2020年北京市七年级下期末数学备考之新定义学生版

合集下载

2020年北京市七年级下期末数学备考之新定义解析版

2020年北京市七年级下期末数学备考之新定义解析版

(2)∵M=x2+4xy+5y2﹣12y+k=(x+2y)2+(y﹣6)2+k﹣36 ∴k=36 时,M 是完美数, 故答案为:36. 二.解答题(共 19 小题) 2.(1)阅读下列材料并填空:
对于二元一次方程组
,我们可以将 x,y 的系数和相应的常数项排成一个数

,求得的一次方程组的解
,用数表可表示为
∴①
或②

由①得,Βιβλιοθήκη ∵n+2=5≠1,n+4=7≠1,
故①不合题意;
由②得

∵n+2=﹣1=m,

符合题意,
故 m=﹣1,n=﹣3,
第 2页(共 16页)
∵关于 x 的不等式组
,恰好有 2019 个整数解,
∴2012<a≤2013. 4.在平面直角坐标系 xOy 中,对于给定的两点 P,Q,若存在点 M,使得△MPQ 的面积等
2020 年北京市七年级下期末数学备考之新定义
参考答案与试题解析
一.填空题(共 1 小题) 1.若一个整数能表示成 a2+b2(a,b 是整数)的形式,则称这个数为“完美数”.
例如,因为 5=22+12,所以 5 是一个“完美数”. (1)请你再写一个大于 10 且小于 20 的“完美数” 13 ; (2)已知 M 是一个“完美数”,且 M=x2+4xy+5y2﹣12y+k(x,y 是两个任意整数,k 是 常数),则 k 的值为 36 . 【解答】解:(1)∵13=22+32 ∴13 是完美数 故答案为:13;
.用数表可以
简化表达解一次方程组的过程如下,请补全其中的空白:

2022~2023学年北京市七年级第一学期期末数学试卷分类汇编——新定义(学生版)

2022~2023学年北京市七年级第一学期期末数学试卷分类汇编——新定义(学生版)

2022~2023学年北京市七年级第一学期期末数学试卷分类汇编——新定义一.数轴(共3小题)1.(2022秋•延庆区期末)已知数轴上两点A,B,其中A表示的数为﹣3,B表示的数为2.给出如下定义:若在数轴上存在一点C,使得AC+BC=m,则称点C叫做点A,B的“m 和距离点”.如图,若点C表示的数为0,有AC+BC=5,则称点C为点A,B的“5和距离点”.(1)如果点N为点A,B的“m和距离点”,且点N在数轴上表示的数为﹣4,那么m 的值是;(2)如果点D是数轴上点A,B的“6和距离点”,那么点D表示的数为;(3)如果点E在数轴上(不与A,B重合),满足BE=AE,且此时点E为点A,B的“m和距离点”,求m的值.2.(2022秋•丰台区期末)在数轴上,点O表示的数为0,点M表示的数为m(m≠0).给出如下定义:对于该数轴上的一点P与线段OM上一点Q,如果线段PQ的长度有最大值,那么称这个最大值为点P与线段OM的“闭距离”.如图1,若m=﹣1,点P表示的数为3,当点Q与点M重合时,线段PQ的长最大,值是4,则点P与线段OM的“闭距离”为4.(1)如图2,在该数轴上,点A表示的数为﹣1,点B表示的数为2.①当m=1时,点A与线段OM的“闭距离”为;②若点B与线段OM的“闭距离”为3,求m的值;(2)在该数轴上,点C表示的数为﹣m,点D表示的数为﹣m+2,若线段CD上存在点G,使得点G与线段OM的“闭距离”为4,直接写出m的最大值与最小值.3.(2022秋•石景山区期末)对于数轴上的点P,Q,给出如下定义:记点P到原点的距离为m(m≠0),点Q到P的距离为n,如果n=m+2,那么称点Q是点P的关联点.(1)点A表示的数是1.若点B1,B2,B3表示的数分别是﹣2,2,4,则点B1,B2,B3中,是点A关联点的是;(2)若点C,D位于原点两侧,D是点C的关联点,则点D表示的数是;(3)点E表示的数为a,点F表示的数为3a﹣5.若点F是点E的关联点,则a的值是.二.有理数的混合运算(共3小题)4.(2022秋•西城区期末)小东对有理数a,b定义了一种新的运算,叫做“乘减法”,记作“a⊗b”.他写出了一些按照“乘减法”运算的算式:(+3)⊗(+2)=+1,(+11)⊗(﹣3)=﹣8,(﹣2)⊗(+5)=﹣3,(﹣6)⊗(﹣1)=+5,()⊗(+1)=,(﹣4)⊗(+0.5)=﹣3.5,(﹣8)⊗(﹣8)=0,(+2.4)⊗(﹣2.4)=0,(+23)⊗0=+23,0⊗(﹣)=+.小玲看了这些算式后说:“我明白你定义的‘乘减法’法则了.”她将法则整理出来给小东看,小东说:“你的理解完全正确.”(1)请将下面小玲整理的“乘减法”法则补充完整:绝对值不相等的两数相“乘减”,同号得,异号得,并;绝对值相等的两数相“乘减”,都得0;一个数与0相“乘减”,或0与一个数相“乘减”,都得这个数的绝对值.(2)若括号的作用与它在有理数运算中的作用相同,①用“乘减法”计算:[(+3)⊗(﹣2)]⊗[(﹣9)⊗0]=;②小东发现交换律在有理数的“乘减法”中仍然成立,即a⊗b=b⊗a.但是结合律在有理数的“乘减法”中不一定成立,请你举一个例子说明(a⊗b)⊗c=a⊗(b⊗c)不成立.5.(2022秋•朝阳区期末)阅读材料,并回答问题对于某种满足乘法交换律的运算,如果存在一个确定的有理数n,使得任意有理数a和它进行这种运算后的结果都等于a本身,那么n叫做这种运算下的单位元.如果两个有理数进行这种运算后的结果等于单位元,那么这两个有理数互为逆元.由上述材料可知:(1)有理数在加法运算下的单位元是,在乘法运算下的单位元是;在加法运算下,3的逆元是,在乘法运算下,某个数没有逆元,这个数是;(2)在有理数范围内,我们定义一种新的运算:x*y=x+y﹣xy,例如3*2=3+2﹣3×2=﹣1.①求在这种新的运算下的单位元;②在这种新的运算下,求任意有理数m的逆元(用含m的代数式表示).6.(2022秋•顺义区期末)如图表示3×3的数表:我们规定:a*b表示数表中第a行第b列的数.例如:数表中第2行第1列的数为4,记作2*1=4.请根据以上规定回答下列问题:(1)3*2=.(2)若3*3=1*2,则a=.(3)若2*3=(2x+1)*1,求x的值.三.列代数式(共1小题)7.(2022秋•大兴区期末)如图,点A,B,C是同一直线上互不重合的三个点,在线段AB,BC,CA中,若有一条线段的长度恰好是另一条线段长度的一半,则称A,B,C三点存在“半分关系”.(1)当点C是线段AB的中点时,A,B,C三点(填“存在”或“不存在”)“半分关系”;(2)已知AB=6cm,点C在线段AB上,若A,B,C三点存在“半分关系”,则AC的长为cm;(3)已知点D,O,E是数轴上互不重合的三个点,点O为原点,点D表示的数是t(t 是正数),且D,O,E三点存在“半分关系”,直接写出点E表示的数的最大值与最小值的差(用含t的式子表示).四.规律型:数字的变化类(共1小题)8.(2022秋•海淀区期末)对于由若干不相等的整数组成的数组P和有理数k给出如下定义:如果在数轴上存在一条长为1个单位长度的线段AB,使得将数组P中的每一个数乘以k 之后,计算的结果都能够用线段上的某个点来表示,就称k为数组P的收纳系数.例如,对于数组P:1,2,3,因为:=,=,,取A为原点,B为表示数1的点,那么这三个数都可以用线段AB上的某个点来表示,可以判断是P的收纳系数.已知k是数组P的收纳系数,此时线段AB的端点A,B表示的数分别为a,b(a<b).(1)对数组P:1,2,﹣3,在1,,这三个数中,k可能是;(2)对数组P:1,2,x,若k的最大值为,求x的值;(3)已知100个连续整数中第一个整数为x,从中选择n个数,组成数组P.①当x=﹣80,且a=3时,直接写出n的最大值;②当n=100时,直接写出k的最大值和相应的|a+b|的最小值.五.一元一次方程的解(共1小题)9.(2022秋•平谷区期末)如果两个方程的解相差k,且k为正整数,则称解较大的方程为另一个方程的“k—后移方程”.例如:方程x−3=0的解是x=3,方程x−1=0的解是x=1.所以:方程x−3=0是方程x−1=0的“2—后移方程”.(1)判断方程2x﹣3=0是否为方程2x﹣1=0的k—后移方程(填“是”或“否”);(2)若关于x的方程2x+m+n=0是关于x的方程2x+m=0的“2—后移方程”,求n的值;(3)当a≠0时,如果方程ax+b=1是方程ax+c=1的“3—后移方程”求代数式6a+2b ﹣2(c+3)的值.六.一元一次方程的应用(共3小题)10.(2022秋•东城区期末)已知数轴上两点A,B对应的数分别为﹣2,4,点P为数轴上一动点,其对应的数为x p.(1)若点P为线段AB的中点,则点P对应的数x p=;(2)点P在移动的过程中,其到点A、点B的距离之和为8,求此时点P对应的数x p 的值;(3)对于数轴上的三点,给出如下定义:若当其中一个点与其他两个点的距离恰好满足2倍关系时,则称该点是其他两个点的“2倍点”.如图,原点O是点A,B的2倍点.现在,点A、点B分别以每秒4个单位长度和每秒1个单位长度的速度同时向右运动,同时点P以每秒3个单位长度的速度从表示数5的点向左运动.设出发t秒后,点P恰好是点A,B的“2倍点”,请直接写出此时的t值.11.(2022秋•怀柔区期末)阅读理解:若数轴上点A,B,C所表示的数分别是a,b,c,规定A,C两点之间的距离可表示为两点所表示的数的差的绝对值,如AC=|c﹣a|(或AC=|a﹣c|).若AC=2BC,即|c﹣a|=2|c﹣b|,我们称点C是[A,B]的“2倍关联点”.若BC=2AC,即|c﹣b|=2|c﹣a|,我们称点C是[B,A]的“2倍关联点”.例如:在图1中,点A表示的数为﹣2,点B表示的数为4.点C表示的数为2,因为AC =|2﹣(﹣2)|=4,CB=|4﹣2|=2,所以AC=2BC,我们称点C是[A,B]的“2倍关联点”;又如,点D表示的数0,因为AD=|0﹣(﹣2)|=2,DB=|4﹣0|=4,所以DB=2AD,我们称点D是[B,A]的“2倍关联点”.(1)若M,N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为6.①在数﹣3和6之间,数所表示的点是[M,N]的“2倍关联点”;②在数轴上,数所表示的点是[N,M]的“2倍关联点”;(2)如图2,A,B为数轴上两点,点A所表示的数为﹣30,点B所表示的数为50.现有一只电子蚂蚁P从点B出发,以5个单位每秒的速度向左运动,到达点A停止,运动时间为t秒;同时另一只电子蚂蚁Q从A点的位置开始,以3个单位每秒的速度向右运动,并与P同时停止.若P是[A,Q]的“2倍关联点”,求t的值;(3)在(2)的条件下,若P,A,B中恰有一个点为其余两个点的“2倍关联点”,直接写出t的值.12.(2022秋•通州区期末)已知:点A、B、P为数轴上三点,我们规定:点P到点A的距离是点P到点B的距离的k倍,则称P是[A,B]的“k倍点”,记作:P[A,B]=k.例如:若点P表示的数为0,点A表示的数为﹣2,点B表示的数为1,则P是[A,B]的“2倍点”,记作:P[A,B]=2.(1)如图,A、B、P为数轴上三点,回答下面问题:①P[B,A]=;②若点C在数轴上且C[A,B]=1,则点C表示的数为;③点D是数轴上一点,且D[A,B]=2,求点D所表示的数.(2)数轴上,点E表示的数为﹣10,点F表示的数为50,从某时刻开始,若点M从原点O出发向右在数轴上做匀速直线运动,且M的速度为5单位/秒,设运动时间为t秒(t >0)当M[E,F]=3时,请直接写出t的值.七.角的计算(共1小题)13.(2022秋•昌平区期末)给出如下定义:如果∠AOC+∠BOC=90°,且∠AOC=k∠BOC (k为正整数),那么称∠AOC是∠BOC的“倍锐角”.(1)下列三个条件中,能判断∠AOC是∠BOC的“倍锐角”的是(填写序号);①∠BOC=15°;②∠AOC=70°;③OC是∠AOB的角平分线;(2)如图1,当∠BOC=30°时,在图中画出∠BOC的一个“倍锐角”∠AOC;(3)如图2,当∠BOC=60°时,射线OB绕点O旋转,每次旋转10°,可得它的“倍锐角”∠AOC=°;(4)当∠BOC=m°且存在它的“倍锐角”∠AOC时,则∠AOB=°.。

最新2020中考数学典例精做专题03 定义新运算 (学生版)

最新2020中考数学典例精做专题03 定义新运算 (学生版)

13.对任意 4 个有理数 a、b、c、d,定义新运算 a b ad bc . cd
(1)求 1
4
=

35
(2)若 3x 2 35 ,求 x 的值. x 1
x 1 3 2x 5
(3)若
,求 x 的值.
x 1 2 2 1
14.对于任意实数 a,b,定义关于@的一种运算如下:a@b=2a﹣b,例如:5@3=10﹣3=7,(﹣3)@5= ﹣6﹣5=﹣11.
专题 3 定义新运算
※知识精要
1.定义新运算 是一种人为的、临时性的运算形式,是可以深刻理解数学本源的题型,它使用的是一些特
殊的运算符号, 如:*、△、⊙, # 等。
2. 熟练掌握有理数的运算,整式的化简和分式的化简,方程、不等式的解法。
※要点突破
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义 的计算程序,将数值
(1)若 x@3<5,求 x 的取值范围; (2)已知关于 x 的方程 2(2x﹣1)=x+1 的解满足 x@a<5,求 a 的取值范围.
15.对于任意四个有 理数 a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定: (a,b)★(c,d)=bc-ad. 例如:(1,2)★(3,4)=2×3-1×4=2. 根据上述规定解决下列问题: (1)有理数对(2,-3)★(3,-2)=_______; (2)若有理数对(-3,2x-1)★(1,x+1)=7,则 x=_______; (3)当满足等式(-3,2x-1)★(k,x+k)=5+2k 的 x 是整数时,求整数 k 的值.
例如:因为 53 125 ,所以 log5125 3 ;因为112 121,所以 log11121 2 .

北京市2020学年七年级下册第二学期期末数学试卷【解析版】【精选】.doc

北京市2020学年七年级下册第二学期期末数学试卷【解析版】【精选】.doc

2019-2020学年北京市高级中学七年级(下)期末数学试卷参考答案与试题解析一、选择题(4分×8=32分,下面每小题给出的四个选项中,只有一个是正确的)1.(4分)确定平面直角坐标系内点的位置是()A.一个实数B.一个整数C.一对实数D.有序实数对考点:坐标确定位置.分析:比如实数2和3并不能表示确定的位置,而有序实数对(2,3)就能清楚地表示这个点的横坐标是2,纵坐标是3.解答:解:确定平面直角坐标系内点的位置是有序实数对,故选D.点评:本题考查了在平面直角坐标系内表示一个点要用有序实数对的概念.2.(4分)下列方程是二元一次方程的是()A.x2+x=1 B.2x+3y﹣1=0 C.x+y﹣z=0 D.x++1=0考点:二元一次方程的定义.分析:根据二元一次方程的定义进行分析,即只含有两个未知数,未知数的项的次数都是1的整式方程.解答:解:A、x2+x=1不是二元一次方程,因为其最高次数为2,且只含一个未知数;B、2x+3y﹣1=0是二元一次方程;C、x+y﹣z=0不是二元一次方程,因为含有3个未知数;D、x++1=0不是二元一次方程,因为不是整式方程.故选B.点评:注意二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.3.(4分)已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4)B.(3,4)C.(﹣4,3)D.(4,3)考点:点的坐标.分析:根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.解答:解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选B.点评:本题考查了点的位置判断方法及点的坐标几何意义.4.(4分)将下列长度的三条线段首尾顺次相接,能组成三角形的是()A.4cm,3cm,5cm B.1cm,2cm,3cm C.25cm,12cm,11cm D.2cm,2cm,4cm考点:三角形三边关系.分析:看哪个选项中两条较小的边的和大于最大的边即可.解答:解:A、3+4>5,能构成三角形;B、1+2=3,不能构成三角形;C、11+12<25,不能构成三角形;D、2+2=4,不能构成三角形.故选A.点评:本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和小于最大的数就可以.5.(4分)关于x的方程2a﹣3x=6的解是非负数,那么a满足的条件是()A.a>3 B.a≤3 C.a<3 D.a≥3考点:一元一次方程的解;解一元一次不等式.分析:此题可用a来表示x的值,然后根据x≥0,可得出a的取值范围.解答:解:2a﹣3x=6x=(2a﹣6)÷3又∵x≥0∴2a﹣6≥0∴a≥3故选D点评:此题考查的是一元一次方程的根的取值范围,将x用a的表示式来表示,再根据x的取值判断,由此可解出此题.6.(4分)学校计划购买一批完全相同的正多边形地砖铺地面,不能进行镶嵌的是()A.正三角形B.正四边形C.正五边形D.正六边形考点:平面镶嵌(密铺).专题:几何图形问题.分析:看哪个正多边形的位于同一顶点处的几个内角之和不能为360°即可.解答:解:A、正三角形的每个内角为60°,6个能镶嵌平面,不符合题意;B、正四边形的每个内角为90°,4个能镶嵌平面,不符合题意;C、正五边形的每个内角为108°,不能镶嵌平面,符合题意;D、正六边形的每个内角为120°,3个能镶嵌平面,不符合题意;故选C.点评:考查一种图形的平面镶嵌问题;用到的知识点为:一种正多边形镶嵌平面,正多边形一个内角的度数能整除360°.7.(4分)下面各角能成为某多边形的内角的和的是()A.270°B.1080°C.520°D.780°考点:多边形内角与外角.分析:利用多边形的内角和公式可知,多边形的内角和是180度的整倍数,由此即可找出答案.解答:解:因为多边形的内角和可以表示成(n﹣2)•180°(n≥3且n是整数),则多边形的内角和是180度的整倍数,在这四个选项中是180的整倍数的只有1080度.故选B.点评:本题主要考查了多边形的内角和定理,是需要识记的内容.8.(4分)(2002•南昌)设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图所示,那么“■”“▲”“●”这三种物体按质量从大到小的排列顺序为()A.■●▲B.■▲●C.▲●■D.▲■●考点:一元一次不等式的应用.专题:压轴题.分析:本题主要通过观察图形得出“■”“▲”“●”这三种物体按质量从大到小的排列顺序.解答:解:因为由左边图可看出“■”比“▲”重,由右边图可看出一个“▲”的重量=两个“●”的重量,所以这三种物体按质量从大到小的排列顺序为■▲●,故选B.点评:本题主要考查一元一次不等式的应用,解题的关键是利用不等式及杠杆的原理解决问题.二、填空题9.(3分)已知点A(1,﹣2),则A点在第四象限.考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点A(1,﹣2)在第四象限.故答案为:四.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.(3分)如图,直角三角形ACB中,CD是斜边AB上的中线,若AC=8cm,BC=6cm,那么△ACD 与△BCD的周长差为2cm,S△ADC=12cm2.考点:直角三角形斜边上的中线.分析:过C作CE⊥AB于E,求出CD=AB,根据勾股定理求出AB,根据三角形的面积公式求出CE,即可求出答案.解答:解:过C作CE⊥AB于E,∵D是斜边AB的中点,∴AD=DB=AB,∵AC=8cm,BC=6cm∴△ACD与△BCD的周长差是(AC+CD+AD)﹣(BC+BD+CD)=AC﹣BC=8cm﹣6cm=2cm;在Rt△ACB中,由勾股定理得:AB==10(cm),∵S三角形ABC=AC×BC=AB×CE,∴×8×6=×10×CE,CE=4.8(cm),∴S三角形ADC=AD×CE=××10cm×4.8cm=12cm2,故答案为:2,12.点评:本考查了勾股定理,直角三角形斜边上中线性质,三角形的面积等知识点,关键是求出AD和CE长.11.(3分)如图,象棋盘上“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”的坐标为(﹣2,1).考点:坐标确定位置.分析:首先根据“将”和“象”的坐标建立平面直角坐标系,再进一步写出“炮”的坐标.解答:解:如图所示,则“炮”的坐标是(﹣2,1).故答案为:(﹣2,1).点评:此题考查了平面直角坐标系的建立以及点的坐标的表示方法.12.(3分)(2006•菏泽)黑、白两种颜色的正六边形地砖按如图所示的规律拼成若干个图案:则第n 个图案中有白色地砖4n+2块.(用含n的代数式表示)考点:规律型:图形的变化类.专题:压轴题;规律型.分析:通过观察,前三个图案中白色地砖的块数分别为:6,10,14,所以会发现后面的图案比它前面的图案多4块白色地砖,可得第n个图案有4n+2块白色地砖.解答:解:分析可得:第1个图案中有白色地砖4×1+2=6块.第2个图案中有白色地砖4×2+2=10块.…第n个图案中有白色地砖4n+2块.点评:本题考查学生通过观察、归纳的能力.此题属于规律性题目.注意由特殊到一般的分析方法,此题的规律为:第n个图案有4n+2块白色地砖.三、解答题(5分×5=25分)13.(5分)用代入法解方程组:.考点:解二元一次方程组.分析:把第二个方程整理得到y=3x﹣5,然后代入第一个方程求出x的值,再反代入求出y 的值,即可得解.解答:解:,由②得,y=3x﹣5③,③代入①得,2x+3(3x﹣5)=7,解得x=2,把x=2代入③得,y=6﹣5=1,所以,方程组的解是.点评:本题考查了代入消元法解二元一次方程组,从两个方程中的一个方程整理得到y=kx+b的形式的方程是解题的关键.14.(5分)用加减消元法解方程组:.考点:解二元一次方程组.专题:计算题.分析:根据x的系数相同,利用加减消元法求解即可.解答:解:,①﹣②得,12y=﹣36,解得y=﹣3,把y=﹣3代入①得,4x+7×(﹣3)=﹣19,解得x=,所以,方程组的解是.点评:本题考查了利用加减消元法解二元一次方程组,解题的关键在于找出或构造系数相同或互为相反数的未知数.15.(5分)解不等式:≥.考点:解一元一次不等式.分析:利用不等式的基本性质,首先去分母,然后移项、合并同类项、系数化成1,即可求得原不等式的解集.解答:解:去分母,得:3(2+x)≥2(2x﹣1)去括号,得:6+3x≥4x﹣2,移项,得:3x﹣4x≥﹣2﹣6,则﹣x≥﹣8,即x≤8.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(5分)解不等式组,并求其整解数并将解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.分析:分别求出各不等式的解集,再求出其公共解集,再其公共解集内找出符合条件的x的整数解即可.解答:解:,由①得,x<1,由②得,x≥﹣2,故此不等式组的解集为:﹣2≤x<1,在数轴上表示为:故此不等式组的整数解为:﹣2,﹣1,0.点评:本题考查的是解一元一次不等式组,熟知实心圆点与空心圆点的区别是解答此题的关键.17.(5分)若方程组的解x与y相等,求k的值.考点:二元一次方程组的解.专题:计算题.分析:由y=x,代入方程组求出x与k的值即可.解答:解:由题意得:y=x,代入方程组得:,解得:x=,k=10,则k的值为10.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.四、解答题(5分×2=10分)18.(2分)如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F.已知∠A=30°,∠FCD=80°,求∠D.考点:三角形内角和定理.分析:由三角形内角和定理,可将求∠D转化为求∠CFD,即∠AFE,再在△AEF中求解即可.解答:解:∵DE⊥AB(已知),∴∠FEA=90°(垂直定义).∵在△AEF中,∠FEA=90°,∠A=30°(已知),∴∠AFE=180°﹣∠FEA﹣∠A(三角形内角和是180)=180°﹣90°﹣30°=60°.又∵∠CFD=∠AFE(对顶角相等),∴∠CFD=60°.∴在△CDF中,∠CFD=60°∠FCD=80°(已知)∠D=180°﹣∠CFD﹣∠FCD=180°﹣60°﹣80°=40°.点评:熟练掌握三角形内角和内角和定理是解题的关键.19.(2分)已知:如图,E是△ABC的边CA延长线上一点,F是AB上一点,D点在BC的延长线上.试证明∠1<∠2.考点:三角形的外角性质.专题:证明题.分析:由三角形的外角性质知∠2=∠ABC+∠BAC,∠BAC=∠1+∠AEF,从而得证.解答:证明:∵∠2=∠ABC+∠BAC,∴∠2>∠BAC,∵∠BAC=∠1+∠AEF,∴∠BAC>∠1,∴∠1<∠2.点评:此题主要考查学生对三角形外角性质的理解和掌握,此题难度不大,属于基础题.五、作图题(6分)20.(6分)如图,在△ABC中,∠BAC是钝角,请按下列要求画图.画(1)∠BAC的平分线AD;(2)AC边上的中线BE;(3)AB边上的高CF.考点:作图—复杂作图.专题:作图题.分析:(1)以点A为圆心,以任意长为半径画弧与边AB、AC两边分别相交于一点,再以这两点为圆心,以大于这两点距离的为半径画弧相交于一点,过这一点与点A作出角平分线AD即可;(2)作线段AC的垂直平分线,垂足为E,连接BE即可;(3)以C为圆心,以任意长为半径画弧交BA的延长线于两点,再以这两点为圆心,以大于这两点间的长度的为半径画弧,相交于一点,然后作出高即可.解答:解:(1)如图,AD即为所求作的∠BAC的平分线;(2)如图,BE即为所求作的AC 边上的中线;(3)如图,CF即为所求作的AB边上的高.点评:本题考查了复杂作图,主要有角平分线的作法,线段垂直平分线的作法,过一点作已知直线的垂线,都是基本作图,需熟练掌握.六、解答题(21题5分)21.(5分)在平面直角坐标中表示下面各点A(0,3),B(1,﹣3),C(3,﹣5),D(﹣3,﹣5),E(3,5),F(5,7)(1)A点到原点O的距离是3.(2)将点C向x轴的负方向平移6个单位它与点D重合.(3)连接CE,则直线CE与y轴位置关系是平行.(4)点F分别到x、y轴的距离分别是7,5.考点:坐标与图形变化-平移.分析:先在平面直角坐标中描点.(1)根据两点的距离公式可得A点到原点O的距离;(2)找到点C向x轴的负方向平移6个单位的点即为所求;(3)横坐标相同的两点所在的直线与y轴平行;(4)点F分别到x、y轴的距离分别等于纵坐标和横坐标的绝对值.解答:解:(1)A点到原点O的距离是3﹣0=3.(2)将点C向x轴的负方向平移6个单位它与点D重合.(3)连接CE,则直线CE与y轴位置关系是平行.(4)点F分别到x、y轴的距离分别是7,5.故答案为:3;D;平行;7,5.点评:考查了平面内点的坐标的概念、平移时点的坐标变化规律,及坐标轴上两点的距离公式.本题是综合题型,但难度不大.七、解答题(7分)22.(7分)一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.已知过去两次租用这两种货车的情况如下表:第一次第二次甲种货车辆数(辆) 2 5乙种货车辆数(辆) 3 6累计运货吨数(吨)15.5 35现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,则货主应付运费多少元?考点:二元一次方程组的应用.专题:图表型.分析:本题需知道1辆甲种货车,1辆乙种货车一次运货吨数.等量关系为:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.解答:解:设甲种货车每辆每次运货x(t),乙种货车每辆每次运货y(t).则有,解得.30×(3x+5y)=30×(3×4+5×2.5)=735(元).答:货主应付运费735元.点评:应根据条件和问题知道应设的未知量是直接未知数还是间接未知数.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.列出方程组,再求解.23.(7分)探究:(1)如图①,∠1+∠2与∠B+∠C有什么关系?为什么?(2)把图①△ABC沿DE折叠,得到图②,填空:∠1+∠2=∠B+∠C(填“>”“<”“=”),当∠A=40°时,∠B+∠C+∠1+∠2=280°;(3)如图③,是由图①的△ABC沿DE折叠得到的,如果∠A=30°,则x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣300°=60°,猜想∠BDA+∠CEA与∠A的关系为∠BDA+∠CEA=2∠A.考点:翻折变换(折叠问题).专题:探究型.分析:根据三角形内角是180度可得出,∠1+∠2=∠B+∠C,从而求出当∠A=40°时,∠B+∠C+∠1+∠2=140×2=280°,有以上计算可归纳出一般规律:∠BDA+∠CEA=2∠A.解答:解:(1)根据三角形内角是180°可知:∠1+∠2=180°﹣∠A,∠B+∠C=180°﹣∠A,∴∠1+∠2=∠B+∠C;(2)∵∠1+∠2+∠BDE+∠CED=∠B+∠C+∠BDE+∠CED=360°,∴∠1+∠2=∠B+∠C;当∠A=40°时,∠B+∠C+∠1+∠2=140×2=280°;(3)如果∠A=30°,则x+y=360°﹣(∠B+∠C+∠1+∠2)=360°﹣300°=60°,所以∠BDA+∠CEA与∠A的关系为:∠BDA+∠CEA=2∠A.点评:本题考查图形的翻折变换和三角形,四边形内角和定理,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.。

2023北京中考数学备考微专题——二次函数“新定义”学生版

2023北京中考数学备考微专题——二次函数“新定义”学生版

2023北京中考数学备考微专题——二次函数“新定义”1.在平面直角坐标系xOy中,已知一条开口向上的抛物线,连接此抛物线上关于对称轴对称的两点A,B(A点在B点左侧),以AB为直径作⊙M.取线段AB下方的抛物线部分和线段AB上方的圆弧部分(含端点A,B),组成一个封闭图形,我们称这种图形为“抛物圆”,其中线段AB叫做“横径”,线段AB的垂直平分线被“抛物圆”截得的线段叫做“纵径”,规定“纵径”长度和“横径”长度的比值叫做此“抛物圆”的“扁度”.(1)已知抛物线y=x2.①若点A横坐标为﹣2,则得到的“抛物圆”的“横径”长为,“纵径”长为;②若点A横坐标为t,用t表示此“抛物圆”的“纵径”长,并求出当它的“扁度”为2时t的值;(2)已知抛物线y=x2﹣2ax+a2+a,若点A在直线y=﹣4ax+a上,求“抛物圆”的“扁度”不超过3时a的取值范围.2.在平面直角坐标系xOy中,已知四边形OABC是平行四边形,点A(4,0),∠AOC=60°,点C的纵坐标为,点D是边BC上一点,连接OD,将线段OD绕点O逆时针旋转60°得到线段OE.给出如下定义:如果抛物线y=ax2+bx(a≠0)同时经过点A,E,则称抛物线y=ax2+bx(a≠0)为关于点A,E的“伴随抛物线”.(1)如图1,当点D与点C重合时,点E的坐标为,此时关于点A,E的“伴随抛物线”的解析式为;(2)如图2,当点D在边BC上运动时,连接CE.①当CE取最小值时,求关于点A,E的“伴随抛物线”的解析式;②若关于点A,E的“伴随抛物线”y=ax2+bx(a≠0)存在,直接写出a的取值范围.3.定义:若两个函数的图象关于某一点Q中心对称,则称这两个函数关于点Q互为“对称函数”.例如,函数y=x2与y=﹣x2关于原点O互为“对称函数”.(1)函数y=﹣x+1关于原点O的“对称函数”的函数解析式为,函数y=(x ﹣2)2﹣1关于原点O的“对称函数”的函数解析式为;(2)已知函数y=x2﹣2x与函数G关于点Q(0,1)互为“对称函数”,若函数y=x2﹣2x与函数G的函数值y都随自变量x的增大而减小,求x的取值范围;(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2﹣2ax﹣3a(a>0),与函数N关于点C互为“对称函数”,将二次函数y=ax2﹣2ax﹣3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.4.对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数.在所有满足条件的M中,其最小值称为这个函数的上确界.例如,图中的函数y=﹣(x﹣3)2+2是有上界函数,其上确界是2.(1)函数①y=x2+2x+1和②y=2x﹣3(x≤2)中是有上界函数的为(只填序号即可),其上确界为;(2)如果函数y=﹣x+2(a≤x≤b,b>a)的上确界是b,且这个函数的最小值不超过2a+1,求a的取值范围;(3)如果函数y=x2﹣2ax+2(1≤x≤5)是以3为上确界的有上界函数,求实数a的值.5.定义:如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,则称抛物线C1与C2关联.例如,如图,抛物线y=x2的顶点(0,0)在抛物线y=﹣x2+2x 上,抛物线y=﹣x2+2x的顶点(1,1)也在抛物线y=x2上,所以抛物线y=x2与y=﹣x2+2x关联.(1)已知抛物线C1:y=(x+1)2﹣2,分别判断抛物线C2:y=﹣x2+2x+1和抛物线C3:y=2x2+2x+1与抛物线C1是否关联;(2)抛物线M1:的顶点为A,动点P的坐标为(t,2),将抛物线M1绕点P(t,2)旋转180°得到抛物线M2,若抛物线M1与M2关联,求抛物线M2的解析式;(3)抛物线M1:的顶点为A,点B是与M1关联的抛物线的顶点,将线段AB绕点A按顺时针方向旋转90°得到线段AB1,若点B1恰好在y轴上,请直接写出点B1的纵坐标.6.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“二次派生函数”.(1)点(2,)在函数y=的图象上,则它的“二次派生函数”是;(2)若“二次派生函数”y=ax2+bx经过点(1,2),求a,b的值;(3)若函数y=ax+b是函数y=的一个“一次派生函数”,在平面直角坐标系xOy中,同时画出“一次派生函数”y=ax+b和“二次派生函数”y=ax2+bx的图象,当﹣4<x<1时,“一次派生函数”始终大于“二次派生函数”,求点P的坐标.。

北京市2022_2023学年第一学期部分学校期中数学分类——新定义 (学生版)

北京市2022_2023学年第一学期部分学校期中数学分类——新定义 (学生版)

北京市2022~2023学年第一学期部分学校七年级期中数学分类——新定义一.填空题(共2小题)1.(2022秋•西城外国语学校七年级期中)对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用max{a,b,c}表示这三个数中最大的数.例如:M{﹣1,2,3}=,max{﹣1,2,3}=3,如果M{3,x+1,2x﹣1}=max{2,2x﹣6,﹣x+5},那么x=.2.(2022秋•西城育才学校七年级期中)在有理数的原有运算法则中我们补充定义新运算“⊕”如下:当a≥b时,a⊕b=b2;当a<b时,a⊕b=a.则当x=2时,(1⊕x)•x﹣(3⊕x)的值为.二.解答题(共18小题)3.(2022秋•西城区十五中七年级期中)阅读材料,并回答问题钟表中蕴含着有趣的数学运算,不用负数也可以作减法,例如现在是10点钟,4小时以后是几点钟?虽然10+4=14,但在表盘上看到的是2点钟,如果用符号“⊕”表示钟表上的加法,则10⊕4=2.若问2点钟之前4小时几点钟,就得到钟表上的减法概念,用符号“㊀”表示钟表上的减法.(注:我用0点钟代替12点钟)由上述材料可知:(1)9⊕6=;2㊀4=.(2)在有理数运算中,相加得零的两个数互为相反数,如果在钟表运算中沿用这个概念,则5的相反数是,举例说明有理数减法法则:减去一个数等于加上这个数的相反数,在钟表运算中是否仍然成立.(3)规定在钟表运算中也有0<1<2<3<4<5<6<7<8<9<10<11,对于钟表上的任意数字a,b,c,若a<b,判断a⊕c<b⊕c是否一定成立,若一定成立,说明理由;若不一定成立,写出一组反例,并结合反例加以说明.4.(2022秋•西城区十五中七年级期中)将网格中相邻的两个数分别加上同一个数,称为一步变换.比如,我们可以用三步变换将网格1变成网格2,变换过程如图:(1)用两步变换将网格3变成网格4,请在网格中填写第一步变换后的结果;(2)若网格5经过若干步变换可以变成网格6,请直接写出a、b之间满足的关系.5.(2022秋•西城区北师大附属实验中学七年级期中)我们规定一种运算=ad﹣cb,如=2×5﹣3×4=﹣2,再如=﹣4x+2.按照这种运算规定,解答下列各题:(1)计算=;(2)若=2,求x的值;(3)若与|的值始终相等,求m,n的值.6.(2022秋•西城区北师大附属实验中学七年级期中)如果两个方程的解相差k,k为正整数,则称解较大的方程为另一个方程的“k—后移方程”.例如:方程x﹣3=0是方程x ﹣1=0的“2—后移方程”.(1)若方程2x+3=0是方程2x+5=0的“a—后移方程”,则a=;(2)若关于x的方程4x+m+n=0是关于x的方程4x+n=0的“2—后移方程”,求代数式m2+|m+1|的值;(3)当a≠0时,如果方程ax+b=1是方程ax+c﹣1=0的“3—后移方程”,求代数式6a+2b ﹣2(c+3)的值.7.(2022秋•西城区北师大附属实验中学七年级期中)若一个两位数的十位和个位上的数字分别为x和y,我们可将这个两位数记为.同理,一个三位数的百位、十位和个位上的数字分别为a,b和c.则这个三位数可记为.(1)若x=3,则=;若t=2,则=.(2)一定能被整除,一定能被整除.(请从大于3的整数中选择合适的数填空)(3)任选一个三位数,要求个、十、百位的数字各不相同且不为零,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数,再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①“卡普雷卡尔黑洞数”是.②若设三位数为(不妨设a>b>c>0),试说明其可产生“卡普雷卡尔黑洞数”.8.(2022秋•西城区外国语七年级期中)观察下列式子,定义一种新运算:1⊗3=4×1﹣3=1;5⊗2=4×5﹣2=18;3⊗(﹣1)=4×3+1=13;(﹣2)⊗(﹣3)=4×(﹣2)+3=﹣5.(1)请你想一想:a⊗b=(用含a,b的式子表示);(2)如果a⊗(﹣5)=(﹣3)⊗a,求a的值.9.(2022秋•西城区三十五中七年级期中)我们规定:使得a﹣b=ab成立的一对数a,b为“积差等数对”,记为(a,b).例如,因为1.5﹣0.6=1.5×0.6,(﹣2)﹣2=(﹣2)×2,所以数对(1.5,0.6),(﹣2,2)都是“积差等数对”.(1)下列数对中,是“积差等数对”的是;①(2,);②(1.5,3);③(﹣,﹣1).(2)若(k,﹣3)是“积差等数对”,求k的值;(3)若(m,n)是“积差等数对”,求代数式4[3mn﹣m﹣2(mn﹣1)]﹣2(3m2﹣2n)+6m2的值.10.(2022秋•北京四中七年级期中)将n个0或1排列在一起组成了一个数组,记为A=(t1,t2,…t n),其中,t1,t2,…,t n都取0或1,称A是一个n元完美数组(n≥2且n 为整数).例如:(0,1),(1,1)都是2元完美数组,(0,0,1,1),(1,0,0,1)都是4元完美数组,但(3,2)不是任何完美数组.定义以下两个新运算:新运算1:对于x和y,x*y=(x+y)﹣|x﹣y|,新运算2:对于任意两个n元完美数组M=(x1,x2,…,x n)和N=(y1,y2,…,y n),M⊗N=(x1*y1+x2*y2+…+x n*y n),例如:对于3元完美数组M=(1,1,1)和N=(0,0,1),有M⊗N=(0+0+2)=1.(1)在(0,0,0),(2,0,1),(1,1,1,1),(1,1,0)中是3元完美数组的有:;(2)设A=(1,0,1),B=(1,1,1),则A⊗B=;(3)已知完美数组M=(1,1,1,0)求出所有4元完美数组N,使得M⊗N=2;(4)现有m个不同的2022元完美数组,m是正整数,且对于其中任意的两个完美数组C,D满足C⊗D=0;则m的最大可能值是多少?写出答案,并给出此时这些完美数组的一个构造.11.(2022秋•北京四中七年级期中)定义1:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫作从n个不同元素中取出m个元素的一个排列.例如:1,2,3是1,2,3的一个排列,1,3,2和2,3,1也是1,2,3的一个排列.如果a1,a2,a3,a4,a5是1,2,3,4,5的一个排列,那么将这个排列记为{a5}:a1,a2,a3,a4,a5.定义2:设E(a1,a2,a3,a4,a5)=|a1﹣1|+|a2﹣2|+|a3﹣3|+|a4﹣4|+|a5﹣5|,称上述等式为数列{a5}:a1,a2,a3,a4,a5的位差和.(1)求数列1,3,4,2,5的位差和;(2)若位差和E(a1,a2,a3,a4,a5)=4,请直接写出满足条件的数列{a5}的个数.12.(2022秋•西城区十三分七年级期中)从三位数m的各数位上的数字中任选两个构成一个两位数,这样就可以得到六个不同的两位数,我们把这六个不同的两位数叫做数m的“生成数”.数m的所有“生成数”之和记为G(m),例如m=123,G(123)=12+13+21+23+31+32=132.(1)直接写出G(234)的值;(2)将百位上的数是a,十位上的数是b,个位上的数是c的三位数记作.(其中1≤a≤9,1≤b≤9,1≤c≤9,a,b,c均为整数)证明:能被22整除.13.(2022秋•丰台区十二中七年级期中)[背景知识]:数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.在数轴上,若C到A的距离刚好是3,则C点叫做A 的“幸福点”,若C到A、B的距离之和为8,则C叫做A、B的“幸福中心”.(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C 是M、N的幸福中心,则C所表示的数是多少?(3)如图3,点A表示的数是0,点B表示的数是4,若点A、点B同时以1个单位长度/秒的速度向左运动,与此同时点P从10处以2个单位长度/秒的速度向左运动,经过多长时间后,点A、点B、点P三点中其中一点是另外两点的幸福中心?(直接写出答案.)14.(2022秋•朝阳区陈经纶中学七年级期中)对数轴上的点P进行如下操作:先把点P表示的数乘以m(m≠0),再把所得数对应的点沿数轴向右平移n个单位长度,得到点P',称这样的操作为点P的“m﹣n变换”,对数轴上的点A,B,C,D进行“m﹣n变换”后得到的点分别为A',B',C',D'.(1)当m=2,n=3时.①若点A表示的数为﹣4,则它的对应点A'表示的数为;②数轴上的点M表示的数为1,若点C到点M的距离是点C'到点M的距离的3倍,则点C表示的数为;(2)当n=4时,若点D表示的数为2,点D'表示的数为﹣8,则m的值为;(3)若点A'到点B'的距离是点A到点B的距离的2倍,则m的值为.15.(2022秋•北京四中七年级期中)如图,点A、O、C、B为数轴上的点,O为原点,A 表示的数是﹣8,C表示的数是2,B表示的数是6.我们将数轴在点O和点C处各弯折一次,弯折后CB与AO处于水平位置,线段OC处产生了一个坡度,我们称这样的数轴为“折坡数轴”,其中O为“折坡数轴”原点,在“折坡数轴”上,每个点对应的数就是把“折坡数轴”拉直后对应的数.记为“折坡数轴”拉直后点A和点B的距离:即=AO+OC+CB,其中AO、OC、CB代表线段的长度.(1)若点T为“折坡数轴”上一点,且+=16,请求出点T所表示的数;(2)定义“折坡数轴”上,上坡时点的移动速度变为水平路线上移动速度的一半,下坡时移动速度变为水平路线上移动速度的2倍.动点P从点A处沿“折坡数轴”以每秒2个单位长度的速度向右移动到点O,再上坡移动,当移到点C时,立即掉头返回(掉头时间不计),在点P出发的同时,动点Q从点B处沿“折坡数轴”以每秒1个单位长度的速度向左移动到点C,再下坡到点O,然后再沿OA方向移动,当点P重新回到点A 时所有运动结束,设点P运动时间为t秒,在移动过程中:①点P在第秒时回到点A;②当t=时,=2.(请直接写出t的值)16.(2022秋•西城区161中学七年级期中)对于数轴上的点M,线段AB,给出如下定义:P为线段AB上任意一点,如果M,P两点间的距离有最小值,那么称这个最小值为点M,线段AB的“近距”,记作d1(点M,线段AB);如果M,P两点间的距离有最大值,那么称这个最大值为点M,线段AB的“远距”,记作d2(点M,线段AB),特别的,若点M与点P重合,则M,P两点间距离为0,已知点A表示的数为﹣2,点B表示的数为3.例如图,若点C表示的数为5,则d1(点C,线段AB)=2,d2(点C,线段AB)=7.(1)若点D表示的数为﹣3,则d1(点D,线段AB)=,d2(点D,线段AB)=;(2)若点E表示数为x,点F表示数为x+1.d2(点F,线段AB)是d1(点E,线段AB)的3倍.求x的值.17.(2022秋•西城外国语学校七年级期中)已知点P,点A,点B是数轴上的三个点.若点P到原点的距离等于点A,点B到原点距离的和的2倍,则称点P为点A和点B的“2倍点”.(1)已知点A表示1,点B表示﹣2,下列各数﹣6,﹣3,0,6在数轴上所对应的点分别是P1,P2,P3,P4,其中是点A和点B的“2倍点”的有;(2)已知点A表示,点B表示m,点P为点A和点B的“2倍点”,且点P到原点的距离为10,求m的值;(3)已知点A表示a(a<0),将点A沿数轴负方向移动3个单位长度,得到点B.当点P为点A和点B的“2倍点”时,直接写出点P与点A的距离(用含a的式子表示).18.(2022秋•石景山区京源学校七年级期中)阅读下列材料:根据绝对值的定义,|x|表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=|x1﹣x2|.根据上述材料,解决下列问题:如图,在数轴上,点A、B表示的数分别是﹣4,8(A、B两点的距离用AB表示),点M 是数轴上一个动点,表示数m.(1)AB=个单位长度;(2)若点M在A、B之间,则|m+4|+|m﹣8|=;(3)若|m+4|+|m﹣8|=20,求m的值;19.(2022秋•北京二中七年级期中)我们规定:对于数轴上不同的三个点M,N,P,当点M在点N左侧时,若点P到点M的距离恰好为点P到点N的距离的k倍,且k为正整数,(即PM=kPN),则称点P是“[M,N]整k关联点”如图,已知在数轴上,原点为O,点A,点B表示的数分别为x A=﹣2,x B=4.(1)原点O(填“是”或“不是”)“[A,B]整k关联点”;(2)若点C是“[A,B]整2关联点”,则点C所表示的数x C=;(3)若点A沿数轴向左运动,每秒运动2个单位长度,同时点B沿数轴向右运动,每秒运动1个单位长度,则运动时间为秒时,原点O恰好是“[A,B]整k关联点”,此时k的值为.(4)点Q在A,B之间运动,且不与A,B两点重合,作“[A,Q]整2关联点”,记为A',作“[Q,B]整3关联点”,记为B',且满足A',B'分别在线段AQ和BQ上.当点Q 运动时,若存在整数m,n,使得式子mQA'+nQB'为定值,求出m,n满足的数量关系.20.(2022秋•东城区广渠门中学七年级期中)阅读下列材料:我们给出如下定义:数轴上给定不重合的两点A,B以及一条线段PQ,(1)若数轴上存在一点M,使得点M到点A的距离等于点M到点B的距离,则称点M为点A与点B的“中位点”;(2)若点A与点B的“中位点”M在线段PQ上(点M可以与点P或Q重合),则称点A与点B关于线段PQ“中位对称”.如图1,点A表示的数为﹣3,点B表示的数为1,点M表示的数为﹣1,点M到点A的距离等于2,点M到点B的距离也等于2,那么点M为点A与点B的“中位点”;点P表示的数为﹣2,点Q表示的数为2,点A与点B的“中位点”M在线段PQ上,那么点A与点B关于线段PQ“中位对称”.根据以上定义完成下列问题:已知:如图2,点O为数轴的原点,点A表示的数为﹣2,点R表示的数为3.(1)①若点B表示的数为﹣5,点M为点A与点B的“中位点”,则点M表示的数为;②若点A与点B的“中位点”M表示的数为1,则点B表示的数为;(2)①点B,C.D分别表示的数为1,,6,在B,C,D三点中,点A与关于线段OR“中位对称”;②点N表示的数为x,若点A与点N关于线段OR“中位对称”,则x的取值范围是;③点E表示的数为m,点F表示的数为m+2,若线段EF上至少存在一点与点A关于线段EF“中位对称”,直接写出m的取值范围.。

概率与统计下的新定义(学生版)--2024年新高考数学突破新定义压轴题

概率与统计下的新定义(学生版)--2024年新高考数学突破新定义压轴题

概率与统计下的新定义【题型归纳目录】题型一:二项式定理新定义题型二:排列组合新定义题型三:概率新定义题型四:统计方法新定义题型五:信息熵问题【方法技巧与总结】解概率与统计下的新定义题,就是要细读定义关键词,理解本质特征,适时转化为“熟悉”问题.总之,解决此类问题,取决于已有知识、技能、数学思想的掌握和基本活动经验的积累,还需要不断的实践和反思,不然就谈不上“自然”的、完整的解题.【典型例题】题型一:二项式定理新定义1(2024·湖南衡阳·二模)莫比乌斯函数在数论中有着广泛的应用.所有大于1的正整数n 都可以被唯一表示为有限个质数的乘积形式:n =p r 11p r 22⋅⋅⋅p r kk (k 为n 的质因数个数,p i 为质数,r i ≥1,i =1,2,⋅⋅⋅,k ),例如:90=2×32×5,对应k =3,p 1=2,p 2=3,p 3=5,r 1=1,r 2=2,r 3=1.现对任意n ∈N *,定义莫比乌斯函数μn =1,n =1-1 k,r 1=r 2=⋅⋅⋅=r k =10,存在r i >1 (1)求μ78 ,μ375 ;(2)若正整数x ,y 互质,证明:μxy =μx μy ;(3)若n >1且μn =1,记n 的所有真因数(除了1和n 以外的因数)依次为a 1,a 2,⋅⋅⋅,a m ,证明:μa 1 +μa 2 +⋅⋅⋅+μa m =-2.2(2024·安徽合肥·一模)“q -数”在量子代数研究中发挥了重要作用.设q 是非零实数,对任意n ∈N *,定义“q -数”(n )q =1+q +⋯+q n -1利用“q -数”可定义“q -阶乘”n !q =(1)q (2)q ⋯(n )q ,且0 !q =1.和“q -组合数”,即对任意k ∈N ,n ∈N *,k ≤n ,n kq =n !qk !q n -k !q(1)计算:532;(2)证明:对于任意k ,n ∈N *,k +1≤n ,n k q =n -1k -1q +q k n -1kq(3)证明:对于任意k ,m ∈N ,n ∈N *,k +1≤n ,n +m +1k +1 q -n k +1 q =∑m i =0q n -k +i n +ikq.3(2024·高三·江苏苏州·阶段练习)甲、乙、丙三人以正四棱锥和正三棱柱为研究对象,设棱长为n ,若甲从其中一个底面边长和高都为2的正四棱锥的5个顶点中随机选取3个点构成三角形,定义随机变量X 的值为其三角形的面积;若乙从正四棱锥(和甲研究的四棱锥一样)的8条棱中任取2条,定义随机变量ξ的值为这两条棱的夹角大小(弧度制);若丙从正三棱柱的9条棱中任取2条,定义随机变量ψ的值为这两条棱的夹角大小(弧度制).(1)比较三种随机变量的数学期望大小;(参考数据arctan 5≈0.3661,arctan 52≈0.2677,arctan22≈0.3918)(2)现单独研究棱长n ,记x +1 ×x +12 ×⋯×x +1n(n ≥2且n ∈N *),其展开式中含x 项的系数为S n ,含x 2项的系数为T n .①若T nS n=an 2+bn +c ,对n =2,3,4成立,求实数a ,b ,c 的值;②对①中的实数a ,b ,c 用数字归纳法证明:对任意n ≥2且n ∈N *,Tn S n=an 2+bn +c 都成立.题型二:排列组合新定义4(2024·高三·北京·阶段练习)设n 为正整数,集合A =α∣α=t 1,t 2,⋯,t n ,t k ∈0,1 ,k =1,2,⋯,n .对于集合A 中的任意元素α=x 1,x 2,⋯,x n 和β=y 1,y 2,⋯,y n ,定义d α,β =x 1-y 1 +x 2-y 2 +⋯+x n -y n .(1)当n =4时,若α=0,1,0,1 ,β=1,1,0,1 ,直接写出所有使d α,γ =2,d β,γ =3同时成立的A 的元素γ;(2)当n =3时,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,d α,β ≥2.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素α,β,d α,β ≥2,写出一个集合B ,使其元素个数最多,并说明理由.5(2024·高三·浙江·开学考试)一般地,n 元有序实数对a 1,a 2,⋯,a n 称为n 维向量.对于两个n 维向量a=a 1,a 2,⋯,a n ,b =b 1,b 2,⋯,b n ,定义:两点间距离d =b 1-a 1 2+b 2-a 2 2+⋯+b n -a n 2,利用n 维向量的运算可以解决许多统计学问题.其中,依据“距离”分类是一种常用的分类方法:计算向量与每个标准点的距离d n ,与哪个标准点的距离d n 最近就归为哪类.某公司对应聘员工的不同方面能力进行测试,得到业务能力分值a 1 、管理能力分值a 2 、计算机能力分值a 3 、沟通能力分值a 4 (分值a i ∈N *,i ∈1,2,3,4 代表要求度,1分最低,5分最高)并形成测试报告.不同岗位的具体要求见下表:岗位业务能力分值a 1管理能力分值a 2计算机能力分值a 3沟通能力分值a 4合计分值会计(1)215412业务员(2)523515后勤(3)235313管理员(4)454417对应聘者的能力报告进行四维距离计算,可得到其最适合的岗位.设四种能力分值分别对应四维向量β =a 1,a 2,a 3,a 4 的四个坐标.(1)将这四个岗位合计分值从小到大排列得到一组数据,直接写出这组数据的第三四分位数;(2)小刚与小明到该公司应聘,已知:只有四个岗位的拟合距离的平方d 2n 均小于20的应聘者才能被招录.(i )小刚测试报告上的四种能力分值为β0=4,3,2,5 ,将这组数据看成四维向量中的一个点,将四种职业1、2、3、4的分值要求看成样本点,分析小刚最适合哪个岗位;(ii )小明已经被该公司招录,其测试报告经公司计算得到四种职业1、2、3、4的推荐率p 分别为1443,1343,943,743p n =d 2n d 21+d 22+d 23+d 24,试求小明的各项能力分值.题型三:概率新定义6(2024·浙江·一模)混管病毒检测是应对单管病毒检测效率低下的问题,出现的一个创新病毒检测策略,混管检测结果为阴性,则参与该混管检测的所有人均为阴性,混管检测结果为阳性,则参与该混管检测的人中至少有一人为阳性.假设一组样本有N 个人,每个人患病毒的概率相互独立且均为p 0<p <1 .目前,我们采用K 人混管病毒检测,定义成本函数f X =NK+KX ,这里X 指该组样本N 个人中患病毒的人数.(1)证明:E f X ≥2p ⋅N ;(2)若0<p <10-4,10≤K ≤20.证明:某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.7(2024·辽宁·模拟预测)条件概率与条件期望是现代概率体系中的重要概念.近年来,随着人们对随机现象的不断观察和研究,条件概率和条件期望已经被广泛的利用到日常生产生活中.定义:设X ,Y 是离散型随机变量,则X 在给定事件Y =y 条件下的期望为E X Y =y =∑ni =1x i ⋅P X =x i Y =y =∑ni =1x i ⋅P X =x i ,Y =yP Y =y ,其中x 1,x 2,⋯,x n 为X 的所有可能取值集合,P X =x ,Y =y 表示事件“X =x ”与事件“Y =y ”都发生的概率.某射击手进行射击训练,每次射击击中目标的概率均为p (0<p <1),射击进行到击中目标两次时停止.设ξ表示第一次击中目标时的射击次数,η表示第二次击中目标时的射击次数.(1)求P ξ=2,η=5 ,P η=5 ;(2)求E ξη=5 ,E ξη=n n ≥2 .8(2024·福建漳州·一模)在数字通信中,信号是由数字0和1组成的序列,发送每个信号数字之间相互独立.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.(1)记发送信号变量为X,接收信号变量为Y,且满足P X=0=12,P Y=1X=0=13,P Y=0X=1=14,求P Y=0;(2)当发送信号0时,接收为0的概率为34,定义随机变量η的“有效值”为Hη =-ni=1Pη=x ilg Pη=x i(其中x i是η的所有可能的取值,i=1,2,⋅⋅⋅,n),发送信号“000”的接收信号为“y1y2y3”,记ξ为y1,y2,y3三个数字之和,求ξ的“有效值”.(lg3≈0.48,lg2≈0.30)题型四:统计方法新定义9(2024·全国·模拟预测)某校20名学生的数学成绩x i (i =1,2,⋯,20)和知识竞赛成绩y i (i =1,2,⋯,20)如下表:学生编号i 12345678910数学成绩x i 100999693908885838077知识竞赛成绩y i29016022020065709010060270学生编号i 11121314151617181920数学成绩x i 75747270686660503935知识竞赛成绩y i4535405025302015105计算可得数学成绩的平均值是x =75,知识竞赛成绩的平均值是y =90,并且20i =1x i -x 2 =6464,20i =1y i -y2=149450,20i =1x i -x y i -y =21650.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到0.01).(2)设N ∈N *,变量x 和变量y 的一组样本数据为x i ,y i |i =1,2,⋯,N ,其中x i (i =1,2,⋯,N )两两不相同,y i (i =1,2,⋯,N )两两不相同.记x i 在x n |n =1,2,⋯,N 中的排名是第R i 位,y i 在y n |n =1,2,⋯,N 中的排名是第S i 位,i =1,2,⋯,N .定义变量x 和变量y 的“斯皮尔曼相关系数”(记为ρ)为变量x 的排名和变量y 的排名的样本相关系数.(i )记d i =R i -S i ,i =1,2,⋯,N .证明:ρ=1-6N N 2-1 Ni =1d 2i .(ii )用(i )的公式求这组学生的数学成绩和知识竞赛成绩的“斯皮尔曼相关系数”(精确到0.01).(3)比较(1)和(2)(ii )的计算结果,简述“斯皮尔曼相关系数”在分析线性相关性时的优势.注:参考公式与参考数据.r =ni =1x i -x y i -yni =1x i -x 2 ni =1y i -y2;nk =1k 2=n (n +1)(2n +1)6;6464×149450≈31000.10(2024·全国·模拟预测)冰雪运动是深受学生喜爱的一项户外运动,为了研究性别与学生是否喜爱冰雪运动之间的关系,从某高校男、女生中各随机抽取100名进行问卷调查,得到如下列联表m≤40,m∈N.喜爱不喜爱男生80-m20+m女生60+m40-m(1)当m=0时,从样本中不喜爱冰雪运动的学生中,按性别采用分层抽样的方法抽取6人,再从这6人中随机抽取3人调研不喜爱的原因,记这3人中女生的人数为ξ,求ξ的分布列与数学期望.(2)定义K2=A i,j-B i,j2B i,j2≤i≤3,2≤j≤3,i,j∈N,其中A i,j为列联表中第i行第j列的实际数据,B i,j为列联表中第i行与第j列的总频率之积再乘以列联表的总额数得到的理论频数,如A2,2=80-m,B2,2=100 200×140200×200=70.基于小概率值α的检验规则:首先提出零假设H0(变量X,Y相互独立),然后计算K2的值,当K2≥xα时,我们推断H0不成立,即认为X和Y不独立,该推断犯错误的概率不超过α;否则,我们没有充分证据推断H0不成立,可以认为X和Y独立.根据K2的计算公式,求解下面问题:①当m=0时,依据小概率值α=0.005的独立性检验,分析性别与是否喜爱冰雪运动有关?②当m<10时,依据小概率值α=0.1的独立性检验,若认为性别与是否喜爱冰雪运动有关,则至少有多少名男生喜爱冰雪运动?附:α0.10.0250.005xα 2.706 5.0247.87911(2024·高三·北京·期末)在测试中,客观题难度的计算公式为P i=R iN,其中P i为第i题的难度,R i为答对该题的人数,N为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:题号12345考前预估难度P i 0.90.80.70.60.4测试后,随机抽取了20名学生的答题数据进行统计,结果如下:题号12345实测答对人数161614144(1)根据题中数据,估计这240名学生中第5题的实测答对人数;(2)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为X,求X的分布列和数学期望;(3)定义统计量S=1n[(P 1-P1)2+(P 2-P2)2+⋯+(P n-P n)2],其中P i 为第i题的实测难度,P i为第i题的预估难度(i=1,2,⋯,n).规定:若S<0.05,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.题型五:信息熵问题12(2024·高三·河北·阶段练习)信息熵是信息论之父香农(Shannon)定义的一个重要概念,香农在1948年发表的论文《通信的数学理论》中指出,任何信息都存在冗余,把信息中排除了冗余后的平均信息量称为“信息熵”,并给出了计算信息熵的数学表达式:设随机变量X所有可能的取值为1,2,⋯,n n∈N*,且P(X=i)=p i>0(i=1,2,⋯,n),ni=1p i=1,定义X的信息熵H(X)=-ni=1p ilog2p i.(1)当n=1时,计算H X ;(2)若p i=1ni=1,2,⋯,n,判断并证明当n增大时,H X 的变化趋势;(3)若n=2m m∈N*,随机变量Y所有可能的取值为1,2,⋯,m,且P Y=j=p j+p2m+1-j j=1,2,⋯,m,证明:H X>H Y.13(2024·高三·河北·期末)在信息论中,熵(entropy)是接收的每条消息中包含的信息的平均量,又被称为信息熵、信源熵、平均自信息量.这里,“消息”代表来自分布或数据流中的事件、样本或特征.(熵最好理解为不确定性的量度而不是确定性的量度,因为越随机的信源的熵越大)来自信源的另一个特征是样本的概率分布.这里的想法是,比较不可能发生的事情,当它发生了,会提供更多的信息.由于一些其他的原因,把信息(熵)定义为概率分布的对数的相反数是有道理的.事件的概率分布和每个事件的信息量构成了一个随机变量,这个随机变量的均值(即期望)就是这个分布产生的信息量的平均值(即熵).熵的单位通常为比特,但也用Sh、nat、Hart计量,取决于定义用到对数的底.采用概率分布的对数作为信息的量度的原因是其可加性.例如,投掷一次硬币提供了1Sh的信息,而掷m次就为m位.更一般地,你需要用log2n位来表示一个可以取n个值的变量.在1948年,克劳德•艾尔伍德•香农将热力学的熵,引入到信息论,因此它又被称为香农滳.而正是信息熵的发现,使得1871年由英国物理学家詹姆斯•麦克斯韦为了说明违反热力学第二定律的可能性而设想的麦克斯韦妖理论被推翻.设随机变量ξ所有取值为1,2,⋯,n,定义ξ的信息熵H(ξ)=-ni=1P ilog2P i,n i=1P i=1,i=1,2,⋯,n.(1)若n=2,试探索ξ的信息熵关于P1的解析式,并求其最大值;(2)若P1=P2=12n-1,P k+1=2P k(k=2,3,⋯,n),求此时的信息熵.14(2024·安徽合肥·模拟预测)在一个典型的数字通信系统中,由信源发出携带着一定信息量的消息,转换成适合在信道中传输的信号,通过信道传送到接收端.有干扰无记忆信道是实际应用中常见的信道,信道中存在干扰,从而造成传输的信息失真.在有干扰无记忆信道中,信道输入和输出是两个取值x 1,x 2,⋯,x n 的随机变量,分别记作X 和Y .条件概率P Y =x j ∣X =x i ,i ,j =1,2,⋯,n ,描述了输入信号和输出信号之间统计依赖关系,反映了信道的统计特性.随机变量X 的平均信息量定义为:H (X )=-ni =1p X =x i log 2p X =x i .当n =2时,信道疑义度定义为H (Y ∣X )=-2i =12j =1p X =x i ,Y =x j log 2p Y =x j ∣X =x i =-P X =x 1,Y =x 1 log 2p Y =x 1∣X =x 1 +P X =x 1,Y =x 2 log 2p Y =x 2∣X =x 1 +P X =x 2,Y =x 1 log 2p Y =x 1∣X =x 2 +P X =x 2,Y =x 2 log 2p Y =x 2∣X =x 2(1)设有一非均匀的骰子,若其任一面出现的概率与该面上的点数成正比,试求扔一次骰子向上的面出现的点数X 的平均信息量log 23≈1.59,log 25≈2.32,log 27≈2.81 ;(2)设某信道的输入变量X 与输出变量Y 均取值0,1.满足:P X =0 =ω,p Y =1∣X =0 =p Y =0∣X =1 =p (0<ω<1,0<p <1).试回答以下问题:①求P Y =0 的值;②求该信道的信道疑义度H Y ∣X 的最大值.【过关测试】1(2024·高三·全国·专题练习)定义:int x 为不超过x的最大整数部分,如int2.3=2,int-2.3= -3.甲、乙两个学生高二的6次数学测试成绩(测试时间为90分钟,满分100分)如下表所示:高二成绩第1次考试第2次考试第3次考试第4次考试第5次考试第6次考试甲687477848895乙717582848694进入高三后,由于改进了学习方法,甲、乙这两个学生的数学测试成绩预计有了大的提升.设甲或乙高二的数学测试成绩为x,若10int x+x-int x2≤100,则甲或乙高三的数学测试成绩预计为10int x+x-int x2;若10int x+x-int x2>100,则甲或乙高三的数学测试成绩预计为100.(1)试预测:在将要进行的高三6次数学测试成绩(测试时间为90分钟,满分100分)中,甲、乙两个学生的成绩(填入下列表格内);高三成绩第1次考试第2次考试第3次考试第4次考试第5次考试第6次考试甲乙(2)记高三任意一次数学测试成绩估计值为t,规定:t∈84,90,记为转换分为3分;t∈91,95,记为转换分为4分;t∈96,100,记为转换分为5分.现从乙的6次数学测试成绩中任意抽取2次,求这2次成绩的转换分之和为8分的概率.2(2024·全国·一模)正态分布与指数分布均是用于描述连续型随机变量的概率分布.对于一个给定的连续型随机变量X,定义其累积分布函数为F(x)=P(X≤x).已知某系统由一个电源和并联的A,B,C三个元件组成,在电源电压正常的情况下,至少一个元件正常工作才可保证系统正常运行,电源及各元件之间工作相互独立.(1)已知电源电压X(单位:V)服从正态分布N(40,4),且X的累积分布函数为F(x),求F(44)-F(38);(2)在数理统计中,指数分布常用于描述事件发生的时间间隔或等待时间.已知随机变量T(单位:天)表示某高稳定性元件的使用寿命,且服从指数分布,其累积分布函数为G t =0,t<0 1-14t,t≥0 .(ⅰ)设t1>t2>0,证明:P(T>t1|T>t2)=P(T>t1-t2);(ⅱ)若第n天元件A发生故障,求第n+1天系统正常运行的概率.附:若随机变量Y服从正态分布N(μ,σ2),则P(|Y-μ|<σ)=0.6827,P(|Y-μ|<2σ)=0.9545,P(|Y-μ| <3σ)=0.9973.3为考查一种新的治疗方案是否优于标准治疗方案,现从一批患者中随机抽取100名患者,均分为两组,分别采用新治疗方案与标准治疗方案治疗,记其中采用新治疗方案与标准治疗方案治疗受益的患者数分别为X 和Y .在治疗过程中,用指标I 衡量患者是否受益:若μ-σ≤I ≤μ+σ,则认为指标I 正常;若I >μ+σ,则认为指标I 偏高;若I <μ-σ,则认为指标I 偏低.若治疗后患者的指标I 正常,则认为患者受益于治疗方案,否则认为患者未受益于治疗方案.根据历史数据,受益于标准治疗方案的患者比例为0.6.(1)求E Y 和D Y ;(2)统计量是关于样本的函数,选取合适的统计量可以有效地反映样本信息.设采用新治疗方案治疗第i 位的患者治疗后指标I 的值为x i ,i =1,2,⋅⋅⋅,50,定义函数:f x i =1,x i >μ+σ0,μ-σ≤x i ≤μ+σ.-1,x i <μ-σ(ⅰ)简述以下统计量所反映的样本信息,并说明理由.①A =f x 1 +f x 2 +⋅⋅⋅+f x 50 ;②B =f x 1 f x 1 +1 +f x 2 f x 2 +1 +⋅⋅⋅+f x 50 f x 50 +12;(ⅱ)为确定新的治疗方案是否优于标准治疗方案,请在(ⅰ)中的统计量中选择一个合适的统计量,并根据统计量的取值作出统计决策.4(2024·高二·四川遂宁·期末)2020年新冠肺炎疫情期间,某区政府为了解本区居民对区政府防疫工作的满意度,从本区居民中随机抽取若干居民进行评分(满分100分),根据调查数据制成如下表格和频率分布直方图,已知评分在80,100的居民有600人.满意度评分40,6090,10080,9060,80满意度等级不满意基本满意满意非常满意(1)求频率分布直方图中a的值及所调查的总人数;(2)定义满意度指数η=(满意程度的平均分)/100,若η<0.8,则防疫工作需要进行大调整,否则不需要大调整.根据所学知识判断该区防疫工作是否带要进行大调整?(同一组中的数据用该组区间的中点值为代表) (3)为了解部分居民不满意的原因,从不满意的居民评分在40,50中用分层抽样的方法抽取6名居,50,60民,倾听他们的意见,并从6人中抽取2人担任防疫工作的监督员,求这2人中仅有一人对防疫工作的评分在40,50内的概率.5(2024·高三·北京·阶段练习)设离散型随机变量X和Y有相同的可能取值,它们的分布列分别为P X=a k=x k,P Y=a k=y k,x k>0,y k>0,k=1,2,⋯,n,nk=1x k=nk=1y k=1.指标D(X‖Y)可用来刻画X和Y的相似程度,其定义为D(X‖Y)=nk=1x kln x ky k.设X~B(n,p),0<p<1.(1)若Y~B(n,q),0<q<1,求D(X‖Y);(2)若n=2,P(Y=k-1)=13,k=1,2,3,求D(X‖Y)的最小值;(3)对任意与X有相同可能取值的随机变量Y,证明:D(X‖Y)≥0,并指出取等号的充要条件6(2024·高三·河南·期末)某国家队要从男子短道速滑1500米的两名种子选手甲、乙中选派一人参加2022年的北京冬季奥运会,他们近期六次训练成绩如下表:次序(i)123456甲(x i秒)142140139138141140乙(y i秒)138142137139143141(1)分别计算甲、乙两人这六次训练的平均成绩x甲,x乙,偏优均差ξ甲,ξ乙;(2)若x i-y i<2i=1,2,3,4,5,6,则称甲、乙这次训练的水平相当,现从这六次训练中随机抽取3次,求有两次甲、乙水平相当的概率.注:若数据x1,x2,⋅⋅⋅,x n中的最优数据为m,定义ξ=1nx1-m2+x2-m2+⋅⋅⋅+x n-m2为偏优均差.本题中的最优数据即最短时间.7(2024·全国·模拟预测)某医科大学科研部门为研究退休人员是否患痴呆症与上网的关系,随机调查了M 市100位退休人员,统计数据如下表所示:患痴呆症不患痴呆症合计上网163248不上网341852合计5050100(1)依据α=0.01的独立性检验,能否认为该市退休人员是否患痴呆症与上网之间有关联?(2)从该市退休人员中任取一位,记事件A 为“此人患痴呆症”,B 为“此人上网”,则A为“此人不患痴呆症”,定义事件A 的强度Y 1=P A 1-P A ,在事件B 发生的条件下A 的强度Y 2=P A B1-P A B.(i )证明:Y1Y 2=P B AP B A ;(ⅱ)利用抽样的样本数据,估计Y 1Y 2的值.附:χ2=n ad -bc 2a +bc +d a +c b +d,其中n =a +b +c +d .α0.0500.0100.001x α3.8416.63510.8288(2024·高三·山西朔州·开学考试)某校20名学生的数学成绩x i i =1,2,⋅⋅⋅,20 和知识竞赛成绩y ii =1,2,⋅⋅⋅,20 如下表:学生编号i 12345678910数学成绩x i 100999693908885838077知识竞赛成绩y i 29016022020065709010060270学生编号i 11121314151617181920数学成绩x i 75747270686660503935知识竞赛成绩y i4535405025302015105计算可得数学成绩的平均值是x =75,知识竞赛成绩的平均值是y =90,并且20i =1x i -x 2 =6464,20i =1y i -y2=149450,20i =1x i -x y i -y =21650.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到0.01);(2)设N ∈N *,变量x 和变量y 的一组样本数据为x i ,y i i =1,2,⋅⋅⋅,N ,其中x i i =1,2,⋅⋅⋅,N 两两不相同,y i i =1,2,⋅⋅⋅,N 两两不相同.记x i 在x n n =1,2,⋅⋅⋅,N 中的排名是第R i 位,y i 在y n n =1,2,⋅⋅⋅,N 中的排名是第S i 位,i =1,2,⋅⋅⋅,N .定义变量x 和变量y 的“斯皮尔曼相关系数”(记为ρ)为变量x 的排名和变量y 的排名的样本相关系数.(i )记d i =R i -S i ,i =1,2,⋅⋅⋅,N .证明:ρ=1-6N N 2-1 Ni =1d 2i ;(ii )用(i )的公式求得这组学生的数学成绩和知识竞赛成绩的“斯皮尔曼相关系数”约为0.91,简述“斯皮尔曼相关系数”在分析线性相关性时的优势.注:参考公式与参考数据.r =ni =1x i -x y i -yni =1x i -x 2 ni =1y i -y2;nk =1k 2=n n +1 2n +16;6464×149450≈31000.9(2024·高二·湖北·阶段练习)“难度系数”反映试题的难易程度,难度系数越大,题目得分率越高,难度也就越小,“难度系数”的计算公式为L=1-YW,其中L为难度系数,Y为样本平均失分,W为试卷总分(一般为100分或150分).某校高二年级的老师命制了某专题共5套测试卷(总分150分),用于对该校高二年级480名学生进行每周测试,测试前根据自己对学生的了解,预估了每套试卷的难度系数,如下表所示:试卷序号i12345考前预估难度系数L i0.70.640.60.60.55测试后,随机抽取了50名学生的数据进行统计,结果如下:试卷序号i12345平均分/分10299939387(1)根据试卷2的预估难度系数估计这480名学生第2套试卷的平均分;(2)试卷的预估难度系数和实测难度系数之间会有偏差,设L i 为第i套试卷的实测难度系数,并定义统计量S=1 nL 1-I i2+L 2-L22+⋯+L n-L n2,若S<0.001,则认为试卷的难度系数预估合理,否则认为不合理.以样本平均分估计总体平均分,试检验这5套试卷难度系数的预估是否合理.(3)聪聪与明明是学习上的好伙伴,两人商定以同时解答上述试卷易错题进行“智力竞赛”,规则如下:双方轮换选题,每人每次只选1道题,先正确解答者记1分,否则计0分,先多得2分者为胜方.若在此次竞赛中,聪聪选题时聪聪得分的概率为23,明明选题时聪聪得分的概率为12,各题的结果相互独立,二人约定从0:0计分并由聪聪先选题,求聪聪3:1获胜的概率 .10(2024·高三·四川成都·开学考试)在三维空间中,立方体的坐标可用三维坐标a 1,a 2,a 3 表示,其中a i ∈0,1 1≤i ≤3,i ∈N .而在n 维空间中n ≥2,n ∈N ,以单位长度为边长的“立方体”的项点坐标可表示为n 维坐标a 1,a 2,a 3,⋯⋯,a n ,其中a i ∈0,1 1≤i ≤n ,i ∈N .现有如下定义:在n 维空间中两点间的曼哈顿距离为两点a 1,a 2,a 3,⋯⋯,a n 与b 1,b 2,b 3,⋯⋯,b n 坐标差的绝对值之和,即为a 1-b 1 +a 2-b 2 +a 3-b 3 +⋯⋯+a n -b n .回答下列问题:(1)求出n 维“立方体”的顶点数;(2)在n 维“立方体”中任取两个不同顶点,记随机变量X 为所取两点间的曼哈顿距离①求出X 的分布列与期望;②证明:在n 足够大时,随机变量X 的方差小于0.25n 2.(已知对于正态分布X ∼N μ,σ2 ,P 随X 变化关系可表示为φμ,σx =1σ2π⋅e -x -μ22σ2)11(2024·高二·福建莆田·期末)为了考查一种新疫苗预防某一疾病的效果,研究人员对一地区某种动物进行试验,从该试验群中随机抽查了50只,得到如下的样本数据(单位:只):发病没发病合计接种疫苗81624没接种疫苗17926合计252550(1)能否有95%的把握认为接种该疫苗与预防该疾病有关?(2)从该地区此动物群中任取一只,记A 表示此动物发病,A表示此动物没发病,B 表示此动物接种疫苗,定义事件A 的优势R 1=P A 1-P A ,在事件B 发生的条件下A 的优势R 2=P A B1-P A B.(ⅰ)证明:R 2R 1=P B A P B A;(ⅱ)利用抽样的样本数据,给出P B A ,P B A 的估计值,并给出R2R 1的估计值.附:χ2=n ad -bc 2a +bc +d a +c b +d,其中n =a +b +c +d .P χ2≥x 00.0500.0100.001x 03.8416.63510.82812(2024·高一·山东济南·期末)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追湖到17世纪的布莱兹·帕斯卡和皮埃尔·德·费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔·西蒙·拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P AB =P A P B 成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.13(2024·高二·浙江台州·期末)袋中有大小、形状完全相同的2个红球,4个白球.采用放回摸球,从袋中摸出一个球,定义T 变换为:若摸出的球是白球,把函数f x 图象上所有点的横坐标缩短到原来110倍,(纵坐标不变);若摸出的是红球,将函数f x 图象上所有的点向下平移1个单位.函数f x 经过1次T 变换后的函数记为f 1x ,经过2次T 变换后的函数记为f 2x ,⋯,经过n 次T 变换后的函数记为f n x n ∈N * .现对函数f x =lg x 进行连续的T 变换.(1)若第一次摸出的是白球,第二次摸出的是红球,求f 2x ;(2)记X =f 31 ,求随机变量X 的分布列及数学期望.14(2024·高三·上海宝山·阶段练习)已知n为正整数,对于给定的函数y=f x ,定义一个n次多项式g nx 如下:g n x =ni=0C i n f inx i1-xn-i(1)当f x =1时,求g n x ;(2)当f x =x时,求g n x ;(3)当f x =x2时,求g n x .15(2024·高一·辽宁葫芦岛·期末)通信信号利用BEC信道传输,若BEC信道传输成功,则接收端收到的信号与发来的信号完全相同.若BEC信道传输失败,则接收端收不到任何信号.传输技术有两种:一种是传统通信传输技术,采用多个信道各自独立传输信号(以两个信道为例,如图1).另一种是华为公司5G信号现使用的土耳其通讯技术专家Erdal Arikan教授的发明的极化码技术(以两个信道为例,如图2).传输规则如下,信号U2直接从信道2传输;信号U1在传输前先与U2“异或”运算得到信号X1,再从信道1传输.若信道1与信道2均成功输出,则两信号通过“异或”运算进行解码后,传至接收端,若信道1输出失败信道2输出成功,则接收端接收到信道2信号,若信道1输出成功信道2输出失败,则接收端对信号进行自身“异或”运算而解码后,传至接收端.(注:定义“异或”运算:U1⊕U2=X1,X1⊕U1=U2,X1⊕U2=U1,X1⊕X1=U2).假设每个信道传输成功的概率均为p0<p<1.(1)对于传统传输技术,求信号U1和U2中至少有一个传输成功的概率;(2)对于Erdal Arikan教授的极化码技术;①求接收端成功接收信号U1的概率;②若接收端接收到信号U2才算成功完成一次任务,求利用极化码技术成功完成一次任务的概率.。

七年级数学下-专题 一元一次方程中的新定义问题(解答题30题)(解析版)

七年级数学下-专题  一元一次方程中的新定义问题(解答题30题)(解析版)

七年级上册数学《第三章一元一次方程》专题一元一次方程中的新定义问题(解答题30题)1.用“△”定义一种新运算:对于任意有理数a和b,规定a△b=ab2+2ab+b,如:1△3=1×32+2×1×3+3=18.(1)求(﹣2)△3的值;(2)若x△(﹣3)=2x+2,求x的值.【分析】(1)原式利用题中的新定义化简,计算即可得到结果;(2)已知等式利用题中的新定义化简,计算即可求出x的值.【解答】解:(1)根据题中的新定义得:(﹣2)△3=(﹣2)×32+2×(﹣2)×3+3=﹣18+(﹣12)+3=﹣27;(2)由题意,得x×(﹣3)2+2×x×(﹣3)+(﹣3)=2x+2,整理,得:9x﹣6x﹣3=2x+2,解得:x=5.【点评】此题考查了解一元一次方程,以及有理数的混合运算,弄清题中的新定义是解本题的关键.2.用*定义一种新运算:对于任意有理数a和b,规定:a*b=ab2﹣2ab,如:2*1=2×12﹣2×2×1=﹣2.(1)求:(﹣2)*3;(2)若(x+1)*12=3,求x的值.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)已知等式利用题中的新定义计算即可求出x的值.【解答】解:(1)根据题中的新定义得:原式=﹣2×32﹣2×(﹣2)×3=﹣2×9+2×2×3=﹣18+12=﹣6;(2)已知等式利用题中的新定义化简得:1 4(x+1)﹣2(x+1)×12=3,整理得:−34(x+1)=3,即x+1=﹣4,解得:x=﹣5.【点评】此题考查了解一元一次方程,以及有理数的混合运算,弄清题中的新定义是解本题的关键.3.若规定这样一种新运算法则:a*b=a2﹣4ab,如3*(﹣2)=32﹣4×3×(﹣2)=33.(1)求4*(﹣5)的值;(2)若(﹣6)*y=﹣11﹣y,求y的值.【分析】(1)根据a*b=a2﹣4ab,求出4*(﹣5)的值是多少即可.(2)根据(﹣6)*y=﹣11﹣y,可得36+24y=﹣11﹣y,据此求出y的值是多少即可.【解答】解:(1)4*(﹣5)=42﹣4×4×(﹣5)=16+80=96;(2)∵(﹣6)*y=﹣11﹣y,∴36+24y=﹣11﹣y,24y+y=﹣11﹣36,25y=﹣47,y=−4725.【点评】本题考查了解一元一次方程以及有理数的混合运算,掌握解一元一次方程的基本步骤是解答(2)的关键.4.用“※”定义一种新运算:对于任意有理数a和b,规定a※b=a(a+b).例如:1※2=1×(1+2)=1×3=3.(1)求(﹣3)※4的值;(2)若(﹣2)※(3x﹣2)=x+1,求x的值.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)已知等式利用题中的新定义化简,计算即可求出x的值.【解答】解:(1)根据题中的新定义得:原式=(﹣3)×(﹣3+4)=﹣3×1=﹣3;(2)已知等式利用题中的新定义化简得:﹣2×(﹣2+3x﹣2)=x+1,即﹣2(3x﹣4)=x+1,去括号得:﹣6x+8=x+1,移项合并得:﹣7x=﹣7,解得:x=1.【点评】此题考查了解一元一次方程,以及有理数的混合运算,弄清题中的新定义是解本题的关键.5.我们规定一种新的运算“⊗”:a⊗b=a+ab﹣3b.例如:4⊗2=4+4×2﹣3×2=6,5⊗(﹣3)=5+5×(﹣3)﹣3×(﹣3)=﹣1.(1)(﹣1)⊗3=,(2x﹣1)⊗12=;(2)若4⊗(x+1)=(2x﹣1)⊗12,求x的值.【分析】(1)两式利用题中的新定义计算即可得到结果;(2)已知等式利用题中的新定义化简,计算即可求出x的值.【解答】解:(1)根据题中的新定义得:(﹣1)⊗3=﹣1﹣3﹣9=﹣13;(2x﹣1)⊗12=2x﹣1+12(2x﹣1)−32=3x﹣3;故答案为:﹣13,3x﹣3;(2)已知等式利用题中的新定义化简得:4+4(x+1)﹣3(x+1)=3x﹣3,去括号得:4+4x+4﹣3x﹣3=3x﹣3,移项合并得:﹣2x=﹣8,解得:x=4.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.6.定义一种新运算“※”,其规则为x※y=xy﹣x+y.例如6※5=6×5﹣6+5=29.再如:(2a)※3=(2a)×3﹣2a+3.(1)计算5※6值为.(2)若(2m)※3=2※m,求m的值.(3)有理数的加法和乘法运算都满足交换律,即a+b=b+a,ab=ba,“※”运算是否满足交换律?若满足,请说明理由;若不满足,请举例说明.【分析】(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用题中的新定义化简,计算即可求出m的值;(3)“※”不满足交换律,举例即可.【解答】解:(1)根据题中的新定义得:原式=5×6﹣5+6=30﹣5+6=31;故答案为:31;(2)根据题中的新定义化简得:6m﹣2m+3=2m﹣2+m,解得:m=﹣5;(3例如:2※3=6﹣2+3=7,3※2=6﹣3+2=5,即2※3≠3※2.【点评】此题考查了解一元一次方程,以及有理数的混合运算,弄清题中的新定义是解本题的关键.7.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:(a,b)★(c,d)=bc﹣ad.例如:(1,2)★(3,4)=2×3﹣1×4=2.根据上述规定解决下列问题:(1)有理数对(3,﹣2)★(1,﹣2)=.(2)若有理数对(2,2x+1)★(1,2x﹣1)=7,求x的值.【分析】(1)根据规定直接计算求值;(2)根据规定计算得方程,求解即可.【解答】解:(1)(3,﹣2)★(1,﹣2)=(﹣2)×1﹣3×(﹣2)=﹣2+6=4;故答案为:4;(2)由题意,得(2x +1)×1﹣2(2x ﹣1)=7,2x +1﹣4x +2=7﹣2x =4.x =﹣2.【点评】本题考查了解一元一次方程及有理数的混合运算,掌握一元一次方程的解法和有理数的混合运算是解决本题的关键.8.用“⊕”定义一种新运算:对于任意有理数a 和b ,规定a ⊕b =ab 2+2ab +a .如:1⊕3=1×32+2×1×3+1=16.(1)则(﹣2)⊕3的值为;(2)若�+12⊕(−3)=8,求a 的值.【分析】(1(2)已知等式利用题中新定义化简,计算即可求出a 的值.【解答】解:(1)根据题中新定义得:(﹣2)⊕3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32;故答案为:﹣32;(2)根据题中新定义得:�+12⊕(﹣3)=8,�+12×(﹣3)2+2×�+12×(﹣3)+�+12=8,整理得:4(a +1)=16,解得:a =3.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.9.定义新运算:a⊗b=a+b,a⊕b=ab,等式右边是通常的加法、减法运算.(1)求(﹣2)⊗3+4⊕(﹣2)的值;(2)化简:a2b⊗3ab+5a2b⊕4ab;(3)若2x⊗1=(﹣x+2)⊕4,求x的值.【分析】(1)根据题意中给出的信息列式计算即可;(2)根据题意中给出的信息列式计算即可;(3)根据题意中给出的信息列出方程,解方程即可.【解答】解:(1)(﹣2)⊗3+4⊕(﹣2)=﹣2+3+4×(﹣2)=1+(﹣8)=﹣7;(2)a2b⊗3ab+5a2b⊕4ab=a2b+3ab+5a2b⋅4ab=a2b+3ab+20a3b2;(3)∵2x⊗1=(﹣x+2)⊕4,∴2x+1=4(﹣x+2),解得:�=7 6,∴x的值为7 6.【点评】本题主要考查了整式混合运算的应用,有理数混合运算的应用,解一元一次方程,解题的关键是读懂题意,熟练掌握运算法则,准确计算.10.现定义一种新运算“⊕”,规则如下:a⊕b=ab+2a.如2⊕3=2×3+2×2=10,且在运算过程中,有括号的要先算括号里面的.请解答下列问题:(1)求3⊕(﹣1)的值;(2)求(﹣2)⊕[(﹣4)⊕12]的值;(3)现改变上述运算规则:当a≥b时,a⊕b=ab+2a,当a<b时,a⊕b=ab﹣2a.若4⊕x=30,求x 的值.【分析】(1)根据a⊕b=ab+2a,进行计算即可解答;(2)根据a⊕b=ab+2a,进行计算即可解答;(3)分两种情况,当4≥x时,当4<x时.【解答】解:(1)3⊕(﹣1)=3×(﹣1)+2×3=﹣3+6=3;(2)(﹣2)⊕[(﹣4)⊕1 2 ]=(﹣2)⊕[(﹣4)×12+2×(﹣4)]=(﹣2)⊕(﹣10)=﹣2×(﹣10)+2×(﹣2)=20﹣4=16;(3)分两种情况:当4≥x时,4⊕x=30,4x+2×4=30,4x=22,x=112(舍去),当4<x时,4⊕x=30,4x﹣2×4=30,4x=38,x=192,综上所述:x的值为:19 2.【点评】本题考查了解一元一次方程,有理数的混合运算,理解材料中定义的新运算是解题的关键.11.“*”是新规定的这样一种运算法则:a*b=a2+2ab.比如3*(﹣2)=32+2×3×(﹣2)=﹣3(1)试求2*(﹣1)的值;(2)若2*x=2,求x的值;(3)若(﹣2)*(1*x )=x +9,求x 的值.【分析】(1)原式利用题中的新定义计算即可得到结果;(2)已知等式利用题中的新定义计算,即可求出x 的值;(3)已知等式利用题中的新定义计算,即可求出x 的值.【解答】解:(1)根据题中的新定义得:原式=4﹣4=0;(2)根据题中的新定义化简得:4+4x =2,解得:x =−12;(3)根据题中的新定义化简得:(﹣2)*(1+2x )=4﹣4(1+2x )=x +9,去括号得:4﹣4﹣8x =x +9,解得:x =﹣1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.12.(2022秋•香坊区期末)已知m ,n 为有理数,且m ≠0,若关于x 的一元一次方程mx ﹣n =0的解恰为x =2m +n ,则此方程称为“合并式方程”.例如:3x +9=0∵x =2×3+(﹣9)=﹣3,且x =﹣3是方程3x +9=0的解∴此方程3x +9=0为“合并式方程”,请根据上述定义解答下列问题:(1)一元一次方程14�−12=0是否是“合并式方程”?并说明理由;(2)关于x 的一元一次方程6x ﹣n =0是“合并式方程”,求n 的值.【分析】(1)根据“合并式方程”的定义进行判断即可;(2)根据“合并式方程”的定义可知x =12+n ,将x =12+n 代入方程6x ﹣n =0求解即可.【解答】解:(1)一元一次方程14�−12=0不是“合并式方程”,理由如下:∵x =2×14+12=1,且x =1不是一元一次方程14�−12=0的解,∴一元一次方程14�−12=0不是“合并式方程”;(2)∵关于x 的一元一次方程6x ﹣n =0是“合并式方程”,∴x =2×6+n =12+n ,且x =12+n 是方程6x ﹣n =0的解,∴6(12+n )﹣n =0,解得n =−725.【点评】本题考查了一元一次方程的解,新定义,理解新定义是解题的关键.13.对任意4个有理数a ,b ,c ,d ,定义新运算:����=ad ﹣bc .(1)计算:已知1435=;(2)若3�2�1=35,求x 的值;(3)若�34�2=2�521,求x 的值.【分析】(1)根据题意计算即可;(2)将3�2�1=35转化为一元一次方程解答;(3)中将两边同时化成一元一次方程,然后通过去括号、移项、系数化为1等过程,求得x 的值.【解答】解:(1)1435=1×5﹣3×4=5﹣12=﹣7,故答案为:﹣7;(2)∵3�2�1=35,∴1×3x ﹣2x =35,x =35;(3)∵�34�2=2�521,∴2x ﹣3×4x =1×2x ﹣2×5,∴2x ﹣12x =2x ﹣10,∴﹣12x =﹣10,∴x =−10−12=56.【点评】此题定义新运算,实际考查解一元一次方程的解法,解题的关键是掌握解一元一次方程的方法.14.定义:如果两个一元一次方程的解互为相反数,我们就称这两个方程为“兄弟方程”.如:方程2x =4和3x +6=0为“兄弟方程”.(1)若关于x 的方程5x +m =0与方程2x ﹣4=6是“兄弟方程”,求m 的值;(2)若某“兄弟方程”的两个解的差为8,其中一个解为n ,求n 的值.【分析】(1)关于x的方程5x+m=0与方程2x﹣4=6是“兄弟方程”,方程5x+m=0的解为x=﹣5,x =﹣5满足方程5x+m=0;(2)n=4或﹣4.【解答】解:(1)2x﹣4=6,得x=5,∵关于x的方程5x+m=0与方程2x﹣4=6是“兄弟方程”,∴方程5x+m=0的解为x=﹣5,∴5×(﹣5)+m=0,﹣25+m=0,∴m=25.(2)“兄弟方程”的另一个解为﹣n.∵两个解的差为8,∴n﹣(﹣n)=8或﹣n﹣n=8,∴n=4或﹣4.【点评】本题考查有关解一元一次方程、一元一次方程的解,解题的关键是知道解一元一次方程的方法.15.我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“定值方程”.例如:2x=4的解为x=2=4﹣2,则该方程2x=4是“定值方程”.请根据上述规定解答下列问题:(1)判断方程4x=6(回答“是”或“不是”)“定值方程”;(2)若a=3,有符合要求的“定值方程”吗?若有,求b的值;若没有,请说明理由;(3)若关于x的一元一次方程2x=mn+m和﹣2x=mn+n都是“定值方程”,求代数式5﹣3m+3n的值.【分析】(1)解方程,并计算对应b﹣a的值与方程的解不相等,所以不是“定值方程”;(2)根据“定值方程”的定义进行解答即可;(3)根据“定值方程”的定义得出m﹣n的值,再利用整体代入的方法计算即可.【解答】解:(1)4x=6,解得:x=3 2,∵32≠6−4,∴方程4x=6不是“定值方程”;故答案为:不是;(2)有,理由如下:由题意3x =b ,则x =�3=�−3,则�=92;(3)由2x =mn +m 是“定值方程”,可得mn +m =4①,设﹣2x =c ,则x =−�2=�+2,解得�=−43,푚 + =−34②,①﹣②,地:m ﹣n =163,∴5﹣3m +3n =5﹣3(m ﹣n )=5−3×163=−11.【点评】本题考查了一元一次方程的解,读懂题意,理解“定值方程”的概念并根据概念列出方程是解题的关键.16.规定:若关于x 的一元一次方程ax =b 的解为x =b +a ,则称该方程为“和解方程”.例如:方程2x =﹣4的解为x =﹣2,而﹣2=﹣4+2,则方程2x =﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x 的一元一次方程﹣3x =t 是“和解方程”,求t 的值;(2)已知关于x 的一元一次方程=mn +n 是“和解方程”,并且它的解是x =n (n ≠0),求m ,n 的值.【分析】(1)根据和解方程的定义即可得出关于m 的一元一次方程,解之即可得出结论;(2)根据和解方程的定义即可得出关于m 、n 的二元二次方程组,解之即可得出m 、n 的值.【解答】解:(1)∵﹣3x =t ,∴x =−�3.又∵关于x 的一元一次方程﹣3x =t 是“和解方程”,∴x =t +(﹣3),即x =t ﹣3,−�3=t ﹣3,解得t =94.答:t 的值是94.(2)∵4x =nm +nx =n (n ≠0),∴把x=n(n≠0)代入4x=mn+n,得4n=mn+n,∵n≠0,∴两边都除以n,得4=m+1,∴解得m=3,把m=3代入n=mn+n+4,解得n=−4 3,答:m的值是3,n的值是−4 3.【点评】本题考查了一元一次方程的解、解一元一次方程,解题的关键是:根据“和解方程“的定义列出关于m的一元一次方程求解.17.(2023春•浦东新区期末)我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“奇异方程”.例如:2x=4的解为x=2=4﹣2,则该方程2x=4是“奇异方程”.请根据上述规定解答下列问题:(1)判断方程5x=﹣8(回答“是”或“不是”)“奇异方程”;(2)若a=3,有符合要求的“奇异方程”吗?若有,求b的值;若没有,请说明理由.【分析】(1)解方程,并计算对应b﹣a的值与方程的解不相等,所以不是奇异方程;(2)根据奇异方程的定义即可得出关于b的方程,解方程即可.【解答】解:(1)∵5x=﹣8,解得x=−8 5,∵﹣8﹣5=﹣13,﹣13≠−8 5,∴5x=﹣8不是奇异方程.故答案为:不是.(2)∵a=3,∴x=b﹣3,∴b﹣3=�3,∴b=9 2,即b=92时有符合要求的“奇异方程”.【点评】本题考查了一元一次方程的解,读懂题意,理解奇异方程的概念并根据概念列出方程是解题的关键.18.对于有理数a,b,定义两种新运算“※”与“◎”,规定:a※b=a2+2ab,a◎b=|a+b|﹣|a﹣b|,例如,2※(﹣1)=22+2×2×(﹣1)=0,(﹣2)※3=|﹣2+3|﹣|﹣2﹣3|=﹣4.(1)计算(﹣3)※2的值;(2)若a,b在数轴上的位置如图所示,化简a◎b;(3)若(﹣2)※x=2◎(﹣4)+3x,求x的值;(4)对于任意有理数m,n,请你定义一种新运算“★”,使得(﹣3)★5=4,直接写出你定义的运算:m★n=(用含m,n的式子表示).【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义化简,根据绝对值的代数意义得到结果即可;(3(4)根据题意只要写出一个符合要求的式子即可,这是一道开放性题目,答案不唯一.【解答】解:(1)根据题中的新定义得:原式=(﹣3)2+2×(﹣3)×2=9﹣12=﹣3;(2)由a,b在数轴上位置,可得a+b<0,a﹣b<0,则a◎b=|a+b|﹣|a﹣b|=﹣a﹣b+a﹣b=﹣2b;(3)∵(﹣2)※x=2◎(﹣4)+3x,∴22﹣4x=2﹣6+3x,解得:x=8 7;(4)∵(﹣3)★5=4,∴m★n=m2﹣n,故答案为:m2﹣n.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.阅读材料:规定一种新的运算a ☆b ☆c =a +b ﹣ac .例如3☆2☆1=3+2﹣3×1=2.(1)按照这个规定,计算1☆2☆3的结果为;(2)按照这个规定,化简(x ﹣1)☆(x 2﹣2)☆3;(3)按照这个规定,当2☆x ☆3=4☆1☆x 时,x 的值为;(4)按照这个规定,若(1﹣x )☆(2x +1)☆(﹣2)=m ,12☆m ☆(m ﹣1)=2,则x 的值为2.【分析】(1)直接利用已知运算法则列式计算即可;(2)直接利用已知运算法则列式计算即可;(3)直接利用已知运算法则列方程解答即可;(4)直接利用已知运算法则列方程解答即可.【解答】解:(1)由题意可得:1☆2☆3=1+2﹣1×3=3﹣3=0,故答案为:0;(2)由题意可得:(x ﹣1)☆(x 2﹣2)☆3=(x ﹣1)+(x 2﹣2)﹣3(x ﹣1)=x ﹣1+x 2﹣2﹣3x +3=x 2﹣2x ;(3)由题意可得:2+x ﹣6=4+1x ,移项,得x +4x =4+1+6﹣2,合并同类项,得5x =9,系数化为1,得x =95;故答案为:95;(4)由题意可得:1﹣x +2x +1+2(1﹣x )=m ,解得m =4﹣x ,∴12☆m ☆(m ﹣1)=2可化为12☆(4﹣x )☆(3﹣x )=2,即12+4﹣x −12(3﹣x )=2,整理,得−12�=−1,解得x =2.故答案为:2.【点评】此题主要考查了一元一次方程的解法以及有理数的混合运算,正确掌握相关运算法则是解题关键.20.如果两个方程的解相差k ,且k 为正整数,则称解较大的方程为另一个方程的“k 的后移方程”.例如:方程x ﹣3=0的解是x =3,方程x ﹣1=0的解是x =1.所以:方程x ﹣3=0是方程x ﹣1=0的“2的后移方程”.(1)判断方程2x ﹣3=0是否为方程2x ﹣1=0的k 的后移方程(填“是”或“否”);(2)若关于x 的方程2x +m +n =0是关于x 的方程2x +m =0的“2的后移方程”,求n 的值;(3)若关于x 的方程5x +b =1是关于x 的方程5x +c =1的“3的后移方程”,求2b ﹣2(c +3)的值.【分析】(1)求出两个方程的解,利用“后移方程”的定义判断即可;(2)分别表示出两个方程的解,根据“后移方程”的定义列出关于n 的方程,求出方程的解即可得到n 的值;(3)分别表示出两个方程的解,根据“后移方程”的定义列出关系式即可.【解答】解:(1)解方程2x ﹣3=0,得x =32,解方程2x ﹣1=0,得x =12,∵32−12=1,∴方程2x ﹣3=0是方程2x ﹣1=0的k 的后移方程;故答案为:是;(2)解方程2x +m +n =0,x =−푚− 2,解方程2x +m =0,x =−푚2,∵关于x 的方程2x +m +n =0是关于x 的方程2x +m =0的“2的后移方程”,∴−푚− 2−−푚2=2,∴n =﹣4;(3)解方程5x +b =1得x =1−�5,解方程5x +c =1得x =1−�5,∵方程5x +b =1是方程5x +c =1的“3的后移方程”,∴1−�5−1−�5=3,∴b ﹣c =﹣15,∴2b ﹣2(c +3)=2b ﹣2c ﹣6=2(b ﹣c )﹣6=﹣30﹣6=﹣36.【点评】此题考查了一元一次方程的解,弄清题中“后移方程”的定义是解本题的关键.21.(2022秋•朔州月考)定义:如果两个一元一次方程的解之和为0、我们就称这两个方程为“互补方程”.例如:方程2x +5=﹣1和�3=1为“互补方程”.(1)方程3x ﹣7=8与方程�−32+1=﹣3“互补方程”.(请填入“是”或“不是”)(2)若关于x 的方程�2+m =2与方程3x ﹣2=x +6是“互补方程”,求m 的值.(3)若关于x 的方程2x ﹣1=4k ﹣3与5�−34−�=32是“互补方程”,求k 的值.及关于y 的方程�2022=7k +3的解.【分析】(1)分别求得两个方程的解,再利用“互补方程”的定义进行判断即可;(2)分别求得两个方程的解,利用“互补方程”的定义列出关于m 的方程解答即可;(3)分别求得两个方程的解,利用“互补方程”的定义列出关于k 的方程,求得k 的值,代入方程�2022=7k +3,然后解关于y 的方程即可.【解答】解:(1)由3x ﹣7=8,解得x =5;由�−32+1=﹣3,解得x =﹣5.∵﹣5+5=0,∴方程3x ﹣7=8与方程�−32+1=﹣3是“互补方程”.故答案为:是;(2)由�2+m =2,解得x =4﹣2m ;由3x ﹣2=x +6解得x =4.∵关于x 的方程�2+m =2与方程3x ﹣2=x +6是“互补方程”,∴4﹣2m +4=0,解得m =4.(3)由2x ﹣1=4k ﹣3,解得x =2k ﹣1;由5�−34−�=32,解得x =4�+95;∵关于x 的方程2x ﹣1=4k ﹣3与5�−34−�=32是“互补方程”,∴2k ﹣1+4�+95=0,解得k =−27,∴关于y 的方程为�2022=−2+3,解得y =2022.【点评】本题主要考查了一元一次方程的解,解一元一次方程,利用互补方程的意义解答是解题的关键,本题是新定义型,理解并熟练应用新定义解答也是解题的关键.22.(2022秋•郴州期末)定义:如果两个一元一次方程的解的和为1,我们就称这两个方程为“集团方程”,例如:方程4x =8和x +1=0为“集团方程”.(1)若关于x 的方程3x +m =0与方程4x ﹣1=x +8是“集团方程”,求m 的值;(2)若“集团方程”的两个解的差为6,其中一个较大的解为n ,求n 的值;(3)若关于x 的一元一次方程12022�+3=2�+�和12022�+1=0是“集团方程”,求关于y 的一元一次方程12022(�+1)+3=2�+2+�的解.【分析】(1)先表示两个方程的解,再求值.(2)根据条件建立关于n 的方程,再求值.(3)先求k ,再解方程.【解答】解:(1)∵3x +m =0,∴�=−푚3.∵4x ﹣1=x +8,∴x =3.∵关于x的方程3x+m=0与方程4x﹣1=x+8是“集团方程”,∴−푚3+3=1,∴m=6;(2)∵“集团方程”的两个解和为1,∴另一个方程的解是1﹣n,∵两个解的差是6,且n为较大的解,∴n﹣(1﹣n)=6,∴ =7 2.(3)∵1 2022�+1=0,∴x=﹣2022.∵关于x的一元一次方程12022�+3=2�+�和12022�+1=0是“集团方程”,∴关于x的一元一次方程12022�+3=2�+�的解为:x=1﹣(﹣2022)=2023.∵关于y的一元一次方程12022(�+1)+3=2�+2+�可化为:12022(�+1)+3=2(�+1)+�,令y+1=x=2023,∴y=2022.23.已知关于x的一元一次方程ax+b=0(其中a≠0,a、b为常数),若这个方程的解恰好为x=a﹣b,则称这个方程为“恰解方程”,例如:方程2x+4=0的解为x=﹣2,恰好为x=2﹣4,则方程2x+4=0为“恰解方程”.(1)已知关于x的一元一次方程3x+k=0是“恰解方程”,则k的值为;(2)已知关于x的一元一次方程﹣2x=mn+n是“恰解方程”,且解为x=n(n≠0).求m,n的值;(3)已知关于x的一元一次方程3x=mn+n是“恰解方程”.求代数式3(mn+2m2﹣n)﹣(6m2+mn)+5n的值.【分析】(1)利用“恰解方程”的定义,得出关于k的一元一次方程,解方程即可得出k的值;(2)将x=n代入方程可得﹣2n=mn+n,由﹣2x=mn+n是“恰解方程”得出x=﹣2+mn+n,再结合x =n,即可求出m,n的值;(3)根据“恰解方程”的定义得出mn +n =−92,把3(mn +2m 2﹣n )﹣(6m 2+mn )+5n 化简后代入计算即可.【解答】解:(1)解方程3x +k =0得:x =−�3,∵3x +k =0是“恰解方程”,∴x =3﹣k ,∴−�3=3﹣k ,解得:k =92,故答案为:92;(2)∵﹣2x =mn +n 是“恰解方程”,∴x =﹣2+mn +n ,∴n =2+mn +n ,∴mn =2,∵x =n ,∴﹣2n =mn +n ,解得:n =−23,把n =−23代入mn =2,解得:m =﹣3;(3)解方程3x =mn +n 得:x =푚 + 3,∵方程3x =mn +n 是“恰解方程”,∴x =3+mn +n ,∴푚 + 3=3+mn +n ,∴mn +n =−92,∴3(mn +2m 2﹣n )﹣(6m 2+mn )+5n=3mn +6m 2﹣3n ﹣6m 2﹣mn +5n=2mn+2n=2(mn+n)=2×(−9 2)=﹣9.【点评】本题考查了一元一次方程的解,理解“恰解方程”的定义是解题的关键.24.(2023秋•东台市期中)阅读下列材料,并完成相应的任务.定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程4x=8与方程y+1=0为“美好方程”.(1)请判断方程4x﹣(x+5)=1与方程﹣2y﹣y=3是否为“美好方程”,请说明理由;(2)若关于x的方程3x+m=0与方程4y﹣2=y+10是“关好方程”,求m的值;(3)若“美好方程”的两个解的差为8,其中一个解为n,求n的值.【分析】(1)分别求得两个方程的解,利用“美好方程”的定义判断即可;(2)分别求得两个方程的解,利用“美好方程”的定义列出关于m的方程,解答即可;(3)分别求得两个方程的解,利用“美好方程”的定义列出关于n的方程解答即可.【解答】解:(1)方程4x﹣(x+5)=1与方程﹣2y﹣y=3互为“美好方程”,理由如下:解方程4x﹣(x+5)=1得x=2解方程﹣2y﹣y=3得y=﹣1,∵x+y=2+(﹣1)=1,∴方程4x﹣(x+5)=1与方程﹣2y﹣y=3互为“美好方程”;(2)关于x的方程3x+m=0的解为:x=−푚3,方程4y﹣2=y+10的解为:y=4,∵关于x的方程3x+m=0与方程4y﹣2=y+10是“关好方程”,∴−푚3+4=1,∴m=9;(3)∵“美好方程”的两个解的和为1,∴另一个方程的解为:1﹣n,∵两个解的差为8,∴1﹣n﹣n=8或n﹣(1﹣n)=8,∴n=−72或92.【点评】本题考查了一元一次方程的解,利用“美好方程”的定义找到方程解的关系是解题的关键.25.(2023秋•南岗区校级期中)定义一种新运算“▲”,其运算方式如下:2▲1=4×2﹣3×1=51▲(﹣3)=4×1﹣3×(﹣3)=13(﹣5)▲(﹣2)=4×(﹣5)﹣3×(﹣2)=﹣14…观察式子的运算方式,请解决下列问题:(1)这种运算方式是:m▲n=(用含m,n的式子表示);(2)解方程3▲(2▲x)=2▲x;(3)若关于x的方程3▲(ax﹣1)=6的解为整数,求整数a的值;【分析】(1)根据给定的新运算的法则,进行计算即可;(2)根据新运算的法则,列出方程进行求解即可;(3)根据新运算的法则,列出方程进行求解,根据解为整数,求出a的值即可.【解答】解:(1)由题意,得:m▲n=4m﹣3n;故答案为:4m﹣3n;(2)2▲x=4×2﹣3x=8﹣3x,∴3▲(2▲x)=3▲(8﹣3x)=4×3﹣3⋅(8﹣3x)=9x﹣12,∵3▲(2▲x)=2▲x,即:9x﹣12=8﹣3x,解得:�=5 3;(3)3▲(ax﹣1)=6,即:4×3﹣3(ax﹣1)=6,解得:�=3�,∵方程的解为整数,∴3�为整数,又a为整数,∴a=﹣3,﹣1,1,3.【点评】本题考查定义新运算,一元一次方程的应用.解题的关键是理解并掌握新运算的法则,正确的列出一元一次方程.26.新定义:如果两个一元一次方程的解互为相反数,就称这两个方程为“友好方程”,如:方程2x=6和3x+9=0为“友好方程”.(1)若关于x的方程3x+m=0与方程2x﹣6=4是“友好方程”,求m的值.(2)若某“友好方程”的两个解的差为6,其中一个解为n,求n的值.【分析】(1)求得方程2x﹣6=4解为x=5,利用“友好方程”的定义得到方程3x+m=0的解,利用方程解的定义解答即可;(2)利用“友好方程”的定义得到方程的另一个解为﹣n,再利用定义列出关于n的等式解答即可.【解答】解:(1)方程2x﹣6=4解为x=5,∵关于x的方程3x+m=0与方程2x﹣6=4是“友好方程”,∴关于x的方程3x+m=0的解为x=﹣5,∴3×(﹣5)+m=0,∴m=15;(2)∵某“友好方程”的一个解为n,∴“友好方程”的另一个解为﹣n,∴n﹣(﹣n)=6或﹣n﹣n=6,∴n=3或n=﹣3.∴n=±3.【点评】本题主要考查了一元一次方程的解,解一元一次方程,本题是阅读型题目,理解新定义并熟练应用新定义解答是解题的关键.27.(2022秋•于都县期末)我们规定关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程是“差解方程”,例如:3x=4.5的解为x=4.5﹣3=1.5,则该方程3x=4.5就是“差解方程”,请根据上述规定解答下列问题:【定义理解】(1)判断:方程2x=4差解方程;(填“是”或“不是”)(2)若关于x的一元一次方程4x=m是“差解方程”,求m的值;【知识应用】(3)已知关于x 的一元一次方程4x =ab +a 是“差解方程”,则3(ab +a )=.(4)已知关于x 的一元一次方程4x =mn +m 和﹣2x =mn +m 都是“差解方程”,求代数式3(mn +m )﹣9(mn +n )2的值.【分析】(1)根据差解方程的定义判断即可;(2)根据差解方程的定义即可得出关于m 的一元一次方程,解之即可得出结论;(3)根据差解方程的定义即可得出关于a 、b 的二元二次方程,整理即可得出;(4)根据差解方程的概念列式得到关于m 、n 的两个方程,联立求解得到m 、n 的关系,得出3(mn +m )=16,9(mn +n )2=16,然后代入代数式进行计算即可求解.【解答】解:(1)∵方程2x =4的解为x =2=4﹣2,∴方程2x =4是差解方程.故答案为:是;(2)由题意可知x =m ﹣4,由一元一次方程可知�=푚4,∴푚−4=푚4,解得푚=163;(3)∵方程4x =ab +a 是“差解方程”,∴x =ab +a ﹣4,解方程4x =ab +a ,得�=��+�4,∴��+�−4=��+�4,∴3ab +3a =16,即3(ab +a )=16.故答案为:16;(4)∵一元一次方程4x =mn +m 是“差解方程”,∴x =mn +m ﹣4,解方程一元一次方程4x =mn +m 得�=푚 +푚4∴푚 +푚−4=푚 +푚4,整理得3(mn +m )=16,∵一元一次方程﹣2x =mm +m 是“差解方程”,∴x =mn +m +2,解方程一元一次方程﹣2x =mm +m 得�=−푚 +푚2∴푚 +푚+2=−푚 +푚2,整理得9(mn +n )2=16,∴3(mn +m )﹣9(mm +n )2=16﹣16=0.【点评】本题考查了一元一次方程的解,解题的关键是读懂题意,理解差解方程的概念并根据概念列出方程.28.定义:关于x 的方程ax +b =0的解为x =a +b ,则称这样的方程是“和合方程”.如:x −12=0的解x =12=1+(−12),3x −94=0的解x =34=3+(−94)都是“和合方程”.(1)判断方程﹣2x +4=0是不是“和合方程”?说明理由;(2)若关于x 的方程mx +n ﹣m =0是“和合方程”,求方程2(mn +n )y ﹣4=2(my +1)+3y 的解.【分析】(1)由“和合方程”定义即可判断;(2)根据“和合方程”定义解方程即可得出答案.【解答】解:(1)方程﹣2x +4=0是“和合方程”,理由如下:由﹣2x +4=0得x =2,而a +b =﹣2+4=2,∴x =a +b ,∴方程﹣2x +4=0是“和合方程”;(2)mx +n ﹣m =0,解得:x =푚− 푚,∵关于x 的方程mx +n ﹣m =0是“和合方程”,∴x =m +n ﹣m =n ,∴푚− 푚=n ,∴m ﹣n =mn ,2(mn +n )y ﹣4=2(my +1)+3y ,2(m ﹣n +n )y ﹣4=2my +2+3y ,3y =﹣6,∴y =﹣2.【点评】本题考查一元二次方程的解,解题的关键是理解“和合方程”的定义.29.(2022秋•雨花区校级月考)如果两个方程的解相差a ,a 为正整数,则称解较大的方程为另一个方程的“a ﹣稻香方程”,例如:方程x ﹣2=0是方程x +3=0的“5﹣稻香方程”.(1)若方程2x =5x ﹣12是方程3(x ﹣1)=x +1的“a ﹣稻香方程”,则a =;(2)若关于x 的方程x −�−2푚3=n ﹣1是关于x 的方程2(x ﹣2mn )﹣m =3n ﹣3的“m ﹣稻香方程”(m >0),求n 的值;(3)当a ≠0时,如果关于x 方程ax +b =1是方程ax +c ﹣1=0的“3﹣稻香方程”,求代数式6x +2b ﹣2(c +3)的值.【分析】(1)先分别解方程2x =5x ﹣12、3(x ﹣1)=x +1,再根据“a ﹣稻香方程”的定义即可求解;(2)解关于x 方程x −�−2푚3=n ﹣1,再根据“m ﹣稻香方程”的定义进行计算可以得解;(3)依据题意,先解方程ax +b =1和ax +c ﹣1=0,再根据“3﹣稻香方程”的定义,求出x ,b ,c ,即可求解.【解答】(1)解:2x =5x ﹣12,∴﹣3x =﹣12.∴x =4.又3(x ﹣1)=x +1,∴x =2.∵方程2x =5x ﹣12是方程3(x ﹣1)=x +1的“a ﹣稻香方程”,∴a =4﹣2=2.故答案为:2.(2)解:解关于x 方程x −�−2푚3=n ﹣1,得x =3 −3−2푚2,解关于x 的方程2(x ﹣2mn )﹣m =3n ﹣3,得x =4푚 +푚+3 −32,关于x 的方程x −�−2푚3=n ﹣1是关于x 的方程2(x ﹣2mn )﹣m =3n ﹣3的“m ﹣稻香方程”(m >0),∴3 −3−2푚2−4푚 +푚+3 −32=m .整理得﹣4mn =5m ,又m >0,∴﹣4n =5.∴n =−54.(3)解:∵a ≠0,∴关于x 方程ax +b =1的解是x =1−��,关于x 方程ax +c ﹣1=0的解是x =1−��,∵关于x 方程ax +b =1是方程ax +c ﹣1=0的“3﹣稻香方程”,∴1−��−1−��=3.∴3a +b =c .∴6a +2b ﹣2(c +3)=2(3a +b )﹣2c ﹣6=2c ﹣2c ﹣6=﹣6.【点评】本题为新定义问题,考查了一元一次方程的解法,理解新定义,熟练解一元一次方程是解题关键.30.(2023春•石狮市校级月考)定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程4x =8和+1=0为“美好方程”.(1)若关于x 的方程3x +m =0与方程4x ﹣2=x +10是“美好方程”,则m =;若“美好方程”的两个解的差为5,其中一个解为n ,则n =.(2)若关于x 的方程�2+푚=0与方程3�−25=�+푚2是“美好方程”,求m 的值;(3)若关于x 的一元一次方程12022�+3=2�+�和12022�+1=0是“美好方程”,求关于y 的一元一次方程12022(�+1)+3=2�+�+2的解.【分析】(1)分别求得两个方程的解,利用“美好方程”的定义列出关于m 的方程和n 的方程解答即可;(2)分别求得两个方程的解,利用“美好方程”的定义列出关于m 的方程解答即可;(3)求得方程12022�+1=0的解,利用“美好方程”的定义得到方程12022�+3=2�+�的解,将关于y 的方程12022(�+1)+3=2�+�+2变形,利用同解方程的定义即可得到y +1的值,从而求得方程的解.【解答】解:(1)∵方程4x ﹣2=x +10的解为x =4,方程3x +m =0的解为�=−푚3,而方程3x +m =0与方程4x ﹣2=x +10是互为“美好方程”,∴−푚3+4=1,∴m =9;∵“美好方程”的一个解为n ,则另一个解为1﹣n ,依题意得1﹣n ﹣n =5或n ﹣(1﹣n )=5,解得n =2或n =3.故答案为:9;2或3;(2)解:关于x 的方程�2+푚=0的解为x =﹣2m ,方程3�−25=�+푚2的解为x =5m +4,∵关于x 的方程�2+푚=0与方程3�−25=�+푚2是“美好方程”,∴﹣2m +5m +4=1,∴m =﹣1;(3)解:方程12022�+1=0的解为x =﹣2022,∵关于x 的方程12022�+3=2�+�和12022�+1=0是“美好方程”,∴关于x 的方程12022�+3=2�+�的解为x =2023.∵关于y 的方程12022(�+1)+3=2�+�+2就是12022(�+1)+3=2(�+1)+�,∴y +1=x =2023,∴y =2022.∴关于y 的方程12022(�+1)+3=2�+�+2的解为:y =2022.【点评】本题主要考查了一元一次方程的解,解一元一次方程,利用同解方程的意义解答是解题的关键,本题是新定义型,理解并熟练应用新定义解答也是解题的关键.。

不等式(组)的新定义问题(重难点培优)-2020-2021学年七年级数学下册(解析版)

不等式(组)的新定义问题(重难点培优)-2020-2021学年七年级数学下册(解析版)

2020-2021学年七年级数学下册尖子生同步培优题典【人教版】专题9.9不等式(组)的新定义问题(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷试题共20题,解答20道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一.解答题(共20小题)1.(2020春•海淀区校级期末)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x ﹣1=0;②23x +1=0;③x ﹣(3x +1)=﹣5中,不等式组{−x +2>x −53x −1>−x +2关联方程是 ③ (填序号). (2)若不等式组{x −12<11+x >−3x +2的一个关联方程的根是整数,则这个关联方程可以是 2x ﹣2=0(写出一个即可).(3)若方程9﹣x =2x ,3+x =2(x +12)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,试求出m 的取值范围.【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为1的方程即可; (3)先求出方程的解和不等式组的解集,即可得出答案. 【解析】(1)①解方程3x ﹣1=0得:x =13, ②解方程23x +1=0得:x =−32,③解方程x ﹣(3x +1)=﹣5得:x =2, 解不等式组{−x +2>x −53x −1>−x +2得:34<x <72,所以不等式组{−x +2>x −53x −1>−x +2的关联方程是③,故答案为:③;(2)解不等式x −12<1得:x <1.5, 解不等式1+x >﹣3x +2得:x >0.25, 则不等式组的解集为0.25<x <1.5, ∴其整数解为1,则该不等式组的关联方程为2x ﹣2=0. 故答案为:2x ﹣2=0.(3)解方程9﹣x =2x 得x =3, 解方程3+x =2(x +12)得x =2, 解不等式组{x <2x −m x −2≤m得m <x ≤m +2,∵方程9﹣x =2x ,3+x =2(x +12)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,∴1≤m <2.2.(2020春•盱眙县期末)定义:对于任何数a ,符号[a ]表示不大于a 的最大整数. 例如:[5.7]=5,[5]=5,[﹣1.5]=﹣2. (1)[−114]= ﹣3 ;(2)如果[a ]=4,那么a 的取值范围是 4≤a <5 ; (3)如果[4x−55]=﹣5,求满足条件的所有整数x .【分析】(1)直接利用新定义求解可得; (2)根据新定义求解可得; (3)利用新定义列出不等式组﹣5≤4x−55<−4,解之求出x 的范围,从而得出答案. 【解析】(1)[−114]=﹣3, 故答案为:﹣3. (2)∵[a ]=4, ∴4≤a <5; 故答案为:4≤a <5; (3)[4x−55]=﹣5,∴﹣5≤4x−55<−4,解得:﹣5≤x <−154,∴满足条件的x 的整数有﹣4,﹣5.3.(2018•余姚市模拟)请你阅读如图框内老师的新定义运算规定,然后解答下列各小题. (1)若x ⊕y =1,x ⊕2y =﹣2,分别求出x 和y 的值;(2)若x 满足x ⊕2≤0,且3x ⊕(﹣8)>0,求x 的取值范围.【分析】(1)根据定义新运算得到二元一次方程组,再解方程组即可求解; (2)根据定义新运算得到一元一次不等式组,再解不等式组即可求解. 【解析】(1)根据题意得{4x −3y =14x −3×2y =−2,解得{x =1y =1;(2)根据题意得{4x −3×2≤04×3x −3×(−8)>0,解得﹣2<x ≤32.故x 的取值范围是﹣2<x ≤32.4.(2020春•润州区期末)先阅读短文,然后回答短文后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定min {a ,b ,c }表示这三个数中最小的数,max {a ,b ,c }表示这三个数中最大的数.(注:取英文单词minimum (最少的)、maximum (最多的)前三个字母)例如:min {﹣1,2,3}=﹣1,max {﹣1,2,3}=3;min {﹣1,2,a }={a(a ≤−1)−1(a >−1),(1)min {﹣2014,﹣2015,﹣2016}= ﹣2016 ;max {2,x 2+2,2x }= x 2+2 ; (2)若max {2,x +1,2x }=2x ,求x 的取值范围;(3)若min {4,x +4,4﹣x }=max {2,x +1,2x },求x 的值. 【分析】(1)根据新定义即可得出结论;(2)根据新定义列出关于x 的不等式组,解之可得; (3)分情况分别列出关于x 的方程,解方程可得. 【解析】(1)∵﹣2014>﹣2015>﹣2016, ∴min {﹣2014,﹣2015,﹣2016}=﹣2016; ∵x 2+2>2x ,x 2+2≥2, ∴max {2,x 2+2,2x }=x 2+2; 故答案为:﹣2016,x 2+2;(2)∵max {2,x +1,2x }=2x , ∴{2x ≥22x ≥x +1, 解得:x ≥1;(3)①当4最小时,∴x +4>4,4﹣x >4,此种情况不成立,②当x +4最小时,∴4≥x +4,4﹣x ≥x +4,∴x ≤0,x +4=2,解得:x =﹣2; ③当4﹣x 最小时,4>4﹣x ,4+x >4﹣x ,∴x >0Ⅰ、当2最大时,∴2≥x +1,2≥2x ,∴x ≤1,∴4﹣x =2,解得:x =2(舍); Ⅱ、当2x 最大时,∴2x >2,2x >x +1,∴x >1,∴4﹣x =2x ,解得:x =43; Ⅲ、当x +1最大时,∴x +1>2,x +1>2x ,此种情况不成立, 综上,x 的值为43或﹣2.5.(2020春•崇川区校级期末)若x 为实数,定义:[x ]表示不大于x 的最大整数. (1)例如[1.6]=1,[π]= 3 ,[﹣2.82]= ﹣3 .(请填空)(2)[x ]+1是大于x 的最小整数,对于任意的实数x 都满足不等式[x ]≤x <[x ]+1,利用这个不等式,求出满足[x ]=2x ﹣1的所有解.【分析】(1)根据[x ]表示不大于x 的最大整数即可求解;(2)根据题意可以列出相应的不等式,从而可以求得x 的取值范围,本题得以解决. 【解析】(1)[π]=3,[﹣2.82]=﹣3.(2)∵对任意的实数x 都满足不等式[x ]≤x <[x ]+1,[x ]=2x ﹣1, ∴2x ﹣1≤x <2x ﹣1+1,解得0<x ≤1, ∵2x ﹣1是整数, ∴x =0.5或x =1, 故答案为:3,﹣3.6.(2020春•锡山区期末)定义一种新运算“a ⊗b ”:当a ≥b 时,a ⊗b =a +2b ;当a <b 时,a ⊗b =a ﹣2b . 例如:3⊗(﹣4)=3+(﹣8)=﹣5,(﹣6)⊗12=﹣6﹣24=﹣30. (1)填空:(﹣3)⊗(﹣2)= 1 ;(2)若(3x ﹣4)⊗(5+x )=(3x ﹣4)+2(5+x ),则x 的取值范围为 x ≥92 ; (3)已知(5x ﹣7)⊗(﹣2x )>1,求x 的取值范围; (4)利用以上新运算化简:(3m 2+5m +10)⊗(2m 2﹣m ). 【分析】(1)根据公式计算可得; (2)结合公式知3x ﹣4≥5+x ,解之可得;(3)由题意可得①{5x −7≥−2x 5x −7+2(−2x)>1,②{5x −7<−2x 5x −7−2(−2x)>1,分别求解可得;(4)先利用作差法判断出3m 2+5m +10>2m 2﹣m ,再新运算化简即可得. 【解析】(1)(﹣3)⊗(﹣2)=﹣3﹣2×(﹣2)=1, 故答案为:1;(2)∵(3x ﹣4)⊗(5+x )=(3x ﹣4)+2(5+x ), ∴3x ﹣4≥5+x , 解得:x ≥92, 故答案为:x ≥92.(3)由题意可知分两种情况讨论: ①{5x −7≥−2x5x −7+2(−2x)>1,解之得x >8,②{5x −7<−2x5x −7−2(−2x)>1,解之得89<x <1,综上所述:x 的取值范围为x >8或89<x <1;(4)(3m 2+5m +10)﹣(2m 2﹣m ) =m 2+6m +10 =(m +3)2+1>0,原式=(3m 2+5m +10)+2(2m 2﹣m )=7m 2+3m +10. 7.(2020春•凤凰县期末)阅读材料:我们定义一个关于有理数a ,b 的新运算,规定:a ⊕b =4a ﹣3b .例如:5⊕6=4×5﹣3×6=2.完成下列各小题.(1)若a ⊕b =1,a ⊕2b =﹣5,分别求出a 和b 的值;(2)若m 满足m ⊕2≤0,且3m ⊕(﹣8)>0,求m 的取值范围. 【分析】(1)根据新运算,得到方程组,解方程组即可求解; (2)根据新运算,得到不等式组,解不等式组即可. 【解析】(1)根据题意,得{4a −3b =14a −3×2b =−5,解得:{a =74b =2,∴a 和b 的值分别为a =74,b =2;(2)根据题意,得{4m −3×2≤04×3m −3×(−8)>0,解得:−2<m ≤32. ∴m 的取值范围−2<m ≤32. 8.(2020春•微山县期末)阅读新知现对x ,y 进行定义一种运算,规定f (x ,y )=mx+ny2(其中m ,n 为常数且mn ≠0),等式的右边就是加、减、乘、除四则运算.例如: f (2,0)=m×2+n×02=m 应用新知(1)若f (1,1)=5,f (2,1)=8,求m ,n 的值; 拓展应用(2)已知f (﹣3,0)>﹣3,f (3,0)>−92,且m +n =16,请你求出符合条件的m ,n 的整数值. 【分析】(1)根据题中的新定义列出关于m 与n 的方程组,求出方程组的解即可得到a 与b 的值; (2)根据题中的新定义列出不等式组,求得不等式组的解,根据m +n =16确定出m 、n 的整数值.【解析】(1)根据题中的新定义得:{m+n2=52m+n 2=8,解得:{m =6n =4;(2)根据题中的新定义得:{−3m+02>−33m+02>−92, 解得:﹣3<m <2,∵m 、n 是整数,且m +n =16, ∴{m =−2n =18或{m =−1n =17或{m =1n =15. 9.(2020春•长沙期末)对x 、y 定义一种新运算F ,规定:F (x ,y )=ax +by (其中a ,b 均为非零常数).例如:F (2,3)=2a +3b .(1)已知F (2,﹣1)=﹣1,F (3,0)=3. ①求a ,b 的值.②已知关于p 的不等式组{F(3−2p ,3)≥4F(2,2−3p)<−1求p 的取值范围;(2)若运算F 满足{−2<F(1,2)≤4−1<F(2,1)≤5,请你求出F (k ,k )的取值范围(用含k 的代数式表示,这里k为常数且k >0).【分析】(1)①根据F (2,﹣1)=﹣1,F (3,0)=3列出关于a 、b 的方程组,解之可得; ②由{F(3−2p ,3)≥4F(2,2−3p)<−1列出关于p 的不等式组,解之可得;(2)根据{−2<F(1,2)≤4−1<F(2,1)≤5列出关于a 、b 的不等式组,相加得出a +b 的取值范围,再进一步求解可得.【解析】(1)①由题意知{2a −b =−13a =3,解得{a =1b =3;②由题意知{3−2p +9≥42+6−9p <−1,解得1<p ≤4; (2)由题意知{−2<a +2b ≤4−1<2a +b ≤5,∴﹣3<3a +3b ≤9, ∴﹣1<a +b ≤3,∵F (k ,k )=ka +kb ,且﹣k <k (a +b )≤3k , ∴﹣k <F (k ,k )≤3k .10.(2020春•天心区期中)如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.(1)在方程2x ﹣1=1①,4x ﹣3=0②,x ﹣(3x +1)=﹣5③中,写出是不等式组{−x +2>x −53x −1>−x +2的相伴方程的序号 ①③ . (2)写出不等式组{x +1<02x −3<4x +3的一个相伴方程,使得它的根是整数: x =﹣2 .(3)若方程2x ﹣1=3;x3+1=2都是关于x 的不等式组{x <2x −m x −2≤m的相伴方程,求m 的取值范围.【分析】(1)分别解出三个一元一次方程的解和一元一次不等式的解集,方程的解在不等式解集范围内即为所求;(2)求出不等式组的解集,在此范围内只有x =﹣2一个整数解,写出符合条件的方程即可; (3)求出不等式组的解集为m <x ≤m +2,x =2和x =3在此范围内,列出不等式m <2,m +2≥3即可求解.【解析】(1)分别求解一元一次方程为①x =1;②x =34;③x =2; 不等式组的解集为34<x <72,∵x =1,x =2是不等式组的解, ∴不等式组的相伴方程是①③; 故答案为①③; (2)由不等式组{x +1<02x −3<4x +3,解得,﹣3<x <﹣1,则它的相伴方程的解是整数,所以,相伴方程x =﹣2, 故答案为x =﹣2; (3){x <2x −m x −2≤m得,不等式组的解集为m <x ≤m +2,解方程2x ﹣1=3;x3+1=2得,x =2和x =3,∵方程2x ﹣1=3;x3+1=2都是关于x 的不等式组{x <2x −m x −2≤m的相伴方程,∴m <2,m +2≥3, ∴1≤m <2.11.(2020春•通山县期末)阅读材料:形如2<2x +1<3的不等式,我们就称之为双连不等式,求解双连不等式的方法一,转化为不等式组求解,如{2<2x +1,2x +1<3.;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得1<2x <2,然后同时除以2,得12<x <1.解决下列问题:(1)请你写一个双连不等式并将它转化为不等式组; (2)利用不等式的性质解双连不等式2≥﹣2x +3>﹣5;(3)已知﹣3≤x <−52,求3x +5的整数值.【分析】(1)3<x ﹣2<5,转化为不等式组{3<x −2x −2<5;(2)根据方法二的步骤解答即可;(3)根据方法二的步骤解答,得出﹣4≤3x +5<−52,即可得到结论. 【解析】(1)3<x ﹣2<5, 转化为不等式组{3<x −2x −2<5;(2)2≥﹣2x +3>﹣5,不等式的左、中、右同时减去3,得﹣1≥﹣2x >﹣8, 同时除以﹣2,得12≤x <4;(3)﹣3≤x <−52,不等式的左、中、右同时乘以3,得﹣9≤3x <−152, 同时加5,得﹣4≤3x +5<−52, ∴3x +5的整数值﹣4或﹣3.12.(2020春•石城县期末)阅读材料:分母中含有未知数的不等式叫分式不等式,如x−3x+1>0,如何求其解集呢?它的理论依据是,两数相除,同号得正,异号得负,其字母表达式为: 若a >0,b >0,则a b >0;若a <0,b <0,则a b >0.若a >0,b <0,则ab<0;若a <0,b >0,则ab<0.(1)反之:若a b>0,则{a >0b >0或{a <0b <0,若a b <0,则: {a >0b <0或{a <0b >0;(2)根据上述材料,求不等式x−3x+1≥0的解集.【分析】(1)根据有理数除法法则求解可得; (2)根据题意列出不等式组,解之可得. 【解析】(1)若ab <0,则{a >0b <0或{a <0b >0, 故答案为:{a >0b <0或{a <0b >0; (2)由题意知①{x −3≥0x +1>0或②{x −3≤0x +1<0,解不等式组①得x ≥3; 解不等式组②得x <﹣1,故不等式的解集为x ≥3或x <﹣1.13.(2020春•椒江区期末)规定min (m ,n )表示m ,n 中较小的数(m ,n 均为实数,且mn ),例如:min {3,﹣1}=﹣1,、min {√2,√3}=√2据此解决下列问题: (1)min {−12,−13}= −12 ; (2)若min {2x−13,2}=2,求x 的取值范围;(3)若min {2x ﹣5,x +3}=﹣2,求x 的值.【分析】(1)利用题中的新定义确定出所求即可;(2)利用题中的新定义得出2x−13≥2,计算即可求出x 的取值;(3)利用题中的新定义分类讨论计算即可求出x 的值.【解析】(1)根据题中的新定义得:min {−12,−13}=−12;故答案为:−12;(2)由题意2x−13≥2,解得:x ≥3.5;(3)若2x ﹣5=﹣2,解得:x =1.5,此时x +3=4.5>﹣2,满足题意;若x +3=﹣2,解得:x =﹣5,此时2x ﹣5=﹣15<﹣2,不符合题意,综上,x =1.5.14.(2020•通辽)用※定义一种新运算:对于任意实数m 和n ,规定m ※n =m 2n ﹣mn ﹣3n ,如:1※2=12×2﹣1×2﹣3×2=﹣6.(1)求(﹣2)※√3;(2)若3※m ≥﹣6,求m 的取值范围,并在所给的数轴上表示出解集.【分析】(1)根据新定义规定的运算法则列式,再由有理数的运算法则计算可得;(2)根据新定义列出关于x 的不等式,解不等式即可得.【解析】(1)(﹣2)※√3=(﹣2)2×√3−(﹣2)×√3−3√3=4√3+2√3−3√3=3√3;(2)3※m ≥﹣6,则32m ﹣3m ﹣3m ≥﹣6,解得:m ≥﹣2,将解集表示在数轴上如下:15.(2020•张家界)阅读下面的材料:对于实数a ,b ,我们定义符号min {a ,b }的意义为:当a <b 时,min {a ,b }=a ;当a ≥b 时,min {a ,b }=b ,如:min {4,﹣2}=﹣2,min {5,5}=5.根据上面的材料回答下列问题:(1)min {﹣1,3}= ﹣1 ;(2)当min {2x−32,x+23}=x+23时,求x 的取值范围. 【分析】(1)比较大小,即可得出答案;(2)根据题意判断出2x−32≥x+23,解不等式即可判断x 的取值范围.【解析】(1)由题意得min {﹣1,3}=﹣1;故答案为:﹣1;(2)由题意得:2x−32≥x+233(2x ﹣3)≥2(x +2)6x ﹣9≥2x +44x ≥13x ≥134, ∴x 的取值范围为x ≥134. 16.(2020春•仁寿县期末)对于任意实数a 、b 约定关于⊗的一种运算如下:a ⊗b =2a +b .例如:(﹣3)⊗2=2×(﹣3)+2=﹣4.(1)3⊗(﹣5)的值等于 1 ;(2)若x 满足(x +2)⊗3>7,求x 的取值范围;(3)若x ⊗(﹣y )=5,且2y ⊗x =7,求x +y 的值.【分析】(1)根据公式a ⊗b =2a +b 代入计算可得;(2)根据公式列出关于x 的不等式,解之可得答案;(3)根据已知条件并结合公式列出关于x 、y 的方程组,将两个方程相加,再两边都除以3即可得出答案.【解析】(1)3⊗(﹣5)=2×3+(﹣5)=6﹣5=1,故答案为:1;(2)∵(x +2)⊗3>7,∴2(x +2)+3>7,∴2x +4+3>7,∴2x +7>7,∴2x >0,解得x >0;(2)∵x ⊗(﹣y )=5,且2y ⊗x =7,∴{2x −y =5①x +4y =7②, ①+②,得:3x +3y =12,∴x +y =4.17.(2020春•邗江区期末)定义一种新运算“a *b ”:当a ≥b 时,a *b =a +2b ;当a <b 时,a *b =a ﹣2b .例如:3*(﹣4)=3+(﹣8)=﹣5,(﹣6)*12=﹣6﹣24=﹣30.(1)填空:(﹣4)*3= ﹣10 .(2)若(3x ﹣4)*(x +6)=(3x ﹣4)+2(x +6),则x 的取值范围为 x ≥5 .(3)计算(2x 2﹣4x +7)*(x 2+2x ﹣2)= 4x 2+3 .(4)已知(3x ﹣7)*(3﹣2x )<﹣6,求x 的取值范围.【分析】(1)根据公式计算可得;(2)结合公式知3x ﹣4≥x +6,解之可得;(3)先利用作差法判断出2x 2﹣4x +8>x 2+2x ﹣2,再根据公式计算(2x 2﹣4x +7)*(x 2+2x ﹣2)即可得;(4)由题意可得{3x −7≥3−2x 3x −7+2(3−2x)<−6或{3x −7<3−2x 3x −7−2(3−2x)<−6,分别求解可得; 【解析】(1)(﹣4)*3=﹣4﹣2×3=﹣10,故答案为:﹣10;(2)∵(3x ﹣4)*(x +6)=(3x ﹣4)+2(x +6),∴3x ﹣4≥x +6,解得:x ≥5,故答案为:x ≥5.(3)∵2x 2﹣4x +7﹣(x 2+2x ﹣2)=x 2﹣6x +9=(x ﹣3)2≥0;∴2x 2﹣4x +7≥x 2+2x ﹣2,原式=2x 2﹣4x +7+2(x 2+2x ﹣2)=2x 2﹣4x +7+2x 2+4x ﹣4=4x 2+3;(4)由题意知{3x −7≥3−2x 3x −7+2(3−2x)<−6或{3x −7<3−2x 3x −7−2(3−2x)<−6, 解得:x >5或x <1;18.(2020春•丹阳市校级期末)定义一种新运算“a ※b ”:当a ≥b 时,a ※b =2a +b ;当a <b 时,a ※b =2a﹣b .例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24.(1)填空:(﹣2)※3= 7 ;(2)若(3x ﹣4)※(2x +3)=2(3x ﹣4)+(2x +3),则x 的取值范围为 x ≥7 ;(3)已知(2x ﹣6)※(9﹣3x )<7,求x 的取值范围;(4)小明在计算(2x 2﹣2x +4)※(x 2+4x ﹣6)时随意取了一个x 的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由.【分析】(1)根据公式计算可得;(2)结合公式知3x ﹣4≥2x +3,解之可得;(3)由题意可得{2x −6≥9−3x 2(2x −6)+(9−3x)<7或{2x −6<9−3x 2(2x −6)−(9−3x)<7,分别求解可得; (4)先利用作差法判断出2x 2﹣2x +4>x 2+4x ﹣6,再根据公式计算(2x 2﹣2x +4)※(x 2+4x ﹣6)即可.【解析】(1)(﹣2)※3=2×(﹣2)﹣3=﹣7,故答案为:﹣7;(2)∵(3x ﹣4)※(2x +3)=2(3x ﹣4)+(2x +3),∴3x ﹣4≥2x +3,解得:x ≥7,故答案为:x ≥7.(3)由题意知{2x −6≥9−3x 2(2x −6)+(9−3x)<7或{2x −6<9−3x 2(2x −6)−(9−3x)<7, 解得:3≤x <10或x <3,∴x <10.(4)∵2x 2﹣2x +4﹣(x 2+4x ﹣6)=x 2﹣6x +10=(x ﹣3)2+1>0∴2x 2﹣2x +4>x 2+4x ﹣6,原式=2(2x 2﹣2x +4)+(x 2+4x ﹣6)=4x 2﹣4x +8+x 2+4x ﹣6=5x 2+2;∴小明计算错误.19.(2020•河北模拟)定义新运算:对于任意实数m 、n 都有m ☆n =mn ﹣3n .例如4☆2=4×2﹣3×2=8﹣6=2,请根据上述知识解决下列问题:(1)x ☆12>4,求x 取值范围; (2)若|x ☆(−14)|=3,求x 的值;(3)若方程x ☆□x =6,□中是一个常数,且此方程的一个解为x =1,求□中的常数.【分析】(1)根据已知公式得出12x −32>4,解之可得答案; (2)根据公式得出|−14x +34|=3,即可得出−14x +34=3或−14x +34=−3,解之可得答案;(3)根据公式得到□x 2﹣3•□x =6,把x =1代入得到□﹣3□=6,即可求得□=﹣3.【解析】(1)∵x ☆12>4, ∴12x −32>4, 解得:x >11;(2)∵|x ☆(−14)|=3,∴|−14x +34|=3,∴−14x +34=3或−14x +34=−3,解得:x =﹣9或x =15;(3)∵方程x ☆□x =6,∴□x 2﹣3•□x =6,∵方程的一个解为x =1,∴□﹣3□=6,∴□=﹣3.20.(2020秋•岳麓区校级月考)定义:给定两个不等式组P 和Q ,若不等式组P 的任意一个解,都是不等式组Q 的一个解,则称不等式组P 为不等式组Q 的“子集”.例如:不等式组M :{x >2x >1是N :{x >−2x >−1的“子集”. (1)若关于x 的不等式组{x >a x >−1是不等式组{x >2x >1的“子集”,则a 的取值范围是 a ≥2 ; (2)已知a ,b ,c ,d 为不互相等的整数,其中a <b ,c <d ,下列三个不等式组A :a ≤x ≤b ,B :c ≤x ≤d ,C :1<x <6满足:A 是B 的“子集”,B 是C 的“子集”,求a ﹣b +c ﹣d 的值.(3)已知不等式组M :{2x ≥m 3x <n有解,且M 是不等式组N :1<x ≤3的“子集”,则满足条件的有序整数对(m ,n )共有多少个?【分析】(1)根据“子集”的定义确定出a 的范围即可;(2)根据“子集”的定义确定出各自的值,代入原式计算即可求出值;(3)根据“子集”的定义确定出所求即可.【解析】(1)∵关于x 的不等式组{x >a x >−1是不等式组{x >2x >1的“子集”, ∴a ≥2,故答案为a ≥2;(2)∵a ,b ,c ,d 为互不相等的整数,其中a <b ,c <d ,A :a ≤x ≤b ,B :c ≤x ≤d ,C :1<x <6满足:A 是B 的“子集”且B 是C 的“子集”,∴a =3,b =4,c =2,d =5,则a ﹣b +c ﹣d =3﹣4+2﹣5=﹣4;word 可编辑文档(3)不等式组M 整理得:{x ≥m 2x <n 3,由不等式组有解得到m 2<n 3,即m 2≤x <n 3,∵M :1<x ≤3是不等式组的“子集”, ∴m 2>1,n 3≤3,即m >2,n ≤9, 当n =9时,m =3,4,5,当n =8时,m =3,4,5,当n =7时,m =3,4,当n =6时,m =3,当n =5时,m =3,共10种情形,∴满足条件的有序整数对(m ,n )有10个。

2020-2021北京各区初一期末新定义(学生版)

2020-2021北京各区初一期末新定义(学生版)

2020-2021初一上学期期末分类汇编---新定义(学生版)1(2021.01期末东城)我们规定:若关于x 的一元一次方程0)a x b a +=≠(的解为b x a=,则称该方程为“商解方程”.例如:24x +=的解为2x =且422=,则方程24x +=是“商解方程”.请回答下列问题:(1)判断3 4.5x +=是不是“商解方程”;(2)若关于x 的一元一次方程是42(3)x m +=-“商解方程”,求m 的值.2.(2021.01期末西城)26.数轴上有A ,B 两个点,点A 在点B 的左侧,已知点B 表示的数是2,点A 表示的数是a .(1)若3a =-,则线段AB 的长为;(直接写出结果)(2)若点C 在线段AB 之间,且2AC BC -=,求点C 表示的数;(用含a 的式子表示)(3)在(2)的条件下,点D 在数轴上C 点左侧,2AC AD =,4BD BC =,求a 的值.3.(2021.01期末西城)观察下列等式,探究其中的规律并回答问题:2183+=,218165++=,21816247+++=,218162432k ++++=,…,…(1)第4个等式中正整数k 的值是;(2)第5个等式是:;(3)第n 个等式是:.(其中n 是正整数)4.(2021.01期末西城)下图所示的三种拼块A,B,C,每个拼块都是由一些大小相同、面积为1个单位的小正方形组成,如编号为A的拼块的面积为3个单位.A B C现用若干个这三种拼块拼正方形,拼图时每种拼块都要用到,且这三种拼块拼图时可平移、旋转,或翻转.(1)若用1个A种拼块,2个B种拼块,4个C种拼块,则拼出的正方形的面积为个单位;(2)在图1和图2中,各画出了一个正方形拼图中1个A种拼块和1个B种拼块,请分别用不同的拼法将图1和图2中的正方形拼图补充完整.要求:所用的A,B,C三种拼块的个数与(1)不同,用实线画出边界线,拼块之间无缝隙,且不重叠.图1图25.(2021.01期末西城)对于数轴上的点A ,B ,C ,D ,点M ,N 分别是线段AB ,CD 的中点,若()2e MN AB CD =+,则将e 的值称为线段AB ,CD 的相对离散度.特别地,当点M ,N 重合时,规定0e =.设数轴上点O 表示的数为0,点T 表示的数为2.(1)若数轴上点E ,F ,G ,H 表示的数分别是3-,1-,3,5,则线段EF ,OT 相对离散度是,线段FG ,EH 的相对离散度是;(2)设数轴上点O 右侧的点S 表示的数是s ,若线段OS ,OT 的相对离散度为12e =,求s 的值;(3)数轴上点P ,Q 都在点O 的右侧(其中点P ,Q 不重合),点R 是线段PQ 的中点,设线段OP ,OT 的相对离散度为1e ,线段OQ ,OT 相对离散度为2e ,当12e e =时,直接写出点R 所表示的数r 的取值范围.8(2021.01朝阳初一期末)26.在数轴上,点A 表示的数为1,点B 表示的数为3.对于数轴上的图形M ,给出如下定义;P 为图形M 上任意一点,Q 为线段AB 上任意一点,如果线段PQ 的长度有最小值,那么称这个最小值为图形M 关于线段AB 的极小距离,记作1d (M ,线段AB );如果线段PQ 的长度有最大值,那么称这个最大值为图形M 关于线段AB 的极大距离,记作2d (M ,线段AB ),例如:点K 表示的数为4,则1d (点K ,线段AB )=1,2d (点K ,线段AB )=3.已知点O 为数轴原点,点C ,D 为数轴上的动点.1d (点O ,线段AB )=___________,2d (点O ,线段AB )=____________;(2)若点C ,D 表示的数分别为m ,m+2,1d (线段CD ,线段AB )=2.求m 的值;(1)d (点O ,线段AB )=(3)点C 从原点出发,以每秒2个单位长度沿x 轴正方向匀速运动;点D 从表示数-2的点出发,第1秒以每秒2个单位长度沿x 轴正方向匀速运动,第2秒以每秒4个单位长度沿x 轴负方向匀速运动,第3秒以每秒6个单位长度沿x 轴正方向匀速运动,第4秒以每秒8个单位长度沿x 轴负方向匀速运动,……,按此规律运动,C ,D 两点同时出发,设运动的时间为t 秒,若2d (线段CD ,线段AB )小于或等于6,直接写出t 的取值范围.(t 可以等于0)9(2021.01丰台初一期末)26.点M,N是数轴上的两点(点M在点N的左侧),如果数轴上存在点P满足PM=2PN,那么称点P为线段MN的“和谐点”.已知点O,A,B在数轴上表示的数分别为0,a,b,回答下面的问题:(1)当a=-1,b=5时,求线段AB的“和谐点”所表示的数;(2)当b=a+6且a<0时,如果O,A,B三个点中恰有一个点为其余两个点组成的线段的“和谐点”,直接写出此时a的值.10(2021.01通州初一期末)25.在数轴上,表示数0的点记作点O.点A,B是该数轴上不重合的两点,点B关于点A的联动点定义如下:若射线AB上存在一点C,满足线段+=,则称点C是点B关于点A的联动点.下图是点B关于点A的联动点的AB AC AO2示意图.AC=当点C与点A重合时,规定0(1)当点A表示的数为1时,①点B表示的数为1.5,则其关于点A的联动点C表示的数为________________;②若点B与O重合,则其关于点A的联动点C表示的数为_________________;③若点B关于点A存在联动点,则点B表示的数x的取值范围是_______________.-,点C表(2)当点A表示的数为a时,点B关于点A的联动点为C,点B表示的数为1示的数为1,则a的取值范围是________________.11.(2021.01大兴初一期末)25.如图1,点C把线段AB分成两条线段AC和BC,如果AC=2BC,则称点C是线段AB的内二倍分割点;如图2,如果BC=2AC,则称点C是线段BA的内二倍分割点.图1图2例如:如图3,数轴上,点A、B、C、D分别表示数-1、2、1、0,则点C是线段AB的内二倍分割点;点D是线段BA的内二倍分割点.图3(1)如图4,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为7.图4MN的内二倍分割点表示的数是;NM的内二倍分割点表示的数是.(2)数轴上,点A所表示的数为-30,点B所表示的数为20.点P从点B出发,以2个单位每秒的速度沿数轴向左运动,设运动时间为t(t>0)秒.①线段BP的长为;(用含t的式子表示)②求当t为何值时,P、A、B三个点中恰有一个点为其余两点的内二倍分割点.12.(2021.01石景山初一期末)28.对于数轴上的点M ,线段AB ,给出如下定义:P 为线段AB 上任意一点,如果M ,P 两点间的距离有最小值,那么称这个最小值为点M ,线段AB 的“近距”,记作1()d M AB 点,线段;如果M ,P 两点间的距离有最大值,那么称这个最大值为点M ,线段AB 的“远距”,记作2()d M AB 点,线段.特别的,若点M 与点P 重合,则M ,P 两点间的距离为0.已知点A 表示的数为2-,点B 表示的数为3.例如右图,若点C 表示的数为5,则1()2d C AB =点,线段,2()7d C AB =点,线段.(1)若点D 表示的数为3-,则1()d D AB =点,线段,2()d D AB =点,线段;(2)若点E 表示的数为x ,点F 表示的数为1x +.2()d F AB 点,线段是1()d E AB 点,线段的3倍.求x 的值.13.(2021.01门头沟初一期末)25.对数轴上的点P 进行如下操作:将点P 沿数轴水平方向,以每秒m 个单位长度的速度,向右平移n 秒,得到点P '.称这样的操作为点P 的“m 速移”,点P '称为点P 的“m 速移”点.(1)当1m =,3n =时,①如果点A 表示的数为5-,那么点A 的“m 速移”点A '表示的数为;②点B 的“m 速移”点B '表示的数为4,那么点B 表示的数为;③数轴上的点M 表示的数为1,如果2CM C M '=,那么点C 表示的数为;(2)数轴上E ,F 两点间的距离为2,且点E 在点F 的左侧,点E ,F 通过“2速移”分别向右平移1t ,2t 秒,得到点E ',F ',如果2E F EF ''=,请直接用等式表示1t ,2t 的数量关系.14.(2021.01顺义初一期末)32.我们规定:若有理数a ,b 满足a b ab +=,则称a ,b 互为“等和积数”,其中a 叫做b 的“等和积数”,b 也叫a 的“等和积数”.例如:因为11(1)22+-=-,11(1)22⨯-=-,所以11(1)(1)22+-=⨯-,则12与-1互为“等和积数”.请根据上述规定解答下列问题:(1)有理数2的“等和积数”是;(2)有理数1(填“有”或“没有”)“等和积数”;(3)若m 的“等和积数”是25,n 的“等和积数”是37,求3m +4n 的值.15.(2021.01房山初一期末)将n个互不相同的整数置于一排,构成一个数组.在这n个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1234(2)若数组1,4,6,m是“运算平衡”数组,则m的值可以是多少?(3)若某“运算平衡”数组中共含有n个整数,则这n个整数需要具备什么样的规律?16.(2021.01怀柔初一期末)25.对于数轴上的A,B,C三点,给出如下定义:若其中一个点到另外两个点的距离恰好满足n(n是大于1的整数)倍的数量关系,则称该点是另外两个点的“n倍和谐点”.例如:数轴上点A,B,C所表示的数分别为1,2,4,此时点B是点A,C的“2倍和谐点”;(1)若点A表示数是-1,点C表示的数是5,点B1,B2,B3,依次表示-4,1,7各数,其2中是点A,C的“3倍和谐点”的是;(2)点A表示的数是-20,点C表示的数是40,点Q是数轴上一个动点.①若点Q是点A,C的“4倍和谐点”,求此时点Q表示的数;②若点Q在点A的右侧,且点Q是点A,C的“n倍和谐点”,用含有n的式子直接写出此时点Q所表示的数.。

北京市2020〖人教版〗七年级数学下册期末复习考试试卷解析版2

北京市2020〖人教版〗七年级数学下册期末复习考试试卷解析版2

北京市2020年〖人教版〗七年级数学下册期末复习考试试卷解析版创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一.选择题(共9小题)1.下列各方程组中,不是二元一次方程组的是()A.B.C.x﹣y=x+y﹣6=0 D.2.下列运算正确的是()A.a+a2=a3B.(a2)3=a6C.(x﹣y)2=x2﹣y2 D.a2a3=a63.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4 B.x2﹣4=(x+2)(x﹣2)C.x2﹣4+3x=(x+2)(x﹣2)+3x D.x2+4x﹣2=x(x+4)﹣24.如图,在△ABC中,∠ACB=15°,△ABC绕点C逆时针旋转90°后与△DEC重合,则∠ACE的读数是()A.105°B.90°C.15° D.120°5.如图,在3×4的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置共有()A.7处B.4处C.3处D.2处6.在一次射击练习中,甲,乙两人前5次射击的成绩分别为(单位:环)甲:10 8 10 10 7;乙:7 10 9 9 10则这次练习中,甲,乙两人方差的大小关系是()A.S2甲>S2乙B.S2甲<S2乙C.S2甲=S2乙D.无法确定7.如图,下列判断中错误的是()A.因为∠BAD+∠ADC=180°,所以AB∥CDB.因为AB∥CD,所以∠BAC=∠ACDC.因为∠ABD=∠CDB,所以AD∥BCD.因为AD∥BC,所以∠BCA=∠DAC8.方程组的解中x与y的值相等,则k等于()A.2 B.1 C.3 D.49.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°二.填空题(共9小题)10.若a m=2,a n=3,则a3m+2n=.11.若x2﹣16x+m2是一个完全平方式,则m=;若m﹣1m=9,则m2+21m=.12.六名同学在“爱心捐助”活动中,捐款数额为8,10,9,10,4,6(单位:元),这组数据的中位数是.13.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=35°,则∠2的度数为.14.已知x2+x﹣1=0,则x3+x2﹣x+3的值为.15.农业技术员在一块平行四边形的实验田里种植四种不同的农作物,现需将该实验田划成四个平行四边形地块(如图),已知其中三块田的面积分别是14m2,10m2,36m2,则第四块田的面积为m2.16.在△ABC中,AB=AC=8,作AB边的垂直平分线交AB边于点D,交直线AC 于点E,若DE=3,则线段CE的长为.17.如图,将△ABC沿着直线DE折叠,使点C与点A重合,已知AB=7,BC=9,则△BAD的周长为.18.若(2x﹣3y+5)2+|x+y﹣2|=0,则x=,y=.三.解答题(共7小题)19.因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)20.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣1 221.已知方程组:将(1)×2﹣(2)能消x,将(2)+(1)能消y,则m,n的值为多少?22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.23.已知小红的成绩如下表:文化成绩综合素质成绩总成绩测验1测验2测验3小红560分580分630分12(1)小红的这三次文化测试成绩的平均分是分;(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制出了如图所示的频数分布直方图.那么小红所在班级共有名同学;(3)学校将根据总成绩由高到低保送小红所在班级前15名同学进入高习,请问小红能被保送吗?说明理由.24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D 在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC,∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF=°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC 于点F.若∠ABC=60°,则∠DEF=°.25.某将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.七年级数学下册期末复习试卷(二)简答一.选择题(共9小题)1. D.2. B.3. B.4. A.5. A.6. A.7. C.8. B.9. B.二.填空题(共9小题)10.72.11.±8;83.12.8.5..13.55°.14.3.15.m2.16.3或13.17.16.18.15,95.三.解答题(共7小题)19.因式分解(1)﹣2a3+12a2﹣18a(2)9a2(x﹣y)+4b2(y﹣x)【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=﹣2a(a2﹣6a+9)=﹣2a(a﹣3)2;(2)原式=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣1 2【分析】先利用单项式乘多项式法则和完全平方公式去括号,再合并同类项即可化简原式,把a、b的值代入计算可得.【解答】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1、b=﹣12时,原式=12+(﹣12)2=1+1 4=54.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:单项式乘多项式,完全平方公式以及合并同类项法则,熟练掌握公式及法则是解本题的关键.21.已知方程组:将(1)×2﹣(2)能消x,将(2)+(1)能消y,则m,n的值为多少?【分析】仔细审题,发现题中有两个等量关系:由(1)×2﹣(2)能消x,可知等量关系①:方程(1)中未知数x的系数的2倍减去方程(2)中未知数x 的系数等于0;由(2)+(1)能消y,可知等量关系②:方程(1)中未知数y 的系数加上方程(2)中未知数y的系数等于0,根据这两个等量关系列出关于m,n的二元一次方程组,解方程组即可求出m,n的值.【解答】解:由题意可得,解得.故答案为:m=54,n=﹣34.【点评】本题主要考查二元一次方程组的解法及其应用,难度中等.关键是透彻理解加减消元法的实质,从而将已知条件转化为一个关于m,n的二元一次方程组.22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【分析】先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C=∠2,从而证得AB∥CD.【解答】证明:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.【点评】此题考查的知识点是平行线的判定,关键是由BE⊥FD及三角形内角和定理得出∠1和∠D互余.23.已知小红的成绩如下表:文化成绩综合素质成绩总成绩测验1测验2测验3小红560分580分630分12(1)小红的这三次文化测试成绩的平均分是590分;(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制出了如图所示的频数分布直方图.那么小红所在班级共有41名同学;(3)学校将根据总成绩由高到低保送小红所在班级前15名同学进入高习,请问小红能被保送吗?说明理由.【分析】(1)根据平均数公式计算小红的这三次文化测试成绩的平均分;(2)由数据总数=频数计算班级总人数;(3)计算600分以上人数,即可知道小红能否被保送.【解答】解:(1)由题意可知:小红的这三次文化测试成绩的平均分是=590;(2)由频数直方图可以看出:小红所在班级共有8+7+10+11+3+2=41人;(3)小红的总成绩为590+12=602分,600分以上的学生共有10+3+2=15人=15人,所以小红能被保送.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D 在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F.若∠ABC=40°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式)解:∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF=40°.应用:如图②,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB的延长线上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC 于点F.若∠ABC=60°,则∠DEF=120°.【分析】(1)依据两直线平行,内错角相等;两直线平行,同位角相,即可得到∠DEF=40°.(2)依据两直线平行,内同位角相;两直线平行,同旁内角互补,即可得到∠DEF=180°﹣60°=120°.【解答】解:(1)∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=40°,∴∠DEF=40°.故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,40;(2)∵DE∥BC,∴∠ABC=∠EADE=60°.(两直线平行,内同位角相等)∵EF∥AB,∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)∴∠DEF=180°﹣60°=120°.故答案为:120.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内同位角相;两直线平行,同旁内角互补.25.某将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.【分析】根据题意可知,本题中的相等关系是“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”,列方程组求解即可.【解答】解:(1)设45座客车每天租金x元,60座客车每天租金y元,则100 521600 x yx y+=⎧⎨+=⎩解得200300 xy=⎧⎨=⎩故45座客车每天租金200元,60座客车每天租金300元;(2)设学生的总数是a人,则302 4560a a+=+解得:a=240所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.本题还需注意“60座的客车每辆每天的租金比45座的贵100元”和“5辆45座和2辆60座的客车,一天的租金为1600元”的关系.。

北京市2020〖人教版〗七年级数学下册期末复习考试试卷42

北京市2020〖人教版〗七年级数学下册期末复习考试试卷42

北京市2020年〖人教版〗七年级数学下册期末复习考试试卷创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题(共12小题,每小题3分,满分36分)1.(3分)若A(2x﹣4,6﹣2x)在第二象限,则x的取值范围是()A.x<2 B.2<x<3 C.x>3 D.x<32.(3分)为了了解某学校七年级495名学生的视力情况,从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A.495名学生是总体B.每名学生是个体C.50名学生是所抽取的一个样本D.这个样本容量是503.(3分)下列四个实数中,是无理数的是()A.B.0 C. D.4.(3分)一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为()A.x>﹣1 B.x<1 C.﹣1≤x<1 D.﹣1<x≤15.(3分)在下列各式中正确的是()A. =﹣2 B. =3 C. =8 D. =26.(3分)不等式组的解集为x<4,则a满足的条件是()A.a<4 B.a=4 C.a≤4 D.a≥47.(3分)方程kx+3y=5有一组解是,则k的值是()A.1 B.﹣1 C.0 D.28.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.49.(3分)如图,AF∥CD,BC平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的个数为()A.1个B.2个C.3个D.4个10.(3分)某校在“创新素质实践行”活动中,组织学生进行社会调查,并对学生的调查报告进行了评比.如图是某年级60篇学生调查报告进行整理,分成5组画出的频数直方图.已知从左到右5个小长方形的高的比为1:2:7:6:4,那么在这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀,且分数为整数)()A.30篇B.24篇C.18篇D.27篇11.(3分)三角形A′B′C′是由三角形ABC平移得到的,点A(﹣1,﹣4)的对应点为A′(1,﹣1),则点B(1,1)的对应点B′、点C(﹣1,4)的对应点C′的坐标分别为()A.(2,2)(3,4)B.(3,4)(1,7)C.(﹣2,2)(1,7)D.(3,4)(2,﹣2)12.(3分)某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)已知a,b为两个连续整数,且a<<b,则a+b=.14.(3分)已知是关于m,n的方程组的解,则a+b=.15.(3分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=°.16.(3分)根据预测,21世纪中叶我国劳动者构成比例绘制成扇形统计图如图所示,则第一、二、三产业劳动者的构成比例是::.17.(3分)已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为.18.(3分)若关于x的不等式组的整数解有4个,则m的取值范围是.三、解答题:(19、20题,每小题5分;21题6分;22-26题,每小题5分)19.(5分)计算:﹣32+|﹣3|+.20.(5分)解方程组.21.(6分)解不等式组,并把解集在数轴上表示出来.22.(10分)某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?23.(10分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.24.(10分)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.25.(10分)在平面直角坐标系中,已知点A(﹣5,0),点B(3,0),△ABC的面积为16,点C在y轴上,试确定点C的坐标.26.(10分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过1000元后,超出1000元的部分按90%收费;在乙商场累计购物超过500元后,超出500元的部分按95%收费,设小红在同一商场累计购物x元,其中x>1000.(1)根据题题意,填写下表(单位:元)累计购物13002900 (x)在甲商场实际花费…在乙商场实际花费…(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过1000元时,在哪家商场的实际花费少?参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)若A(2x﹣4,6﹣2x)在第二象限,则x的取值范围是()A.x<2 B.2<x<3 C.x>3 D.x<3【解答】解:∵A(2x﹣4,6﹣2x)在第二象限,∴,解得:x<2,故选:A.2.(3分)为了了解某学校七年级495名学生的视力情况,从中抽查了50名学生的视力情况.针对这个问题,下面说法正确的是()A.495名学生是总体B.每名学生是个体C.50名学生是所抽取的一个样本D.这个样本容量是50【解答】解:A、495名学生的视力情况是总体,故此选项错误;B、每名学生的视力情况是个体,此选项错误;C、50名学生的视力情况是所抽取的一个样本,故此选项错误;D、这个样本容量是50,此选项正确;故选:D3.(3分)下列四个实数中,是无理数的是()A.B.0 C. D.【解答】解: =2,是有理数,0,是有理数,∴只有为无理数.故选C.4.(3分)一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为()A.x>﹣1 B.x<1 C.﹣1≤x<1 D.﹣1<x≤1【解答】解:由数轴得出,故选:D.5.(3分)在下列各式中正确的是()A. =﹣2 B. =3 C. =8 D. =2【解答】解:A、=2,故A选项错误;B、=±3,故B选项错误;C、=4,故C选项错误;D、=2,故D选项正确.故选:D.6.(3分)不等式组的解集为x<4,则a满足的条件是()A.a<4 B.a=4 C.a≤4 D.a≥4【解答】解:解不等式组得,∵不等式组的解集为x<4,∴a≥4.故选:D.7.(3分)方程kx+3y=5有一组解是,则k的值是()A.1 B.﹣1 C.0 D.2【解答】解:把是代入方程kx+3y=5中,得2k+3=5,解得k=1.故选A.8.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.9.(3分)如图,AF∥CD,BC平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠BCD+∠D=90°;④∠DBF=2∠ABC.其中正确的个数为()A.1个B.2个C.3个D.4个【解答】解:①∵BC⊥BD,∴∠DBE+∠CBE=90°,∠ABC+∠DBF=90°,又∵BD平分∠EBF,∴∠DBE=∠DBF,∴∠ABC=∠CBE,即BC平分∠ABE,正确;②由AB∥CE,BC平分∠ABE、∠ACE易证∠ACB=∠CBE,∴AC∥BE正确;③∵BC⊥AD,∴∠BCD+∠D=90°正确;④无法证明∠DBF=60°,故错误.故选C.10.(3分)某校在“创新素质实践行”活动中,组织学生进行社会调查,并对学生的调查报告进行了评比.如图是某年级60篇学生调查报告进行整理,分成5组画出的频数直方图.已知从左到右5个小长方形的高的比为1:2:7:6:4,那么在这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀,且分数为整数)()A.30篇B.24篇C.18篇D.27篇【解答】解:在这次评比中被评为优秀的调查报告数为×60=30(篇).故选A.11.(3分)三角形A′B′C′是由三角形ABC平移得到的,点A(﹣1,﹣4)的对应点为A′(1,﹣1),则点B(1,1)的对应点B′、点C(﹣1,4)的对应点C′的坐标分别为()A.(2,2)(3,4)B.(3,4)(1,7)C.(﹣2,2)(1,7)D.(3,4)(2,﹣2)【解答】解:点A的对应点D,是横坐标从﹣1到1,说明是向右移动了1﹣(﹣1)=2个单位,纵坐标是从﹣4到﹣1,说明是向上移动了﹣1﹣(﹣4)=3个单位,那么其余两点移运转规律也如此,即横坐标都加2,纵坐标都加3.故点E、F的坐标为(3,4)、(1,7).故选B.12.(3分)某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组()A.B.C.D.【解答】解:根据若每组7人,则余下4人,得方程7y=x﹣4;根据若每组8人,则有一组少3人,得方程8y=x+3.可列方程组为.故选C.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)已知a,b为两个连续整数,且a<<b,则a+b=7.【解答】解:∵9<11<16,∴3<<4.∴a=3,b=4.∴a+b=3+4=7.故答案为:7.14.(3分)已知是关于m,n的方程组的解,则a+b=﹣13.【解答】解:将m=﹣2,n=1代入方程组得:,①+②得:2b=﹣10,即b=﹣5,将b=﹣5代入①得:a=﹣8,则a+b=﹣13,故答案为:﹣13.15.(3分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C= 120°.【解答】解:∵∠CDE=150°,∴∠CDB=180﹣∠CDE=30°,又∵AB∥CD,∴∠ABD=∠CDB=30°;∵BE平分∠ABC,∴∠ABC=60°,∴∠C=180°﹣60°=120°.故答案为:120.16.(3分)根据预测,21世纪中叶我国劳动者构成比例绘制成扇形统计图如图所示,则第一、二、三产业劳动者的构成比例是1:2:2.【解答】解:∵第一产业所占度数为360°﹣144°﹣144°=72°,∴第一、二、三产业劳动者的构成比例是72:144:144=1:2:2.17.(3分)已知AB∥x轴,A点的坐标为(3,2),并且AB=5,则B的坐标为(﹣2,2)或(8,2).【解答】解:已知AB∥x轴,点B的纵坐标与点A的纵坐标相同,都是2;在直线AB上,过点A向左5单位得(﹣2,2),过点A向右5单位得(8,2).∴满足条件的点有两个:(﹣2,2),(8,2).故答案填:(﹣2,2)或(8,2).18.(3分)若关于x的不等式组的整数解有4个,则m的取值范围是6<m≤7.【解答】解:,解不等式①得:x<m,解不等式②得:x≥3,∵关于x的不等式组的整数解集是3,4,5,6,∴6<m≤7.故答案为:6<m≤7.三、解答题:(19、20题,每小题5分;21题6分;22-26题,每小题5分)19.(5分)计算:﹣32+|﹣3|+.【解答】解:原式=﹣9+(3﹣)+6=﹣9+3﹣+6=﹣.20.(5分)解方程组.【解答】解:①×2+②×3得:13x=26,解得:x=2,把x=2代入①得:4+3y=1,解得:y=﹣1,所以原方程组的解为.21.(6分)解不等式组,并把解集在数轴上表示出来.【解答】解:解不等式x﹣3(x﹣2)≥4,得:x≤1,解不等式<,得:x>﹣7,则不等式组的解集为﹣7<x≤1,将解集表示在数轴上如下:22.(10分)某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?【解答】解:(1)由图1知:4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢足球活动的有10人=0.2=20%∴最喜欢足球活动的人数占被调查人数的20%.(3)1﹣(30%+26%+24%)=20%,200÷20%=1000(人)×100%×1000=360(人).答:估计全校学生中最喜欢跳绳活动的人数约为360人.23.(10分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.【解答】解:∵AD∥BC,∴∠DAC+∠ACB=180°,∵∠DAC=120°,∴∠ACB=60°,∵∠ACF=20°,∴∠FCB=60°﹣20°=40°,∵CE平分∠BCF,∴∠BCE=∠FCB=20°,∵EF∥AD,AD∥BC,∴EF∥BC,∴∠FEC=∠BCE=20°.24.(10分)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.【解答】解:∵x﹣2的平方根是±2,2x+y+7的立方根是3,∴x﹣2=4,2x+y+7=27,∴x=6,y=8,∴x2+y2=100,∴100的平方根为±10.25.(10分)在平面直角坐标系中,已知点A(﹣5,0),点B(3,0),△ABC的面积为16,点C在y轴上,试确定点C的坐标.【解答】解:∵点A(﹣5,0),B(3,0),都在x轴上,∴AB=8,∵△ABC的面积为16,点C在y轴上,∴△ABC的面积=AB•OC=16,解得OC=4,若点C在y轴的正半轴上,则点C的坐标为(0,4),若点C在y轴的负半轴上,则点C的坐标为(0,﹣4),综上所述,点C的坐标为(0,4)或(0,﹣4).26.(10分)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过1000元后,超出1000元的部分按90%收费;在乙商场累计购物超过500元后,超出500元的部分按95%收费,设小红在同一商场累计购物x元,其中x>1000.(1)根据题题意,填写下表(单位:元)累计购物13002900 (x)在甲商场实际花费12702710…0.9x+100在乙商场实际花费12602780…0.95x+25(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过1000元时,在哪家商场的实际花费少?【解答】解:(1)在甲商场:1000+(1300﹣1000)×0.9=1270,1000+(2900﹣1000)×0.9=2710,1000+(x﹣1000)×0.9=0.9x+100;在乙商场:500+(1300﹣500)×0.95=1260,500+(2900﹣500)×0.95=2780,500+(x﹣500)×0.95=0.95x+25;填表如下:累计购物13002900 (x)在甲商场实际花费12702710…0.9x+100在乙商场实际花费12602780…0.95x+25(2)根据题意得出:0.9x+100=0.95x+25,解得:x=1500,答:当x为1500时,小红在甲、乙两商场的实际花费相同;(3)由0.9x+100<0.95x+25,解得:x>1500,0.9x+100>0.95x+25,解得:x<1500,∴当小红累计购物大于1500时,选择甲商场实际花费少;当累计购物正好为1500元时,两商场花费相同;当小红累计购物超过1000元而不到1500元时,在乙商场实际花费少.答:当小红累计购物超过1000元而不到1500元时,在乙商场实际花费少;正好为1500元时,两商场花费相同;大于1500时,选择甲商场实际花费少.。

北京市2020〖人教版〗七年级数学下册期末复习考试试卷. 因式分解测试卷及解析

北京市2020〖人教版〗七年级数学下册期末复习考试试卷. 因式分解测试卷及解析

北京市2020年〖人教版〗七年级数学下册期末复习考试试卷8.5 因式分解测试卷及解析一、选择1.下列各式由左到右变形中,是因式分解的是()A.a(x+y)=ax+ayB. x2-4x+4=x(x-4)+4C. 10x2-5x=5x(2x-1)D. x2-16+3x=(x-4)(x+4)+3x2.下列各式中,能用提公因式分解因式的是()A. x2-yB. x2+2xC. x2+y2D. x2-xy+13.多项式6x3y2-3x2y2-18x2y3分解因式时,应提取的公因式是()A. 3x2yB.3xy2C. 3x2y2D.3x3y34.多项式x3+x2提取公因式后剩下的因式是()A. x+1B.x2C. xD. x2+15.下列变形错误的是()A.-x-y=-(x+y)B.(a-b)(b-c)= - (b-a)(b-c)C. –x-y+z=-(x+y+z)D.(a-b)2=(b-a)26.下列各式中能用平方差公式因式分解的是()A. –x2y2B.x2+y2C.-x2+y2D.x-y7.下列分解因式错误的是()A. 1-16a2=(1+4a)(1-4a)B. x3-x=x(x2-1)C.a2-b2c2=(a+bc)(a-bc)D.m2-0.01=(m+0.1)(m-0.1)8.下列多项式中,能用公式法分解因式的是()A.x2-xyB. x2+xyC. x2-y2D.x2+y2二、填空9.a2b+ab2-ab=ab(__________).10.-7ab+14a2-49ab2=-7a(________).11.3(y-x)2+2(x-y)=___________12.x(a-1)(a-2)-y(1-a)(2-a)=____________.13.-a 2+b 2=(a+b)(______)14.1-a 4=___________15.992-1012=________16.x 2+x+____=(______)217.若a+b=1,x-y=2,则a 2+2ab+b 2-x+y=____。

2020年各区期末考试新定义

2020年各区期末考试新定义

2020年各区期末考试新定义【202001东城期末】 如图,在平面直角坐标系xOy 中,过⊙T 外一点P 引它的两条切线,切点分别为M ,N ,若︒<∠≤︒18060MPN ,则称P 为⊙T 的环绕点.(1)当⊙O 半径为1时,①在)2,0(),1,1(),0,1(321P P P 中,⊙O 的环绕点是___________;②直线y =2x +b 与x 轴交于点A ,y 轴交于点B ,若线段AB 上存在⊙O 的环绕点,求b 的取值范围;(2)⊙T 的半径为1,圆心为(0,t ),以)0(33,>m m m )(为圆心,m 33为半径的所有圆构成图形H ,若在图形H 上存在⊙T 的环绕点,直接写出t 的取值范围.【202001西城期末】对于给定的△ABC,我们给出如下定义:若点M是边BC上的一个定点,且以M为圆心的半圆上的所有点都在△ABC的内部或边上,则称这样的半圆为BC边上的点M关于△ABC的内半圆,并将半径最大的内半圆称为点M关于△ABC的最大内半圆.若点M是边BC上的一个动点(M不与B,C重合),则在所有的点M关于△ABC 的最大内半圆中,将半径最大的内半圆称为BC关于△ABC的内半圆.(1)在Rt△ABC中,∠BAC = 90°,AB = AC = 2,①如图1,点D在边BC上,且CD=1,直接写出点D关于△ABC的最大内半圆的半径长;②如图2,画出BC关于△ABC的内半圆,并直接写出它的半径长;图1 图2(2)在平面直角坐标系xOy中,点E的坐标为(3,0),点P在直线=3y x上运动(P不与O重合),将OE关于△OEP的内半圆半径记为R,当34≤R≤1时,求点P的横坐标t的取值范围.【202001朝阳期末】在平面直角坐标系xOy 中,已知点A (0,2),点B 在x 轴上,以AB 为直径作⊙C ,点P 在y 轴上,且在点A 上方,过点P 作⊙C 的切线PQ ,Q 为切点,如果点Q 在第一象限,则称Q 为点P 的离点.例如,图1中的Q 为点P 的一个离点.(1)已知点P (0,3),Q 为P 的离点.①如图2,若B (0,0),则圆心C 的坐标为 ,线段PQ 的长为; ②若B (2,0),求线段PQ 的长;(2)已知1≤P A ≤2, 直线l :3y kx k =++(k ≠0).①当k =1时,若直线l 上存在P 的离点Q ,则点Q 纵坐标t 的最大值为 ; ②记直线l :3y kx k =++(k ≠0)在11x -≤≤的部分为图形G ,如果图形G 上存在P 的离点,直接写出k 的取值范围.图2图1【202001海淀期末】在平面直角坐标系xOy 中,对于点P (a ,b )和实数(0)k k >,给出如下定义:当0ka b +>时,将以点P 为圆心,ka b +为半径的圆,称为点P 的k 倍相关圆.例如,在如图1中,点P (1,1)的1倍相关圆为以点P 为圆心,2为半径的圆.(1)在点P 1(2,1),P 2(1,3-)中,存在1倍相关圆的点是_____,该点的1倍相关圆半径为_______.(2)如图2,若M 是x 轴正半轴上的动点,点N 在第一象限内,且满足∠MON =30°,判断直线ON 与点M 的12倍相关圆的位置关系,并证明.(3)如图3,已知点A 的(0,3),B (1,m ),反比例函数6y x=的图象经过点B ,直线l 与直线AB 关于y 轴对称.①若点C 在直线l 上,则点C 的3倍相关圆的半径为 .②点D 在直线AB 上,点D 的31倍相关圆的半径为R ,若点D 在运动过程中,以点D 为圆心,hR 为半径的圆与反比例函数6y x=的图象最多有两个公共点,直接写出h 的最大值.图 1图 2图 3【202001石景山期末】在ABC △中,D 是边BC 上一点,以点A 为圆心,AD 长为半径作弧,如果与边BC有交点E (不与点D 重合),那么称»DE为ABC △的A -外截弧. 例如,右图中»DE是ABC △的一条A -外截弧.在平面直角坐标系xOy 中,已知ABC △存在A -外截弧,其中点A 的坐标为(5,0), 点B 与坐标原点O 重合.(1)在点1(0,2)C ,2(5,3)C -,3(6,4)C ,4(4,2)C 中,满足条件的点C 是 ; (2)若点C 在直线2y x =-上, ①求点C 的纵坐标的取值范围;②直接写出ABC △的A -外截弧所在圆的半径r 的取值范围.EDCBA【202001丰台期末】平面直角坐标系xOy 中有点P 和某一函数图象M ,过点P 作x 轴的垂线,交图象M 于点Q ,设点P ,Q 的纵坐标分别为P y ,Q y .如果P Q y y >,那么称点P 为图象M 的上位点;如果P Q y y =,那么称点P 为图象M 的图上点;如果P Q y y <,那么称点P 为图象M 的下位点.(1)已知抛物线22y x =-.① 在点A (-1,0),B (0,-2),C (2,3)中,是抛物线的上位点的是 ; ② 如果点D 是直线y x =的图上点,且为抛物线的上位点,求点D 的横坐标D x 的取值范围;(2)将直线3y x =+在直线3y =下方的部分沿直线3y =翻折,直线3y x =+的其余部分保持不变,得到一个新的图象,记作图象G .⊙H 的圆心H 在x 轴上,半径为1.如果在图象G 和⊙H 上分别存在点E 和点F ,使得线段EF 上同时存在图象G 的上位点,图上点和下位点,求圆心H 的横坐标H x 的取值范围.【202001顺义期末】在平面直角坐标系xOy 中,若点P 和点P 1关于x 轴对称,点P 1和点P 2关于直线l 对称,则称点P 2是点P 关于x 轴,直线l 的二次对称点. (1)如图1,点A (0,-1).①若点B 是点A 关于x 轴,直线l 1:x =2的二次对称点,则点B 的坐标为 ; ②点C (-4,1)是点A 关于x 轴,直线l 2:x =a 的二次对称点,则a 的值为 ; ③点D (-1,0)是点A 关于x 轴,直线l 3的二次对称点,则直线l 3的表达式为 ;(2)如图2,⨀O 的半径为2.若⨀O 上存在点M ,使得点M ′是点M 关于x 轴,直线l 4:x =b 的二次对称点,且点M ′在射线x y 3=(x ≥0)上,b 的取值范围是;(3)E (0,t )是y 轴上的动点,⨀E 的半径为2,若⨀E 上存在点N ,使得点N ′是点N 关于x轴,直线l 5:x y 33=的二次对称点,且点N ′在x 轴上,求t 的取值范围.图1 图2【202001大兴期末】在平面直角坐标系xOy中,已知P(a,b),R(c,d)两点,且a≠c,b≠d,若过点P作x轴的平行线,过点R作y轴的平行线,两平行线交于一点S,连接PR,则称△PRS为点P,R,S的“坐标轴三角形”.若过点R作x轴的平行线,过点P作y轴的平行线,两平行线交于一点S',连接PR,则称△RP S'为点R,P,S'的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为 ;(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.,点M(m,4).若在⨀O上存在一点N,使得点N ,M, G的“坐标(3)若⨀O的半径为3√22轴三角形”为等腰三角形,求m的取值范围.【202001平谷期末】在平面直角坐标系xOy中,有任意三角形,当这个三角形的一条边上的中线等于这条边的一半时,称这个三角形叫“和谐三角形”,这条边叫“和谐边”,这条中线的长度叫“和谐距离”.(1)已知A(2,0),B(0,4),C(1,2),D(4,1),这个点中,能与点O组成“和谐三角形”的点是,“和谐距离”是;(2)连接BD,点M,N是BD上任意两个动点(点M,N不重合),点E是平面内任意一点,△EMN是以MN为“和谐边”的“和谐三角形”,求点E的横坐标t的取值范围;(3)已知⊙O的半径为2,点P是⊙O上的一动点,点Q是平面内任意一点,△OPQ是“和谐三角形”,且“和谐距离”是2,请描述出点Q所在位置.【202001昌平期末】对于平面直角坐标系xOy中,已知点A(-2,0)和点B(3,0),线段AB和线段AB外的一点P,给出如下定义:若45°≤∠APB≤90°时,则称点P为线段AB的可视点,且当P A=PB时,称点P为线段AB的正可视点.(1)∠如图1,在点P1(3,6),P2(-2,-5),P3(2,2)中,线段AB的可视点是;∠若点P在y轴正半轴上,写出一个满足条件的点P的坐标:__________.(2)在直线y=x+b上存在线段AB的可视点,求b的取值范围;(3)在直线y=-x+m上存在线段AB的正可视点,直接写出m的取值范围.图1 备用图【202001门头沟期末】对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:如果点P 为图形M 上任意一点,点Q 为图形N 上任意一点,那么称线段PQ 长度的最小值为图形M ,N 的“近距离”,记作 d (M ,N ).若图形M ,N 的“近距离”小于或等于1,则称图形M ,N 互为“可及图形”. (1)当⊙O 的半径为2时,①如果点A (0,1),B (3,4),那么d (A ,⊙O )=________,d (B ,⊙O )= _________; ②如果直线y x b =+与⊙O 互为“可及图形”,求b 的取值范围;(2)⊙G 的圆心G 在x 轴上,半径为1,直线5y x =-+与x 轴交于点C ,与y 轴交于点D ,如果⊙G 和∠CDO 互为“可及图形”,直接写出圆心G 的横坐标m 的取值范围.【202001房山期末】如图28-1,已知线段AB 与点P ,若在线段AB 上存在..点Q ,满足PQ AB £,则称点P 为线段AB 的“限距点”.图28-1(1) 如图28-2,在平面直角坐标系xOy 中,若点)01-(,A ,)01(,B .① 在)20(,C ,)2--2(,D ,)3-1(,E 中,是线段AB 的“限距点”的是________;② 点P 是直线1+=x y 上一点,若点P 是线段AB 的“限距点”,请求出点P 横坐标P x 的取值范围.图28-2(2) 在平面直角坐标系xOy 中,点)1(,t A ,)1-(,t B ,直线32+33=x y 与x 轴交于点M ,与y 轴交于点N . 若线段MN 上存在线段AB 的“限距点”,请求出t 的取值范围.。

北京市2020〖人教版〗七年级数学下册期末复习考试试卷参考答案与试题解析

北京市2020〖人教版〗七年级数学下册期末复习考试试卷参考答案与试题解析

北京市2020年〖人教版〗七年级数学下册期末复习考试试卷参考答案与试题解析创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题1.(4分)如图,若m∥n,∠1=105°,则∠2=()A.55°B.60°C.65°D.75°考点:平行线的性质.专题:计算题.分析:由m∥n,根据“两直线平行,同旁内角互补”得到∠1+∠2=180°,然后把∠1=105°代入计算即可得到∠2的度数.解答:解:∵m∥n,∴∠1+∠2=180°,而∠1=105°,∴∠2=180°﹣105°=75°.故选D.点评:本题考查了平行线的性质:两直线平行,同旁内角互补.2.(4分)(•大连)在平面直角坐标系中,点P(﹣3,2)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据点在第二象限的坐标特点即可解答.解答:解:∵点的横坐标﹣3<0,纵坐标2>0,∴这个点在第二象限.故选B.点评:解决本题的关键是记住平面直角坐标系中各个象限内点的符号:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(4分)(•深圳)在1000个数据中,用适当的方法抽取50个体为样本进行统计,频数分布表中54.5~57.5这一组的频率为0.12,估计总体数据落在54.5~57.5之间的约有()个.A.120 B.60 C.12 D.6考点:用样本估计总体;频数与频率;频数(率)分布表.分析:根据频率的意义,每组的频率=小组的频数:样本容量,据此即可解答.解答:解:0.12×50=6,在总体1000个数据中,数据落在54.5~57.5之间的约有120个.故选A.点评:本题主要考查频率的意义与计算方法,频率的意义,每组的频率=小组的频数:样本容量.同时考查统计的基本思想即用样本估计总体的应用.4.(4分)(•安徽)设,a在两个相邻整数之间,则这两个整数是()A.1和2 B.2和3 C.3和4 D.4和5 考点:估算无理数的大小.专计算题.题:分析:先对进行估算,再确定是在哪两个相邻的整数之间,然后计算介于哪两个相邻的整数之间.解答:解:∵16<19<25,∴4<<5,∴3<﹣1<4,∴3<a<4,∴a在两个相邻整数3和4之间;故选C.点评:此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.5.(4分)在y=ax2+bx+c中,当x=1时,y=0;当x=﹣1时,y=6;当x=2时,y=3;则当x=﹣2时,y=()A.13 B.14 C.15 D.16考点:解三元一次方程组.专题:计算题.分析:根据题意得到三元一次方程组得,再解方程组得,则y=2x2﹣3x+1,然后把x=﹣2代入计算.解答:解:根据题意得,解方程组得,所以y=2x2﹣3x+1,当x=﹣2时,y=2×4﹣3×(﹣2)+1=15.故选C.点评:本题考查了解三元一次方程组:利用加减消元或代入消元把解三元一次方程组的问题转化为解二元一次方程组的问题.6.(4分)已知不等式3x﹣a≤0的正整数解恰是1,2,3,4,那么a的取值范围是()A.a>12 B.12≤a≤15 C.12<a≤15 D.12≤a<15 考点:一元一次不等式的整数解.分析:首先确定不等式组的解集,利用含a的式子表示,再根据整数解的个数就可以确定有哪些整数解,然后根据解的情况可以得到关于a的不等式,从而求出a的范围.解答:解:不等式的解集是:x≤,∵不等式的正整数解恰是1,2,3,4,∴4≤<5,∴a的取值范围是12≤a<15.故选D.点评:本题考查了一元一次不等式的整数解,正确解出不等式的解集,正确确定的范围,是解决本题的关键.解不等式时要用到不等式的基本性质.二、填空题7.(4分)x的与5的差不小于3,用不等式表示为x≥3.考点:由实际问题抽象出一元一次不等式.分析:不小于就是大于或等于,根据题意可列出不等式.解答:解:根据题意得:x﹣5≥3.故答案为:x﹣5≥3.点评:本题考查由实际问题抽象出一元一次不等式,根据关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.8.(4分)点A(a2+1,﹣1﹣b2)在第四象限.考点:点的坐标;非负数的性质:偶次方.分析:根据平方数非负数判断出点A的横坐标是正数,纵坐标是负数,然后根据各象限内点的坐标特征解答.解答:解:∵a2≥0,∴a2+1≥1,∵﹣b2≤0,∴﹣1﹣b2≤﹣1,∴点A的横坐标是正数,纵坐标是负数,∴点A在第四象限.故答案为:四.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(4分)一组数据共有50个,分别落在5个小组内,第一、二、三、四小组的频数分别为3、8、21、13,则第五小组的频数为5.考点:频数与频率.分析:用数据总数减去其它四组的频数就是第五小组的频数.解答:解:根据题意可得:第一、二、三、四小组的频数分别为3、8、21、13,共(3+8+21+13)=45,样本总数为50,故第五小组的频数是50﹣45=5.故答案为:5.点评:本题考查频数和频率的知识,注意掌握每个小组的频数等于数据总数减去其余小组的频数,即各小组频数之和等于数据总和.10.(4分)=4,=5,的平方根是±.考点:算术平方根;平方根.分析:根据算术平方根、平方根的定义求出每个式子的值即可.解答:解:=4,==5,1的平方根是±=±=±,故答案为:4,5,±.点评:本题考查了算术平方根、平方根的应用,主要考查学生的计算能力.11.(4分)一只船在A、B两码头间航行,从A到B顺流航行需2小时,从B到A逆流航行需3小时,那么一只救生圈从A顺流漂到B需要12小时.考点:二元一次方程组的应用.分析:设A、B两码头间的距离为a,船在静水中的速度为x,水流的速度为y,根据航行问题的数量关系建立方程组求出其解即可.解答:解:设A、B两码头间的距离为a,船在静水中的速度为x,水流的速度为y,由题意,得,解得:,∴只救生圈从A顺流漂到B需要的时间为:12y÷y=12小时.故答案为:12.点评:本题考查了航行问题在数学实际问题中的运用,设参数在解运用题中的运用,解答时建立方程组表示出A、B间的距离是关键.12.(4分)在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示,点A4n的坐标(n是正整数)是:A4n(2n﹣1,0)考点:规律型:点的坐标.分析:根据A4,A8、A12都在x轴上,得出A4n也在x轴上,再根据A4,A8、A12点的坐标的规律,即可得出答案.解答:解:由图可知,A4,A8、A12都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=1,OA8=3,OA12=5,∴A4(1,0),A8(3,0)OA12(5,0),OA4n=4n÷2﹣1=2n﹣1,∴点A4n的坐标(2n﹣1,0);故答案为:(2n﹣1,0).点评:本题考查了点的坐标,仔细观察图形,确定出A4n都在x轴上再根据各点的坐标,找出规律是解题的关键.三、解答下列各题(共75分)13.(12分)(1)解方程组:(2)解不等式组:.考点:解一元一次不等式组;解二元一次方程组.分析:(1)由于两个方程里的两个未知数的系数都有倍数关系,宜用加减法解答;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.解答:解:,①×2+②得,x=,把x=代入①得,y=﹣,所以方程组的解为;(2)由1﹣3(x﹣1)<8﹣x,得x>﹣2,+3≥x+1,得x≤1,所以原不等式组的解集为﹣2<x≤1.点评:本题考查的是解二元一次方程组及解一元一次不等式组,解二元一次方程组的基本思想是消元,如果两个方程里的两个未知数的系数都有倍数关系,可选择消去系数较小的未知数;解一元一次不等式组依据的是不等式的基本性质.14.(6分)请根据证明过程,在括号内填写相应理由,如图,已知B、E分别是AC、DF上的点,∠1=∠2,∠C=∠D,求证:∠A=∠F.证明:因为∠1=∠2(已知)所以BD∥CE(内错角相等,两直线平行)所以∠C=∠ABD(两直线平行,同位角相等)因为∠C=∠D(已知)所以∠D=∠ABD (等量代换)所以DF∥AC(内错角相等,两直线平行)所以∠A=∠F(两直线平行,内错角相等)考点:平行线的判定与性质.专题:推理填空题.分析:第一、四空根据平行线的判定填写,第二、五空根据平行线的性质填写,第三空根据等量关系填写.解答:证明:∵∠1=∠2(已知),∴BD∥CE(内错角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等);∵∠C=∠D(已知),∴∠D=∠ABD (等量代换),∴DF∥AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).点评:本题主要考查平行线的性质及判定,找到相应关系的角是解题的关键.15.(6分)已知和互为相反数,且x﹣y+4的平方根是它本身,求x、y的值.考点:立方根;平方根.分析:根据已知得出方程y﹣1=﹣(3﹣2x),x﹣y+4=0,求出两方程组成的方程组的解即可.解答:解:∵和互为相反数,∴y﹣1=﹣(3﹣2x),∵x﹣y+4的平方根是它本身,∴x﹣y+4=0,即,解得:x=6,y=10.点评:本题考查了相反数、平方根、解二元一次方程组的应用,关键是能根据题意得出方程组.16.(8分)(•福州)李晖到“宇泉牌”服装专卖店做社会调查.了解到商店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员小俐小花月销售件数(件)200 150月总收入(元)1400 1250假设月销售件数为x件,月总收入为y元,销售每件奖励a元,营业员月基本工资为b元.(1)求a,b的值;(2)若营业员小俐某月总收入不低于1800元,那么小俐当月至少要卖服装多少件?考点:一次函数的应用.分析:(1)设一次函数为:y=ax+b,根据小俐和小花的月销售件数和月总收入,可将a和b的值求出;(2)月总收入不低于1800,即y≥1800.从而可将x的值求出.解答:解:①依题意,得y=ax+b,解得a=3,b=800.②依题意,得y≥1800,即3x+800≥1800.解得x≥∵x为正整数∴x最小为334,故小俐当月至少要卖服装334件.点评:此题中x的值为正整数,在解题过程中注意未知量的取值范围.17.(10分)已知方程组的解x、y满足:x为非正数,y为负数.(1)求a的取值范围;(2)在a的取值范围中,当a为何整数时,关于x的不等式2ax+x>2a+1的解集为x<1.考点:解一元一次不等式组;解二元一次方程组;解一元一次不等式.分析:(1)先把a当作已知求出x、y的值,再根据x、y的取值范围得到关于a的一元一次不等式组,求出a的取值范围即可;(2)根据不等式2ax+x>2a+1的解为x<1,得出2a+1<0且﹣2<a≤5,解此不等式得到关于a取值范围,找出符合条件的a的值.解答:解:(1)解这个方程组的解为,由题意,得,第一个不等式的解集是:a≤5,第二个不等式的解集是:a>﹣2,则原不等式组的解集为﹣2<a≤5;(2)∵不等式2ax+x>2a+1的解集为x<1,∴2a+1<0且﹣2<a≤5,∴在﹣2<a<﹣范围内的整数有a=﹣1.点评:本题考查的是解二元一次方程组及解一元一次不等式组、代数式的化简求值,先把a当作已知求出x、y的值,再根据已知条件得到关于a的不等式组求出a的取值范围是解答此题的关键.18.(10分)(•内江)某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:压轴题.分析:(1)根据购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元,得出等量关系,列出二元一次方程组即可;(2)根据该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元,即可得出不等式组,求出即可.解答:解:(1)设每台电脑机箱、液晶显示器的进价各是x,y元,根据题意得:,解得:,答:每台电脑机箱、液晶显示器的进价各是60元,800元;(2)设该经销商购进电脑机箱m台,购进液晶显示器(50﹣m)台,根据题意得:,解得:24≤m≤26,因为m要为整数,所以m可以取24、25、26,从而得出有三种进货方式:①电脑箱:24台,液晶显示器:26台,②电脑箱:25台,液晶显示器:25台;③电脑箱:26台,液晶显示器:24台.∴方案一的利润:24×10+26×160=4400(元),方案二的利润:25×10+25×160=4250(元),方案三的利润:26×10+24×160=4100(元),∴方案一的利润最大为4400元.点评:此题主要考查了二元一次方程组的应用以及不等式组的应用,根据题意得出等量关系是解决问题的关键.创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校。

2020年1月北京初一数学期末测试新定义题汇编

2020年1月北京初一数学期末测试新定义题汇编

2020年1月期末测试新定义题汇编海淀27.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为2()M x .如2(735)111M =,2(561)101M =.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位上的数分别相加,规定:0与0相加得0;0与1相加得1;1与1相加得0,并向左边一位进1.如735、561的“模二数”111、101相加的运算过程如右图所示.根据以上材料,解决下列问题:(1)2(9653)M 的值为 ,22(58)(9653)M M +的值为 ;(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”. 如2(124)100M =,2(630)010M =, 因为22(124)+(630)110M M =,2(124630)110M +=,所以222(124+630)(124)+(630)M M M =,即124与630满足“模二相加不变”. ①判断12,65,97这三个数中哪些与23“模二相加不变”,并说明理由;①与23“模二相加不变”的两位数有 个.1111011100+西城对于平面内给定射线OA ,射线OB 及∠MON ,给出如下定义:若由射线OA ,OB 组成的∠AOB 的平分线OT 落在∠MON 的内部或边OM ,ON 上,则称射线OA 与射线OB 关于∠MON 内含对称.例如,图1中射线OA 与射线OB 关于∠MON 内含对称.已知:如图2,在平面内,∠AOM=10°, ∠MON=20°.(1)若有两条射线OB 1,OB 2的位置如图3所示,且∠B 1OM=30°,∠B 2OM=15°,则在这两条射线中,与射线OA 关于∠MON 内含对称的射线是 ;图2 图3 图4(2)射线OC 是平面上绕点O 旋转的一条动射线,若射线OA 与射线OC 关于∠MON 内含对称,设∠COM=x °,求x 的取值范围;(3)如图4,∠AOE=∠EOH=2∠FOH =20°.现将射线OH 绕点O 以每秒1°的速度顺时针旋转,同时将射线OE 和OF 绕点O 都以每秒3°的速度顺时针旋转.设旋转的时间为t 秒,且0<t <60.若∠FOE 的内部及两边至少存在一条以O 为顶点的射线与射线OH 关于∠MON 内含对称,直接写出t 的取值范围.3东城25.一般情况下,对于数a 和b ,(""2424a b a b ++≠≠+不等号),但是对于某些特殊的数a 和b ,=.2424a b a b+++我们把这些特殊的数a 和b ,称为“理想数对”,记作a b , .例如当1,4a b ==-时,有1-41+(-4)2424+=+,那么1,-4就是“理想数对”.(1)3-12-2,4,,可以称为“理想数对”的是 ; (2)如果2x ,是“理想数对”,那么x = ;(3)若,m n 是“理想数对”,求73(94)8()4126n m n m m ⎡⎤-----⎢⎥⎣⎦的值.4石景山28.对数轴上的点P 进行如下操作:先把点P 表示的数乘以()0m m ≠,再把所得数对应的点沿数轴向右平移n 个单位长度,得到点P '.称这样的操作为点P 的“倍移”,对数轴上的点A ,B , C ,D 进行“倍移”操作得到的点分别为A ',B ',C ',D '. (1)当12m =,1n =时, ①若点A 表示的数为4-,则它的对应点A '表示的数为 . 若点B '表示的数是3,则点B 表示的数为 ;②数轴上的点M 表示的数为1,若3CM C M '=,则点C 表示的数为 ; (2)当3n =时,若点D 表示的数为2,点D '表示的数为5-,则m 的值为 ; (3)若线段2A B AB ''=,请写出你能由此得到的结论. 5延庆27.(4分)对于任意有理数a ,b ,我们规定:当a b ≥时,都有2a b a b ⊗=+;当a b <时,都有2a b a b ⊗=-. 例如:21221224⊗=+⨯=+=. 根据上述规定解决下列问题:(1)计算:23⊗= ;1()(1)2-⊗-= . (2)若(3)(3)6x x +⊗-=,求x 的值.6门头沟25.古希腊毕达哥拉斯学派的数学家经常用小石子摆成各种形状来研究数学问题.如图1,由于这些三角形是由1个,3个,6个,10个,… 小石子摆成的,所以他们称1,3,6,10,…,这些数为三边形数;类似的,如图2,他们称1,4,9,16,…,这样的数为四边形数.…1 3 6 10图1…1 4 9 16图2(1)既是三边形数,又是四边形数,且大于1的最小正整数是 ; (2)如果记第n 个k 边形小石子的个数为(),M n k (k ≥3),那么易得()1,3=1M ,()2,3=3M ,()2,4=4M .① ()3,3=M ;()9,4=M ; ② (),3=M n ;(),4=M n ; ③ 如果(),3=55M n ,那么n = ;(3)如果进一步研究发现()23,5=2n n M n -,()2242,6==22n n M n n n --,…,那么()10,24=M .7、密云28.在数轴上,若A 、B 、C 三点满足AC=2CB ,则称C 是线段AB 的相关点.当点C 在线段AB 上时,称C 为线段AB 的内相关点,当点C 在线段AB 延长线上时,称C 为线段AB 的外相关点.如图1,当A 对应的数为5,B 对应的数为2时,则表示数3的点C 是线段AB 的内相关点,表示数-1的点D 是线段AB 的外相关点.(1)如图2,A 、B 表示的数分别为5和-1,则线段AB 的内相关点表示的数为______,线段AB 的外相关点表示的数为________.(2)在(1)的条件下,点P 、点Q 分别从A 点、B 点同时出发,点P 、点Q 分别以3个单位/秒和2个单位/秒的速度向右运动,运动时间为t 秒. ①当PQ=7时,求t 值.②设线段PQ 的内相关点为M ,外相关点为N.直接写出M 、N 所对应的数为相反数时t 的取值.34DCB A -3-2-163210754-4-5图2图1-545701236-1-28】房山27.在数轴上,对于不重合的三点A ,B ,C ,给出如下定义:若点C 到点A 的距离是点C 到点B 的距离的2倍,我们就把点C 叫做【A ,B 】的和谐点.例如:图1中,点A 表示的数为1-,点B 表示的数为2. 表示数1的点C 到点A 的距离是2,到点B 的距离是1. 那么点C 是【A ,B 】的和谐点;又如,表示数0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的和谐点,但点D 是【B ,A 】的和谐点.图1(1)当点A 表示的数为4-,点B 表示的数为8时,①若点C 表示的数为4,则点C (填“是”或“不是”)【A ,B 】的 和谐点;②若点D 是【B ,A 】的和谐点,则点D 表示的数是 ;(2)若A ,B 在数轴上表示的数分别为-2和4,现有一点C 从点B 出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C 到达点A 时停止,问点C 运动多少秒时,C ,A ,B 中恰有一个点为其余两点的和谐点?9、平谷27..我们规定,有理数的整数部分就是取其最接近的两个整数中的最小整数,小数部分就是用原数减去整数部分,比如,小数3.25,最接近的两个整数就是3和4,则整数部分取3,小数部分就是3.25-3=0.25,(1)6.14的整数部分是 ,小数部分是 ; (2)-3.6的整数部分是 ,小数部分是 ;(3)如果一个数的整数部分与小数部分大88.11,且整数部分的值恰好是小数部分的100倍,求这个数.A D C B1234567–1–2–3–4–5o10昌平、27.观察下列两个等式:22121133-=⨯⨯-,33222155-=⨯⨯-给出定义如下: 我们称使等式a ﹣b =2ab ﹣1成立的一对有理数a ,b 为“同心有理数对”,记为(a ,b ),如:数对(1,23),(2,35),都是“同心有理数对”. (1)数对(﹣2,1),(3,47)是 “同心有理数对”的是__________.(2)若(a ,3)是“同心有理数对”,求a 的值;(3)若(m ,n )是“同心有理数对”,则(﹣n ,﹣m ) “同心有理数对”(填“是”或“不是”),说明理由.。

2021~2022北京市七年级下期末数学分类汇编——新定义(学生版)

2021~2022北京市七年级下期末数学分类汇编——新定义(学生版)

2021~2022北京市七年级下期末数学分类汇编——新定义1.(2022春•海淀区期末)在平面直角坐标系xOy中,对于点A(x1,y1),点B(x2,y2),定义|x1﹣x2|与|y1﹣y2|中的较大值为点A,B的“绝对距离”,记为d(A,B).特别地,当|x1﹣x2|=|y1﹣y2|时,规定d(A,B)=|x1﹣x2|,将平面内的一些点分为I,Ⅱ两类,每类至少包含两个点,记第I任意两点的绝对距离的最大值为d1,第Ⅱ类中任意两点的绝对距离的最大值为d2,称d1与d2的较大值为分类系数.如图,点A,B,C,D,E的横、纵坐标都是整数.(1)若将点A,C分为第I类,点B,D,E分为第Ⅱ类,则d1=,d2=,因此,这种分类方式的分类系数为;(2)将点A,B,C,D,E分为两类,求分类系数d的最小值:(3)点F的坐标为(m,2),已知将6个点A,B,C,D,E,F分为两类的分类系数的最小值是5,直接写出m的取值范围.2.(2022春•西城区期末)在平面直角坐标系xOy中,对于点A1,A2,…A k若这k个点的横坐标的最大值为m,纵坐标的最大值为n,将m+n记为T<A1,A2,…,A k>,称为这k个点的“平面特征值”.如对于M(1,2),N(1,3),T<M,N>=1+3=4.如图,A(﹣4,0),B(4,0),正方形ABCD的边AB在x轴上,边CD与y轴正半轴的交点为点E.(1)T<A,D,E>=;(2)已知F(0,b),过点F作直线l⊥y轴,直线l与直线AC交于点P,直线l与直线BD交于点Q.记T<A,B,P,Q>=s.①当b=6时,s=;②用含b的式子表示s,判断当点F在y轴上运动时,s是否存在最大值或最小值,如果存在,写出s的值以及相应点F的坐标.点M,N的横坐标之差的绝对值与纵坐标之差的绝对值的和叫做这两点之间的“直角距离”,记作:d MN,即点M(x1,y1)与点N(x2,y2)之间的“直角距离”为d MN=|x1﹣x2|+|y1﹣y2|.已知点A(﹣3,2),点B(2,1).(1)A与B两点之间的“直角距离”d AB=;(2)点C(0,t)为y轴上的一个动点,当t的取值范围是时,d AC+d BC的值最小;(3)若动点P位于第二象限,且满足d AP≥d BP,请在图中画出点P的运动区域(用阴影表示).y2),定义k|x1﹣x2|+(1﹣k)|y1﹣y2|为点M和点N的“k阶距离”,其中0≤k≤1.例如:点M(1,3),N(﹣2,4)的阶距离”为.已知点A(﹣1,2).(1)若点B(0,4),求点A和点B的“阶距离”;(2)若点B在x轴上,且点A和点B的“阶距离”为4,求点B的坐标;(3)若点B(a,b),且点A和点B的“阶距离”为1,直接写出a+b的取值范围.5.(2022春•燕山期末)若不等式(组)只有n个正整数解(n为自然数),则称这个不等式(组)为n阶不等式(组).我们规定:当n=0时,这个不等式(组)为0阶不等式(组).例如:不等式x+1<6只有4个正整数解,因此称其为4阶不等式.不等式组只有3个正整数解,因此称其为3阶不等式组.请根据定义完成下列问题:(1)是阶不等式;是阶不等式组;(2)若关于x的不等式组是4阶不等式组,求a的取值范围;(3)关于x的不等式组的正整数解有a1,a2,a3,a4,…,其中a1<a2<a3<a4<….如果是(m﹣3)阶不等式组,且关于x的方程2x﹣m=0的解是的正整数解a3,直接写出m的值以及p的取值范围.6.(2022春•昌平区期末)若关于x的一个一元一次不等式组的解集为a<x<b(a、b为常数且a<b),则称为这个不等式组的解集中点.如果一个一元一次方程的解与一个一元一次不等式组的解集中点相等,则称这个一元一次方程为此一元一次不等式组的关联方程.(1)在方程①2x﹣3=0.②2x+4=0,③3x﹣(7x﹣6)=0中,不等式组的关联方程是.(填序号)(2)已知不等式组请写出这个不等式组的一个关联方程.(3)若关于x的不等式组的解集中点大于方程3(x+)=2x+3的解且小于方程2x+6=4x的解,求m的取值范围.7.(2022春•密云区期末)在平面直角坐标系xOy中,给出如下定义:点P到图形W上每一个点的距离的最小值称为图形W关于点P的“密距”,记作d(P,W).特别地,若点P与图形W有公共点,则规定d(P,W)=0.(1)如图,A(0,2),B(﹣1,0),C(3,0).①直接写出线段BC关于点A的密距,即d(A,BC)=;②点D是x轴上的一个动点,当d(D,三角形ABC)=4时,求点D的坐标;(2)已知点Q(3,2),E(m,0),F(m+2,0).若d(Q,EF)=2,直接写出m的取值范围.8.(2022春•门头沟区期末)对于有理数a,b,定义max{a,b}的含义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.例如:max{1,﹣2}=1.(1)max{﹣1,2}=;(2)求max{x﹣1,﹣2}=﹣2,写出一个满足条件的x的值,x=;(3)已知max{2x+1,﹣x2}=3,直接写出x的值.9.(2022春•顺义区期末)对于任意的实数a,b定义一种新运算T,规定x⊗y=ax2+by2,其中x,y是非零常数.如:2⊗4=a×22+b×42=4a+16b.(1)填空:1⊗3=(用含a,b的代数式表示);(2)已知1⊗2=﹣3,2⊗1=3.①求a,b的值;②若关于m的不等式组恰好有三个整数解,求n的取值范围.10.(2022春•平谷区期末)阅读下列材料:我们知道对于二次三项式a2+2ab+b2可以利用完全平方公式,将它变形为(a+b)2的形式.但是对于一般的二次三项式x2+bx+c就不能直接应用完全平方公式了,我们可以在二次三项式中先加上原式中一次项系数的一半的平方即()2,使其凑成完全平方式,再减去()2,使整个式子的值不变,这样就有x2+bx+c=(x+)2+m.例如x2﹣6x+1=x2﹣6x+9﹣9+1=(x﹣3)2﹣8.请根据上述材料解决下列问题:(1)将多项式x2﹣4x+3变形为(x+m)2+n的形式;(2)当x,y分别取何值时x2+y2﹣4x+6y+28有最小值?求出这个最小值;(3)若m=a2+b2﹣1,n=2a﹣4b﹣7,则m与n的大小关系是.11.(2022春•大兴区期末)在平面直角坐标系xOy中,已知点P(a,b),Q(c,d),可以得到线段PQ的中点R的坐标为,将点R向右平移|d|个单位,得到点S,我们称点S为点P关于点Q的中心平移点.例如:P(1,2),Q(2,﹣3),线段PQ的中点R的坐标为(1.5,﹣0.5),点P关于点Q的中心平移点S的坐标为(4.5,﹣0.5).(1)已知A(﹣3,1),B(1,3),①点A关于点B的中心平移点的坐标为;②若点A为点B关于点C的中心平移点,求点C的坐标;(2)已知点D(n,n),E(2n,0)(n≠0),将点E向左平移1个单位得到点F,将点E向右平移4个单位得到点G,分别过点E与点G作垂直于x轴的直线l1与l2.若点M 在线段EF上,点M关于点D的中心平移点在直线l1与直线l2之间(不含l1,l2),直接写出n的取值范围.12.(2022春•房山区期末)如图,由线段AB,AM,CM,CD组成的图形像,称为“形BAMCD”.(1)如图1,形BAMCD中,若AB∥CD,∠AMC=60°,则∠A+∠C=°;(2)如图2,连接形BAMCD中B,D两点,若∠ABD+∠BDC=160°,∠AMC=α,试猜想∠BAM与∠MCD的数量关系,并说明理由;(3)如图3,在(2)的条件下,当点M在线段BD的延长线上从上向下移动的过程中,请直接写出∠BAM与∠MCD所有可能的数量关系.第11页(共11页)。

2021初一下期末考试分类汇编-新定义(学生版)

2021初一下期末考试分类汇编-新定义(学生版)

2021初一下期末考试分类汇编:新定义1.(2021· 顺义·期末)现定义运算,对于任意有理数a ,b ,都有()(),()().a b a a b b a b a b b a b a a b ⊗=+−≤⎧⎨⊗=+−>⎩如:232(23)37⊗=⨯+−=,522(52)59⊗=⨯+−=. (1)若(2)(3)x x x x ⊗+>⊗−,求x 的取值范围; (2)有理数a ,b 在数轴上的位置如下图所示,计算:[]()(2)()(22)a b b b a a b −⊗−−⊗−.2.(2021·西城·期末)将二元一次方程组的解中的所有数的全体记为M ,将不等式(组)的解集记为N ,给出定义:若M 中的数都在N 内,则称M 被N 包含;若M 中至少有一个数不在N 内,则称M 不能被N 包含.如,方程组02x x y =+=⎧⎨⎩的解为02x y ==⎧⎨⎩,记A :{}02,,方程组04x x y =+=⎧⎨⎩的解为04x y ==⎧⎨⎩,记B :{}04,,不等式30x −<的解集为3x <,记H :3x <.因为0,2都在H 内,所以A 被H 包含;因为4不在H 内,所以B 不能被H 包含. (1)将方程组25342x y x y −=+=⎧⎨⎩的解中的所有数的全体记为C , 将不等式10x +≥的解集记为D ,请问C 能否被D 包含?说明理由; (2)将关于x ,y 的方程组235123x y a x y a +−=−⎧⎨−+=⎩的解中的所有数的全体记为E ,将不等式组3(2)42113x x x x −−⎧⎪+⎨>−⎪⎩≥的解集记为F ,若E 不能被F 包含,求实数a 的取值范围.3.(2021·西城·期末)对x ,y ,z 定义一种新运算F ,规定:()F x y z ax by cz =++,,,其中a ,b 为非负数.(1)当0c =时,若(112)1F =,-,,(311)7F =,,,则a 的值是______,b 的值是______;(2)若(321)5F =,,,(123)1F =,,-,设2H a b c =++,则H 的取值范围是______.4.(2021·西城·期末)在平面直角坐标系xOy 中,对于点11()A x y ,,22()B x y ,,记12x d x x =−,12y d y y =−,将x y d d −称为点A ,B 的横纵偏差,记为()A B μ,,即()x y A B d d μ=−,.若点B 在线段PQ 上,将()A B μ,的最大值称为线段PQ 关于点A 的横纵偏差,记为()A PQ μ,.(1)(02)A ,-,(14)B ,,①()A B μ,的值是______;②点K 在x 轴上,若()0B K μ=,,则点K 的坐标是______.(2)点P ,Q 在y 轴上,点P 在点Q 的上方,PQ =6,点M 的坐标为(50)−,.①当点Q 的坐标为(01),时,求()M PQ μ,的值;②当线段PQ 在y 轴上运动时,直接写出()M PQ μ,的最小值及此时点P 的坐标.5.(2021·朝阳·期末)对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“邻近距离”,记为d (图形M ,图形N ). 已知点A (-2,-2),B (3,-2),C (3,3),D (-2,3). (1)d (点O ,线段AB )= ;(2)若点G 在x 轴上,且d (点G ,线段AB )>2,求点G 的横坐标a 的取值范围; (3)依次连接A ,B ,C ,D 四点,得到正方形ABCD (不含图形内部),记为图形M ,点E (t ,0),点F (0,t −23)均不与点O 重合,线段EO ,OF 组成的图形记为图形N ,若1<d (图形M ,图形N )<2,直接写出t 的取值范围.6.(2021·昌平·期末)阅读下列材料:我们知道x 表示的是在数轴上数x 对应的点与原点的距离,即0x x =−,也就是说,x 对表示在数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x −表示在数轴上数1x ,2x 对应点之间的距离. 例1解方程6x =. 解:∵06x x =−=,∴在数轴上与原点距离为6的点对应的数为6±,即该方程的解为6x =±. 例2解不等式12x −>.解:如图,首先在数轴上找出12x −=的解,即到1的距离为2的点对应的数为1−,3,则12x −>的解集为到1的距离大于2的点对应的所有数,所以原不等式的解集为1x <−或3x >.参考阅读材料,解答下列问题: (1)方程53x −=的解为______; (2)解不等式2219x ++<;(3)若123x x −++=,则x 的取值范围是_______; (4)若12y x x =−−+,则y 的取值范围是_______.7.(2021·通州·期末).阅读材料,解决问题.在平面内,画出原点重合的两条互相垂直的数轴,就组成了一个平面直角坐标系.其中,平方向的数轴叫做x轴,竖直方向的数轴叫做y轴,原点叫做坐标原点.设P是平面直角坐标系中的一点,作PM⊥x轴于M,PN⊥y轴于,如果点M和点N在x轴和y轴上所对应的数分别是m和n,那么数m叫做点P的横坐标,数n叫做点P的纵坐标,把m 和n合在一起叫做点P的坐标,记作P(m,n),如图所示点P的坐标为(﹣3,4).(1)点A(4,﹣5)的横坐标为,纵坐标为;(2)在平面直角坐标系中作出点B(﹣1,﹣1),C(1,3);(3)若过点C(1,3)的直线l与x轴平行,写出一个直线l上不同于点C的点的坐标为;(4)过点C(1,3)与x轴平行的直线l,与过点B(﹣1,﹣1)平行于y轴的直线a交于点E,求三角形BCE的面积.8.(2021·东城·期末)在平面直角坐标系xOy中.点A,B,P不在同一条直线上.对于点P和线段AB给出如下定义:过点P向线段AB所在直线作垂线,若垂足Q落在线段AB 上,则称点P为线段AB的内垂点.若垂足Q满足|AQ﹣BQ|最小,则称点P为线段AB的最佳内垂点.已知点A(﹣2,1),B(1,1),C(﹣4,3).(1)在点P1(2,3)、P2(﹣5,0)、P3(﹣1,﹣2),P4(﹣,4)中,线段AB的内垂点为;(2)点M是线段AB的最佳内垂点且到线段AB的距离是2,则点M的坐标为;(3)点N在y轴上且为线段AC的内垂点,则点N的纵坐标n的取值范围是;(4)已知点D(m,0),E(m+4,0),F(2m,3).若线段CF上存在线段DE的最佳内垂点,求m的取值范围.9.(2021·门头沟·期末)对于两个非零实数a ,b 定义一种新运算,记作,a b .定义:如果x a b =,那么,a b x =(0a ≠,0b ≠,x 为整数).例如:因为2525=,所以5,252=;因为3(2)8−=−,所以2,83−−=. 根据上述运算的定义,回答下列问题: (1)计算:2,8=___________,13,9=___________; (2)如果,162a =,那么___________;(3)如果,2a m =,,3a n =,那么2m n a +=___________; (4)如果,13N =,那么,,a M a N +=___________.a =3M =10.(2021·燕山·期末)如图,在平面直角坐标系xOy中,点A(a-1,a+2)位于第一象限,将点A向下平移一定单位长度得到点B(1,0),以AB为边在AB右侧作正方形ABCD.(1) 求a的值及点D的坐标;(2) 横、纵坐标都是整数的点叫做整点.已知点M(-5,0),N(0,5),将正方形ABCD向左平移m(m>0)个单位长度,得到正方形A'B'C'D',记正方形A'B'C'D' 和△OMN重叠的区域(不含边界)为W.①当m=3时,区域W内的整点个数为;②若区域W内恰有3个整点,直接写出m的取值范围.11.(2021·平谷·期末)定义:若一个整数能表示成22(,)a b a b +是正整数的形式,则称这个数为“完美数”.例如:因为2213=3+2,所以13是“完美数”;再如:因为()222222a ab b a b b ++=++,所以2222a ab b ++也是“完美数”. (1)请直接写出一个小于10的“完美数”,这个“完美数”是 ;(2)判断53 (请填写“是”或“否”)为“完美数”;(3)已知2=4M x x k ++()x k 是整数,是常数,要使M 为“完美数”,试求出符合条件的一个k 值,并说明理由;(4)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”.12.(2021·石景山·期末)对x ,y 定义一种新运算T ,规定(,)()(2)T x y ax by x y =++,其中a ,b 是非零常数,等式右边是通常的四则运算.如:(2,1)(21)(221)105T a b a b =⨯+⨯⨯+=+,(,1)()(21)T m am b m −=−−.(1)填空:(1,1)T −= (用含a ,b 的代数式表示);(2)已知(1,1)3T −=且(0,1)1T =−.①求a ,b 的值;②若关于m 的不等式组(,21)13,(3,16)T m m T m m t−+−⎧⎨−>⎩≥恰好有三个整数解,求t 的取值 范围.(3)当22x y ≠时,(,)(,)T x y T y x =对任意的有理数x ,y 都成立,请直接写出a ,b满足的关系式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年北京市七年级下期末数学备考之新定义
一.填空题(共1小题)
1.若一个整数能表示成a2+b2(a,b是整数)的形式,则称这个数为“完美数”.
例如,因为5=22+12,所以5是一个“完美数”.
(1)请你再写一个大于10且小于20的“完美数”;
(2)已知M是一个“完美数”,且M=x2+4xy+5y2﹣12y+k(x,y是两个任意整数,k是常数),则k的值为.
二.解答题(共19小题)
2.(1)阅读下列材料并填空:
对于二元一次方程组,我们可以将x,y的系数和相应的常数项排成一个数
表,求得的一次方程组的解,用数表可表示为.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:
从而得到该方程组的解为x=,y=.
(2)仿照(1)中数表的书写格式写出解方程组的过程.
3.如果A,B都是由几个不同整数构成的集合,由属于A又属于B的所有整数构成的集合叫做A,B的交集,记作A∩B.例如:
若A={1,2,3},B={3,4,5},则A∩B={3};
若A={0,﹣62,37,2},B={2,﹣1,37,﹣5,0,19},则A∩B={37,0,2}.(1)已知C={4,3},D={4,5,6},则C∩D={};
(2)已知E={1,m,2},F={6,7},且E∩F={m},则m=;
(3)已知P={2m+1,2m﹣1},Q={n,n+2,n+4},且P∩Q={m,n},如果关于x的不等式组,恰好有2019个整数解,求a的取值范围.
4.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ的面积等=1,则称点M为线段PQ的“单位面积点”,解答下列问题:于1,即S
△MPQ
如图,在平面直角坐标系xOy中,点P的坐标为(1,0)
(1)在点A(1,2)B(﹣1,1)C(﹣1,﹣2),D(2,﹣4)中,线段OP的“单位面积点”是;
(2)已知点E(0,3),F(0,4),将线段OP沿y轴向上平移t(t>0)个单位长度,使得线段EF上存在线段OP的“单位面积点”,求t的取值范围;
(3)知点Q(1,﹣2),H(0,﹣1),点M,N是线段PQ的两个“单位面积点”,点M
=S△PQN,直接写出点N纵坐标的取值范围.在HQ的延长线上,若S
△HMN
5.对于平面直角坐标系xOy中的图形G和点P,给出如下定义:将图形G沿上、下、左、右四个方向中的任意一个方向平移一次,平移距离小于或者等于1个单位长度,平移后的图形记为G',若点P在图形G'上,则称点P为图形G的稳定点.例如,当图形G为点(﹣2,3)时,点M(﹣1,3),N(﹣2,3.5)都是图形G的稳定点.
(1)已知点A(﹣1,0),B(2,0).
①在点P1(﹣2,0),P2(4,0),P3(1,),P4(,﹣)中,线段AB的稳定点
是.
②若将线段AB向上平移t个单位长度,使得点E(0,1)或者点F(0,5)为线段AB
的稳定点,写出t的取值范围.
(2)边长为a的正方形,一个顶点是原点O,相邻两边分别在x轴、y轴的正半轴上,这个正方形及其内部记为图形G.若以(0,2),(4,0)为端点的线段上的所有点都是这个图形G的稳定点,直接写出a的最小值.
6.在△ABC中,定义∠A的平分线所在直线与∠B的外角平分线所在直线所夹的锐角∠APB 为∠C的伴随角.
(1)如图1,在△ABC中,∠C=90°,∠BAC=60°,则∠C的伴随角∠APB的度数为°;
(2)小明试图探究任意△ABC中∠C的伴随角∠APB与∠C之间的数量关系,于是他动手画了∠C分别为直角、锐角、钝角的三个图如下,先通过测量相关角度后猜想结论,然后再证明.
请你根据以上三个图,测量相关角度,补全表格:
图2图3图4
∠C的度数90°
∠C的伴随角∠APB的度

根据表格,小明得到了∠C的伴随角∠APB与∠C之间的数量关系的猜想:;
(3)请你选择∠C是锐角或钝角的情况,画出图形,帮小明证明他的猜想.
7.对于平面直角坐标系xOy中的点A,给出如下定义:若存在点B(不与点A重合,且直线AB不与坐标轴平行或重合),过点A作直线m∥x轴,过点B作直线n∥y轴,直线m,n相交于点C.当线段AC,BC的长度相等时,称点B为点A的等距点,称三角形ABC 的面积为点A的等距面积.例如:如图,点A(2,1),点B(5,4),因为AC=BC=3,所以B为点A的等距点,此时点A的等距面积为.
(1)点A的坐标是(0,1),在点B1(﹣1,0),B2(2,3),B3(﹣1,﹣1)中,点A 的等距点为.
(2)点A的坐标是(﹣3,1),点A的等距点B在第三象限,
①若点B的坐标是(﹣),求此时点A的等距面积;
②若点A的等距面积不小于,求此时点B的横坐标t的取值范围.
8.如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.
例如:方程2x﹣6=0的解为x=3,不等式组的解集为2<x<5,因为2<3<5,所以,称方程2x﹣6=0为不等式组的关联方程.
(1)在方程①5x﹣2=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组
的关联方程是;(填序号)
(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是;(写出一个即可)
(3)若方程2x﹣1=x+2,3+x=2(x+)都是关于x的不等式组的关联方程,求m的取值范围.
9.阅读下面材料:
小明在数学课外小组活动时遇到这样一个问题:
如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>3的解集.
小明同学的思路如下:
先根据绝对值的定义,求出|x|恰好是3时x的值,并在数轴上表示为点A,B,如图所示.观察数轴发现,以点A,B为分界点把数轴分为三部分:
点A左边的点表示的数的绝对值大于3;
点A,B之间的点表示的数的绝对值小于3;
点B右边的点表示的数的绝对值大于3.
因此,小明得出结论绝对值不等式|x|>3的解集为:x<﹣3或x>3.
参照小明的思路,解决下列问题:
(1)请你直接写出下列绝对值不等式的解集.
①|x|>1的解集是.②|x|<2.5的解集是.
(2)求绝对值不等式2|x﹣3|+5>13的解集.
(3)直接写出不等式x2>4的解集是.
10.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P′为点P的“k属派生点”.
例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).
(1)点P(﹣1,6)的“2属派生点”P′的坐标为;
(2)若点P的“3属派生点”P′的坐标为(6,2),则点P的坐标;
(3)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.
11.对于有理数a,b,定义min{a,b}的含义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.
例如:min{1,﹣2}=﹣2,min{﹣3,﹣3}=﹣3.
(1)min{﹣1,2}=;
(2)求min{x2+1,0};
(3)已知min{﹣2k+5,﹣1}=﹣1,求k的取值范围;
(4)已知min{5,2m﹣4n﹣m2﹣n2}=5.直接写出m,n的值.
12.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.
(1)在方程①3x﹣1=0,②x+1=0,③x﹣(3x+1)=﹣5中,不等式组
的关联方程是;(填序号)
(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是;(写出一个即可)
(3)若方程3﹣x=2x,3+x=2(x+)都是关于x的不等式组的关联方程,直接写出m的取值范围.
13.阅读理解:
善于思考的小聪在解方程组时,发现方程组①和②之间存在一定关系,
他的解法如下:
解:将方程②变形为:2x﹣3y﹣2y=5③.
把方程①代入方程③得:3﹣2y=5,
解得y=﹣1.
把y=﹣1代入方程①得x=0.
∴原方程组的解为.
小聪的这种解法叫“整体换元”法.请用“整体换元”法完成下列问题:
(1)解方程组:;
①把方程①代入方程②,则方程②变为;
②原方程组的解为.
(2)解方程组:.。

相关文档
最新文档