计量经济学多元线性回归、多重共线性、异方差实验报告记录
计量经济学上机实验
计量经济学上机实验上机实验一:一元线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参数估计并进行检验上机步骤:中国内地2011年中国各地区城镇居民每百户计算机拥有量和人均总收入一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y X2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y X2.相关图:键入命令 SCAT Y X 散点图:趋势图:上机结果:Yˆ11.958+0.003X=s (βˆ) 5.6228 0.0002t (βˆ) 2.1267 11.9826prob 0.0421 0.00002=0.831 R2=0.826 FR=143.584 prob(F)=0.0000上机实验二:多元线性回归模型实验目的:多元回归模型的建立、比较与筛选,掌握基本的操作要求并能根据理论对分析结果进行解释实验内容:对线性回归模型进行参数估计并进行检验上机步骤:商品的需求量与商品价格和消费者平均收入趋势图:散点图:上机结果:i Yˆ=132.5802-8.878007X1-0.038888X2s (βˆ) 57.118 4.291 0.419t (βˆ) 2.321 -2.069 -0.093prob 0.0533 0.0773 0.9286 R2=0.79 R2=0.73 F =13.14 prob(F)=0.00427三:非线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参上机步骤:我国国有独立核算工业企业统计资料一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y L K2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y K L2.相关图:键入命令 SCAT Y K L四.估计回归模型:键入命令LS Y C K L上机结果:Y =4047.866K1.262204L-1.227157s (βˆ) 17694.18 0232593 0.759696t (βˆ) 0.228768 5.426669 -1.615325prob 0.8242 0.0004 0.1407R2=0.989758 R2=0.987482 F=434.8689 prob(F)=0.0000上机实验四:异方差实验目的::掌握异方差的检验与调整方法的上机实现实验内容:我国制造工业利润函数行业销售销售行业销售销售实验步骤:一.检验异方差性1.图形分析检验:1) 观察Y、X相关图:SCAT Y X2) 残差分析:观察回归方程的残差图LS Y C X在方程窗口上点击Residual按钮;2. Goldfeld-Quant检验:SORT XSMPL 1 10LS Y C X(计算第一组残差平方和)SMPL 19 28LS Y C X(计算第二组残差平方和)计算F统计量,判断异方差性3.White检验:SMPL 1 28LS Y C X在方程窗口上点击:View\Residual\Test\White Heteroskedastcity 由概率值判断异方差性。
EViews计量经济学实验报告-多重共线性的诊断与修正的讨论
实验题目 多重共线性的诊断与修正一、实验目的与要求:要求目的:1、对多元线性回归模型的多重共线性的诊断;2、对多元线性回归模型的多重共线性的修正。
二、实验内容根据书上第四章引子“农业的发展反而会减少财政收入”,1978-2007年的财政收入,农业增加值,工业增加值,建筑业增加值等数据,运用EV 软件,做回归分析,判断是否存在多重共线性,以及修正。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一)模型设定及其估计经分析,影响财政收入的主要因素,除了农业增加值,工业增加值,建筑业增加值以外,还可能与总人口等因素有关。
研究“农业的发展反而会减少财政收入”这个问题。
设定如下形式的计量经济模型:i Y =1β+2β2X +3β3X +4β4X +5β5X +6β6X +7β7X +i μ其中,i Y 为财政收入CS/亿元;2X 为农业增加值NZ/亿元;3X 为工业增加值GZ/亿元;4X 为建筑业增加值JZZ/亿元;5X 为总人口TPOP/万人;6X 为最终消费CUM/亿元;7X 为受灾面积SZM/千公顷。
图1: 1978~2007年财政收入及其影响因素数据年份财政收入CS/亿元 农业增加值NZ/亿元 工业增加值GZ/亿元 建筑业增加值JZZ/亿元总人口TPOP/万人最终消费CUM/亿元受灾面积SZM/千公顷 1978 1132.3 1027.5 1607 138.2 96259 2239.1 50790 1979 1146.4 1270.2 1769.7 143.8 97542 2633.7 39370 1980 1159.9 1371.6 1996.5 195.5 98705 3007.9 44526 1981 1175.8 1559.5 2048.4 207.1 100072 3361.5 39790 1982 1212.3 1777.4 2162.3 220.7 101654 3714.8 33130 1983 1367 1978.4 2375.6 270.6 103008 4126.4 34710 1984 1642.9 2316.1 2789 316.7 104357 4846.3 31890 1985 2004.8 2564.4 3448.7 417.9 105851 5986.3 44365 1986 2122 2788.7 3967 525.7 107507 6821.8 47140 1987 2199.4 3233 4585.8 665.8 109300 7804.6 42090 1988 2357.2 3865.4 5777.2 810 111026 9839.5 50870 1989 2664.9 4265.9 6484 794 112704 11164.2 46991 1990 2937.1 5062 6858 859.4 114333 12090.5 38474 1991 3149.48 5342.2 8087.1 1015.1 115823 14091.9 55472 1992 3483.37 5866.6 10284.5 1415 117171 17203.3 51333 1993 4348.95 6963.8 14188 2266.5 118517 21899.9 48829 1994 5218.1 9572.7 19480.7 2964.7 119850 29242.2 55043 19956242.2 12135.8 24950.6 3728.8 12112136748.2458211996 7407.99 14015.4 29447.6 4387.4 122389 43919.5 46989 1997 8651.14 14441.9 32921.4 4621.6 123626 48140.6 53429 1998 9875.95 14817.6 34018.4 4985.8 124761 51588.2 50145 1999 11444.08 14770 35861.5 5172.1 125786 55636.9 49981 2000 13395.23 14944.7 40036 5522.3 126743 61516 54688 2001 16386.04 15781.3 43580.6 5931.7 127627 66878.3 52215 2002 18903.64 16537 47431.3 6465.5 128453 71691.2 47119 2003 21715.25 17381.7 54945.5 7490.8 129227 77449.5 54506 2004 26396.47 21412.7 65210 8694.3 129988 87032.9 37106 2005 31649.29 22420 76912.9 10133.8 130756 96918.1 38818 2006 38760.2 24040 91310.9 11851.1 131448 110595.3 41091 2007 51321.78 28095 107367.2 14014.1 132129 128444.6 48992利用EV 软件,生成i Y 、2X 、3X 、4X 、5X 、6X 、7X 等数据,采用这些数据对模型进行OLS 回归。
计量经济学实验报告
上海海关学院
实验报告
实验课程名称 __ 计量经济学_ _
指导教师姓名 __ 高军______
学生姓名__王圣___
学生专业班级__税收1401 __
填写日期__2017.6.10
四、模型设定
为分析建筑业企业利润总额(Y)和建筑业总产值(X)的关系,作如下散点图:
Y i=2.368138+0.034980X i (9.049371) (0.001754)
检验
F=;查表可得
绝原假设,此即表明模型存在异方差。
表.用权数w2的结果
(3) w3=1/x^0.5
经估计检验发现用权数w2的效果最好。
可以看出,运用加权最小二乘法消除了异方检验均显著,F检验也显著,即估计结果为
表示国内生产总值。
三、检验自相关
该回归方程可决系数较高,回归系数显著。
dL=1.316,dU=1.469, DW<dL,
,说明在
4.利用EViews软件作如图残差图
LM=TR²=27×0.517409=13.970043,其中p 值为0.0009,表明存在自相关。
自相关问题的处理
由最终模型可知,中国进口需求总额每增加1亿元,平均说来国内生产总值
20。
计量经济学Eviews多重共线性实验报告记录
计量经济学Eviews多重共线性实验报告记录————————————————————————————————作者:————————————————————————————————日期:实验报告课程名称计量经济学实验项目名称多重共线性班级与班级代码专业任课教师学号:姓名:实验日期:2014 年05 月11日广东商学院教务处制姓名实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存。
计量经济学实验报告一、实验目的:掌握多元线性回归模型的估计方法、掌握多重共线性模型的识别和修正。
二、实验要求:应用教材第127页案例做多元线性回归模型,并识别和修正多重共线性。
三、实验原理:普通最小二乘法、简单相关系数检验法、综合判断法、逐步回归法。
四、预备知识:最小二乘法估计的原理、t检验、F检验、2R值。
五、实验步骤1、选择数据理论上认为影响能源消费需求总量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。
为此,收集了中国能源消费标准煤总量、国民总收入、国内生产总值GDP、工业增加值、建筑业增加值、交通运输邮电业增加值、人均生活电力消费、能源加工转换效率等1985——2007年的统计数据。
本题旨在通过建立这些经济变量的线性模型来说明影响能源消费需求总量的原因。
主要数据如下:1985~2007年统计数据年份能源消费国民总收入国内生产总值工业增加值建筑业增加值交通运输邮电增加值人均生活电力消费能源加工转换效率y X1 X2 X3 X4 X5 X6 X7 1985766829040.7 9016 3448.7 417.9 406.9 21.3 68.29 198680850 10274.4 10275.2 3967 525.7 475.6 23.2 68.32 198786632 12050.6 12058.6 4585.8 665.8 544.9 26.4 67.48 198892997 15036.8 15042.8 5777.2 810 661 31.2 66.54 198996934 17000.9 16992.3 6484 794 786 35.3 66.51 199098703 18718.3 18667.8 6858 859.4 1147.5 42.4 67.2 1991103783 21826.2 21781.5 8087.1 1015.1 1409.7 46.9 65.9 1992109170 26937.3 26923.5 10284.5 1415 1681.8 54.6 66.00 1993115993 35260 35333.9 14188 2266.5 2205.6 61.2 67.32 1994122737 48108.5 48197.9 19480.7 2964.7 2898.3 72.7 65.2 1995131176 59810.5 60793.7 24950.6 3728.8 3424.1 83.5 71.05 1996138948 70142.5 71176.6 29447.6 4387.4 4068.5 93.1 71.5 1997137798 77653.1 78973 32921.4 4621.6 4593 101.8 69.23 1998132214 83024.3 84402.3 34018.4 4985.8 5178.4 106.6 69.44 1999133831 88189 89677.1 35861.5 5172.1 5821.8 118.2 69.19 2000138553 98000.5 99214.6 40033.6 5522.3 7333.4 132.4 69.04 2001143199 108068.2 109655.2 43580.6 5931.7 8406.1 144.6 69.03 2002151797 119095.7 120332.7 47431.3 6465.5 9393.4 156.3 69.04 2003174990 135174 135822.8 54945.5 7490.8 10098.4 173.7 69.4 2004203227 159586.7 159878.3 65210 8694.3 12147.6 190.2 70.71 2005223319 183956.1 183084.8 76912.9 10133.8 10526.1 216.7 71.08 2006 246270 213131.7 211923.5 91310.9 11851.1 12481.1 249.4 71.242007 265583 251483.2 249529.9 107367.2 14014.1 14604.1 274.9 71.25资料来源:《中国统计年鉴》,中国统计出版社2000、2008年版。
计量经济学实验操作指导(完整版)
计量经济学试验(完整版)-—李子奈ﻬ目录实验一一元线性回归ﻩ错误!未定义书签。
一实验目得..................................... 错误!未定义书签。
二实验要求.................................... 错误!未定义书签。
三实验原理ﻩ错误!未定义书签。
四预备知识ﻩ错误!未定义书签。
五实验内容ﻩ错误!未定义书签。
六实验步骤..................................... 错误!未定义书签。
1、建立工作文件并录入数据................... 错误!未定义书签。
2、数据得描述性统计与图形统计: .............. 错误!未定义书签。
3、设定模型,用最小二乘法估计参数:ﻩ错误!未定义书签。
4、模型检验: ............................... 错误!未定义书签。
5、应用:回归预测:ﻩ错误!未定义书签。
实验二可化为线性得非线性回归模型估计、受约束回归检验及参数稳定性检验............................... 错误!未定义书签。
一实验目得:ﻩ错误!未定义书签。
二实验要求..................................... 错误!未定义书签。
三实验原理..................................... 错误!未定义书签。
四预备知识.................................... 错误!未定义书签。
五实验内容ﻩ错误!未定义书签。
六实验步骤ﻩ错误!未定义书签。
实验三多元线性回归...................... 错误!未定义书签。
一实验目得..................................... 错误!未定义书签。
三实验原理ﻩ错误!未定义书签。
四预备知识.................................... 错误!未定义书签。
实验报告计量经济学
计量经济学实验报告书实验二、实验开设对象本实验的开设对象为《计量经济学》课程的学习者,实验为必修内容、实验目的实验二、掌握计量经济学多元模型的建立,模型形式的设定,模型拟合度、t检验和F 检验判断过程;三、实验环境微型计算机(要求必须能够连接In ternet,且安装有Eviews6.0软件。
)四、实验成果根据所给定的范例数据和要求,利用Eviews6.0软件对其进行分析和处理,并撰写实验报告。
Workflle U*mTLEDViaw | Prc-c d Oku"^1 | P-ranl N HIWH rra«x«DW BL *▼ | I Sia-r^ Tranap-aiiB E-drlI3T ■3MB ■工:xi 沁4b3-¥ XtX2IP 阴rn 丁也电niSb0.6534101985175 479724.11729 0.057131inn. IH ^I I :史Nfl 昭却* n 1*寻 1SB7 壬 g B2S£I7-2-4.13-112 ” D 日皿N 10BS2J.17 3J9 0.74200<5 I 總HP 71. 1 HURT口 TTiflHR?23:7j2S3:21.7S-103 D.7487B6-IB9-I £55 5541 2a.344*ie 0.7300821R>Ri77nn )npeii in 口 口 丁7■口sji-4 鬧 13 S1437 D.76B2&71^94 3&3 E7&& 17-93 17^ 0 61320BTRiR ■刍Hon R,Df»ri in :1:7口□ 口 riAHH433 03:2H 1占:&也斗出-IBBT 4眄 44&Z is.33333 0.9171051DEII1SiD 1 HUA ia CHI 孑pp □ 071斗口 Tis.ess«e 1.006117ZDDD &丁口 48TS 1庁方"5昌 1.069^627DD1 & 1 U 74+4 13 U7Q3Q 1 了曰□斗12002 67& 4-3^2 Ifi 12>D€2 1.^845072QQ3 T33 0&54is1.5301963DD4"iiI 葩 I Grc-up: LflN RJ I LE J D WcdJil*: (JNTTTLE&rLinfcrtiaKT'. J |optic-rii Jupdata Ad-dTri^L ・・l <oraph: UMTTT L ED Wnrkfii ■:: <jNTin"LED::Urrtrt:l«d i,i PtCTc|obj«ct j|^!Print|HMnBCarjpK Opliion-Si—Grap*! typ«-OetalwiSrapH dat-a:Fit Ihnesi!Axi^i tKJV iJdrr :1^1^ ■|~s l li^«■C^K£i[U¥|X1O[k&*朗X21333137?D146 |23 -IBD-IS ft fii 122-41^3-4 1S6.773324 OB&^D0 *£^41Qi^as175.470724 317230EW134fosei laa.teaa24 2D&&1 C €441251537 206.SJ9724 13-112 G1>QS8226.273224 1734&G.742<XM1339 231 aes?22 3G7B40 73511-321>E190237.2836S1.751D30.74^76619912S5.!ifiJ12D 3G4-SB0.73OTB21992286.390613 9DB3D0 7707171393 32i 90531E 519BT0 TBAZUj?363.27C517.BB174 O.S132tlS1995390.SO9S-IE 32DDE.0W7M11995433.932515.BZ244Q WB Mfi19S7ilGgjdiSS15.233BE0/9171Miggg50 1.385 J15.DG7B90 97H4A1199953J.9-392 1 CMW1172000 575.-337915.3E55412001 fiig n7ddldi B7-D59 1 2W4152002 570.J12215.12953 1 ML4W72003 733.CJC5d!15.424BD% si^iggzog 4in* _ b回Groupi UrrrnLED Worwila UNrTTTLEDiiUrt4iecr>. . 5 X[vfcaw] [ Ptlnt] M«n・]rriMM_| [ifWi. F J [ WDrt[Tkiam口■■[lE曰5M(I IL'L;. Grnun: UNTril l O Warlcf ik< UNTITI. ri? IJnfcrilwiA,「召斫i凶。
计量经济学课程
《计量经济学》课程实验教学手册上海立信会计学院一、实验教学大纲注:类型指:操作性、设计性、综合性。
实验形式:指实验室集中、课外分散等实验形式。
三、实验项目实验一 多元线性回归[实验目的] 使学生掌握数据的输入,作散点图,计算有关统计量(均值、方差、标准差、相关系数矩阵及方差协方差矩阵等)、掌握线性回归分析方法。
[实验内容] ①数据输入、输出及处理;②作散点图;③建立线性回归模型,对结果加以分析。
[实验步骤] 数据输入处理—作散点图—建立模型—假设检验—分析预测或点击File New Program ,打开程序输入窗口,同时执行多条命令 create a 1980 1998read D:\tao\PPT\Econometrics\zdata\P42.xls 2scat x yequation eq1.ls y c xshow eq1pagestruct(end=@last+2) *scalar n=eq1.@regobsscalar k=eq1.@ncoefx(n+1)=1763x(n+2)=1863eq1.forecast yf y_seplot y yfgenr ypl=yf(n)-@qtdist(0.975,n-k)*y_se(n)genr ypu=yf(n)+@qtdist(0.975,n-k)*y_se(n)genr ycu=yf(n)+@qtdist(0.975,n-k)*@sqrt(y_se(n)^2-@se^2)genr ycl=yf(n)-@qtdist(0.975,n-k)*@sqrt(y_se(n)^2-@se^2)show @coefs(2)show @stderr(2)genr beta1l=@coefs(2)-@qtdist(0.975,n-k)*@stderr(2)genr beta1u=@coefs(2)+@qtdist(0.975,n-k)*@stderr(2)genr yf1=yf(n,n+1)group P42 yf1 ypl ypu ycl ycushow P42[实验方法]上机[实验条件] 利用统计计量软件EViews[实验指导]1.打开EViews软件,双击桌面EViews快捷方式图标。
异方差、自相关、多重共线性比较(计量经济学)
基本思想:
由OLS法得到残差e,取e的绝对值,然后将此绝对值对某个解释变量X回归,根部回归模型的显著性和拟合优度来判断是否存在异方差。
操作步骤:
1.根据样本数据建立回归模型,并求残差序列e.
2.用残差绝对值对X进行回归,由于|e|与X的真实函数形式并不知道,可用各种函数形式去试验,从中选择最佳形式。
2.quick/equation estimation输入“e2 c e2(-1) e2(-2) e2(-3) e2(-4) e2(-5) e2(-6)”
3.view/residual diagnostics/heteroskedasticity tests,选择arch。
2.Quick/graph,在series list对话框中输入“e(-1) e”,选择scatter’,得到e(-1)与e的散点图。
方法二:1.用OLS估计Resid→e。
2.Quick/graph,在series list对话框中输入“e”,得到e随时间t的变化图示。
操作思想
操作步骤
适用性
软件操作
实际检验中可逐次向更高阶检验,并结合辅助回归中滞后项参数的显著性去帮助判断自相关的阶数。
ห้องสมุดไป่ตู้DW检验
操作思想:
DW与ρ的关系:DW≈2(1-ρ)
ρ的取值范围0≤DW≤4.
根据样
本容量n和解释变量的数目k'(不包括常数项),查DW分布表,可得临界值dl和du,
DW取值范围
自相关状态
[0,dl]
正自相关
(dl,du]
5.判断。给定显著性水平α,查F分布表,得临界值。 > ,拒绝 ,反之不拒绝 。
适用性:
该方法得到的F分布是近似的,而且只是对异方差是否存在进行判断,在多个解释变量的情况下,对判断是哪一个变量引起异方差还存在局限。此检验方法也可将样本分为多个组,从中任选两个组进行检验。
计量经济学》实验报告
计量经济学》实验报告一、经济学理论概述1、需求是指消费者(家庭)在某一特定时期内,在每一价格水平时愿意而且能够购买的某种商品量。
需求是购买欲望与购买能力的统一。
2、需求定理是说明商品本身价格与其需求量之间关系的理论。
其基本内容是:在其他条件不变的情况下,一种商品的需求量与其本身价格之间成反方向变动,即需求量随着商品本身价格的上升而减少,随商品本身价格的下降而增加。
3、需求量的变动是指其他条件不变的情况下,商品本身价格变动所引起的需求量的变动。
需求量的变动表现为同一条需求曲线上的移动。
二、经济学理论的验证方法在此次试验中,我运用了Eviews和Excel软件对相关数据进行处理和分析。
1、拟合优度检验——可决系数R2统计量回归平方和反应了总离差平方和中可由样本回归线解释的部分,它越大,参差平方和越小,表明样本回归线与样本观测值的拟合程度越高。
2、方程总体线性的显着性检验——F检验(1)方程总体线性的显着性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显着成立作出判断。
(2)给定显着性水平α,查表得到临界值Fα(k,n-k-1),根据样本求出F统计量的数值后,可通过F>Fα(k,n-k-1) (或F ≤Fα(k,n-k-1))来拒绝(或接受)原假设H0,以判定原方程总体上的线性关系是否显着成立。
3、变量的显着性检验——t检验4、异方差性的检验——怀特检验怀特检验不需要排序,对任何形式的异方差都适用。
5、序列相关性的检验——图示法和回归检验法6、多重共线性的检验——逐步回归法以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。
三、验证步骤1、确定变量(1)被解释变量“货币流通量”在模型中用“Y”表示。
(2)解释变量①“货币贷款额”在模型中用“X”表示;1②“居民消费价格指数”在模型中用“2X ”表示;③把由于各种原因未考虑到和无法度量的因素归入随机误差项,在模型中用“μ”。
计量经济实验报告多元
计量经济实验报告多元摘要本实验旨在通过多元分析方法,研究变量之间的关系以及各变量对目标变量的影响程度。
实验选取了一组相关变量,并运用多元回归模型进行了分析。
结果显示,在考虑其他变量的情况下,某一变量的显著性不再显著。
本实验验证了多元分析方法的有效性,并提供了一些预测和解释目标变量的参考。
引言多元分析是计量经济学中一种重要的分析方法,它可以帮助我们理解多个变量之间的关系以及各变量对目标变量的影响程度。
通过控制其他因素,我们可以确定某一变量在其他变量固定时的独立影响。
数据来源与处理我们选取了一组相关数据进行实验分析。
数据包括了自变量和因变量,其中自变量包括年龄、教育水平和工资等,因变量为生活满意度。
为了进行多元分析,我们对数据进行了标准化处理,以便消除量纲问题。
多元回归模型我们构建了一个多元回归模型,其中生活满意度为因变量,年龄、教育水平和工资为自变量。
模型的形式如下:生活满意度= β0 + β1 * 年龄+ β2 * 教育水平+ β3 * 工资+ ε其中,β0, β1, β2, β3分别为回归系数,ε为误差项。
模型分析与结果通过对模型的拟合分析,我们得到了如下结果:- 年龄对生活满意度的影响不显著,p值为0.45;- 教育水平对生活满意度的影响显著,p值为0.02;- 工资对生活满意度的影响显著,p值为0.01。
由此可见,教育水平和工资对生活满意度的影响是显著的,而年龄对生活满意度的影响并不显著。
结论与讨论本实验通过多元分析方法,研究了变量之间的关系以及各变量对目标变量的影响程度。
结果表明,在考虑其他变量的情况下,年龄对生活满意度的影响不再显著,教育水平和工资对生活满意度的影响是显著的。
本实验的结果可以为决策者提供一些指导,例如在提高生活满意度的策略中,可以更加重视提高教育水平和工资水平。
当然,本实验还存在一些局限性,首先是样本容量较小,因此结果的可靠性有待进一步验证。
其次,仅考虑了三个变量,其他可能的影响因素未被纳入考虑。
计量经济学实验报告完整版范文
评语
教师
评语
成绩
辽宁工程技术大学上机实验报告
实验名称
计量经济学多元线性回归模型
院系
工商管理
专业
金融
班级
09-2
姓名
于佳琦
学号
日期
6.15
实验
目的
简述本次实验目的:熟悉多元线性回归模型中的解释变量的引入
掌握对计算机过的统计分析和经济分析
实验
பைடு நூலகம்准备
你为本次实验做了哪些准备:了解多元线性回归模型参数的OLS估计,统计检验,点预测以及区间估计,非线性回归的参数估计,受约束回归检验
实验
进度
本次共有3个练习,完成3个。
实验
总结
日
本次实验的收获、体会、经验、问题和教训:在简单线性回归的基础上引入了多元线性回归模型,操作也较之前更加复杂,最大的障碍在于多重共线性模型数据更多,输入时容易出错,而且软件非汉化版本,很多时候不了解数据的含义,操作也不是很熟练,一般思路是,先用OLS方法进行估计,建立模型,然后进行对模型的检验,理论相对简单,可是检验过程十分复杂,如果不用例题做实验,单纯找数据进行分析,总会有遗忘的影响因素,而导致结果的偏差,所以在选择分析对象的影响因素时考虑周全尤为重要。
实验
进度
本次共有1个练习,完成1个。
实验
总结
日
本次实验的收获、体会、经验、问题和教训:初步投身于计量经济学,通过利用Eviews软件将所学到的计量知识进行实践,让我加深了对理论的理解和掌握,直观而充分地体会到老师课堂讲授内容的精华之所在。在实验过程中我们提高了手动操作软件、数量化分析与解决问题的能力,还可以培养我在处理实验经济问题的严谨的科学的态度,并且避免了课堂知识与实际应用的脱节。虽然在实验过程中出现了很多错误,但这些经验却锤炼了我们发现问题的眼光,丰富了我们分析问题的思路。通过这次实验让我受益匪浅。
spss多元回归分析报告案例
企业管理对居民消费率影响因素的探究---以湖北省为例改革开放以来,我国经济始终保持着高速增长的趋势,三十多年间综合国力得到显著增强,但我国居民消费率一直偏低,甚至一直有下降的趋势。
居民消费率的偏低必然会导致我国内需的不足,进而会影响我国经济的长期健康发展。
本模型以湖北省1995年-2010年数据为例,探究各因素对居民消费率的影响及多元关系。
(注:计算我国居民的消费率,用居民的人均消费除以人均GDP,得到居民的消费率)。
通常来说,影响居民消费率的因素是多方面的,如:居民总收入,人均GDP,人口结构状况1(儿童抚养系数,老年抚养系数),居民消费价格指数增长率等因素。
(注:数据来自《湖北省统计年鉴》)总消费(C:亿元) 总GDP(亿元)消费率(%)1995 1095.97 2109.38 51.96 1997 1438.12 2856.47 50.35 2000 1594.08 3545.39 44.96 2001 1767.38 3880.53 45.54 2002 1951.54 4212.82 46.32 2003 2188.05 4757.45 45.99 2004 2452.62 5633.24 43.54 2005 2785.42 6590.19 42.27 2006 3124.37 7617.47 41.02 2007 3709.69 9333.4 39.75 2008 4225.38 11328.92 37.30 2009 4456.31 12961.1 34.38 2010 5136.78 15806.09 32.50一、计量经济模型分析(一)、数据搜集根据以上分析,本模型在影响居民消费率因素中引入6个解释变量。
X1:居民1.人口年龄结构一种比较精准的描述是:儿童抚养系数(0-14岁人口与 15-64岁人口的比值)、老年抚养系数(65岁及以上人口与15-64岁人口的比值〉或总抚养系数(儿童和老年抚养系数之和)。
实验四-多重共线性模型的检验和处理
实验报告课程名称:计量经济学实验项目:实验四多重共线性模型的检验和处理实验类型:综合性□设计性□验证性 专业班别:11本国贸五班姓名:学号:实验课室:厚德楼A207指导教师:实验日期:2014/5/20广东商学院华商学院教务处制一、实验项目训练方案小组合作:是□否 小组成员:无实验目的:掌握多重共线性模型的检验和处理方法:实验场地及仪器、设备和材料实验室:普通配置的计算机,Eviews软件及常用办公软件。
实验训练内容(包括实验原理和操作步骤):【实验原理】多重共线性的检验:直观判断法(R2值、t值检验)、简单相关系数检验法、方差扩大因子法(辅助回归检验)多重共线性的处理:先验信息法、变量变换法、逐步回归法【实验步骤】(一)多重共线性的检验1.直观判断法(R2值、t值检验)根据广东数据(见附件1),先分别建立以下模型:【模型1】财政收入CS对第一产业产值GDP1、第二产业产值GDP2和第三产业产值GDP3的多元线性回归模型;(请对得到的图表进行处理,以上在一页内)【模型2】固定资产投资TZG对固定资产折旧ZJ、营业盈余YY和财政支出CZ的多元线性回归模型。
观察模型结果,初步判断模型自变量之间是否存在多重共线性问题。
【模型1】从上图可以得到,估计方程的判定系数R 2很高,但三个参数t检验值两个不显著,有一个较显著,其中一个参数估计值还是负的,不符合经济理论。
所以,出现了严重的多重共线性。
【模型2】1】从上图可以得到,估计方程的判定系数R 2很高,方程显著性F检验也显著,但只有两个参数显著性t检验比较显著,这与很高的判定系数不相称,出现了严重的多重共线性。
2.简单相关系数检验法分别计算【模型1】和【模型2】的自变量的简单相关系数。
【模型1】【模型2】(请对得到的图表进行处理,以上在一页内)根据计算的简单相关系数,判断模型是否存在多重共线性。
【模型1】可看出三个解释变量GDP1 、GDP2和GDP3之间高度相关,存在严重的多重共线性。
计量经济学多重共线性的诊断及处理Eviews
数学与统计学院实验报告院(系):数学与统计学学院 学号: 姓名: 实验课程: 计量经济学 指导教师:实验类型(验证性、演示性、综合性、设计性): 综合性 实验时间:2017年 4 月 5 日 一、实验课题多重共线性的诊断及处理 二、实验目的和意义第8周练习 多重共线性右表是某城市财政收入rev 、第一、第二、第三产业gdp1、gdp2、gdp3的有关数据。
1).建立rev 对gdp1,gdp2,gdp3的多元线性回归,并从经济和数理统计上简要说明模型存在着哪些不足。
2).写出rev ,gdp1,gdp2,gdp3的相关系数矩阵。
3).利用判别系数法判断模型是否存在着多重共线性。
4).用逐步回归的方法排除引起共线性的变量,重新建立多元回归。
5).如果不想排除变量,通过经验,假设:gdp1对财政收入的贡献是 gdp3的三倍,而且gdp2与财政收入是对数线性关系。
那么请建立ln (rev )对(3gdp1+gdp3)及ln (gdp2)的半对数线性回归模型,看看模型在经济和数学上是否合理,并从中你得到了什么启示(自己随意发挥)。
三、解题思路(eviews6)1、建立多元线性回归:quick —estimate equation —(rev c gdp1 gdp2 gdp3)年份 rev gdp1 gdp2 gdp3 1983 6604 27235 26781 7106 1984 6634 26680 28567 10240 1985 6710 26762 31766 11912 1986 6823 33595 40062 14160 1987 8103 38510 52935 16960 1988 8578 41529 61337 18777 1989 8469 47994 67848 30498 1990 11118 65138 98946 39700 1991 16053 86983 112531 66960 1992 20221 105825 143545 92231 1993 27076 129136 223697 117031 1994 31888 138619 216161 151334 1995 35139 146637 305940 193573 1996 42436 149788 371066 227561 1997 56204 161800 426925 256684 1998 93828 162960 614341 372177 1999 130532 199519 821302 524562 200017906324664811210586885672、建立相关系数矩阵:quick--group statistic--correlation--rev gdp1 gdp2 gdp3)3、判定系数法:利用一解释变量由其他解释变量变出模型一::quick—estimate equation—(gdp1 c gdp2 gdp3)模型二::quick—estimate equation—(gdp2 c gdp1 gdp3)模型三::quick—estimate equation—(gdp3 c gdp1gdp2)4、逐步回归:quick—estimate equation—method:stepwise—rev c- gdp1 gdp2 gdp35、建立对数线性关系:quick—estimate equation—LOG(REV) C3*GDP1+GDP3 LOG(GDP2)四、实验过程记录与结果1、建立多元回归方程:模型:REV = 7726.69598122 - 0.180508326923*GDP1 + 0.0759120320555*GDP2 + 0.185205459439*GDP3通过多元回归模型可见,该模型通过假设检验,但是两个解释变量的效果并不好(p>0.05);第二点是GDP1表示第一产业,不存在负值,所以不满足经济条件2、相关系数矩阵:(3、判定系数法:(利用一解释变量由其他解释变量变出,检验拟合优度)由系数判定法,可以看出三个模型都显著性成立,即任意一个解释变量都能由其他解释变量线性变出,所以可以得出该模型存在多重共线性。
《计量经济学》课程实验报告
2.估计结果,解释参数的数量关系
数量关系: GDP每增加一万亿元,可导致全国财政收入增加0.0041212万亿元,农业总产值每增加一万亿元,可导致全国财政收入增加0.0489586万亿元,税收每增加一万亿元,可导致全国财政收入增加1.183604万亿元。
三、实证分析
1.描述性统计(数据的最大值最小值,平均值,方差等,定性分析,了解数据质量)
X1最大值: 101.6 最小值: 18.6 平均值: 57.375 标准差: 27.22657
X2最大值: 7.2 最小值:2 平均值: 4.45625标准差: 1.648016
X3最大值: 15.8 最小值:2.9 平均值: 9.9125 标准差: 4.480606
图示检验法:
由图可得:模型存在正的相关序列。
3.检验模型是否存在多重共线性
Variable | VIF 1/VIF
-------------+----------------------
x2 | 70.29 0.014226
x1 | 54.81 0.018246
x3 | 52.31 0.019117
x2 | 3.299357 .1326672 24.87 0.000 3.014814 3.5839
_cons | -3.04026 .6279573 -4.84 0.000 -4.387095 -1.693426
------------------------------------------------------------------------------
二、模型和变量解释
1.模型建立,写出方程,阐述设定模型的经济理论
计量经济学实验报告 多重共线性检验
计量经济学上机实验报告多重共线性检验实验背景近年来,中国旅游业一直保持高速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。
中国的旅游业分为国内旅游和入境旅游两大市场,入境旅游外汇收入年均增长22.6%,与此同时国内旅游也迅速增长。
改革开放20多年来,特别是进入90年代后,中国的国内旅游收入年均增长14.4%,远高于同期GDP 9.76%的增长率。
为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。
模型•其中,•Yt——第t年全国旅游收入•X2——国内旅游人数(万人)•X3——城镇居民人均旅游支出(元)•X4——农村居民人均旅游支出(元)•X5——公路里程(万公里)•X6——铁路里程(万公里)Y = 0.0639689468*X2 + 0.2098186372*X3 + 5.283346538*X4 - 3.352906602*X5 - 53.38584085*X6 - 2220.150544数据来源中国统计局网站样本区间1994——2009实验过程及结果(一)实证结果Dependent Variable: YMethod: Least SquaresDate: 04/06/11 Time: 15:49Sample: 1994 2009Included observations: 16Variable Coefficient Std. Error t-Statistic Prob.X2 0.063969 0.007714 8.292875 0.0000X3 0.209819 1.319292 0.159039 0.8768X4 5.283347 1.918838 2.753409 0.0204X5 -3.352907 2.376484 -1.410869 0.1886X6 -53.38584 434.6829 -0.122816 0.9047C -2220.151 2210.044 -1.004573 0.3388R-squared 0.994274 Mean dependent var 4270.119Adjusted R-squared 0.991411 S.D. dependent var 2720.860S.E. of regression 252.1678 Akaike info criterion 14.17806Sum squared resid 635886.0 Schwarz criterion 14.46778Log likelihood -107.4245 F-statistic 347.2644Durbin-Watson stat 1.224560 Prob(F-statistic) 0.000000R2很高,F显著,但x3、x5、x6不显著,X5、X6的符号甚至是负的。
计量经济学实验报告
武汉轻工大学经济与管理学院实验报告> ¹éÄ£Ðͺ¯ÊýÐÎʽ°¸Àý£¨ÃÀ¹úÈË¿Ú£©.dta", clear . use "C:\Documents and Settings\Administrator\×ÀÃæ\¼ÆÁ¿¾¼ÃѧÉÏ»ú°¸Àýdta Îļþ\»Ø. clear. g lny=ln(y)clear_cons 1506.244 188.0096 8.01 0.000 1080.937 1931.552income .0589824 .0061174 9.64 0.000 .0451439 .072821sex -228.9868 107.0582 -2.14 0.061 -471.1694 13.19576food Coef. Std. Err. t P>|t| [95% Conf. Interval]Total 4018118.25 11 365283.477 Root MSE = 178.77Adj R-squared = 0.9125Residual 287626.106 9 31958.4562 R-squared = 0.9284Model 3730492.14 2 1865246.07 Prob > F = 0.0000F( 2, 9) = 58.36Source SS df MS Number of obs = 12. reg food sex income . g incomesex=incomereg food sex income sexincome 实验表明:差别截距与差别斜率都不是显著的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学多元线性回归、多重共线性、异方差实验报告记录————————————————————————————————作者:————————————————————————————————日期:计量经济学实验报告多元线性回归、多重共线性、异方差实验报告一、研究目的和要求:随着经济的发展,人们生活水平的提高,旅游业已经成为中国社会新的经济增长点。
旅游产业是一个关联性很强的综合产业,一次完整的旅游活动包括吃、住、行、游、购、娱六大要素,旅游产业的发展可以直接或者间接推动第三产业、第二产业和第一产业的发展。
尤其是假日旅游,有力刺激了居民消费而拉动内需。
2012年,我国全年国内旅游人数达到亿人次,同比增长%,国内旅游收入万亿元,同比增长%。
旅游业的发展不仅对增加就业和扩大内需起到重要的推动作用,优化产业结构,而且可以增加国家外汇收入,促进国际收支平衡,加强国家、地区间的文化交流。
为了研究影响旅游景区收入增长的主要原因,分析旅游收入增长规律,需要建立计量经济模型。
影响旅游业发展的因素很多,但据分析主要因素可能有国内和国际两个方面,因此在进行旅游景区收入分析模型设定时,引入城镇居民可支配收入和旅游外汇收入为解释变量。
旅游业很大程度上受其产业本身的发展水平和从业人数影响,固定资产和从业人数体现了旅游产业发展规模的内在影响因素,因此引入旅游景区固定资产和旅游业从业人数作为解释变量。
因此选取我国31个省市地区的旅游业相关数据进行定量分析我国旅游业发展的影响因素。
二、模型设定根据以上的分析,建立以下模型Y=β0+β1X1+β2X2+β3X3+β4X4+Ut参数说明:Y ——旅游景区营业收入/万元X1——旅游业从业人员/人X2——旅游景区固定资产/万元X3——旅游外汇收入/万美元X4——城镇居民可支配收入/元收集到的数据如下(见表):表 2011年全国旅游景区营业收入及相关数据(按地区分)地区营业收入从业人数固定资产外汇收入可支配收入北京145466541600天津24787175553河北7964344765山西5771956719内蒙古3626467097辽宁64816271314吉林2906638528黑龙江3034191762上海91106575118江苏140154565297浙江132459454173安徽55840117918福建80303363444江西4179141500山东143026255076河南7016454903湖北6276794018湖南80615101434广东2265391390619广西49876105188海南3075937615重庆5016096806四川7075659383贵州2768313507云南62679160861西藏602312963陕西57077129505甘肃312801740青海87412659宁夏12196620新疆4045146519数据来源:1.中国统计年鉴2012,2.中国旅游年鉴2012。
三、参数估计利用做多元线性回归分析步骤如下:1、创建工作文件双击图标,进入其主页。
在主菜单中依次点击“File\New\Workfile”,出现对话框“Workfile Range”。
本例中是截面数据,在workfile structure type中选择“Unstructured/Undated”,在Date range中填入observations 31,点击ok键,完成工作文件的创建。
2、输入数据在命令框中输入 data Y X1 X2 X3 X4,回车出现“Group”窗口数据编辑框,在对应的Y X1 X2 X3 X4下输入相应数据,关闭对话框将其命名为group01,点击ok,保存。
对数据进行存盘,点击“File/Save As”,出现“Save As”对话框,选择存入路径,并将文件命名,再点“ok”。
3、参数估计在命令框中键入“LS Y C X1 X2 X3 X4”,按回车键,即出现回归结果。
利用估计模型参数,最小二乘法的回归结果如下:表回归结果Dependent Variable: YMethod: Least SquaresDate: 11/14/13 Time: 21:14Sample: 1 31Included observations: 31Coefficient Std. Error t-Statistic Prob.CX1X2X3X4R-squared Mean dependent varAdjusted R-squared. dependent var. of regressionAkaike info criterionSum squared resid+10Schwarz criterionLog likelihoodHannan-Quinn criter.F-statistic Durbin-Watson stat Prob(F-statistic)根据表中的样本数据,模型估计结果为^Y=+1+2+34()()()()() t =R2=--R2= F= DW=可以看出,可决系数R2=,修正的可决系数--R2=。
说明模型的拟合程度还可以。
但是当α=时,X1、 X2、X4系数均不能通过检验,且X4的系数为负,与经济意义不符,表明模型很可能存在严重的多重共线性。
四、模型修正1.多重共线性的检验与修正(1)检验选中X1 X2 X3 X4数据,点击右键,选择“Open/as Group”,在出现的对话框中选择“View/Covariance Analysis/correlation”,点击ok,得到相关系数矩阵。
计算各个解释变量的相关系数,得到相关系数矩阵。
表相关系数矩阵变量X1X2X3X4X1X2X3X4由相关系数矩阵可以看出,解释变量X2、X3之间存在较高的相关系数,证实确实存在严重的多重共线性。
(2)多重共线性修正采用逐步回归的办法,检验和回归多重共线性问题。
分别作Y对X1、X2、X3、X4的一元回归,在命令窗口分别输入LS Y C X1,LS Y C X2,LS Y C X3,LS Y C X4,并保存,整理结果如表所示。
表一元回归结果变量X1X2X3X4参数估计值t统计量R2-2R其中,X2的方程-2R最大,以X2为基础,顺次加入其它变量逐步回归。
在命令窗口中依次输入:LS Y C X2 X1,LS Y C X2 X3, LS Y C X2 X4,并保存结果,整理结果如表所示。
表加入新变量的回归结果(一)变量变量X1X2X3X4-2RX2,X1X2,X3X2,X4()经比较,新加入X1的方程-2R=,改进最大,而且各个参数的t检验显著,选择保留X1,再加入其它新变量逐步回归,在命令框中依次输入:LS Y C X2 X1 X3,LS Y C X2 X1 X4,保存结果,整理结果如表所示。
表加入新变量的回归结果(二)变量变量X1X2X3X4-2RX2,X1,X3 X2,X1,X4当加入X3或X4时,-2R均没有所增加,且其参数是t检验不显著。
从相关系数可以看出X3、X4与X1、X2之间相关系数较高,这说明X3、X4引起了多重共线性,予以剔除。
当取α=时,tα/2(n-k-1)=,X1、X2的系数t检验均显著,这是最后消除多重共线性的结果。
修正多重共线性影响后的模型为^Y= X1+ X2()()t =R2=2R=0.866053 F= DW=在确定模型以后,进行参数估计表消除多重共线性后的回归结果Dependent Variable: YMethod: Least SquaresDate: 11/14/13 Time: 21:47Sample: 1 31Included observations: 31Coefficient Std. Error t-Statistic Prob.CX1X2R-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike info criterionSum squared resid+10Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)五、异方差检验在实际的经济问题中经常会出现异方差这种现象,因此建立模型时,必须要注意异方差的检验,否则,在实际中会失去意义。
(1)检验异方差由表的结果,按路径“View/Residual Tests/Heteroskedasticity Tests”,在出现的对话框中选择Specification:White,点击ok.得到White检验结果如下。
表 White检验结果Heteroskedasticity Test: WhiteF-statistic Prob. F(5,25)Obs*R-squaredProb. Chi-Square(5)Scaled explained SSProb. Chi-Square(5)Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 11/14/13 Time: 21:48Sample: 1 31Included observations: 31Coefficient Std. Error t-Statistic Prob.C+09+09X1X1^2X1*X2X2X2^2R-squaredMean dependentvar+09Adjusted R-squared. dependent var+09. of regression+09Akaike info criterionSum squared resid+20Schwarz criterionLog likelihoodHannan-Quinn criter.F-statisticDurbin-Watson statProb(F-statistic)从上表可以看出,nR2=,由White检验可知,在α=下,查2χ分布表,得临界值χ205.0 (5)=,比较计算的2χ统计量与临界值,因为nR2=>χ205.0(5)=,所以拒绝原假设,表明模型存在异方差。
(2)异方差的修正①用WLS估计:选择权重w=1/e1^2,其中e1=resid。
在命令窗口中输入 genr e1= resid,点回车键。
在消除多重共线性后的回归结果(表的回归结果)对话框中点击Estimate/Options/Weithted LS/TSLS,并在Weight中输入1/e1^2,点确定,得到如下回归结果。