型1:平行线间的“M”模型(猪手)
模型1:平行线间的“M”模型(猪手)
模型2:平行线间的“铅笔”模型(子弹头)
B
A
证明: 过点E作EF,使得EF∥AB
∵AB∥CD
D
C
∴EF∥CD
E
F ∴∠A=∠AEF,∠C=∠CEF ∵∠AEC=∠CEF-∠AEF
∴∠AEC=∠C-∠A
模型3:平行线间的“枝丫”模型(锄头型和犀牛角型)
模型3:平行线间的“枝丫”模型(锄头型和犀牛角型)
模型3:平行线间的“枝丫”模型(锄头型和犀牛角型)
第二章 相交线与平行线
平行线中的拐点问题
模型1:平行线间的“M”模型(猪手)
①已知:AB∥CD,结论:∠AEC=∠A+∠C
B
A 证明: 过点E作EF,使得EF∥AB
人教版数学七年级下册:第五章 相交线与平行线——专题练习(附答案)
小专题(一)平行线中的“拐点”问题模型1 M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2 铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=度.小专题(二) 利用平行线的性质求角的度数类型1 直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( ) A.52° B.54° C.64° D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF 的度数是( )A.20° B.25° C.30° D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.类型2 借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( )A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( )A.75° B.90° C.105° D.120°类型3 折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是.类型4 抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC=∠ODE.则∠DEB的度数是度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是.小专题(三) 平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF ∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=.∵DF∥CA,∴∠A=.∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD( ),∴∠C=.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB= (垂直的定义).②所以 (同位角相等,两直线平行).③所以∠1+∠2= (两直线平行,同旁内角互补).④又因为∠2+∠3=180°( ),⑤所以∠1=∠3( ).⑥所以AB∥DG( ).⑦所以∠GDC=∠B( ).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD ∥BC.4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF 与AB的位置关系吗?请说明理由.5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.参考答案:小专题(一)平行线中的“拐点”问题模型1 M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.【解答】∠BED=∠B+∠D.理由:过点E作EF∥AB,则EF∥CD.∴∠B=∠BEF,∠D=∠DEF.∴∠BED=∠BEF+∠DEF=∠B+∠D.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.拓展平行线间有多个拐点2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?解:(1)∠BEF+∠FGD=∠B+∠EFG+∠D.理由:过点E,F,G分别作EM∥AB,FN∥AB,GH∥AB,由AB∥CD,得AB∥EM∥FN∥GH∥CD.∴∠BEM=∠B,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D.∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D.(2)在图2中,有∠E1+∠E2+∠E3+…+∠En=∠B+∠F1+∠F2+…+∠Fn-1+∠D.如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2 铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?【解答】∠B+∠BED+∠D=360°.理由:过点E作EF∥AB.∵AB∥CD,∴AB∥CD∥EF.∴∠B+∠BEF=180°,∠D+∠DEF=180°. ∴∠B+∠BEF+∠D+∠DEF=360°,即∠B+∠BED+∠D=360°.拓展平行线间有多个拐点3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=180度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=360度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=540度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=720度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=180(n-1)度.解:每增加一个角,度数增加180°.小专题(二) 利用平行线的性质求角的度数类型1 直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( C ) A.52° B.54° C.64° D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF 的度数是( D )A.20° B.25° C.30°D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=130°.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AB∥DG(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=80°,∴∠AGD=100°.类型2 借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( D )A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( B )A.75° B.90° C.105° D.120°类型3 折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=128°.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是65°.类型4 抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC=∠ODE.则∠DEB的度数是76度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90°.小专题(三) 平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF ∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=∠BFD(两直线平行,内错角相等).∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等).∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD(对顶角相等),∴∠C=∠D.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB=90°(垂直的定义).②所以AD∥EF(同位角相等,两直线平行).③所以∠1+∠2=180°(两直线平行,同旁内角互补).④又因为∠2+∠3=180°(已知),⑤所以∠1=∠3(同角的补角相等).⑥所以AB∥DG(内错角相等,两直线平行).⑦所以∠GDC=∠B(两直线平行,同位角相等).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.证明:∵DF∥AB(已知),∴∠D=∠BHM(两直线平行,同位角相等).又∵∠B=75°,∠D=105°(已知),∴∠B+∠BHM=75°+105°=180°.∴DE∥BC(同旁内角互补,两直线平行).∴∠AME=∠AGC(两直线平行,同位角相等).3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD ∥BC.证明:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义).∵AB∥CD(已知),∴∠1=∠CFE(两直线平行,同位角相等).又∵∠1=∠2(已证),∠CFE=∠E(已知),∴∠2=∠E(等量代换).∴AD∥BC(内错角相等,两直线平行).4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF 与AB的位置关系吗?请说明理由.解:DF∥AB.理由:∵BE是∠ABC的平分线,∴∠1=∠2(角平分线的定义).∵∠E=∠1(已知),∴∠E=∠2(等量代换).∴AE∥BC(内错角相等,两直线平行).∴∠A+∠ABC=180°(两直线平行,同旁内角互补).∵∠3+∠ABC=180°(已知),∴∠A=∠3(等量代换).∴DF∥AB(同位角相等,两直线平行).5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.证明:∵AE平分∠BAC,CE平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的性质).∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2).∵∠1+∠2=90°(已知),∴∠BAC+∠ACD=180°.∴AB∥CD(同旁内角互补,两直线平行).∴∠B+∠D=180°(两直线平行,同旁内角互补).∴∠D=180°-∠B(等式的性质).∵AB⊥BD(已知),∴∠B=90°(垂直的定义).∴∠D=90°,即CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.解:∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°(两直线平行,内错角相等).由折叠,知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠2=110°.∴∠1=180°-∠2=70°(两直线平行,同旁内角互补).7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.解:(1)证明:∵BC∥GE,∴∠E=∠1=50°.∵∠AFG=∠1=50°,∴∠E=∠AFG=50°.∴AF∥DE.(2)过点A作AP∥GE,∵BC∥GE,∴AP∥GE∥BC.∴∠FAP=∠AFG=50°,∠PAQ=∠Q=15°.∴∠FAQ=∠FAP+∠PAQ=65°.∵AQ平分∠FAC,∴∠CAQ=∠FAQ=65°.∴∠CAP=80°.∴∠ACQ=180°-∠CAP=100°.。
专题01平行线间的拐点问题(原卷版)
专题01 平行线间的拐点问题类型一:“猪蹄”模型类型二:“铅笔”模型类型三:“鹰嘴”模型平行线间的拐点问题均过拐点作平行线的平行线,有多少个拐点就作多少条平行线。
一.选择题1.(2023•新城区校级一模)如图,直线m∥n,含有45°角的三角板的直角顶点O在直线m上,点A在直线n上,若∠1=20°,则∠2的度数为()A.15°B.25°C.35°D.45°2.(2023•海南)如图,直线m∥n,△ABC是直角三角形,∠B=90°,点C在直线n上.若∠1=50°,则∠2的度数是()A.60°B.50°C.45°D.40°3.(2023秋•渝中区校级期中)如图,直线AB∥CD,GE⊥EF于点E.若∠EFD=32°,则∠BGE的度数是()A.62°B.58°C.52°D.48°4.(2022秋•杜尔伯特县期末)如图,已知AB∥CD,BE,DE分别平分∠ABF和∠CDF,且交于点E,则()A.∠E=∠F B.∠E+∠F=180°C.2∠E+∠F=360°D.2∠E﹣∠F=180°5.(2022秋•榆树市期末)如图,AB∥CD,则图中∠1、∠2、∠3关系一定成立的是()A.∠1+∠2+∠3=180°B.∠1+∠2+∠3=360°C.∠1+∠3=2∠2D.∠1+∠3=∠26.(2023秋•湖北月考)将含有30°角的直角三角板在两条平行线中按如图所示摆放.若∠1=120°,则∠2为()A.120°B.130°C.140°D.150°二.填空题7.(2023•江油市开学)如图,AB∥CD,P为AB,CD之间的一点,已知∠2=28°,∠BPC=58°,则∠1=.8.(2023秋•南岗区校级期中)如图,已知DE∥BC,∠ABC=105°,点F在射线BA上,且∠EDF=125°,则∠DFB的度数为.9.(2023秋•道里区校级期中)为增强学生体质,望一观音湖学校将“跳绳”引入阳光体育一小时活动.图1是一位同学跳绳时的一个瞬间.数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=70°,∠ECD=105°,则∠AEC=.10.(2022秋•雅安期末)如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=60°,则∠E=.11.(2023秋•南岗区校级期中)已知:如图,AB∥CD,∠ABG的平分线与∠CDE的平分线交于点M,∠M=45°,∠F=64°,∠E=66°,则∠G=°.三.解答题12.(2022秋•宝丰县期末)已知直线MN、PQ,点A、B为分别在直线MN、PQ上,点C为平面内一点,连接AC、BC,且∠C=∠NAC+∠CBQ.(1)求证:MN∥PQ;(2)如图2,射线AE、BD分别平分∠MAC和∠CBQ,AE交直线PQ于点E,BD与∠NAC内部的一条射线AD交于点D,若∠C=2∠D,求∠EAD的度数.13.(2022秋•莘县期末)综合与实践如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD 于点F.(1)当所放位置如图①所示时,∠PFD与∠AEM的数量关系是∠PFD+∠AEM=90°;(2)当所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.14.(2022秋•洛宁县期末)问题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP =∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.15.(2023春•鼎城区期末)已知直线AB∥CD,点P为直线AB,CD所确定的平面内的一点.问题提出:(1)如图1,∠A=120°,∠C=130°,求∠APC的度数;问题迁移:(2)如图2,写出∠APC,∠A,∠C之间的数量关系,并说明理由;问题应用:(3)如图3,点E在射线BA上,过点E作EF∥PC,作∠PEG=∠PEF,点G在直线CD上,作∠BEG的平分线EH交PC于点H,若∠APC=20°,∠P AB=150°,求∠PEH的度数.16.(2023秋•南岗区校级期中)已知:如图,AB∥CD,直线EF分别交AB,CD于点G,H,点P为直线EF上的点,连接AP,CP.(1)如图1,点P在线段GH上时,请你直接写出∠BAP,∠DCP,∠APC的数量关系;(2)如图2,点P在HG的延长线上时,连接CP交AB于点Q,连接HQ,AC,若∠ACP+∠PHQ=∠CQH,求证:AC∥EF;(3)在(2)的条件下,如图3,CK平分∠ACP,GK平分∠AGP,GK与CK交点K,连接AK,若∠PQH=4∠PCK+2∠PHQ,∠CKG=∠CHQ,∠AKC+∠KAC=159°,求∠BAC的大小.17.(2023秋•道里区校级期中)已知:直线AB与直线CD内部有一个点P,连接BP.(1)如图1,当点E在直线CD上,连接PE,若∠B+∠PEC=∠P,求证:AB∥CD;(2)如图2,当点E在直线AB与直线CD的内部,点H在直线CD上,连接EH,若∠ABP+∠PEH=∠P+∠EHD,求证:AB∥CD;(3)如图3,在(2)的条件下,BG、EF分别是∠ABP、∠PEH的角平分线,BG和EF相交于点G,EF和直线AB相交于点F,当BP⊥PE时,若∠BFG=∠EHD+10°,∠BGE=36°,求∠EHD的度数.18.(2023秋•南岗区校级期中)已知,过∠ECF内一点A作AD∥/EC交CF于点D,作AB∥/CF交CE于点B.(1)如图1,求证:∠ABE=∠ADF;(2)如图2,射线BM,射线DN分别平分∠ABE和∠ADF,求证:BM∥DN;(3)如图3,在(2)的条件下,点G,Q在线段DF上,连接AG,AQ,AC,AQ与DN交于点H,反向延长AQ交BM于点P,如果∠GAC=∠GCA,AQ平分∠GAD,∠QAC=50°,求∠MP A+∠PQF的度数.19.(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.20.(2023春•栾城区校级期中)【问题解决】:如图①,AB∥CD,点E是AB,CD内部一点,连接BE,DE.若∠ABE=40°,∠CDE=60°,求∠BED的度数;嘉琪想到了如图②所示的方法,请你帮她将完整的求解过程补充完整;解:过点E作EF∥AB∴∠ABE=∠BEF();∵EF∥AB,AB∥CD(已知);∴EF∥CD();∴∠CDE=()();又∵∠BED=∠BEF+∠DEF();∴∠BED=∠ABE+∠CDE();∵∠ABE=40°,∠CDE=60°(已知);∴∠BED=∠ABE+∠CDE=100°(等量代换);【问题迁移】:请参考嘉琪的解题思路,解答下面的问题:如图③,AB∥CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,连接AP,CP,设∠BAP=α,∠DCP=β.(1)如图③,当点P在B,D两点之间运动时(点P不与点B,D重合),写出α,和∠APC之间满足的数量关系,并说明理由;(2)当点P在B,D两点外侧运动时(点P不与点B,D重合),请画出图形,并直接写出α,β和∠APC之间满足的数量关系.。
【学情分析】平行线中的拐点问题
学情分析
1.学生已经熟练掌握平行线的判定和性质以及三角形的内角和定理和推论;
2. 学生在平时的练习中遇到过有关拐点问题的题目,但是很少有深入研究获得系统化认识。
3. 可能出现的问题:学生几何语言不规范;学生运用数学知识归纳总结和数学建模的能力不强。
4.学生进入初中中期学习,学生已经具备一定抽象思维和发散思维能力,也是抽象思维和发散思维能力发展的重要阶段,在教学中鼓励学生进行大胆探索解决问题的多种途径,并在最后归纳解决同类型问题的一般方法。
初中数学平行线拐点问题(1)
二 例题讲解
如图,已知直线m∥n,∠1=105°,∠2=140°,求∠3的大小.
二 例题讲解
如图,已知直线m∥n,∠1=105°,∠2=140°,求∠3的大小.
解:如答图所示,作直线l∥m,则l∥n,
∴∠1+∠4=180°,∠2+∠5=180°, ∵∠1=105°,∠2=140°,∴∠4=75°,∠5=40°, ∵∠3为∠4+∠5的邻补角, ∴∠3=180°-75°-40°=65°.
数量关系会发生变化吗?
E
A
B
A
B
C
D
C
图3
D
(3)犀牛角型
∠BED=∠B-∠D
图4 E
(4)锄头型 ∠BED=∠B-∠D
五 类题演练
1.如图,若AD∥BE,且∠ACB=90°,∠CBE=30°, 则∠CAD=________.
2.如图9,已知AB∥DE,BF,EF分别平分∠ABC与 ∠CED,若∠BCE=140°,求∠BFE的度数.
3.如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,
P为直线l3上一点,A、B分别是直线l1、l2上的不动点.其
中PA与l1相交为∠1,PA、PB相交为∠2,PB与l2相交为
∠3.
(1)若P点在线段CD(C、D两点除外)
上运动,问∠1、∠2、∠3之间的关系是什么?这种关系
是否变化?
(2)若P点在线段CD之外时,∠1、∠2、∠3之间的关系
一 模型归纳
(2)燕尾型(猪手图) 如图2,已知:AB∥CD,点E是平面内一点,那么
∠BED与∠B、∠D之间的数量关系是什么呢?
A
B
E
C
图2
D
一
模型归纳 A
平行线中拐点问题的解题突破与探究
试题研究2023年8月下半月㊀㊀㊀平行线中拐点问题的解题突破与探究∗◉贵州省凯里市第四中学㊀雷㊀懿◉凯里学院理学院㊀吴才鑫㊀㊀摘要:本文中以一道平行线中拐点问题为例,对 拐点在平行线内 和 拐点在平行线外 两种情形展开探究,得出解答此类题目主要分为两个步骤.首先,判断拐点与平行线的相对位置关系;其次,过拐点作平行线,引入单拐点模型,利用平行线单拐点结论求解.同时,提出了平行线相关知识的教学建议.关键词:解题方法;平行线与拐点位置关系;教学启示1考题解析考题㊀(2022年苏州模拟)图1问题情景:如图1,A B ʊC D ,øP A B =130ʎ,øP C D =120ʎ,求øA P C 的度数.小明的思路:过点P 作P E ʊA B ,通过平行线的性质来求øA P C 的度数.图2(1)按小明思路,易求得øA P C 的度数为㊀㊀㊀㊀.(2)问题迁移:如图2,A B ʊC D ,点P 在射线O M 上运动,记øP A B =α,øP C D =β,当点P 在B ,D 两点之间运动时,问øA P C 与α,β之间有何数量关系请说明理由.(3)拓展延伸:在(2)的条件下,如果点P 在B ,D两侧运动时(点P 与点O ,B ,D 三点不重合),请直接写出øA P C 与α,β之间的数量关系.思维突破:本题以线段㊁角㊁相交线与平行线为背景命题,让学生开展几何探究,属于动态几何问题.解题的关键在于把握图形运动规律,采用 化动为静 的策略[1],构建几何模型,利用性质定理求解.下面逐问展开探究.1.1第(1)问的探究第(1)问,求øA P C 的度数,问题中隐含了平行线拐点问题中的 铅笔 模型,构建平行线提取其中两直线平行,同旁内角互补 关系即可求得角的度数.图3如图3,过点P 作P E ʊA B .因为A B ʊC D ,所以P E ʊA B ʊC D .故øA +øA P E =180ʎ,øC +øC P E =180ʎ.因为øP A B =130ʎ,øP C D =120ʎ,所以øA P E =50ʎ,øC P E =60ʎ.故øA P C =øA P E +øC P E =110ʎ.1.2第(2)问的探究第(2)问是平行线拐点问题从特殊到一般的探究,本题过点P 构建平行线转变成 M型,提取其中 两直线平行,内错角相等 关系,实现角的转化,得出øA P C 与α,β之间的关系.图4如图4,过点P 作P E ʊA B 交A C 于点E .因为A B ʊC D ,所以A B ʊP E ʊC D .因此øA P E =α,øC P E =β.所以øA P C =øA P E +øC P E =α+β.1.3第(3)问的探究第(3)问,同样通过构建平行线,将拐点问题转化为平行线问题.本题过点P 构建平行线转变成 鹰嘴 型.要找øA P C 与α,β之间的关系,由于P 点会发生位置变化,可知点P 在B D 延长线上运动时会存在一种关系,在D B 延长线上运动时会存在另一种关系,因此,必须分情况讨论利用平行线的性质找出角的关系.图5如图5,当点P 在B D 的延长线上运动时,过点P 作P E ʊC D 交O N 于点E .因为06∗项目信息:本文系2022年贵州省教学内容和课程体系改革项目师范专业认证背景下 三习育人 实践教学体系改革研究 (项目编号:2022323),2022年凯里市第四中学课堂改革与研究项目 信息技术与初中数学课堂教学的融合研究 (项目编号:202201)的研究成果.Copyright ©博看网. All Rights Reserved.2023年8月下半月㊀试题研究㊀㊀㊀㊀A B ʊC D ,所以P E ʊA B ʊC D .于是øC P E =β,øA P E =α.由此可得,øA P C =øA P E -øC P E =α-β.图6如图6,当点P 在D B 的延长线上运动时,过点P 作P E ʊA B 交A O 于点E .因为A B ʊD C ,所以A B ʊPE ʊC D .于是øA P E =α.øC P E =β.由此可得,øC P A =øC P E -øA P E =β-α.2深入探究上述考题,涉及了众多的知识点和几何模型,如平行线的性质㊁角的转化㊁动点问题,以及 铅笔 模型,考查学生综合分析和解决问题的能力.其中,第(3)问为考题的核心,主要考查学生对几何图形运动规律的把握,发展学生的空间观念和几何直观素养.从本质上看,可以将其归为平行线中的拐点问题,下面对此类型问题作进一步的深入探究.2.1平行线中拐点问题归纳对于平行线中的拐点问题,需要关注两点:一是平行线的对数和拐点的个数;二是两者的相对位置关系.特别是平行线与拐点的相对位置关系,将直接决定图形的形状,以及适用的平行线相关性质.下面以一组平行线和一个拐点的相对关系为例,分两类共四种情形加以探究.(1)一组平行线单拐点在两条平行线之间拐点在平行线之间,其图形会出现两种情况,如图7G1㊁图7G2.若A B ʊC D ,则øB E D 与øB 和øD 之间的关系,可以通过拐点作其中一条直线的平行线进行探究.对于图7G1,过点E 作E F ʊA B (如图7G3),因为A B ʊC D ,所以E F ʊC D ,则øB E D =øB +øD .对于图7G2,过点E 作E F ʊA B (如图7G4),则øB +øD +øB E D =360ʎ,这就是考题第(1)问中的模型.㊀㊀图7G1㊀㊀图7G2㊀㊀㊀图7G3㊀㊀㊀图7G4(2)一组平行线单拐点在两条平行线之外拐点在平行线之外,其图形也会出现两种情况,如图8G1㊁8G2.若A B ʊC D ,则øB E D 与øB 和øD 之间的关系,可以通过拐点作其中一条直线的平行线进行探究.对于图8G1,过点E 作E F ʊA B ,则øB =øD +øB E D .㊀㊀㊀㊀㊀㊀图8G1㊀㊀㊀㊀㊀㊀图8G2如图8G2,过点E 作E F ʊA B ,则øB +øD -øB E D =180ʎ.2.2考题关联探究平行线拐点问题在初中数学中十分常见,其中平行线与拐点之间的规律在解题中应用广泛.不同情形的平行线与拐点位置关系之间有不同的联系,但本质上同为平行线性质的应用问题.在实际命题中,通常采用几何变换的方式,下面结合实例进一步探究.问题㊀已知直线A B ʊC D ,M ,N 分别是A B ,C D上的点.㊀图9(1)若E 是A B ,C D 内一点.①如图9所示,请写出øB M E ,øD N E 和øM E N 之间的数量关系,并证明;㊀图10②如图10所示,若ø1=13 øB M E ,ø2=13øD N E ,请利用①的结论探究øM F N 与øM E N 的数量关系.㊀图11(2)若E 是A B ,C D 外一点.①如图11所示,请直接写出øE M B ,øE N D 和øM E N 之间的数量关系;㊀图12②如图12所示,已知øB M P =14øE M B ,在射线M P 上找到点G ,使得øM G N =14øE ,请在图中画出点G 的大致位置,并求出øE N G ʒøG N D 的值.分析:上述四个小问题都属于平行线单拐点问题,实则就是平行线单拐点的两种情形,只需根据总结的规律过拐点作平行线即可求解.解:(1)该情形为拐点在平行线内.①øB M E +øD N E +øM E N =360ʎ.证明:如图9G1,过点E 作E F ʊA B .因为A B ʊC D ,所以E F ʊC D ,于是øB M E +øF E M =180ʎ,øD N E +øF E N =180ʎ,从而øB M E +øF E M +øD N E +øF E N =180ʎ+180ʎ=360ʎ.16Copyright ©博看网. All Rights Reserved.试题研究2023年8月下半月㊀㊀㊀㊀㊀㊀㊀㊀㊀图9G1㊀㊀㊀㊀㊀图10G1②如图10G1,过点F 作F G ʊA B .因为A B ʊC D ,所以F G ʊC D ,则ø1=øM F G ,ø2=øN F G ,于是øM F N =ø1+ø2.又因为ø1=13øB M E ,ø2=13øD N E ,所以øB M E =3ø1,øD N E =3ø2.又因为øB M E +øD N E +øM E N =360ʎ,所以3ø1+3ø2+øM E N =360ʎ,即3øM F N +øM E N =360ʎ.(2)①øE M B ,øE N D 和øM E N 之间的数量关系为øD N E -øB M E =øM E N .理由如下:如图11G1,过点E 作E F ʊA B .因为A B ʊC D ,所以E F ʊC D .故øD N E =øF E N ,øB M E =øF E M .又因为øF E N -øF E M =øM E N ,所以øD N E -øB M E =øM E N .㊀㊀㊀㊀㊀图11G1㊀㊀㊀㊀㊀㊀图12G1②点G 的大致位置如图12G1所示.设M G 与N E 交于点Q ,N G 与A B 交于点F ,设øG M B =α,øG =β.因为øB M P =14øE M B ,øG =14øE ,所以øE M Q =3α,øE =4β.因为øE Q M =øG Q N ,所以øE +øE M Q =øG +øG N Q ,即øG N Q =øE +øE M Q -øG =4β+3α-β=3α+3β.因为ø1是әG F M 的外角,所以ø1=øG +øG M F =β+α.又因为A B ʊC D ,所以øG N D =ø1=β+α.故øE N G ʒøG N D =(3α+3β)ʒ(β+α)=3ʒ1.评析:上述四个小问题均为平行线拐点探究题,涉及到拐点在平行线内和拐点在平行线外两类情形,问题的解析可以分如下两个步骤展开.第一步:判断拐点与平行线的相对位置关系;第二步:过拐点作平行线,引入单拐点模型,利用平行线单拐点结论求解.3教学建议上文中以一道平行线拐点考题为例,立足本题的核心问题(第3问),围绕拐点在平行线内和拐点在平行线外的两类情形展开深度探究并总结规律㊁构建模型,这对深入理解和运用平行线性质,强化和巩固平行线知识有一定的帮助.下面基于教学实践,对平行线相关内容提出几点教学建议.3.1关注知识,探寻本质上述考题以平行线单拐点问题为背景开展几何探究,拐点是平行线问题的重要形式,对掌握和运用平行线的性质及判定十分重要.以上述考题为例,过点E 作EF ʊA B ,构造内错角,依据两直线平行,同旁内角互补进行推导.在实际教学中,要引导学生关注知识本身,深入理解并探寻数学本质;要创设相关的问题情境引导学生理解平行线的性质和判定.以上通过拐点构造平行线来促进学生理解平行线拐点特性,进一步培养学生会用数学的思维思考问题,并能够发现线段㊁角㊁相交线与平行线之间的规律,发展学生的空间观念和几何直观素养.3.2归纳模型特征,发展数学思想在考试中,几何压轴题的命题,往往会综合众多几何模型,考查学生利用模型对知识点融合的能力.因此,解题教学时,要引导学生关注问题中已有的模型,通过观察和分析提取问题中已有模型的特征,充分利用已有模型的性质;引导学生利用转化和化归的方法来转化问题条件,渗透转化和化归的思想方法.如上述考题实则以 平行线和三角形 为背景创设命题,该问题中的模型具有 平行线拐点 特性,包括单拐点在平行线内和单拐点在平行线外两类情形.教学中要积极引导学生从已有条件中提取模型,分析和归纳模型的核心特性,并结合相关几何知识加以证明,强化对数学模型的理解,培养学生的模型观念,进而发展学生会用数学的语言表达现实世界的核心素养.3.3总结规律,积累经验考题第(2)问中第②小问本质上是考查单拐点在平行线外的情形,并且结合三角形外角性质进行推导计算,这是问题的本质特征,也是解决问题的关键所在.上述基于平行线单拐点不同情形问题进行了深度探究,并立足两类情形总结规律及解题策略,其探究过程具有一定的参考价值.教学中要引导学生基于问题本质特征开展深度分析与探究,总结解题规律,积累解题经验,发展学生的数学核心素养.参考文献:[1]黄玉霞,蔡德清,陈纪韦华.由何而来,为何而解,因何而去 一道几何压轴题命制的实践与反思[J ].中学数学,2021(14):48G50.Z 26Copyright ©博看网. All Rights Reserved.。
2022年人教版七年级下册数学同步培优小专题(一)平行线中的拐点问题
-4-
2.如图,AB∥CD,BE 平分∠ABF,DE 平分∠CDF,∠BFD=120°.
求∠BED 的度数.
小专题(一) 平行线中的拐点问题
解:过点 F 作 FG∥AB(点 G 在点 F 的右侧),
∴∠BFG=∠ABF.
∵AB∥CD,∴FG∥CD,∴∠CDF=∠DFG,
∴∠ABF+∠CDF=∠BFG+∠DFG=∠BFD=120°.
∴∠BED=∠BEH+∠DEH=∠ABE+∠CDE=60°.
-6-
小专题(一) 平行线中的拐点问题
-7-
类型2 多拐点问题
3.如图,直线 l1∥l2,∠CAB=125°,∠ABD=85°,则∠1+∠2 等于
(
A
A.30°
)
B.36°
C.40°
D.85°
小专题(一) 平行线中的拐点问题
4.如图,直线 a∥b,∠1+∠分∠ABF,DE 平分∠CDF,
1
1
2
2
∴∠ABE= ∠, ∠= ∠CDF,
1
∴∠ABE+∠CDE= (∠ABF+∠CDF)=60°.
2
-5-
小专题(一) 平行线中的拐点问题
过点 E 作 EH∥AB(点 H 在点 E 的右侧),
∴∠BEH=∠ABE.
∵AB∥CD,∴EH∥CD,∴∠DEH=∠CDE,
小专题(一) 平行线中的拐点问题
值得注意的是,多拐点问题均可拆分为单拐点问题,然后再利
用上述模型解决.
-2-
小专题(一) 平行线中的拐点问题
-3-
类型1 单拐点问题
1.如图,AB∥CD,∠BAP=120°,∠APC=40°,则∠PCD=( D )
专题:巧解平行线中的拐点问题(解析版)
七年级下册数学《第五章 相交线与平行线》专题 巧解平行线中的拐点问题【例题1】(2022春•内乡县期末)如图,AB ∥CD ,∠1=45°,∠2=30°,则∠3的度数为( )A .55°B .75°C .80°D .105°【分析】过点E作EM∥AB,利用平行线的性质得出∠3=∠1+∠2=75°.【解答】解:过点E作EM∥AB,如图所示,∵AB∥EM.∴∠HEM=∠1=45°.∵AB∥CD.∴EM∥CD.∴∠GEM=∠2=30°.∴∠3=∠HEM+∠GEM=75°.故选:B.【点评】本题主要考查了平行线的性质,熟练运用平行线的性质是解题的关键.【变式1-1】(2022春•香洲区校级期中)如图,已知AB∥DE,∠B=150°,∠D=145°,则∠C= 度.【分析】过点C作CF平行于AB,再根据平行线的性质解答即可.【解答】解:过点C作CF平行于AB,如图:∵AB∥DE,∴AB∥CF∥ED.AB∥CF⇒∠1=180°﹣∠B=30°,CF∥ED⇒∠2=180°﹣∠D=35°,∴∠BCD=∠1+∠2=65°.故填65°.【点评】结合题意和图形作出正确的辅助线是解决本题的关键.【变式1-2】(2022•博山区一模)如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于( )A.360°B.300°C.270°D.180°【分析】先过点P作PA∥a,构造三条平行线,然后利用两直线平行,同旁内角互补,即可得出结论.【解答】解:如图,过点P作PA∥a,则a∥b∥PA,∴∠3+∠NPA=180°,∠1+∠MPA=180°,∴∠1+∠2+∠3=180°+180°=360°.故选:A.【点评】此题主要考查了平行线的性质,作出PA∥a,根据平行线的性质得出相等(或互补)的角是解决问题的关键.【变式1-3】(2022春•信都区期末)为增强学生体质,某学校将“抖空竹”引入阳光体育一小时活动.图1是一位同学抖空竹时的一个瞬间,数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,∠ECD=110°.求∠AEC的度数.小明在解决过程中,过E点作EF∥CD,则可以得到EF∥AB,其理由是 ,根据这个思路可得∠AEC= .【分析】根据平行公理推论得到EF∥AB,再根据平行线的x性质求解即可.【解答】解:过E点作EF∥CD,∵AB∥CD,∴EF∥AB(平行于同一直线的两直线平行),∴∠EAB+∠AEF=180°,∵EF∥CD,∴∠CEF+∠ECD=180°,∵∠EAB=80°,∠ECD=110°,∴∠AEF=100°,∠CEF=70°,∴∠AEC=∠AEF﹣∠CEF=30°.故答案为:平行于同一直线的两直线平行;30°.【点评】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.【变式1-4】如图,已知AB∥DE,∠1=120°,∠2=110°,求∠3的度数.【分析】过C作CF∥AB,得到AB∥DE∥CF,根据平行线的性质推出∠1+∠ACF=180°,∠2+∠DCF=180°,求出∠ACF、∠DCF的度数,根据∠3=180°﹣∠ACF﹣∠DCF,即可求出答案.【解答】解:过C作CF∥AB,∴AB∥DE∥CF,∴∠1+∠ACF=180°,∠2+∠DCF=180°,∵∠1=120°,∠2=110°,∴∠ACF=60°,∠DCF=70°,∴∠3=180°﹣∠ACF﹣∠DCF,=180°﹣60°﹣70°=50°,答:∠3的度数是50°.【点评】本题主要考查对平行线的性质平行公理及推论,邻补角的定义等知识点的理解和掌握,能灵活运用性质进行推理是解此题的关键.【变式1-5】如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.【分析】过点C作CF∥AB,由平行公理的推论得出CF∥DE,再由平行线的性质求得∠4的度数为70°,再根据CF∥AB得∠3=∠1=25°,最后由角的和差求出∠BCD的度数即可.【解答】解:如图:过点C作CF∥AB,∵CF∥AB∴∠3=∠1=25°∴DF∥CE,∵∠4+∠2=180°,又∵∠2=110°,∴∠4=180°﹣∠2=180°﹣110°=70°,∴∠BCD=∠3+∠4=25°+70°=95°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.【变式1-6】(2021秋•南召县期末)课堂上老师呈现一个问题:下面提供三种思路:思路一:过点F作MN∥CD(如图(1));思路二:过点P作PN∥EF,交AB于点N;思路三:过点O作ON∥FG,交CD于点N.解答下列问题:(1)根据思路一(图(1)),可求得∠EFG的度数为 ;(2)根据思路二、思路三分别在图(2)和图(3)中作出符合要求的辅助线;(3)请你从思路二、思路三中任选其中一种,试写出求∠EFG的度数的解答过程.【分析】(1)过F作MN∥CD,根据平行线的性质以及垂线的定义,即可得到∠EFG的度数;(2)由图可得,思路二辅助线的做法为过P作PN∥EF;思路三辅助线的做法为过O作ON∥FG;(3)若选择思路二,过P作PN∥EF,根据平行线的性质,可得∠NPD的度数,再根据∠1的度数以及平行线的性质,即可得到∠EFG的度数;若选择思路三,过O作ON∥FG,先根据平行线的性质,得到∠BON的度数,再根据平行线的性质以及垂线的定义,即可得到∠EFG的度数.【解答】解:(1)如图(1),过F作MN∥CD,∵MN∥CD,∠1=30°,∴∠2=∠1=30°,∵AB∥CD,∴AB∥MN,∵AB⊥EF,∴∠3=∠4=90°,∴∠EFG=∠3+∠2=90°+30°=120°.故答案为:120°;(2)由图可得,思路二辅助线的做法为过P作PN∥EF;思路三辅助线的做法为过O作ON∥FG;(3)若选择思路二,理由如下:如图(2),过P作PN∥EF,∵PN∥EF,EF⊥AB,∴∠ONP=∠EOB=90°,∵AB∥CD,∴∠NPD=∠ONP=90°,又∵∠1=30°,∴∠NPG=90°+30°=120°,∵PN∥EF,∴∠EFG=∠NPG=120°;若选择思路三,理由如下:如图(3),过O 作ON ∥FG ,∵ON ∥FG ,∠1=30°,∴∠PNO =∠1=30°,∵AB ∥CD ,∴∠BON =∠PNO =30°,又∵EF ⊥AB ,∴∠EON =∠EOB +∠BON =90°+30°=120°,∵ON ∥FG ,∴∠EFG =∠EON =120°.【点评】本题考查平行线的性质,熟练掌握平行线的性质并正确作出辅助线是解题关键.【例题2】如图,直线l 1∥l 2,∠A =125°,∠B =85°,则∠1+∠2等于( )A .40°B .35°C .36°D .30°【分析】过点A 作l 1的平行线,过点B 作l 2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB +∠ABD =180°,然后计算即可得解.【解答】解:如图,过点A 作l 1的平行线AC ,过点B 作l 2的平行线BD ,则∠3=∠1,∠4=∠2,∵l 1∥l 2,∴AC ∥BD ,∴∠CAB +∠ABD =180°,∴∠3+∠4=125°+85°﹣180°=30°,∴∠1+∠2=30°.故选:D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.【变式2-1】(2022春•新洲区期末)如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是( )A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°【分析】过点C作CG∥AB,过点D作DH∥EF,根据两直线平行,内错角相等可得∠A=∠ACG,∠CDH=∠DCG,两直线平行,同旁内角互补可得∠EDH=180°﹣∠E,然后表示出∠C整理即可得解.【解答】解:如图,过点C作CG∥AB,过点D作DH∥EF,则∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠C=∠ACG+∠CDH=∠A+∠D﹣(180°﹣∠E),∴∠A﹣∠C+∠D+∠E=180°.故选:C.【点评】本题考查了平行线的性质,此类题目难点在于过拐点作平行线.【变式2-2】如图所示,若AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数是 .【分析】过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,根据平行线的判定得出EQ∥FW∥GR∥HY∥AB∥CD,根据平行线的性质得出即可.【解答】解:如图1,过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,∵CD∥AB,∴EQ∥FW∥GR∥HY∥AB∥CD,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°.故答案为:900°.【点评】本题考查了平行线的性质,能灵活运用平行线的性质进行推理是解此题的关键.【变式2-3】(2022春•金湖县期末)如图,AB∥CD,E、F分别是AB、CD上的点,EH、FH分别是∠AEG 和∠CFG的角平分线.若∠G=110°,则∠H= °.【分析】过点G作GM∥AB,根据平行线的性质可得∠AEG+∠EGM=180°,再结合已知可得CD∥GM,然后利用平行线的性质可得∠CFG+∠MGF=180°,从而可得∠AEG+∠CFG=250°,再利用角平分线的定义可得∠HEG+∠GFH=125°,最后利用四边形的内角和定理进行计算即可解答.【解答】解:过点G作GM∥AB,∴∠AEG+∠EGM=180°,∵AB∥CD,∴CD∥GM,∴∠CFG+∠MGF=180°,∴∠AEG+∠EGM+∠CFG+∠MGF=360°,∵∠EGF=∠EGM+∠MGF=110°,∴∠AEG+∠CFG=360°﹣∠EGF=250°,∵EH、FH分别是∠AEG和∠CFG的角平分线,∴∠HEG=12∠AEG,∠GFH=12∠CFG,∴∠HEG+∠GFH=12∠AEG+12∠CFG=125°,∴∠H=360°﹣∠HEG﹣∠HFG﹣∠EGF=125°,故答案为:125.【点评】本题考查了平行线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【变式2-4】(2022春•潜山市月考)如图,AB∥CD,点E,F分别是AB,CD上的点,点M位于AB与CD之间且在EF的右侧.(1)若∠M=90°,则∠AEM+∠CFM= ;(2)若∠M=n°,∠BEM与∠DFM的角平分线交于点N,则∠N的度数为 .(用含n的式子表示)【分析】(1)过点M作MP∥AB,则AB∥CD∥MP,根据两直线平行,内错角相等可得答案;(2)过点N作NQ∥AB,则AB∥CD∥NQ,根据两直线平行内错角相等和角平分线的定义可得答案.【解答】解:(1)过点M作MP∥AB,∵AB∥CD,∴AB∥CD∥MP,∴∠1=∠MEB,∠2=∠MFD,∵∠M=∠1+∠2=90°,∴∠MEB+∠MFD=90°,∵∠AEM+∠MEB+∠CFM+∠MFD=180°+180°=360°,∴∠AEM+∠CFM=360°﹣90°=270°.故答案为:270°;(2)过点N作NQ∥AB,∵AB∥CD,∴AB∥CD∥NQ,∴∠3=∠NEB,∠4=∠NFD,∴∠NEB+∠NFD=∠3+∠4=∠ENF,∵∠BEM与∠DFM的角平分找交于点N,∵∠NEB=12∠MEB,∠DFN=12∠MFD,∴∠3+∠4=∠BEN+∠DFN=12(∠MEB+∠MFD),由(1)得,∠MEB+∠MFD=∠EMF,∴∠ENF=12∠EMF=12n°.故答案为:12 n°.【点评】本题考查平行线的性质,熟练掌握平行线的性质定理和角平分线的定义是解题关键.【变式2-5】(1)填空:如图1,MA1∥NA2,则∠A1+∠A2= °.如图2,MA1∥NA3,则∠A1+∠A2+∠A3= °.如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4= °.如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5= °.(2)归纳:如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n= °.(3)应用:如图6,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=80°,求∠BFD的度数.【分析】(1)①根据平行线的性质:两直线平行,同旁内角互补,可得结论;②根据平行于同一条直线的两条直线平行,把此问题转化为上题形式,可得结论;③在上题的基础上,多加一个180°,思路不变,可得结论;④在③的基础上,多加一个180°,思路不变,可得结论;(2)通过观察图形,寻找规律:两个A点时,结论是1×180°,三个A点时,结论是2×180°,四个A点时,结论是3×180°,所以n个A点时,即可得结论.(3)运用上述结论和角平分线定义可得结论.【解答】解:(1)如图1,∵MA1∥NA2,∴∠A1+∠A2=180°.如图2,过点A2作A2C1∥A1M,∵MA1∥NA3,∴A2C1∥A1M∥NA3,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A3=180°,∴∠A1+∠A2+∠A3=360°.如图3,过点A2作A2C1∥A1M,过点A3作A3C2∥A1M,∵MA1∥NA4,∴A2C1∥A3C2∥A1M∥NA4,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A2A3C2=180°,∠C2A3A4+∠A4=180°,∴∠A1+∠A2+∠A3+∠A4=540°.如图4,过点A2作A2C1∥A1M,过点A3作A3C2∥A1M,过点A4作A4C3∥A1M,∵MA1∥NA5,∴A2C1∥A3C2∥A4C3∥NA5,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A2A3C2=180°,∠C2A3A4+∠A3A4C3=180°∠C3A4A5+∠A5=180°,∴∠A1+∠A2+∠A3+∠A4+∠A5=720°.故答案为:180;360;540;720;(2)∵∠A1+∠A2=180°=1×180°∠A1+∠A2+∠A3=360°=2×180°∠A1+∠A2+∠A3+∠A4=540°=3×180°∴∠A1+∠A2+∠A3+…+∠A n=180(n﹣1)°.故答案为:180(n﹣1);(3)根据上述结论得:∠BFD=∠ABF+∠CDF,∠ABE+∠E+∠CDE=360°,又∵∠ABE和∠CDE的平分线相交于F,∴2∠ABF+∠E+2∠CDF=360°,即2(∠ABF+∠CDF)+∠E=360°,∴2(∠ABF+∠CDF)=360°﹣∠E=360°﹣80°=280°,∴∠ABF+∠CDF=12×280°=140°,即∠BFD=140°.【点评】本题考查了平行线的性质和判定,解题时注意:平行线的性质是由平行关系来寻找角的数量关系.平行线的判定是由角的数量关系判断两直线的位置关系;还要注意规律性问题的探究过程.【例题3】小华在学习“平行线的性质”后,对图中∠B,∠D和∠BOD的关系进行了探究:(1)如图1,AB∥CD,点O在AB,CD之间,试探究∠B,∠D和∠BOD之间有什么关系?并说明理由;小华添加了过点O的辅助线OM,并且OM∥CD请帮助他写出解答过程;(2)如图2,若点O在CD的上侧,试探究∠B,∠D和∠BOD之间有什么关系?并说明理由;(3)如图3,若点O在AB的下侧,试探究∠B,∠D和∠BOD之间有什么关系?请直接写出它们的关系式.【分析】(1)求出AB∥CD∥OM,根据平行线的性质得出∠D=∠DOM,∠B=∠BOM,再得出答案即可;(2)求出AB∥CD∥OM,根据平行线的性质得出∠D=∠DOM,∠B=∠BOM,再得出答案即可;(3)求出AB∥CD∥OM,根据平行线的性质得出∠D=∠DOM,∠B=∠BOM,再得出答案即可.【解答】解:(1)∠BOD=∠D+∠B,理由是:∵AB∥CD,OM∥CD,∴AB∥CD∥OM,∴∠D=∠DOM,∠B=∠BOM,∴∠DOB=∠DOM+∠BOM=∠B+∠D;(2)∠B=∠BOD+∠D,理由是:如图:过O作OM∥CD,∵AB∥CD,OM∥CD,∴AB∥CD∥OM,∴∠D=∠DOM,∠B=∠BOM,∴∠B=∠BOM=∠DOM+∠DOB=∠D+∠DOB;(3)∠D=∠DOB+∠B,理由是:如图:过O作OM∥CD,∵AB∥CD,OM∥CD,∴AB∥CD∥OM,∴∠D=∠DOM,∠B=∠BOM,∴∠D=∠DOM=∠BOM+∠DOB=∠B+∠DOB.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,证明过程类似.【变式3-1】如图,已知∠1=70°,∠2=30°, EF平分∠BEC,∠BEF=50°,求证:AB∥CD.【分析】先过点E在∠BEC的内部作EM∥AB,求出∠BME的度数,根据角平分线求出∠BEC的度数,从而求出∠CEM的度数,然后根据∠CEM=∠2,利用内错角相等,两直线平行得出EM∥AB.【解答】证明:如图,过点E在∠BEC的内部作EM∥AB,∵EF平分∠BEC,∠BEF=50°,∴∠BEC=2∠BEF=2×50°=100°,∵EM//AB,∴∠BEM=∠1=70°,∴∠CEM=∠BEC﹣∠BEM=100°﹣70°=30°,∵∠2=30°,∴∠CEM=∠2,.∴EM∥CD,又∵EM∥AB∴AB∥CD.【点评】本题考查平行线的性质,角平分线等知识,解题的关键是过点E在∠BEC的内部作EM//AB.【变式3-2】如图,点E在线段AC上,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.【分析】过点E在∠BED的内部作EM∥AB,先根据平行线的性质得出∠1=∠BEM,∠DEM=∠2然后根据∠AEC=180°得出∠1+∠BEM+∠DEM+∠2=180°,从而得到∠BEM+∠DEM=90°,即可证明BE⊥DE.【解答】证明:过点E在∠BED的内部作EM∥AB,则∠B=∠BEM,∵∠1=∠B,∴∠1=∠BEM,又∵AB∥CD,EM∥CD,∴∠D=∠DEM,∵∠2=∠D,∠DEM=∠2,∴∠1+∠BEM+∠DEM+∠2=180°,∴∠BEM+∠DEM=90°,即∠BED=90,∴BE⊥DE.【点评】本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式3-3】(2022春•阳江期末)如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)试证明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.【分析】(1)作OM∥AB,根据平行线的性质得∠1=∠BEO,由于AB∥CD,根据平行线的传递性得OM∥CD,根据平行线的性质得∠2=∠DFO,所以∠1+∠2=∠BEO+∠DFO;(2)作OM∥AB,PN∥CD,由AB∥CD得到OM∥PN∥AB∥CD,根据平行线的性质得∠1=∠BEO,∠2=∠3,∠4=∠PFC,所以∠1+∠2+∠PFC=∠BEO+∠3+∠4,即∠O+∠PFC=∠BEO+∠P.【解答】(1)证明:作OM∥AB,如图1,∴∠1=∠BEO,∵AB∥CD,∴OM∥CD,∴∠2=∠DFO,∴∠1+∠2=∠BEO+∠DFO,即:∠O=∠BEO+∠DFO.(2)解:∠O+∠PFC=∠BEO+∠P.理由如下:作OM∥AB,PN∥CD,如图2,∵AB∥CD,∴OM∥PN∥AB∥CD,∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,∴∠O+∠PFC=∠BEO+∠P.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.【变式3-4】(2022秋•驿城区校级期末)问题情境:如图1,AB∥CD,∠PAB=135°,∠PCD=125°.求∠APC 度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得∠APC的度数.请写出具体求解过程.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【分析】过P作PE∥AB,构造同旁内角,通过平行线性质,可得∠APC=45°+55°=100°.(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【解答】解:过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=45°,∠CPE=180°﹣∠C=55°,∴∠APC=45°+55°=100°;(1)∠CPD=∠α+∠β,理由如下:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(2)当点P在A、M两点之间时,∠CPD=∠β﹣∠α;理由:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;当点P在B、O两点之间时,∠CPD=∠α﹣∠β.理由:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.【点评】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.【变式3-5】阅读下面内容,并解答问题在学习了平行线的性质后,老师请同学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,AB∥CD,直线EF分别交AB,C于点E,F.∠BEF的平分线与∠DFE的平分线交于点G.(1)直线EG,FG有何关系?请补充结论:求证:“ ”,并写出证明过程;(2)请从下列A、B两题中任选一题作答,我选择 题,并写出解答过程.A.在图1的基础上,分别作∠BEG的平分线与∠DFG的平分线交于点M,得到图2,求∠EMF的度数.B.如图3,AB∥CD,直线EF分别交AB,CD于点E,F.点O在直线AB,CD之间,且在直线EF右侧,∠BEO的平分线与∠DFO的平分线交于点P,请猜想∠EOF与∠EPF满足的数量关系,并证明它.【分析】(1)利用平行线的性质以及三角形的内角和定理解决问题即可.(2)A、利用基本结论,∠M=∠BEM+∠DFM求解即可.B、利用基本结论∠EOF=∠BEO+∠DFO,∠EPF=∠BEP+∠DFP求解即可.【解答】解:(1)结论:EG⊥FG;理由:如图1中,∵AB∥CD,∴∠BEF+∠DFE=180°,∵EG平分∠BEF,FG平分∠DFE,∴∠GEF=12∠BEF,∠GFE=12∠DFE,∴∠GEF+∠GFE=12∠BEF+12∠DFE=12(∠BEF+∠DFE)=12×180°=90°,在△EFG中,∠GEF+∠GFE+∠G=180°,∴∠G=180°﹣(∠GEF+∠GFE)=180°﹣90°=90°,∴EG⊥FG.故答案为:EG⊥GF;(2)A.如图2中,由题意,∠BEG+∠DFG=90°,∵EM平分∠BEG,MF平分∠DFG,∴∠BEM+∠MFD=12(∠BEG+∠DFG)=45°,∴∠EMF=∠BEM+∠MFD=45°,B.结论:∠EOF=2∠EPF.理由:如图3中,由题意,∠EOF=∠BEO+∠DFO,∠EPF=∠BEP+∠DFP,∵PE平分∠BEO,PF平分∠DFO,∴∠BEO=2∠BEP,∠DFO=2∠DFP,∴∠EOF=2∠EPF,故答案为:A或B.【点评】本题考查平行线的性质,命题与定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【例题4】(2022秋•小店区校级期末)(1)问题背景:如图1,已知AB ∥CD ,点P 的位置如图所示,连结PA ,PC ,试探究∠APC 与∠A 、∠C 之间的数量关系,以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):解:过点P 作PE ∥AB∵AB ∥CD (已知),∴PE ∥CD ( ),∴∠A =∠APE ,∠C =∠CPE ( ),∴∠A +∠C = + (等式的性质).即∠APC ,∠A ,∠C 之间的数量关系是 .(2)类比探究:如图2,已知AB ∥CD ,线段AD 与BC 相交于点E ,点B 在点A 右侧.若∠ABC =41°,∠ADC =78°,则∠AEC = .(3)拓展延伸:如图3,若∠ABC 与∠ADC 的角平分线相交于点F ,请直接写出∠BFD 与∠AEC 之间的数量关系 .【分析】(1)利用题干中的思路,依据两条直线平行的判定,平行线的性质和等式的性质解答即可;(2)利用类比的方法,依据(1)的思路与方法解答即可;(3)利用类比的方法,依据(1)的思路与方法分别计算∠BFD 与∠AEC ,观察结论即可得出结论.【解答】解:(1)过点P 作PE ∥AB ,∵AB ∥CD (已知),∴PE ∥CD(平行于同一直线的两直线平行),∴∠A=∠APE,∠C=∠CPE(两直线平行,内错角相等),∴∠A+∠C=∠APE+∠CPE(等式的性质).即∠APC,∠A,∠C之间的数量关系是:∠APC=∠A+∠C.故答案为:平行于同一直线的两直线平行;两直线平行,内错角相等;∠APE;∠CPE;∠APC=∠A+∠C;(2)过点E作EP∥AB,如图,∵AB∥CD(已知),∴∠ADC=∠BAD=78°,∴PE∥CD,∴∠BAD=∠AEP=78°,∠ABC=∠PEC=41°,∴∠AEC=∠AEP+∠PEC=78°+41°=119°,故答案为:119°;(3)由(2)知:∠AEC=∠ABC+∠ADC,∵DF,BF分别是∠ABC,∠ADC的平分线,∴∠ABC=2∠ABF,∠ADC=2∠FDC,∴∠AEC=2(∠ABF+∠FDC).过点F作FP∥AB,如图,则∠ABF=∠BFP,∵AB∥CD,∴FP∥CD,∴∠PFD=∠FDC,∴∠BFD=∠BFP+∠PFD=∠ABF+∠FDC,∴2∠BFD=∠AEC,故答案为:2∠BFD=∠AEC.【点评】本题主要考查了平行线的判定与性质,利用类比的方法解答是解题的关键.【变式4-1】(2021秋•长春期末)小明同学遇到这样一个问题:如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.求证:∠BED=∠B+∠D.小亮帮助小明给出了该问的证明.证明:过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D.请你参考小亮的思考问题的方法,解决问题:直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.【分析】猜想:过点P作PH∥AC,然后得到BD∥PH,从而得到∠PAC=∠APH,∠PBD=∠BPH,然后得到∠APB的度数;拓展:分情况讨论,当点P在线段CD上时,当点P在射线DF上时,当点P在射线CE上时,然后过点P 作PH∥AC,再利用平行线的性质进行探究角之间的数量关系.【解答】解:猜想:如图1,过点P作PH∥AC,则∠PAC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠APH+∠BPH=∠PAC+∠PBD,∵∠PAC=15°,∠PBD=40°,∴∠APB=15°+40°=55°.拓展:①如图1,当点P在线段CD上时,由猜想可知,∠APB=∠PAC+∠PBD;②如图2,当点P在射线DP上时,过点P作PH∥AC,则∠PAC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠APH﹣∠BPH=∠PAC﹣∠PBD;③如图3,当点P在射线CE上时,过点P作PH∥AC,则∠PAC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠BPH﹣∠APH=∠PBD﹣∠PAC;综上所述,∠PAC、∠APB、∠PBD之间的数量关系为∠APB=∠PAC+∠PBD或∠APB=∠PAC﹣∠PBD或∠APB =∠PBD﹣∠PAC.【点评】本题考查了平行线的性质,解题的关键是熟练作出辅助线构造平行线,然后通过平行线的性质得到内错角相等.【变式4-2】(2022春•龙亭区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD 之间,连接GE、GF.(1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:①如图1,若EG⊥FG,则∠P的度数为 ;②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;(2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF =100°时,请直接写出∠OEA与∠OFC的数量关系.【分析】(1)①②根据平行线的性质,以及角平分线的定义即可求解;(2)过点O作OT∥AB,则OT∥CD,设∠OFC=∠OFG=β,∠OEH=∠HEA=α,∠G=∠BEG+∠GFD=α+180°﹣2β,根据平行线的性质求得α+β=80°,进而根据3∠OEA﹣∠OFC=3β﹣(β﹣2a)=2β+2α﹣160°即可求解.【解答】解:(1)①如图,分别过点G,P作GN∥AB,PM∥AB,∴∠BEG=∠EGN,∵AB∥CD,∴∠NGF=∠GFD,∴∠EGF=∠BEG+∠GFD,同理可得∠EPF=∠BEP+∠PFD,∵EG⊥FG,∴∠EGF=90°,∵EP平分∠BEG,FP平分∠DFG;∴∠BEP=12∠BEG,∠PFD=12∠GFD,∴∠EPF=12(∠BEG+∠GFD)=12∠EGF=45°,故答案为:45°;②如图,过点Q作QR∥CD,∵∠BEG=40°,∵EG恰好平分∠BEQ,FD恰好平分∠GFQ,∠GEQ=∠BEG=40°,∠GFD=∠QFD,设∠GFD=∠QFD=α,∵QR∥CD,AB∥CD,∴∠EQR=180°﹣∠QEB=180°﹣2∠QEG=100°,∵CD∥QR,∴∠DFQ+∠FQR=180°,∴α+∠FQR=180°,∴α+∠FQE=80°,∴∠FQE=80°﹣α,由①可知∠G=2∠P=∠BEG+∠GFD=40°+α,∴∠FQE+2∠P=80°﹣α+40°+α=120°;(2)结论:∠OEA+2∠PFC=160°.理由:∵在AB的上方有一点O,若FO平分∠GFC,线段GE的延长线平分∠OEA,设H为线段GE的延长线上一点,∴∠OFC=∠OFG,∠OEH=∠HEA,设∠OFC=∠OFG=β,∠OEH=∠HEA=α,如图,过点O作OT∥AB,则OT∥CD,∴∠TOF=∠OFC=β,∠TOE=∠OEA=2α,∴∠EOF=β﹣2α,∵∠HEA=∠BEG=a,∠GFD=180°﹣2β,由(1)可知∠G=∠BEG+∠GFD=α+180°﹣2β,∵∠EOF+∠EGF=100°,∴β﹣2α+α+180°﹣2β=100°,∴α+β=80°,∴12∠OEA+∠OFC=80°,∴∠OEA+2∠PFC=160°.【点评】本题考查了平行线的性质,以及角平分线的定义,掌握平行线的性质是解题的关键.【变式4-3】(2021春•安徽月考)(1)如图1,直线AB∥CD.点P在直线AB,CD之间,试说明:∠BAP+∠APC+∠PCD=360°.小明说明的过程是这样的:“过点P作PE∥AB,…”请按照小明的思路写出完整的解答说明过程.(2)①直线AB∥CD,点P,Q在直线AB,CD之间,且点P,Q在直线AC的同侧,如图2,试探究∠BAP,∠APQ,∠PQC,∠QCD之间的数量关系,并说明理由;②直线AB∥CD,点P,Q在直线AB,CD之间,且点P,Q在直线AC的两侧.如图3,试探究∠BAP,∠APQ,∠PQC,∠QCD之间的数量关系,并说明理由.请在①②任选一个问题进行解答.(3)如图4,若a∥b,直接写出图中x的度数(不用说理).【分析】(1)过点P作PE∥AB,根据平行线的性质,两直线平行,同旁内角互补,可得∠BAP+∠APE=180°,∠DCP+CPE=180°,根据等式的性质可得∠BAP+∠APE+∠DCP+CPE=360°,即可得出答案;(2)①过点P作PE∥AB,过点Q作QF∥CD,如图5,根据平行线的性质,两直线平行,同旁内角互补,∠BAP+∠APE=180°,∠EPQ+∠PQF=180°,∠FQC+∠QCD=180°,根据等式的性质可得∠BAP+∠APE+∠EPQ+∠PQF+∠FQC+∠QCD=180°+180°+180°,即可得出答案;(3)如图4,根据平行线模型﹣锯齿模型定理,朝向左边的角的和=朝向右边的角的和,根据邻补角的定义,120°角的邻补角为60°,所以可列x+48°=60°+30°+30°,求出x即可得出答案.【解答】解:(1)过点P作PE∥AB,∵AB∥PE,∴∠BAP+∠APE=180°,∵CD∥PE,∴∠DCP+CPE=180°,∴∠BAP+∠APE+∠DCP+CPE=360°,∴∠BAP+∠APC+∠PCD=360°;(2)①过点P作PE∥AB,过点Q作QF∥CD,如图5,∵PE∥AB,∴∠BAP+∠APE=180°,∵AB∥CD,∴PE∥QF,∴∠EPQ+∠PQF=180°,∵QF∥CD,∴∠FQC+∠QCD=180°,∵∠BAP+∠APE+∠EPQ+∠PQF+∠FQC+∠QCD=180°+180°+180°,∴∠BAP+∠APQ+∠PQC+∠QCD=540°;(3)x=72°.【点评】本题主要考查了平行线的性质,熟练掌握平行线的性质进行求解是解决本题的关键.【变式4-4】(2022春•兴国县期末)【感知】(1)如图①,AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF 的度数.小乐想到了以下方法,请帮忙完成推理过程.解:如图①,过点P作PM∥AB,【探究】(2)如图②,AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数;【应用】(3)如图③,在以上【探究】条件下,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数.(4)已知直线a∥b,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接AD,BC,∠ABC的平分线与∠ADC的平分线所在的直线交于点E,设∠ABC=α,∠ADC=β(α≠β),请画出图形并求出∠BED的度数(用含α,β的式子表示).【分析】(1)根据平行线的性质与判定可求解;(2)过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数;(3)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数;(4)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解.【解答】解:(1)如图①,过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等),∵AB∥CD,∴PM∥CD(平行于同一直线的两条直线平行),∴∠2+∠PFD=180°(两直线平行,同旁内角互补),∵∠PFD=130°,∴∠2=180°﹣130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF=90°;(2)如图②,过点P作PM∥AB,∴∠MPE=∠AEP=50°(两直线平行,内错角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一条直线的两直线平行),∴∠PFC=∠MPF=120°(两直线平行,内错角相等).∴∠EPF=∠MPF﹣∠MPE=120°﹣50°=70°(等式的性质).(3)如图③所示,∵EG是∠PEA的平分线,FG是∠PFC的平分线,∴∠AEG=12∠AEP=25°,∠GFC=12∠PFC=60°,过点G作GM∥AB,∴∠MGE=∠AEG=25°(两直线平行,内错角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一条直线的两直线平行),∴∠GFC=∠MGF=60°(两直线平行,内错角相等),∠G=∠MGF﹣∠MGE=60°﹣25°=35°;(4)当点A在B左侧时,如图,过点E作EF∥AB,则EF∥CD,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=α,∠ADC=β,∴∠ABE=∠BEF=12α,∠CDE=∠DEF=12β,∴∠BED=∠BEF+∠DEF=αβ2,当点A在B右侧时,点E在AB和CD外时,点E在AB上方时,如图,过点E作EF∥AB,则EF∥CD,∴∠DEF=∠CDE,∠ABG=∠BEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=α,∠ADC=β,∴∠DEF=∠CDE=12β,∠ABG=∠BEF=12α,∴∠BED=∠BEF﹣∠DEF=α−β2,当点A在B右侧时,点E在AB和CD外时,点E在AB下方时,同理可求∠BED=β−α2,当点A在B右侧时,点E在AB和CD内时,过点E作EF∥AB,则EF∥CD,∴∠DEF+∠CDE=180°,∠ABE=∠BEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=α,∠ADC=β,∴∠CDE=12β,∠ABE=∠BEF=12α,∴∠DEF=180°−12β,∴∠BED=∠DEF+∠BEF=180°−12β+12α,或∠BED=360°﹣(∠DEF+∠BEF)=180°+12β−12α,综上,∠BED的度数为αβ2或α−β2或180°−12β+12α或180°+12β−12α.【点评】本题考查了平行线的判定与性质、平行公理及推论,角平分线的性质,解决本题的关键是掌握平行线的判定与性质.。
七年级数学下册-解题技巧专题:平行线中有关拐点的模型专题问题(4类热点题型讲练)(解析版)
第03讲解题技巧专题:平行线中有关拐点的模型专题问题(4类热点题型讲练)目录【考点一平行线中含一个拐点问题】 (1)【考点二平行线中含两个拐点问题】 (11)【考点三平行线中含多个拐点问题】 (21)【考点四平行线中在生活上含拐点问题】 (27)【考点一平行线中含一个拐点问题】例题:(2023上·广东揭阳·八年级统考期末)如图,直线【答案】134︒/134度【分析】本题主要考查利用平行线的性质求解相关角度,两直线平行内错角相等,直接过点∠进行分割转移,最后利用邻补角的概念,直接求出线把E【详解】见试题解答内容∴C FEC ∠=∠,BAE FEA ∠=∠,∵44C ∠=︒,90AEC ∠=︒;∴44FEC ∠=︒,904446BAE AEF ∠=∠=︒-︒=︒,∴118018046134BAE ∠=︒-∠=︒-︒=︒;故答案为:134︒.【变式训练】【答案】180APD A ∠=︒+∠-【分析】过点P 作PM AB ∥,从而可得PM CD ∥,然后利用平行线的性质可得A APM ∴∠=∠,AB CD ∥ ,PM CD ∴∥,【答案】25︒/25度【分析】本题主要考查等边三角形的性质,平行线的判定与性质,过点平行线的性质可得结论.【详解】解:过点B 作BF ∴35,ABF α∠=∠=︒∵ABC 是等边三角形,∴60,ABC ∠=︒∴FBC ABC ABF ∠=∠-∠∵12l l ∥,【答案】(1)见解析;(2)F BMF DNF ∠=∠-∠;(3)20【分析】本题主要考查平行线的判定和性质,作辅助线是解题的关键.(1)过点E作EF AB∥,根据平行线的性质可求解;∥,根据平行线的性质即可得到结论;(2)如图②,过F作FH AB∥,根据平行线的性质即可得到结论.(3)如图③,过C作CG AB【详解】(1)证明:如图①,过点E作EF AB∥,则MEF BME∠=∠,∥,又∵AB CD∥,∴EF CD∴∠=∠,NEF DNE∴∠=∠+∠,MEN MEF NEF∠=∠+∠;即MEN BME DNE(2)解:BMF MFN FND∠=∠+∠.,证明:如图②,过F作FK AB∴∠=∠,BMF MFK∥,∵AB CD,∴FK CD∴∠=∠,FND KFN∴∠=∠-∠=∠-∠,MFN MFK KFN BMF FND即:BMF MFN FND∠=∠+∠.故答案为:BMF MFN FND∠=∠+∠;∥,(3)如图③,过C作CG AB18060∴∠=︒-∠=︒,GCA BAC∥,∵AB DE∥,∴CG DEGCD CDE∴∠=∠=︒,80∴∠=︒,20ACD故答案为:20.4.(2023上·七年级课时练习)已知AB CD ,点E 为,AB CD 之外任意一点.(1)如图1,探究BED ∠与,B D ∠∠之间的数量关系,并说明理由;(2)如图2,探究CDE ∠与,B BED ∠∠之间的数量关系,并说明理由.【拓展变式】如图,“抖空竹”是国家级非物质文化遗产.在“抖空竹”的一个瞬间如图1所示,将图1抽象成一个数学问题:如图2,若,70,110AB CD EAB ECD ︒∠=∠=︒∥,则E ∠=_______________.【答案】(1)B BED D ∠=∠+∠,理由见解析;(2)CDE B BED ∠=∠+∠,理由见解析;[拓展变式]40︒.【分析】(1)过点E 作EF AB ∥,则AB CD EF ∥∥,根据平行线的性质可得,BEF B D DEF ∠=∠∠=∠,进而得出结论;(2)理由如下:过点E 作EF AB ∥,则AB CD EF ∥∥,根据平行线的性质可得B BEF ∠=∠,CDE DEF ∠=∠,进而得出结论;(3)过点E 作EF AB ∥,则AB CD EF ∥∥,根据平行线的性质得出180110AEF EAB ∠=︒-∠=︒,18070CEF ECD ∠=︒-∠=︒,进而即可求解.【详解】解:(1)B BED D ∠=∠+∠.理由如下:过点E 作EF AB ∥,则AB CD EF ∥∥.,BEF B D DEF ∴∠=∠∠=∠.BEF BED DEF ∠=∠+∠ ,B BED D ∴∠=∠+∠.(2)CDE B BED ∠=∠+∠.理由如下:过点E 作EF AB ∥,则AB CD EF ∥∥.B BEF ∴∠=∠,CDE DEF ∠=∠.DEF BEF BED ∠=∠+∠ ,CDE B BED ∴∠=∠+∠.【拓展变式】过点E 作EF AB ∥,则AB CD EF ∥∥.70,110EAB ECD ︒︒∠=∠= 180110AEF EAB ∠=︒-∠=︒,18070CEF ECD ∠=︒-∠=︒11070AEC AEF CEF ∴∠=∠-∠=︒-︒=40︒,故答案为:40︒.【点睛】本题考查了平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.5.(2023上·吉林长春·七年级统考期末)如图,AB CD ∥,点E 、F 分别在直线AB 、CD 上,点P 是AB 、CD 之间的一个动点.【感知】如图①,当点P 在线段EF 左侧时,若50AEP ∠=︒,70PFC ∠=︒,求EPF ∠的度数.分析:从图形上看,由于没有一条直线截AB 与CD ,所以无法直接运用平行线的性质,这时需要构造出“两条直线被第三条直线所截”的基本图形,过点P 作PG AB ∥,根据两条直线都和第三条直线平行,那么这两条直线也互相平行,可知PG CD ∥,进而求出EPF ∠的度数.【探究】如图②,当点P 在线段EF 右侧时,AEP ∠、EPF ∠、PFC ∠之间的数量关系为______.【答案】感知:120︒探究:360AEP EPF PFC ∠+∠+∠=︒【分析】本题考查了平行线的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.感知:过点P 作PG AB ∥,根据猪脚模型,即可解答;探究:过点P 作PG AB ∥,根据铅笔模型,即可解答.【详解】感知:解:过点P 作PG AB ∥,50EPG AEP ∴∠=∠=︒,AB CD ∥ ,PG CD ∴∥,70GPF PFC ∴∠=∠=︒,5070120EPF EPG GPF ∴∠=∠+∠=︒+︒=︒,EPF ∠∴的度数为120︒;探究:解:过点P 作PG AB ∥,180EPG AEP ∴∠+∠=︒,AB CD ∥ ,PG CD ∴∥,180GPF PFC ∴∠+∠=︒,360AEP EPG FPG PFC ∴∠+∠+∠+∠=︒,360AEP EPF PFC ∴∠+∠+∠=︒,【答案】(1)90;(2)①56︒②见解析;(3)12290∠+∠=︒,理由见解析.【分析】(1)利用角平分线的定义可得,112PAC BAC ∠=∠=∠,122PCA ∠=∠=性质,求解即可;(2)①根据垂直可得90ACP ∠=︒,从而得到ACD ∠的度数,利用平行线的性质得到求解;②利用角平分线的定义和平行线的性质,求解即可;(3)根据角平分线的定义可得22ACD ∠=∠,再根据平行线的性质可得ACD ∠+∠∠=∠+∠.(完成下面的填空部分)(1)【基础问题】如图1,试说明:AGD A D证明:过点G作直线MN AB∥,∵72∠=︒AFC ,∴18072108GAB ∠=︒-︒=∵AH 平分GAB ∠,∴1122HAB GAB ∠=∠=【考点二平行线中含两个拐点问题】例题:如图所示,AB CD ∥、BEFD 是AB 、CD 之间的一条折线,则∠1+∠2+∠3+∠4=_____.【答案】540︒【分析】连接BD ,根据平行线的性质由AB ∥CD 得到∠ABD +∠CDB =180°,根据四边形的内角和得到∠2+∠3+∠EBD +∠FBD =360°,于是得到结论.【详解】解:连接BD ,如图,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∵∠2+∠3+∠EBD +∠FBD =360°,∴∠2+∠3+∠EBD +∠FDB +∠ABD +∠CDB =540°,即∠1+∠2+∠3+∠4=540°.故答案为:540°.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.【变式训练】【答案】34︒/34度【分析】过E 作EG AB ∥BED BEG DEG ∠=∠+∠AB CD ∥ ,AB EG FH CD ∴∥∥∥ABE BEG ∴∠=∠,DEG ∠DFH CDF ∠=∠,BFH ∠【答案】②③④【分析】①过点E作EF∥AB,由平行线的性质即可得出结论;②过点点E作EF∥AB,由平行线的性质即可得出结论;③如图3,过点C作CD∥AB,延长AB到G,由平行线的性质可得出180④过点P作PF∥AB,由平行线的性质可得出∠A=∠CPF+∠APC=∠C+②如图2,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠A =∠AEF ,∠C =∠CEF ,∴∠A +∠C =∠CEF +∠AEF =∠AEC ,则②正确;③如图3,过点C 作CD ∥AB ,延长AB 到G ,∵AB ∥EF ,∴AB ∥EF ∥CD ,∴∠DCF =∠EFC ,由②的结论可知∠GBH +∠HCD =∠BHC ,又∵180GBH ABH =︒-∠∠,∠HCD =∠HCF -∠DCF∴180°-∠ABH +∠HCF -∠DCF =∠BHC ,∴180°-∠ABH +∠HCF -∠EFC =∠BHC ,∴180x αβγ︒-+-=∠∠∠∠,故③正确;④如图4,过点P 作PF ∥AB ,∵AB ∥CD ,∴AB ∥PF ∥CD ,∴∠A =∠APF ,∠C =∠CPF ,∴∠A =∠CPF +∠APC =∠C +∠APC ,则④正确;故答案为:②③④.【点睛】本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.3.(23·24八年级上·广东江门·阶段练习)(1)如图①,如果AB CD ∥,求证:APC A C ∠=∠+∠.(2)如图②,AB CD ∥,根据上面的推理方法,直接写出A P Q C ∠+∠+∠+∠=___________.(3)如图③,AB CD ∥,若ABP x BPQ y PQC z QCD m ∠=∠=∠=∠=,,,,则m =___________(用x 、y 、z 表示).【答案】(1)见解析;(2)540︒;(3)x z y+-【分析】(1)过P 作PM AB ∥,利用平行线的判定与性质证明即可;(2)过点P 作PE AB ∥,过点Q 作QF AB ∥,根据平行线的性质即可求解;(3)过点P 作PN AB ∥,过点Q 作QM AB ∥,根据平行线的性质求解即可.【详解】(1)证明:过P 作PM AB ∥,如图,∴A APM ∠=∠,∵PM AB AB CD ∥,∥(已知),∴PM CD ∥,∴C CPM ∠=∠,∵APC APM CPM ∠=∠+∠,∴APC A C ∠=∠+∠;(2)如图,过点P 作PE AB ∥,过点Q 作QF AB ∥,∵AB DC ∥,PE AB ∥,QF AB ∥,∴AB PE QF CD ∥∥∥,∴180A APE ∠+∠=︒,180EPQ PQF ∠+∠=︒,=180FQC QCD ∠+∠︒,∴=540A APQ PQC C ∠+∠+∠+∠︒,故答案为:540︒;(3)过点P 作PE AB ∥,过点Q 作QF AB ∥,∵AB DC ∥,PE AB ∥,QF AB ∥,∴AB PE QF CD ∥∥∥,∴B BPE ∠=∠,QPE PQF ∠=∠,=FQC C ∠∠,∴=B PQC C BPQ ∠+∠∠+∠,即=x z m y ++,∴=m x z y +-,故答案为:x z y +-.【点睛】本题考查平行线的判定与性质,灵活运用平行线的性质和判定是解题的关键.4.(2023下·海南省直辖县级单位·七年级统考期末)如图1,AB CD ∥,点P 为直线AB CD ,间一点,点E ,F 分别是直线AB CD ,上的点,连接EP FP ,.(1)【证明推断】求证:EPF AEP CFP ∠=∠+∠,请完善下面的证明过程,并在()内填写依据.证明:过点P 作直线MN AB ∥,MN AB ∥ (已作),AEP EPN ∴∠=∠(______),又MN AB ∥ ,AB CD ∥(已知)∴______,(______)CFP FPN ∴∠=∠,AEP CFP EPN FPN ∴∠+∠=∠+∠=______.(2)如图2,若AEP ∠的平分线与PFC ∠的平分线交于点Q .①【类比探究】试猜想EPF ∠与EQF ∠之间的关系,并说明理由;②【结论运用】若240BEP DFP ∠+∠=︒,求EQF ∠的度数.(3)【拓展认知】如图3,直线AB CD ∥,点P ,H 为直线AB CD 、间的点,请直接写出AEP ∠,PHF ∠,EPH ∠,HFD ∠的数量关系:______.【答案】(1)两直线平行,内错角相等;MN CD ∥;平行于同一直线的两直线平行;EPF∠(3)过点P、H作m∥【点睛】本题考查平行的性质,角平分线的定义,添加合适的辅助线是解题关键.5.(2023上·重庆九龙坡·八年级重庆市育才中学校考开学考试)如图CD 上,点O 在直线AB 、CD 之间,且(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN ∠-(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线FH 分别于点M 、N ,且80FMN ENM ∠-∠=︒,直接写出m 的值.【答案】(1)280︒(2)50︒(2)解:如图2,过点M ,AB CD∥∴∥∥∥,AB MK NI CD∠∴∠=∠,KMN BEM EMK∴∠-∠=∠EMN FNM EMK(3)解:如图3,设直线FH∥,AB CD∴∠=∠,AHF DFHAHF EPH PEH∠=∠+∠=∴∠=∠+∠,DFH EPH AEG【点睛】本题考查了平行线的性质,角平分线的性质及三角形的外角性质,熟练掌握平行线的性质、角平分线的性质及三角形的外角性质并正确作出辅助线是解题关键.【考点三平行线中含多个拐点问题】例题:如图,直线AB CD ∥,则23415∠+∠+∠-∠-∠的度数为___________°.【答案】360【分析】过E 作EF ∥CD ,过G 作GH ∥CD ,过M 作MN ∥CD ,根据平行线的判定得出EF ∥GH ∥MN ∥AB ∥CD ,根据平行线的性质得出即可.【详解】过E 作EF ∥CD ,过G 作GH ∥CD ,过M 作MN ∥CD ,如图所示:∵CD ∥AB ,∴EF ∥GH ∥MN ∥AB ∥CD ,∴∠1=∠BEF ,∠GEF +∠EGH =180°,∠HGM +∠GMN =180°,∠NMC =∠5,∵∠2=∠BEF +∠GEF ,∠3=∠EGH +∠HGM ,∠4=∠GMN +∠NMC ,∴23415∠+∠+∠-∠-∠BEF GEF EGH HGM GMN NMC BEF NMC=∠+∠+∠+∠+∠+∠-∠-∠360GEF EGH HGM GMN =∠+∠+∠+∠=︒.故答案为:360.【点睛】本题考查了平行线的性质,能灵活运用平行线的性质进行推理是解此题的关键.【变式训练】【答案】88︒/88度【分析】本题考查平行线的性质、角平分线的定义等,解题的关键是会添加常用辅助线(即过2.(2023上·七年级课时练习)观察图形:已知a b ,在图1中,可得12∠+∠=_______________度,在图度……按照以上规律,则112n P P ∠+∠+∠++∠= _______________【答案】180,360,()1801n +.【详解】解:如图1,∵a b ,∴12180∠+∠= ;如图2,过1P 作11PQ a ,∵a b ,∴11PQ a b ,∴111180APQ ∠+∠=︒,112180BPQ ∠+∠=︒,∴112360APB ∠+∠+∠=;同理可得:112180(1)n P P n ∠+∠+∠++∠=+ ;故答案为:180,360,()1801n +.【点睛】本题考查平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.3.如图:(1)如图1,1l ∥2l ,若65P ∠= ,计算并直接写出A B ∠∠+的大小.(2)如图2,在图1的基础上,将直线PB 变成折线PQB ,证明:180A B Q P ∠∠∠∠++=+(3)如图3,在图2的基础上,继续将且线BQ 变成折现BMQ .请你写出一条关于1∠、2345∠∠∠∠,,,的数量关系(无需证明直接写出)【答案】(1)65°(2)见解析(3)∠1+∠3+∠5=∠2+∠4【分析】(l )过P 作PE ∥l 1,根据平行线的性质和角的和差即可得到结论;(2)过点P 、Q 分别作l 1和l 2的平行线分别记为l 3和l 4,根据平行线的性质和等量代换即可得到结论;(3)分别过P ,Q ,M 作PC ∥l 1,QD ∥l 1,ME ∥l 1,根据平行线的性质和角的和差即可得到结论.(1)解:过P作PE∥l1∵l1∥l2∴PE∥l2∥l1∴∠A=∠1,∠B=∠2∴∠APB=∠1+∠2=∠A+∠B=65°即∠A+∠B=65°;(2)证明:过点P、Q分别作l1和l2的平行线分别记为l3和l4∵l1∥l2∴l1∥l2∥l3∥l4∵l1∥l3(已知)∴∠A=∠1(两直线平行,内错角相等)∵l3∥l4(已知)∴∠2=∠3(两直线平行,内错角相等)∵l2∥l4(已知)∴∠4+∠B=180°(两直线平行,同旁内角互补)∴∠A+∠3+∠4+∠B=∠1+∠2+180°又∵∠1+∠2=∠P,∠3+∠4=∠Q∴∠A+∠B+∠Q=∠P+180°.(3)解:如图,分别过P,Q,M作PC∥l1,QD∥l1,ME∥l1,∵12l l ∥,∴12////////PC QD ME l l ∴∠1=∠APC ,∠QPC =∠PQD ∴∠2=∠1+∠PQD ,∠4=∠∴∠2+∠4=∠1+∠PQD +∠5∴∠1+∠3+∠5=∠2+∠4.【点睛】本题考查了平行线的性质及平行公理的推论,熟练掌握平行线的性质是解题的关键.4.猜想说理:(1)如图,AB CD EF ∥∥形说明理由:拓展应用:(2)如图4,若AB CD ,则A C AFC ∠+∠+∠=(3)在图5中,若1n A B A D ∥,请你用含n 的代数式表示【答案】(1)A C AFC ∠∠∠+=;A C AFC ∠-∠∠=;∠(2)360(3)-1180n ⨯︒()【分析】(1)根据平行线的性质可直接得到结论;度数;通过前面的计算,找出规律.利用规律得到有n 个折点的结论;【详解】解:(1)如图1:A C AFC ∠∠∠+=,如图2:A C AFC ∠-∠∠=,如图3:C A AFC ∠-∠∠=,如图1说明理由如下:∵AB CD EF ∥∥,∴A AFE C EFC ∠∠∠∠=,=,∴A C AFE EFC ∠∠∠∠+=+,即A C AFC ∠∠∠+=;(2)如下图:过F 作FH AB ∥,∴180A AFH ∠∠︒+=,又∵AB CD ∥,∴CD FH ∥,∴180C CFH ∠∠︒+=,∴360A AFH C CFH ∠∠∠∠︒+++=,即360A C AFC ∠∠∠︒++=;故答案为:360;(3)如下图:AB CD ∥,过E 作EG AB ∥,过F 作FH AB ∥,∵AB CD ∥,∴AB EG FH CD ∥∥∥,∴180A AEG ∠∠︒+=,180GEF EFH ∠∠︒+=,180HFC C ∠∠︒+=,∴1803A AEG GEF EFH HFC C ∠∠∠∠∠∠︒⨯+++++=,即540A AEF EFC C ∠∠∠∠︒+++=;综上所述:由当平行线AB 与CD 间没有点的时候,180A C ∠∠︒+=,当A 、C 之间加一个折点F 时,2180A AFC C ∠∠∠⨯︒++=;当A 、C 之间加二个折点E 、F 时,则3180A AEF EFC C ∠∠∠∠⨯︒+++=;以此类推,如图5,1n A B A D ∥,当1A 、5A 之间加三个折点234A A A 、、时,则123454180A A A A A ∠+∠∠∠∠⨯︒+++=;…当1A 、n A 之间加n 个折点231n A A A -⋯、、时,则123-1180n A A A A n ∠∠∠⋯∠⨯︒+++=(),即1234n ∠∠∠∠∠+++++L 的度数是-1180n ⨯︒().【点睛】本题是探索型试题,主要考查了平行线的性质,根据题意作出辅助线,利用平行线的性质及三角形外角的性质等知识求解是解答此题的关键.【考点四平行线中在生活上含拐点问题】例题:(2023·广东深圳·校考模拟预测)“绿水青山,就是金山银山”在两个景区之间建立上的一段观光索道如图所示,索道支撑架均为互相平行(AM CN ∥),且每两个支撑架之间的索道均是直的,若65MAB ∠=︒,55NCB ∠=︒,则ABC ∠=()A .110︒B .115︒C .120︒D .125︒【答案】C 【分析】过点B 作∥BD AM ,则BD AM CN ∥∥,由平行线的性质可得65ABD MAB ∠=∠=︒,55CBD NCB ∠=∠=︒,由此进行计算即可得到答案.【详解】解:如图,过点B 作∥BD AM ,,AM CN ∥,A BD M CN ∴∥∥,65MAB ∠=︒,55NCB ∠=︒,65ABD MAB ∴∠=∠=︒,55CBD NCB ∠=∠=︒,6555120ABC ABD CBD ∴∠=∠+∠=︒+︒=︒,故选:C .【点睛】本题考查了平行线的性质,熟练掌握两直线平行,内错角相等是解此题的关键.【变式训练】1.(2023下·山西临汾·七年级统考期中)图①是某种青花瓷花瓶,图②是其抽象出来的简易轮廓图,已知AG EF ,AB DE ∥,若120DEF ∠=︒,则A ∠的度数为()A .60°B .65°C .70°D .75°【答案】A 【分析】连接CF ,根据AB CF ,AG EF 可得出CFE BAG ∠=∠,再由平行线的性质即可得出结论.【详解】解:连接CF ,延长AG 交CF 于点H ,作MN AG ,如图AB CF DE ∥∥,120DEF ∠=︒18012060CEF ∴∠=︒-︒=︒,AHF BAG∠=∠∵AG EF ,AG MN∥∴AHF MNF ∴∠=∠,EF MN∥60CFE FNM BAG ∴∠=∠=∠=︒.故选:A .【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解题的关键.2.(2023下·浙江台州·七年级统考期末)如图是路政工程车的工作示意图,工作篮底部AB 与支撑平台CD 平行.若130∠=︒,3150∠=︒,则2∠=()A .60︒B .50︒【答案】C 【分析】过2∠顶点作直线l 【详解】解:如图所示,过∠∵工作篮底部与支撑平台平行、直线∴直线l 支撑平台 工作篮底部,∴1430∠=∠=︒,53180∠+∠=︒∴230∠=︒,∴24560∠=∠+∠=︒,故选:C .【答案】100︒/100度【分析】过点D 作DG AB ∥,过点【详解】解:过点D 作DG ∥∵EF MN ⊥,∴90MFE ∠=︒,∵AB MN ∥,∴AB DG EH MN ∥∥∥,∴180ACD CDG ∠+∠=︒,DEH GDE ∠=∠,90HEF MFE ∠=∠=︒∵120,110DEF BCD ∠=︒∠=︒,∴30GDE DEH ︒∠=∠=,18011070CDG ∠︒=︒-︒=,∴100CDE CDG GDE =∠+∠=︒∠.故答案为:100︒【点睛】本题考查了平行线的判定和性质,解题的关键是过拐点构造平行线.。
平行线与拐点问题(经典)
A
B
C
图1
E D
A
B
F
E
C
D
解:过点E 作EF∥AB ∵AB∥CD(已知)
∴AB∥CD∥EF ∴∠B+∠BEF=180°∴∠FED+∠D=180°
∴∠B+∠BEF+∠FED+∠D=360° ∵∠BED=∠BEF+∠DEF ∴∠B+∠BED+∠D=360°
〖练习〗 1.如图,AB∥CD,∠B=23°,∠D=42°,则 ∠E=____6_5_°____.
_____5_0_°____.
E
B
25°
F
A
75°
D
C
返回
变式训练:1、如图,已知:AB∥CD,CE分别 交AB、CD于点F、C,若∠E=20°,∠C=45°, 则∠A的度数为( ) A. 5° B. 15° C. 25° D. 35°
巧用平行解决“拐点”问题
〖探究4〗(犀牛角型或靴子型) 若将点E向线段AB的左上方拉动(如图). 已知AB∥CD,问 ∠B、∠D、∠ABE的关系.
F
E
A
B
C
D
过点E 作EF∥AB
∴∠FEA=∠A
∵AB∥CD(已知)
∴CD∥EF
∴∠FEC=∠C
∵∠FEA=∠FEC+∠AEC
∴∠A= ∠C +∠AEC
例2. 请思考:若改变点E的位置,则∠BED 与∠B、∠D的数量
关系会发生变化吗?
E
E
A
B
A
B
D
C
图4
D
∠BED=∠B-∠D
A
B
C
图5
湘教版七下数学 平行线拐点问题专题
平行线拐点问题专题作平行线的技巧当两条平行线间遇到拐点时,常过拐点作平行线构造出同位角、内错角和同旁内角.通过平行线的性质,得到题目中所求角与已知角之间的关系,从而解决问题.一般而言,有几个“拐点”就需要作几条平行线.类型1形图(燕尾型)1.如图,AB ∥CD ,P 为AB ,CD 之间的一点,已知∠1=32°,∠2=25°,则∠BPC= .2.如图,已知AB ∥CD ,∠1与∠D ,∠B 之间存在怎样的数量关系?解: 类型2形图(铅笔型)3.(1)如图1所示,若AB ∥DE ,∠B =135°,∠D =145°,求∠C 的度数;(2)如图1所示,在AB ∥DE 的条件下,你能得出∠B ,∠C ,∠D 之间的数量关系吗?请说明理由;(3)如图2所示,AB ∥EF ,根据(2)中的结果,直接写出∠B +∠C +∠D +∠E 的度数.解:类型3形图4.(2019·河南鹤壁一模)如图,已知AB ∥CD ,若∠A =25°,∠E =50°,则∠C = .5.(2019·安徽淮北五校联考)小华在学习“平行线的性质”后,对图中∠B ,∠D 和∠BOD的关系进行了探究:(1)如图1,若点O 在CD 的上侧,试探究∠B ,∠D 和∠BOD 之间有什么关系,并说明理由;(2)如图2,若点O在AB的下侧,试探究∠B,∠D和∠BOD之间有什么关系,请直接写出它们的关系式.解:类型4形图(靴子型)6.如图,直线AB∥CD,若∠A=100°,∠E=15°,则∠ECD=.7.如图,已知AB∥CD,点E为AB,CD之外任意一点,探究∠CDE与∠B,∠E之间的数量关系,并说明理由.解:类型5形图8.(2019·江苏南京二十九中模拟)如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,求∠BCD的度数.解:方法1:如图1,过点C作FG∥AB.方法2:如图2,反向延长DE交BC于点M.类型6形图9.(2019·湖北武汉蔡甸区期末)如图,已知AB∥CD,∠ABE=110°,∠DCE=36°,求∠BEC的度数.解:如图,过点E作直线EF∥AB.类型7多拐点型10.如图所示,AB∥EF,∠B=45°,∠E=35°,则∠C+∠D的值为.11.如图,m∥n,试说明:∠1+∠3=∠2+∠4.解:如图,分别过点P1,P2作P1C∥m,P2D∥m.类型8复合“拐点”型12.已知直线AB∥CD.(1)如图1,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由;(3)如图2,若点E在直线BD的右侧,BF,DF仍分别平分∠ABE,∠CDE,求∠BFD 和∠BED的数量关系.解:(1)∠BFD=12∠BED.理由:因为BF,DF分别平分∠ABE,∠CDE,所以∠ABF=12∠ABE,∠CDF=12∠CDE,所以∠ABF+∠CDF=12∠ABE+12∠CDE=12(∠ABE+∠CDE).因为∠ABE+∠CDE=∠BED,∠BFD=∠ABF+∠CDF,所以∠BFD=1 2∠BED.(2)过点E作EG∥CD,如图所示.因为AB∥CD,EG∥CD,所以AB∥CD∥EG,所以∠ABE+∠BEG =180°,∠CDE+∠DEG=180°,所以∠ABE+∠CDE+∠BED=360°.因为∠BFD=∠ABF+∠CDF,BF,DF分别平分∠ABE,∠CDE,所以∠ABF=12∠ABE,∠CDF=12∠CDE.所以∠BFD=12(∠ABE+∠CDE),所以2∠BFD+∠BED=360°.。
七年级数学平行线中关于“拐点”的辅助线
专题一平行线中关于“拐点”的辅助线【类型1】“M”形图1.如图,BA∥DE,∠B=30°,∠D=40°,则∠C的度数是()A.10°B.35°C.70°D.80°2.如图,l1∥l2,则∠1、∠2、∠3关系是()A.∠2>∠1+∠3B.无法确定C.∠3=∠1﹣∠2D.∠2=∠1+∠3 3.如图,已知AB∥CD,∠BED=90°,则∠1与∠2之间的数量关系可表示为()A.∠2=2∠1B.∠2﹣∠1=90°C.∠1+∠2=180°D.无法表示4.如图,已知AB∥CD,∠AFC=120°,∠EAF=13∠EAB,∠ECF=13∠ECD,则∠AEC =度.5.如图,若AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=90°,则∠BFD=.6.(1)如图甲,AB∥CD,∠BEC与∠1+∠3的关系是什么?并写出推理过程;(2)如图乙,AB∥CD,直接写出∠2+∠4与∠1+∠3+∠5的数量关系;(3)如图丙,AB∥CD,直接写出∠2+∠4+∠6与∠1+∠3+∠5+∠7的数量关系.7.已知AB∥CD,点E在AB与CD之间.(1)图1中,试说明:∠BED=∠ABE+∠CDE;(2)图2中,∠ABE的平分线与∠CDE的平分线相交于点F,请利用(1)的结论说明:∠BED=2∠BFD.(3)图3中,∠ABE的平分线与∠CDE的平分线相交于点F,请直接写出∠BED与∠BFD之间的数量关系.【类型2】“U”形图8.如图,已知AB∥CD,∠A=120°,∠C=130°,那么∠APC的度数是()A.100°B.110°C.120°D.130°9.如图,AB∥CD,则∠1+∠2+∠3+…+∠2n=度.10.(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.【类型3】“Z”形图11.如图,AB∥DE,那么∠BCD=()A.180°+∠1﹣∠2B.∠1+∠2C.∠2﹣∠1D.180°+∠2﹣2∠112.如图,若AB∥DE,∠B=130°,∠D=35°,则∠C的度数为()A.80°B.85°C.90°D.95°13.如图,已知AB∥DE,∠ABC=130°,∠CDE=110°,则∠BCD的度数为()A.50°B.60°C.70°D.80°14.如图,AB∥EF,∠D=90°,则α,β,γ的大小关系是()A .β=α+γB .β=α+γ﹣90°C .β=γ+90°﹣αD .β=α+90°﹣γ15.如图,已知AB ∥DE ,∠ABC =76°,∠CDE =150°,则∠BCD 的度数为°.16.如图,已知AB ∥EF ,∠BCD =90°,求∠B +∠D ﹣∠E 的度数.综合解答题训练1.已知:如图,AB CD ∥,AP 平分BAC ∠,CP 平分ACD ∠,求APC ∠的度数.请补全下列解法中的空缺部分.解:过点P 作PG AB ∥,交AC 于点G .∵AB CD ∥(已知),PG AB ∥(辅助线的作法),∴PG CD ∥(____________________),180BAC ACD ∠+∠=︒(____________________),∵PG AB ∥,∴BAP ∠=____________________(____________________),同理可证:GPC ∠=____________________.∵AP 平分BAC ∠,CP 平分ACD ∠.∴12BAP BAC ∠=∠,12PCD ACD ∠=∠.(____________________),∴119022BAP PCD BAC ACD ∠+∠=∠+∠=︒(_____________________),∴90APC APG GPC BAP PCD ∠︒=∠+∠=∠+∠=.总结:两直线平行,同旁内角的角平分线___________________.2.探索发现:如图是一种网红弹弓的实物图,在两头上系上皮筋,拉动皮筋可形成平面示意图如下图①,弹弓的两边可看成是平行的,即AB ∥CD ,各活动小组探索∠APC 与∠A ,∠C 之间的数量关系.已知AB ∥CD ,点P 不在直线AB 和直线CD 上,在图①中,智慧小组发现:∠APC =∠A +∠C .智慧小组是这样思考的:过点P 作PQ ∥AB ⋯请你按照智慧小组作的辅助线补全推理过程.类比思考:①在图②中,∠APC 与∠A 、∠C 之间的数量关系为______;②如图③,已知AB ∥CD ,则∠α、∠β、∠γ之间的数量关系为______.解决问题:善思小组提出:如图④⑤,AB ∥CD ,AF 、CF 分别平分∠BAP 、∠DCP .请分别求出图④、图⑤中,∠AFC 与∠APC 之间的数量关系,并说明理由.3.阅读下面材料,完成(1)~(3)题.数学课上,老师出示了这样一道题:如图1,已知AB CD ∥,点E 、F 分别在AB ,CD 上,EP FP ⊥,160∠=︒,求2∠的度数.同学们经过思考后,小明、小伟、小华三位同学用不同的方法添加辅助线.交流了自己的想法:小明:“如图2,通过作平行线,发现∠1=∠3,∠2=∠4,由已知EP FP ⊥.可以求出∠2的度数.”小伟:“如图3,这样作平行线,经过推理,得∠2=∠3=∠4,也能求出∠2的度数”.小华:“如图4,也能求出∠2的度数.”(1)请你根据小伟同学所画的图形(图3),描述小伟同学辅助线的做法,辅助线:_________.(2)请你根据以上同学所画的图形,直接写出∠2的度数为__________.老师:“这三位同学解法的共同点,都是过一点作平行线来解决问题,这个方法可以推广.”请大家参考这三位同学的方法,使用与他们类似的方法,解决下面的问题:(3)如图5,AB CD ∥,点E 、F 分别在AB ,CD 上,PEF PDF ∠=∠,若120EPD ∠=︒.请探究CFE ∠与PEF ∠的数量关系,并证明你的结论.4.平行线问题的探索:(1)问题一:已知:如图,//,⊥AB CD EF AB 于点,O FG 交CD 于点P ,当130∠=︒时,求EFG ∠的度数甲、乙.丙三位同学用不同的方法添加辅助线解决问题,如图1:甲同学辅助线的做法和分析思路如下:辅助线:过点F 作//MN CD ,分析思路:a.欲求EFG ∠的度数,由图可知只需转化为求2∠和3∠的度数;b.//MN CD 可知,21,∠=∠又由已知1∠的度数可得2∠的度数;c.由//,//AB CD MN CD 推出//,AB MN 由此可推出3=4∠∠;d.由已知,EF AB ⊥可得490,∠=︒所以可得3∠的度数;f.从而可求EFG ∠的度数①请你根据乙同学所画的图形,描述乙同学辅助线的做法.辅助线:_;②请你根据丙同学所画的图形,且不再添加其他辅助线,求EFG ∠的度数.(2)问题二:如图2,在平面直角坐标系中,点A 为x 轴负半轴上一点,点B 为x 轴正半轴上一点,()()0,,,,C a D b a 其中a b ,满足关系式:()2310a b a ++-+=.①=a,b=;②根据已知点的坐标判断AB与CD的位置关系是5.已知:如图,AB∥CD.(1)如图1,猜想并写出∠B、∠D、∠E之间的数量关系.以下图2、图3、图4是三种不同角度思考采用的不同添加辅助线的方式,请你选择其中的两种方式说明理由.(2)在图4中,如果BE、DE分别平分∠ABD,∠CDB,则∠E的度数是多少?(直接写出答案)(3)根据以上推理,直接写出图5、图6、图7中的∠B、∠D、∠E之间的数量关系.参考答案1.解:过点C作FC∥AB,∵BA∥DE,∴BA∥DE∥FC,∴∠B=∠BCF,∠D=∠DCF,∵∠B=30°,∠D=40°,∴∠BCF=30°,∠DCF=40°,∴∠BCD=70°,故选:C.2.解:过∠2的顶点,作如图所示的射线l,使l∥l1,∵l1∥l2,l∥l1,∴l1∥l2∥l.∴∠1=∠α,∠2=∠β.∵∠α+∠β=∠2,∴∠1+∠3=∠2.故选:D.3.解:过E作直线NM∥AB,如下图所示,∵NM∥AB,∴∠1=∠3(两直线平行,内错角相等),∵NM∥AB,AB∥CD,∴NM∥CD,∴∠2+∠4=180°,∵∠BED=90°,∴∠3+∠4=90°,∴∠2﹣∠1=90°,故选:B.4.解:过点E作EM∥AB,过点F作FN∥AB,如图所示.∵EM∥AB,AB∥CD,∴EM∥CD,∴∠AEM=∠EAB,∠CEM=∠ECD.同理,可得:∠AFN=∠FAB,∠CFN=∠FCD.又∵∠EAF=13∠EAB,∠ECF=13∠ECD,∴∠EAB=34∠FAB,∠ECD=34∠FCD.∴∠AEC=∠AEM+∠CEM=∠EAB+∠ECD=34(∠FAB+∠FCD)=34(∠AFN+∠CFN)=34∠AFC=90°.故答案为:90.5.解:∵AB∥CD,∴∠ABE=∠4,∠1=∠2,∵∠BED=90°,∠BED=∠4+∠EDC,∴∠ABE+∠EDC=90°,∵BF平分∠ABE,DF平分∠CDE,∴∠1+∠3=45°,∵∠5=∠2+∠3,∴∠5=∠1+∠3=45°,即∠BFD=45°,故答案为:45°.6.解:(1)∠BEC=∠1+∠3.证明:过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠1,∠CEF=∠3,∴∠BEC=∠BEF+∠CEF=∠1+∠3;(2)∠2+∠4=∠1+∠3+∠5.理由:分别过点E,G,M,作EF∥AB,GH∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥EF∥GH∥MN,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠CMN=∠5,∴∠2+∠4=∠BEF+∠FEG+∠GMN+∠CMN=∠1+∠EGH+∠MGH+∠5=∠1+∠3+∠5;(3)∠2+∠4+∠6=∠1+∠3+∠5+∠7.理由:分别过点E,G,M,K,P,作EF∥AB,GH∥AB,MN∥AB,KL∥AB,PQ∥AB,∵AB∥CD,∴AB∥CD∥EF∥GH∥MN∥KL∥PQ,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠KMN=∠LKM,∠LKP=∠KPQ,∠QPC=∠7,∴∠2+∠4+∠6=∠1+∠3+∠5+∠7.7.解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG=∠CDE,∴∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:∵AB∥CD,∴∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,∴∠BED=2∠BFD.(3)∠BED=360°﹣2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°﹣(∠ABE+∠CDE),即∠BED=360°﹣(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°﹣2(∠ABF+∠CDF),由(1)得:∵AB∥CD,∴∠BFD=∠ABF+∠CDF,∴∠BED=360°﹣2∠BFD.8.解:过P作直线MN∥AB,如下图所示,∵MN∥AB,∴∠A+∠1=180°(两直线平行,同旁内角互补),∴∠1=180°﹣∠A=180°﹣120°=60°,∵MN∥AB,AB∥CD,∴MN∥CD,∴∠C+∠2=180°(两直线平行,同旁内角互补),∴∠2=180°﹣∠C=180°﹣130°=50°,∴∠APC=∠1+∠2=60°+50°=110°,故选:B.9.解:在转折的地方依次作AB的平行线,根据两直线平行,同旁内角互补得∠1+∠2+∠3+…+∠2n=180(2n﹣1)度.故填180(2n﹣1).10.解:(1)过点C作MC∥AB,∵AB∥DE,∴AB∥DE∥MC,∵∠B=135°,∠D=145°,∴∠BCM=45°,∠MCD=35°,∴∠BCD=45°+35°=80°;(2)∠B+∠C+∠D=360°,∵AB∥DE∥MC,∴∠B+∠BCM=180°,∠MCD+∠D=180°,∴∠B+∠C+∠D=360°.11.解:过点C作CF∥AB,如图:∵AB∥DE,∴AB∥DE∥CF,∴∠BCF=∠1①,∠2+∠DCF=180°②,∴①+②得,∠BCF+∠DCF+∠2=∠1+180°,即∠BCD=180°+∠1﹣∠2.故选:A.12.解:过C作CM∥AB,∵AB∥DE,∴AB∥CM∥DE,∴∠1+∠B=180°,∠2=∠D=35°,∵∠B=130°,∴∠1=50°,∴∠BCD=∠1+∠2=85°,故选:B.13.解:作DE的反向延长线交BC于M,∵AB∥DE,∠ABC=130°,∴∠BMD=∠ABC=130°,∴∠CMD=180°﹣∠BMD=50°,∵∠CDE=110°,∴∠BCD=∠CDE﹣∠CMD=110°﹣50°=60°,故选:B.14.解:如图,过点C和点D作CG∥AB,DH∥AB,∴CG∥DH∥AB,∵AB∥EF,∴AB∥EF∥CG∥DH,∵CG∥AB,∴∠BCG=α,∴∠GCD=∠BCD﹣∠BCG=β﹣α,∵CG∥DH,∴∠CDH=∠GCD=β﹣α,∵HD∥EF,∴∠HDE=γ,∵∠EDC=∠HDE+∠CDH=90°,∴γ+β﹣α=90°,∴β=α+90°﹣γ.故选:D.15.解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠ABC=∠BCF,∠CDE+∠DCF=180°,∵∠ABC=76°,∠CDE=150°,∴∠BCF=76°,∠DCF=30°,∴∠BCD=46°,故答案为:46.16.解:过点C作直线CM∥AB,过点D作直线DN∥EF,给各角表示序号,如图所示.∵AB∥EF,CM∥AB,DN∥EF,∴CM∥DN,∴∠B=∠1,∠2=∠3,∠4=∠E,∴∠CDE﹣∠E=∠3+∠4﹣∠E=∠3=∠2,∴∠B+∠CDE﹣∠E=∠B+∠2=∠1+∠2=∠BCD=90°.综合训练参考答案:1.平行于同一条直线的两直线互相平行(如果两条直线都与第三条直线平行,那么这两条直线也互相平行);两直线平行,同旁内角互补;∠APG;两直线平行,内错角相等;∠PCD;角平分线的定义;等量代换;互相垂直【分析】利用平行线的判定与性质结合图形找准各角之间的关系证明即可.【详解】解:过点P作PG∥AB,交AC于点G.∵AB∥CD(已知),PG∥AB(辅助线的作法),∴PG∥CD(平行于同一条直线的两直线互相平行),∠BAC+∠ACD=180°(两直线平行,同旁内角互补),∵PG∥AB,∴∠BAP=∠APG(两直线平行,内错角相等),同理可证:∠GPC=∠PCD.∵AP平分∠BAC,CP平分∠ACD.∴∠BAP=12∠BAC,∠PCD=12∠ACD.(角平分线的定义),∴∠BAP+∠PCD=12∠BAC+12∠ACD=90°(等量代换),∴∠APC=∠APG+∠GPC=∠BAP+∠PCD=90°.总结:两直线平行,同旁内角的角平分线互相垂直.故答案为:平行于同一条直线的两直线互相平行(如果两条直线都与第三条直线平行,那么这两条直线也互相平行);两直线平行,同旁内角互补;∠APG;两直线平行,内错角相等;∠PCD;角平分线的定义;等量代换;互相垂直.【点睛】题目主要考查平行线的判定与性质,角平分线的计算,理解题意,综合运用这些知识点是解题关键.2.探索发现见解析;①∠APC+∠A+∠C=360°;②α+β﹣γ=180°;解决问题:如图④,∠AFC12=∠APC;如图⑤,∠AFC=180°12-∠APC;理由见解析【分析】探索发现:由PQ∥AB,AB∥CD,推出PQ∥CD,得出∠APQ=∠A,∠CPQ=∠C,推出∠APQ+∠CPQ=∠A+∠C,即可得出结论;类比思考:①过点P作PQ∥AB,由平行线的性质得出∠APQ+∠A=180°,由PQ∥AB,AB∥CD,得到PQ∥CD,由平行线的性质得出∠CPQ+∠C=180°,则∠APQ+∠A+∠CPQ+∠C=360°,即可得出结果;②过点M作MQ∥AB,由平行线的性质得出α+∠QMA=180°,由MQ∥AB,AB∥CD,推出MQ∥CD,得出∠QMD=γ,即可得出结果;解决问题:如图④,过点P作PQ∥AB,过点F作FM∥AB,由平行线的性质得出∠APQ=∠BAP,∠AFM=∠BAF,由角平分线的定义得出∠BAF=∠PAF,即∠AFM12=∠BAP,由PQ∥AB,FM∥AB,AB∥CD,推出PQ∥CD,FM∥CD,得出∠CPQ=∠DCP,∠CFM=∠DCF,由角平分线的定义得出∠DCF=∠PCF,即∠CFM12=∠DCP,推出∠APC=∠BAP+∠DCP,∠AFC12=(∠BAP+∠DCP),即可得出结果;如图⑤,过点P作PH∥AB,过点F作FQ∥AB,由平行线的性质得出∠APH=∠MAP,∠AFQ=∠BAF,由角平分线的定义得出∠BAF=∠PAF,即2∠AFQ=∠BAP,由PH∥AB,FQ∥AB,AB∥CD,推出PH∥CD,FQ∥CD,得出∠CPH=∠NCP,∠CFQ=∠DCF,由角平分线的定义得出∠DCF=∠PCF,即2∠CFQ=∠DCP,由∠BAP+∠MAP=180°,∠DCP+∠NCP=180°,得出2∠AFQ+∠APH=180°,2∠CFQ+∠CPH=180°,即可得出结果.【详解】解:探索发现:过点P作PQ∥AB,∵PQ∥AB,AB∥CD,∴PQ∥CD,∴∠APQ=∠A,∠CPQ=∠C,∴∠APQ+∠CPQ=∠A+∠C,∴∠APC=∠A+∠C;类比思考:①∠APC+∠A+∠C=360°;理由如下:过点P作PQ∥AB,如图②所示:∴∠APQ+∠A=180°,∵PQ∥AB,AB∥CD,∴PQ∥CD,∴∠CPQ+∠C=180°,∴∠APQ+∠A+∠CPQ+∠C=180°+180°=360°,∴∠APC+∠A+∠C=360°,故答案为:∠APC+∠A+∠C=360°;②α+β﹣γ=180°;理由如下:过点M作MQ∥AB,如图③所示:∴α+∠QMA=180°,∵MQ∥AB,AB∥CD,∴MQ∥CD,∴∠QMD=γ,∵∠QMA+∠QMD=β,∴∠QMA=β-γ,∴α+β﹣γ=180°,故答案为:α+β﹣γ=180°;解决问题:如图④,∠AFC12∠APC;理由如下:过点P作PQ∥AB,过点F作FM∥AB,如图④所示:∴∠APQ=∠BAP,∠AFM=∠BAF,∵AF平分∠BAP,∴∠AFM12=∠BAP,∵PQ∥AB,FM∥AB,AB∥CD,∴PQ∥CD,FM∥CD,∴∠CPQ=∠DCP,∠CFM=∠DCF,∵CF平分∠DCP,∴∠DCF=∠PCF,∴∠CFM12=∠DCP,∴∠APC=∠BAP+∠DCP,∠AFC12=∠BAP12+∠DCP12=(∠BAP+∠DCP),∴∠AFC12=∠APC,故答案为:∠AFC12=∠APC;如图⑤,∠AFC=180°12-∠APC;理由如下:过点P作PH∥AB,过点F作FQ∥AB,延长BA到M,延长DC到N,如图⑤所示:∴∠APH=∠MAP,∠AFQ=∠BAF,∵AF平分∠BAP,∴∠BAF=∠PAF,∵PH ∥AB ,FQ ∥AB ,AB ∥CD ,∴PH ∥CD ,FQ ∥CD ,∴∠CPH =∠NCP ,∠CFQ =∠DCF ,∵CF 平分∠DCP ,∴∠DCF =∠PCF ,∴2∠CFQ =∠DCP ,∵∠BAP +∠MAP =180°,∠DCP +∠NCP =180°,∴2∠AFQ +∠APH =180°,2∠CFQ +∠CPH =180°,∴2∠AFQ +∠APH +2∠CFQ +∠CPH =360°,即2∠AFC +∠APC =360°,∴∠AFC =180°12-∠APC .【点睛】本题考查了平行线的判定与性质、角平分线的定义、平角的定义等知识,能灵活运用定理进行推理是解此题的关键.3.(1)过点E 作EQ ∥PF 交CD 于Q ;(2)30°;(3)260CFE PEF ∠=∠+︒;【分析】(1)根据小伟的依据∠2=∠3=∠4可得EQ ∥PF ,过E 作EQ ∥PF 即可;(2)根据小伟同学的作图,由EQ ∥PF ,∠EPF =90°可得∠PEQ =90°,于是∠4=30°,由AB ∥CD 可得∠3=∠4=30°,再由PF ∥EQ 可得∠2=∠3即可解答;(3)过点P 作PM ∥AB ,设PEF ∠=x ,CFE ∠=y ,由PM ∥CD 可得∠DPM =x ,由PM ∥AB 可得∠MPE =∠AEF +x ,由AB ∥CD 可得∠AEF =180°-y ,再由∠EPD =∠EPM +∠MPD =120°即可解答;(1)解:如图,过点E作EQ∥PF交CD于Q,(2)解:由(1)作图可得:EQ∥PF,则∠EPF+∠PEQ=180°,∠EPF=90°,则∠PEQ=90°,∵∠1=60°,∠1+∠PEQ+∠4=180°,∴∠4=30°,∵AB∥CD,∴∠3=∠4=30°,∵PF∥EQ,∴∠2=∠3=∠4=30°;(3)解:如图,过点P作PM∥AB,∠=y,设PEF PDF∠=∠=x,CFE∵PM∥AB,AB∥CD,PM∥CD,则∠DPM=∠PDF=x,PM ∥AB ,则∠MPE =∠AEP =∠AEF +x ,AB ∥CD ,则∠CFE +∠AEF =180°,∠AEF =180°-y ,∵∠EPD =∠EPM +∠MPD =120°,∴180°-y +x +x =120°,∴y =60°+2x ,即260CFE PEF ∠=∠+︒;【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题关键.4.(1)①过点P 作//PN EF ,交AB 于点N ;②见详解120EFG ︒∠=;(2)①-3,-4;②//AB CD【分析】(1)①过点P 作//PN EF ,交AB 于点N.②根据平行线的性质可得结论;(2)①根据绝对值和平方的非负性求得a,b 的值;②纵坐标相等的两点所在的直线平行于x 轴.【详解】(1)①如图,过点P 作//PN EF ,交AB 于点N ;故答案为:过点P 作//PN EF ,交AB 于点N.②如图,过点O 作//OD FG ,交CD 于点N.130ONP ︒∴∠=∠=//AB CDQ 30BON ONP ︒∴∠=∠=EF AB⊥ 90EOB ︒∴∠=9030120EON EOB BON ︒︒︒∴∠=∠+∠=+=//OD FG120EFG EON ︒∴∠=∠=(2)①∵a b ,满足关系式:()2310a b a ++-+=∴3=0a +,()21=0b a -+,解得3,4a b =-=-故答案为:-3,-4.②//AB CD证明:∵(0,);(,)C aD b a ∴CD x ⊥轴∵点A 为x 轴负半轴上的一点,点B 为x 轴负正轴上的一点∴//AB CD【点睛】本题考查了平行线的性质,绝对值和平方的非负性,解题的关键在于利用这些性质判断或求解.5.(1)∠BED=∠B+∠D,∠BED=∠ABE+∠CDE,理由见解析(2)∠E的度数是90°(3)∠B+∠D+∠E=360°;∠B+∠E=∠D;∠D+∠E=∠B【分析】(1)①过E作EF∥AB,根据平行线的性质推出即可;②连接BD,根据平行线的性质推出即可;③延长BE交CD于Q,根据平行线的性质和三角形外角性质得出即可;(2)根据平行线的性质得出∠ABD+∠CDB=180°,求出∠EBD+∠EDB=9O°,根据三角形外角性质得出即可;(3)根据平行线的性质和图形得出即可.点评(1)结论:∠B+∠D=∠E.如图2,过点E作EF∥AB.∴∠B=∠BEF.∵AB∥CD,EF∥AB,∴EF∥CD.∴∠D=∠DEF.∵∠BED=∠BEF+∠DEF,∴∠BED=∠B+∠D.如图3,延长DE交AB于点G.∵AB∥CD,∴∠D=∠BGE.∵∠BED+∠BEG=180°,∠B+∠BGE+∠BEG=180°,∴∠BED=∠B+∠BGE.∴∠BED=∠B+∠D.如图4,连接BD.∵AB∥CD,∴∠ABD+∠BDC=180°.∴∠ABE+∠DBE+∠BDE+∠CDE=180°.又∵∠DBE+∠BDE+∠BED=180°,∴∠BED=∠ABE+∠CDE.(2)∠BED=90°,理由是:如图4∵AB∥CD,∴∠ABD +∠CDB =180°,∵BE 、DE 分别平分∠ABD 、∠CDB ,∴∠EBD =12∠ABD ,∠BDE =12∠CDB ,∴∠EBD +∠DBE =90°,∴∠BED =180°-90°=90°;(3)图5中过点E 作EF ∥AB ,则EF ∥CD ,∵EF ∥AB ,则EF ∥CD ,∴∠B +∠1=180°,∠D +∠2=180°,∴∠B +∠1+∠D +∠2=360°,即∠B +∠D +∠BED =360°;(原图中∠B +∠D +∠E =360°)图6中过点E 作EF ∥AB ,则EF ∥CD ,∵EF ∥AB ,则EF ∥CD ,∴∠B +∠BEF =180°,∠D +∠DEF =180°,∴()0B BEF D DEF ∠+∠-∠+∠=︒,∴D B BEF DEF BED∠-∠=∠-∠=∠,∴∠B+∠BED=∠D;(原图中∠B+∠E=∠D)图7中同理可得:∠D+∠E=∠B.【点睛】本题考查了平行线的性质,三角形的外角性质,三角形内角和定理的应用,能正确作出辅助线是解此题的关键,难度适中.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小专题(一) 平行线中的“拐点”问题
教材母题:如图,如果////AB CD EF ,那么BAC ACE CEF ∠+∠+∠=( )
A.180︒
B.270︒
C.360︒
D.540︒
拓展变式:如图,//AB CD ,则A E F C ∠+∠+∠+∠=_____________.
方法指导
当两条平行线不是被第三条直线所截,而是被一条折线所截时,则不能直接应用平行线的性质,因此需过折线的“转折点”作一条平行线,利用平行公理的推论得出三条直线互相平行,从而多丰次利用平行线的性质解决问题.
变式训练
变式1 变“外凸”为“内凹”
1.如图,直线//,36,AB CD C E ︒∠=∠为直角,则A ∠等于( )
A.36︒
B.44︒
C.54︒
D.64︒
2.如图,已知//AB CD ,试判断,B BED ∠∠和D ∠之间的关系,并说明理由.
变式2 变“平行线间”为“平行线的外部”
3.已知//AB CD ,点E 为,AB CD 之外任意一点.
(1)如图1,探究BED ∠与,B D ∠∠的数量关系,并说明理由
(2)如图2,探究CDE ∠与,B BED ∠∠的数量关系,并说明理由.
变式3 变“一次”为“多次” 4.(1)如图1,//AB CD ,则E G ∠+∠与B F D ∠+∠+∠有何关系?
(2)如图2,若//AB CD ,又能得到什么结论?请直接写出结论.
参考答案
教材母题 C
拓展变式 540
变式训练
1.C
2.解:BED B D ∠=∠+∠.理由如下:过点E 作//EF AB ,则.//B BEF AB CD ∠=∠,//..EF CD DEF D BED ∴∴∠=∠∠=BEF DEF ∠+∠,BED B D ∴∠=∠+∠.
3.解:(1)B BED D ∠=∠+∠.理由如下:过点E 作//EF AB .又//AB CD , ////.,.EF AB CD BEF B D DEF BEF ∴∴∠=∠∠=∠∠BED DEF =∠+∠, B BED D ∴∠=∠+∠.
(2)CDE B ∠=∠+BED ∠.理由如下:过点E 作//EF AB .又
//AB CD ,
////.180,180EF AB CD B BEF CDE DEF ︒︒∴∴∠+∠=∠+∠=. 又,DEF BEF BED CDE BEF BED B BEF ∠=∠-∠∴∠+∠-∠=∠+∠, 即CDE B BED ∠=∠+∠.
4.解:(1)过点E 作//EM AB ,过点F 作//FN AB ,过点G 作//GH CD .
//,////////.1,2AB CD AB EM FN GH CD B ∴∴∠=∠∠=3,45,6D ∠∠=∠∠=∠.
125634B D ∴∠+∠+∠+∠=∠+∠+∠+∠,
即BEF FGD B EFG D ∠+∠=∠+∠+∠.(2)12112n n B F F F D E E E -∠+∠+∠+
+∠+∠=∠+∠++∠.。