高一数学必修1模块综合测试卷
高中数学必修1综合测试卷(三套+含答案)
高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3. 已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C .5D .64. 下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f , 52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6.设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A .2 B .3 C .9 D .187.函数1(0,1)x y a a a a=->≠的图象可能是( )8.给出以下结论:①11)(--+=x x x f 是奇函数;②221)(2-+-=x x x g 既不是奇函数也不是偶函数;③)()()(x f x f x F -= )(R x ∈是偶函数 ;④xxx h +-=11lg)(是奇函数.其中正确的有( )个 A .1个 B .2个 C .3个 D .4个9. 函数1)3(2)(2+-+=x a ax x f 在区间[)+∞-,2上递减,则实数a 的取值范围是( )A .(]3,-∞-B .[]0,3-C . [)0,3-D .[]0,2-10.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f(x)图象上的是( )A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a ---11. 若函数a x x x f +-=24)(有4个零点,则实数a 的取值范围是( )A . []0,4- B. []4,0 C. )4,0( D. )0,4(-12. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或C .{}|3003x x x -<<<<或D .{}|33x x x <->或二、填空题(本大题共4小题,每小题5分)13.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 ;14.已知函数11()()142x x y =-+的定义域为[3,2]-,则该函数的值域为 ;15. 函数()()R b a xbax x f ∈+-=,25,若()55=f ,则()=-5f ; 16.设函数()f x =x |x |+b x +c ,给出下列四个命题: ①若()f x 是奇函数,则c =0③()f x 的图象关于(0,c )对称④若b ≠0,方程()f x =0必有三个实根 其中正确的命题是 (填序号)三、解答题(解答应写文字说明,证明过程或演算步骤)17.(10分)已知集合{}0652<--=x x x A ,集合{}01562≥+-=x x x B ,集合⎭⎬⎫⎩⎨⎧<---=09m x mx x C(1)求B A ⋂(2)若C C A =⋃,求实数m 的取值范围;18.(本小题满分12分)已知函数()log (1),()log (1)a a f x x g x x =+=-其中)10(≠>a a 且,设()()()h x f x g x =-.(1)求函数()h x 的定义域,判断()h x 的奇偶性,并说明理由; (2)若(3)2f =,求使()0h x <成立的x 的集合。
高中数学必修1综合测试卷(三套 含答案)
高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数 3. 已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C .5D .6 4. 下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(,()g x =; ⑸21)52()(-=x x f ,52)(2-=x x f A 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6.设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( )A .2B .3C .9D .187.函数1(0,1)x y a a a a=->≠的图象可能是( )8.给出以下结论:①11)(--+=x x x f 是奇函数;②221)(2-+-=x x x g 既不是奇函数也不是偶函数;③)()()(x f x f x F -= )(R x ∈是偶函数 ;④xxx h +-=11lg )(是奇函数.其中正确的有( )个A .1个B .2个C .3个D .4个9. 函数1)3(2)(2+-+=x a ax x f 在区间[)+∞-,2上递减,则实数a 的取值范围是( )A .(]3,-∞-B .[]0,3-C . [)0,3-D .[]0,2-10.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f(x)图象上的是( )A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a ---11. 若函数a x x x f +-=24)(有4个零点,则实数a 的取值范围是( )A . []0,4- B. []4,0 C. )4,0( D. )0,4(-12. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或C .{}|3003x x x -<<<<或D .{}|33x x x <->或二、填空题(本大题共4小题,每小题5分) 13.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 ;14.已知函数11()()142x x y =-+的定义域为[3,2]-,则该函数的值域为 ;15. 函数()()R b a xbax x f ∈+-=,25,若()55=f ,则()=-5f ; 16.设函数()f x =x |x |+b x +c ,给出下列四个命题: ①若()f x 是奇函数,则c =0②b =0时,方程()f x =0有且只有一个实根 ③()f x 的图象关于(0,c )对称④若b ≠0,方程()f x =0必有三个实根 其中正确的命题是 (填序号)三、解答题(解答应写文字说明,证明过程或演算步骤)17.(10分)已知集合{}0652<--=x x x A ,集合{}01562≥+-=x x x B ,集合⎭⎬⎫⎩⎨⎧<---=09m x m x x C(1)求B A ⋂(2)若C C A =⋃,求实数m 的取值范围;18.(本小题满分12分)已知函数()log (1),()log (1)a a f x x g x x =+=-其中)10(≠>a a 且,设()()()h x f x g x =-.(1)求函数()h x 的定义域,判断()h x 的奇偶性,并说明理由; (2)若(3)2f =,求使()0h x <成立的x 的集合。
新教材2024年秋高中数学模块综合测评新人教A版必修第一册
模块综合测评(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|-2<x<1},B={x|x<-1 或x>3},则A∩B=( )A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}2.(2024·河北辛集中学月考)若幂函数f(x)]=xα的图象经过点,则α的值为( )A.2 B.-2C.D.-3.(2024·湖北武汉期末)已知函数f(x)]=x-e-x的部分函数值如表所示:x 10.50.750.6250.562 5f(x)0.632 1-0.106 50.277 60.089 7-0.007那么函数f(x)]的一个零点的近似值(精确度为0.01)为( )A.0.55 B.0.57C.0.65 D.0.74.(2024·浙江高考)设x∈R,则“sin x=1”是“cos x=0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(2024·福建厦门双十中学月考)将y=图象上每一个点的横坐标变为原来的3倍(纵坐标不变),得到y=g(x)] 的图象,再将y=g(x)]图象向左平移,得到y=φ(x)]的图象,则y=φ(x)]的解析式为( )A.y=sin x B.y=cos xC.y=sin 9x D.y=sin6.(2024·山东青岛期末)在直角坐标系中,已知圆C的圆心在原点,半径等于1 ,点P从初始位置(0,1)起先,在圆C上按逆时针方向,以角速度rad/s均速旋转3 s后到达P′点,则P′的坐标为( )A.B.C.D.7.(2024·浙江杭州四中期末)已知实数x,y,z满意x=40.5,y=log53,z=sin ,则( )A.z<x<y B.y<z<xC.z<y<x D.x<z<y8.(2024·北京高考)已知函数f(x)=cos2x-sin2x,则( )A.f(x)在上单调递减B.f(x)在上单调递增C.f(x)在上单调递减D.f(x)在上单调递增二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.(2024·山东新泰一中期末)下列结论中正确的是( )A.若a,b为正实数,且a≠b,则a3+b3>a2b+ab2B.若a,b,m为正实数,且a<b,则<C.若>,则a>bD.当x>0时,x+的最小值为210.(2024·新高考Ⅰ卷)如图是函数y=sin (ωx+φ)的部分图象,则sin (ωx+φ)=( )A.sin B.sinC.cos D.cos11.(2024·浙江省杭州七中期末)已知函数f(x)]=sin ,则fA.是奇函数B.是偶函数C.关于点(π,0)成中心对称D.关于点成中心对称12.(2024·山东泰安期末)已知f(x)]是定义在R上的偶函数,且在(-∞,0)上单调递增,则下列结论正确的是( )A.f(x)]在(0,+∞)上单调递减B.f(x)]最多有两个零点C.f(log0.53)>f(log25)D.若实数a满意f(2a)>f,则a<三、填空题:本题共4小题,每小题5分,共20分.13.若2a=3b=,则+的值为________.14.的值为________.15.(2024·山东青岛期末)已知函数f(x)]=ax2+bx+c,满意不等式f(x)]<0的解集为(-∞,-2)∪(t,+∞),且f(x-1)为偶函数,则实数t=________.16.某化工厂产生的废气必需经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.25%.已知在过滤过程中的污染物的残留数量P(单位:毫克/升)与过滤时间t(单位:时)之间的函数关系为P=P0·e t ln k(其中e是自然对数的底数,k为常数,P0为原污染物总量).若前4个小时废气中的污染物被过滤掉了96%,则k=________;要能够按规定排放废气,还须要过滤n小时,则正整数n的最小值为________(参考数据:log52≈0.43).四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)(2024·浙江高校附属中学期末)(1)计算:+log23·log34+lg 2+lg 50;(2)已知tan α=2,求cos ·cos(π-α)的值.18.(本小题满分12分)(2024·山东临沂期末)已知集合A={x|log2(x-1)<2},B={x|x2-2ax+a2-1<0}.(1)若a=1,求A∪B;(2)求实数a的取值范围,使________成立.从①A⊆∁R B,②B⊆∁R A,③(∁R A)∩B=∅中选择一个填入横线处求解.注:假如选择多个条件分别解答,按第一个解答计分.19.(本小题满分12分)已知函数f(x)=2sin2x+cos x-2.(1)求函数f(x)的零点;(2)当x∈时,函数f(x)的最小值为-1,求α的取值范围.20.(本小题满分12分)(2024·湖北华中师大一附中期末)函数f(x)]=-sin2x+sin x cos x.(1)若f=-+,α∈(0,π),求sin α;(2)若函数y=f(ω)(0<ω<3)的图象在区间有且仅有一条经过最高点的对称轴,求ω的取值范围(不须要证明唯一性).21.(本小题满分12分)(2024·湖北沙市中学期末)某地某路无人驾驶公交车发车时间间隔t(单位:分钟)满意5≤t≤20,t∈N.经测算,该路无人驾驶公交车载客量p(t)与发车时间间隔t满意:p(t)=其中t∈N.(1)求p(5),并说明p(5)的实际意义;(2)若该路公交车每分钟的净收益y=-10(元),问当发车时间间隔为多少时,该路公交车每分钟的净收益最大?并求每分钟的最大净收益.22.(本小题满分12分)(2024·山东烟台期末)已知函数f(x)=4log2x+,g(x)=m·4x +2x+1-m,m<0.(1)求函数f(x)在区间(1,+∞)上的最小值;(2)求函数g(x)在区间[1,2]上的最大值;(3)若对∀x1∈(1,+∞),∃x2∈[1,2],使得f(x1)+g(x2)>7成立,求实数m的取值范围.模块综合测评1.A [在数轴上表示出集合A,B,如图所示.由图知A∩B={x|-2x-1}.]2.C [由已知可得f (3)=3α=,解得α=.故选C.]3.B [函数f (x)=x-在R上单调递增,由数表知:f (0.5) f (0.562 5)0 f (0.625) f (0.75) f (1),由函数零点存在定理知,函数f (x)的零点在区间(0.562 5,0.625)内,所以函数f (x)的一个零点的近似值为0.57.故选B.]4.A [sin x=1,x=+2kπ,k∈Z,cos x=0,x=+kπ,k∈Z;sin x=1可推出cos x=0,充分性成立;反之不成立,必要性不成立,故为充分不必要条件,故选A.]5.A [将y=sin 图象上每一个点的横坐标变为原来的3倍(纵坐标不变),得到g(x)=sin 的图象,再将y=g(x)图象向左平移,得到φ(x)=sin=sin x的图象,故选A.]6.D [点P(0,1)为角α=的终边上一点,3 s后点P按逆时针方向旋转到达P′点,点P′落在角β=+3×的终边上,cos β=cos =-cos =-,sin β=sin =-sin =-,故P′的坐标为.故选D.]7.C [x=40.5=>1,0=log51y=log53log55=1,z=sin 0,综上所述,故z y x.故选C.]8.C [f (x)=cos2x-sin2x=cos 2x.选项A中:2x∈,此时f (x)单调递增,A错误;选项B中:2x∈,此时f (x)先递增后递减,B错误;选项C中:2x∈,此时f (x)单调递减,C正确;选项D中:2x∈,此时f (x)先递减后递增,D错误.故选C.]9.AC[对于A,若a,b为正实数,且a≠b,则a3+b3-=(A+B)-ab(A+B)=(A+B)(a-b)2>0,所以a3+b3>a2b+ab2,故A正确;对于B,若a,b,m为正实数,且a<b,则-=>0,所以>,故B错误;对于C,因为>,又c2>0,故a>b,故C正确;对于D,当x>0时,x+≥2=2,当且仅当x=时取等号,故D错误.故选AC.] 10.BC[由题图可知,函数的最小正周期T=2=π,∴=π,ω=±2.当ω=2时,y=sin (2x+φ),将点代入得,sin =0,∴2×+φ=2kπ+π,k∈Z,即φ=2kπ+,k∈Z,故y=sin .由于y=sin =sin =sin ,故选项B正确;y=sin =cos=cos ,选项C正确;对于选项A,当x=时,sin =1≠0,错误;对于选项D,当x==时,cos =1≠-1,错误.当ω=-2时,y=sin (-2x+φ),将代入,得sin =0,结合函数图象,知-2×+φ=π+2kπ,k∈Z,得φ=+2kπ,k∈Z,∴y=sin ,但当x=0时,y=sin =-<0,与图象不符合,舍去.综上,选BC.]11.BD[因为f =sin =sin =cos x,故函数f 为偶函数,因为函数f 的对称中心坐标为,所以函数f 的图象关于点成中心对称.故选BD.]12.ACD[因为f (x)是定义在R上的偶函数,且在(-∞,0)上单调递增,所以f (x)在(0,+∞)上单调递减,故A正确;函数零点个数无法确定,故B错误;f =f (log23),因为log23<log25,所以f (log23)>f (log25),故C正确;若实数a满意f (2a)>f ,即f (2a)>f ,则2a<=,解得a<,故D正确.故选ACD.]13.2 [因为2a=3b=,所以a=log2,b=log3,所以+=+=+==2.]14.1 [原式====1.]15.0 [依据解集易知:a<0 ,由f (x-1)为偶函数,可得f (x)关于直线x=-1对称,即b-2a=0.易知ax2+bx+c=0的两根为t,-2,则依据根与系数的关系可得t-2=-=-2,解得t =0.]16. 4 [明显,当t=0时,P=P0,当t=4时,P=4%P0,则有P0=P0·e4ln k,于是得k4=,而k>0,解得k=,设经过m小时后能够按规定排放废气,则有P0·e m ln k≤0.25%P0⇔k m≤,即≤⇔≥400⇔m≥log5400⇔m≥4+8log52≈4+8×0.43=7.44,于是得还须要过滤时间n=m-4≥3.44,则正整数n的最小值为4.所以k=,正整数n的最小值为4.]17.解:(1)+log23·log34+lg 2+lg 50=+log23×2log32+lg 100=+2+2=.(2)cos ·cos (π-α)=sin α·(-cos α)===-.18.解:(1) A={x|log2(x-1)<2}={x|0<x-1<4}={x|1<x<5},B={x|x2-2ax+a2-1<0}={x|[x-(a-1)][x-(a+1)]<0}={x|a-1<x<a+1},当a=1时,B={x|0<x<2},所以A∪B={x|0<x<5}.(2)由(1)知,A={x|1<x<5},B={x|a-1<x<a+1},所以∁R A={x|x≤1或x≥5},∁R B={x|x≤a-1或x≥a+1}.若选①,A⊆∁R B,则a+1≤1或a-1≥5,解得a≤0或a≥6,所以a的取值范围为a≤0或a≥6.若选②,B⊆∁R A,则a+1≤1或a-1≥5,解得a≤0或a≥6,所以a的取值范围为a≤0或a≥6.若选③,(∁R A)∩B=∅,则解得2≤a≤4,所以a的取值范围为2≤a≤4.19.解:(1)由sin2x+cos2x=1得:f (x)=-2cos2x+cos x,令f (x)=0,解得cos x=0或cos x=,当cos x=0时,x=+kπ,k∈Z;当cos x=时,x=2kπ±,k∈Z.所以函数f (x)的零点为+kπ,2kπ±,k∈Z.(2)因为f (x)=-2cos2x+cos x,令cos x=t,则f (x)=g(t)=-2t2+t,因为f (x)的最小值为-1,所以-2t2+t≥-1(等号可取),解得-≤t≤1(等号可取),即-≤cos x≤1(等号可取),因为x∈,且cos =-,由-≤cos x≤1(等号可取),x∈可得-≤α<.所以α的取值范围为.20.解: f (x)=-sin2x+sin x cos x=-+=sin -.(1)由f =-+,∴sin =,∵α∈(0,π),∴<α+<π.又sin =<=sin ,∴<α+<π,∴cos =-.故sin α=sin =sin cos -cos sin =.(2) y=f (ωx)=sin -,设t=2ωx+,由x∈,则t∈,由0<ω<3,则<+<,<ωπ+<,由题意y=sin t-,在t∈时,有且仅有一条经过最高点的对称轴,即y=sin t-的对称轴x=或x=仅有一条在定义域内.所以或解得<ω<或<ω<.又0<ω<3,故ω的取值范围为∪.21.解:(1)p(5)=60-(5-10)2=35,实际意义为:发车时间间隔为5分钟时,载客量为35.(2)∵y=-10,∴当5≤t<10时,y=-10=110-,任取5≤t1<t2≤6,则y1-y2=-=6(t2-t1)+-=6(t2-t1)+=,∵5≤t1<t2≤6,∴t2-t1>0,25<t1t2<36,∴y1-y2<0,∴函数y=110-在区间[5,6]上单调递增,同理可证该函数在区间[6,10)上单调递减,∴当t=6时,y取得最大值38;当10≤t≤20时,y=-10=-10,该函数在区间[10,20]上单调递减,则当t=10时,y取得最大值28.4.综上,当发车时间间隔为6分钟时,该路公交车每分钟的净收益最大,最大净收益为38元.22.解:(1)当x∈(1,+∞)时,log2x>0,所以4log2x +≥ 2=4,当且仅当4log2x =,即x =时,等号成立,所以,函数f (x)在区间(1,+∞)上的最小值为4.(2)g(x)=m·4x+2x+1-m=m(2x)2+2·2x-m,x∈[1,2],令2x=t,则上述函数化为y(t)=mt2+2t-m,t∈[2,4].因为m<0,所以对称轴t =->0,当-≤2,即m ≤-时,函数y(t)在[2,4]上单调递减,所以当t=2时,y max=3m+4;当2<-<4,即-<m<-时,函数g(t)在上单调递增,在上单调递减,所以y max=y=-m -;当-≥4,即-≤m<0时,函数g(t)在[2,4]上单调递增,所以y max=y(4)=15m+8.综上,当-≤m<0时,g(x)的最大值为15m+8;当-<m<-时,g(x)的最大值为-m -;当m ≤-时,g(x)的最大值为3m+4.(3)对∀x1∈(1,+∞),∃x2∈[1,2],使得f (x1)+g(x2)>7成立,等价于g(x2)>7-f (x1)成立,即g(x)max>[7-f (x)]max,由(1)可知,当x∈(1,+∞)时,[7-f (x)]max=7-f (x)min,因此,只须要g(x)max>3.所以当-≤m<0时,15m+8>3,解得m>-,所以-≤m<0;当-<m<-时,-m ->3,解得m <或<m<0,所以,<m<-;当m ≤-时,3m+4>3,解得m>-,此时解集为空集.综上,实数m 的取值范围为<m<0.。
高一数学必修模块1综合考试卷
一、 选择题(每小题5分,共60分)1.设集合A={3的倍数},B={2的倍数}.则A ∪B 是( ).A.{偶数}B.{被2或3整除的数}C.{6的倍数}D.{2和3的公倍数}2.若U=R ,集合A={x ︱x ≥1,或x<-1},B={x ︱x ≤-1}.则B ∩(C U A)为( ).A. ØB. {x︱x<-1}C. {x ︱-1≤x<1}D. {-1}3.已知集合A={x ︱a-1≤x ≤a+2},B={x ︱3<x<5}.则能使A ⊇B 成立的实数a 的取值范围是( ).A. {a ︱3<a ≤4}B. {a ︱3≤a ≤4}C. {a ︱3<a<4}D. Ø4.满足条件M ∪{2,3}={1,2,3}的集合M 的个数是( ).A. 1B.2C.3D.45.下列集合中,只有一个子集的集合是( ).A. {x ︱x 2≤0}B. {x ︱x 3≤0}C. {x ︱x 2<0}D. {x ︱x 3<0}6.已知集合A 、B 、C 为非空集合,M=A ∩C ,N=B ∩C ,P=M ∪N .则( ).A.一定有C ∩P=CB.一定有C ∩P=PC.一定有C ∩P=C ∪PD.一定有C ∩P= Ø7.若集合A={x ︱kx 2+4x+4=0,x ∈R}只有一个元素.则集合A 中实系数k 的值为( ).A.1B.0C.0或 1D.以上答案都不对8.已知集合A={x ︱-2<x<4},B={x ︱x ≥a},若A ∩B= Ø,且A ∪B 中不含元素6.则下列值中a 可能是( ).A.4B.5C.6D.79.已知集合A ,B ,C 满足A B C .则下列各式中错误的是( ). A.(A ∪B) C B. A ∩C B C.A (B ∩C) D. (A ∪C) B10.设全集I={(x ,y)︱x ,y ∈R},集合M={(x ,y)︱23--x y =1},N={(x ,y)︱y ≠x+1}.那么C I (M ∪N)等于( ).A. ØB.{(2,3)}C.(2,3)D. {(x ,y)︱y=x+1}11.已知U=R ,A={x ︱x>32},a=321-.则( ).A.a ⊆C U AB.a ∉C U AC.{a}∈AD. {a} C U A ⊂ ≠ ⊂ ≠ ⊂ ≠ ⊂ ≠ ⊂ ≠ ⊂ ≠ ⊂ ≠ ⊂ ≠12.设A ,B 非空集合,且A ∩B= Ø,若M={A 的子集},W={x ︱x B}.则( ).A.M ∩W= ØB.A∩B=M ∪WC.M ∩W={ Ø }D.A∪B=M ∩W二、 填空题(每小题4分,共16分)13.方程x 2-3ax +2a 2=0(a ≠0)的解集为 。
数学高一-(北师大)必修一测评 模块综合测评(一)
模块综合测评(一) 必修1(北师大版)(时间:90分钟 满分:120分)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个解析:P =M ∩N ={1,3},故P 的子集有22=4个,故选B.答案:B2.函数y =1x +log 2(x +3)的定义域是( )A .RB .(-3,+∞)C .(-∞,-3)D .(-3,0)∪(0,+∞)解析:由⎩⎨⎧ x ≠0,x +3>0,得x >-3且x ≠0,所以函数定义域为(-3,0)∪(0,+∞),故选D.答案:D3.若幂函数f (x )=x a 在(0,+∞)上是增函数,则( )A .a >0B .a <0C .a =0D .不能确定解析:当a >0时,f (x )=x a 在(0,+∞)上递增,故选A.答案:A4.已知全集U =R ,集合A ={x |2x 2-3x -2=0},集合B ={x |x >1},则A ∩(∁UB )=( )A .{2}B .{x |x ≤1}C .{-12}D .{x |x ≤1或x =2}解析:A =⎩⎨⎧⎭⎬⎫-12,2,∁U B ={x |x ≤1},则A ∩(∁U B )=⎩⎨⎧⎭⎬⎫-12,故选C.答案:C5.下列各式错误的是( )A .30.8>30.7B .log 0.50.4>log 0.50.6C .0.75-0.1<0.750.1D .lg1.6>lg1.4解析:∵y =0.75x 为减函数,∴0.75-0.1>0.750.1,故选C.答案:C6.函数y =⎝ ⎛⎭⎪⎫12x 的反函数的图像为( )A. B.C. D.解析:函数y =⎝ ⎛⎭⎪⎫12x 的反函数为y =log 12x ,故选D.答案:D7.若一次函数f (x )=ax +b 有一个零点2,则函数g (x )=bx 2-ax 的图像可能是( )A. B.C. D. 解析:由题意知,2a +b =0,所以a =-b 2.因此g (x )=bx 2+b 2x =b (x 2+12x )=b ⎝ ⎛⎭⎪⎫x +142-b 16. 易知函数g (x )图像的对称轴为x =-14,排除A ,D.又令g (x )=0,得x =0,-0.5,故选C.答案:C8.已知偶函数f (x )在(-∞,-2]上是增函数,则下列关系式中成立的是( )A .f ⎝ ⎛⎭⎪⎫-72<f (-3)<f (4) B .f (-3)<f ⎝ ⎛⎭⎪⎫-72<f (4) C .f (4)<f (-3)<f ⎝ ⎛⎭⎪⎫-72 D .f (4)<f ⎝ ⎛⎭⎪⎫-72<f (-3) 解析:∵f (x )在(-∞,-2]上是增函数,且-4<-72<-3,∴f (4)=f (-4)<f ⎝ ⎛⎭⎪⎫-72<f (-3),故选D. 答案:D9.函数y =x 2的图像与函数y =|lg x |的图像的交点个数为( )A .0B .1C .2D .3解析:在同一平面直角坐标系中分别作出y =x 2和y =|lg x |的图像,如图,可得交点个数为1,故选B.答案:B10.函数f (x )=ln(x +1)-2x 的零点所在的大致区间是( )A .(0,1)B .(1,2)C .(2,e)D .(3,4)解析:f (1)=ln(1+1)-21=ln2-2=ln2-lne 2<0,f (2)=ln(2+1)-22=ln3-1>0,因此函数的零点必在区间(1,2)内,故选B.答案:B第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.解析:答案:-91012.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4 (0≤x ≤2),2x (x >2),则f (2)=__________;若f (x 0)=8,则x 0=__________.解析:f (2)=22-4=0,当x 0>2时,2x 0=8,∴x 0=4,当0≤x 0≤2时,x 20-4=8,∴x 0=±23(舍), ∴x 0=4.答案:0 413.已知f (x )=x 3+1,若f (a )=11,则f (-a )=__________.解析:∵f (a )=a 3+1=11,∴a 3=10,f (-a )=(-a )3+1=-a 3+1=-10+1=-9.答案:-914.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a (x <1),-x +1 (x ≥1)是定义在R 上的减函数,那么a 的取值范围是__________.解析:令g (x )=(3a -1)x +4a ,h (x )=-x +1,要满足f (x )在R 上是减函数,需有⎩⎨⎧ 3a -1<0,g (1)≥h (1),解之得17≤a <13.即a 的取值范围是⎣⎢⎡⎭⎪⎫17,13. 答案:⎣⎢⎡⎭⎪⎫17,13 三、解答题:本大题共4小题,满分50分.15.(12分)已知集合A ={x |1≤x <7},B ={x |2<x <10},C ={x |x <a },全集为实数集R .(1)求A ∪B ,(∁R A )∩B ;(2)求A ∩C .解:(1)A ∪B ={x |1≤x <10},(2分)(∁R A )∩B ={x |x <1或x ≥7}∩{x |2<x <10}={x |7≤x <10}.(6分)(2)当a ≤1时,A ∩C =∅.(8分)当1<a <7时,A ∩C ={x |1≤x <a }.(10分)当a ≥7时,A ∩C ={x |1≤x <7}.(12分)16.(12分)已知函数f (x )是正比例函数,函数g (x )是反比例函数,且f (1)=1,g (1)=2.(1)求函数f (x )和g (x );(2)判断函数f (x )+g (x )的奇偶性.解:(1)设f (x )=k 1x ,g (x )=k 2x ,其中k 1k 2≠0.∵f (1)=1,g (1)=2,∴k 1×1=1,k 21=2,∴k 1=1,k 2=2.∴f (x )=x ,g (x )=2x .(6分)(2)设h (x )=f (x )+g (x ),则h (x )=x +2x ,∴函数h (x )的定义域是(-∞,0)∪(0,+∞).(8分)∵h (-x )=-x +2-x =-⎝ ⎛⎭⎪⎫x +2x =-h (x ), (10分)∴函数h (x )是奇函数,即函数f (x )+g (x )是奇函数.(12分)17.(12分)已知f (x )=ln(e x +a )是定义域为R 的奇函数,g (x )=λf (x ).(1)求实数a 的值;(2)若g (x )≤x log 2x 在x ∈[2,3]时恒成立,求λ的取值范围.解:(1)因为函数f (x )=ln(e x +a )是定义域为R 的奇函数.(2分) 所以f (0)=0,即ln(1+a )=0,得a =0.(4分)对于函数f (x )=lne x =x ,显然有f (-x )=-f (x ),故函数f (x )=x 是奇函数,所以实数a 的值为0.(6分)(2)由(1)知f(x)=x, g(x)=λx,则λx≤x log2x在x∈[2,3]时恒成立.即λ≤log2x在x∈[2,3]上恒成立.(8分)∵函数y=log2x在x∈[2,3]时的最小值为log22=1,(10分)∴λ≤1.(12分)18.(14分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图)(1)分别写出两种产品的收益与投资的函数关系;(2)该家庭有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?解:(1)设f(x)=k1x,g(x)=k2x,所以f(1)=18=k1,g(1)=12=k2,即f(x)=18x(x≥0),g(x)=12x(x≥0).(6分)(2)设投资债券类产品x万元,则股票类投资为(20-x)万元.依题意得:y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20).(8分) 令t =20-x (0≤t ≤25).(10分)则y =20-t 28+12t =-18(t -2)2+3,所以当t =2,即x =16万元时,收益最大,y max =3万元.(14分)。
高中数学 模块综合测评(含解析)北师大版必修第一册-北师大版高一第一册数学试题
模块综合测评(时间:120分钟,满分150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={1,2,6},B ={2,4},C ={x ∈R |-1≤x ≤5},则(A ∪B )∩C =( ) A .{2}B .{1,2,4}C .{1,2,4,6}D .{x ∈R |-1≤x ≤5}B [由题意知A ∪B ={1,2,4,6},所以(A ∪B )∩C ={1,2,4}.] 2.函数y =x 2-5x -6在区间[2,4]上是( ) A .递减函数 B .递增函数 C .先递减再递增函数D.先递增再递减函数C [作出函数y =x 2-5x -6的图象(图略)知图象开口向上,且对称轴为x =52,在[2,4]上先减后增.故选C.]3.函数f (x )=-x 2-3x +4lg (x +1)的定义域为( )A .(-1,0)∪(0,1]B .(-1,1]C .(-4,-1]D .(-4,0)∪(0,1]A [由⎩⎪⎨⎪⎧-x 2-3x +4≥0,lg (x +1)≠0,x +1>0,得-1<x <0或0<x ≤1,所以函数f (x )的定义域为(-1,0)∪(0,1],故选A.]4.当前,国家正分批修建经济适用房以解决低收入家庭住房紧X 问题,已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,先采用分层抽样的方法决定各社区户数,则应从甲社区中抽取低收入家庭的户数为( )A .40B .30C .20D .36A [由题意,每个个体抽到的概率为90360+270+180=19,其中甲社区有360户低收入家庭,所应从甲社区抽取低收入家庭的户数为360×19=40户.]5.2019年10月1日在庆祝中华人民某某国成立70周年大阅兵的徒步方队中,被誉为“最强大脑”的院校科研方队队员分别由军事科学院、国防大学、国防科技大学三所院校联合抽组,已知军事科学院的甲、乙、丙三名同学被选上的概率分别为13,14,16,这三名同学中至少有一名同学被选上的概率为( )A .13 B .512 C .712D .23C [由题知三名同学都没有被选上的概率为23×34×56=512,所以这三名同学中至少有一名同学被选上的概率为1-512=712.]6.函数y =⎩⎪⎨⎪⎧x 2,x <0,2x -1,x ≥0的大致图象是( )A B C DB [当x <0时,函数的图象是抛物线;当x ≥0时,只需把y =2x的图象在y 轴右侧的部分向下平移1个单位即可,故大致图象为B.]7.“x >2”是“x 2+2x -8>0”成立的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件B [记集合A ={x |x >2},由x 2+2x -8>0,得x <-4或x >2,记集合B ={x |x <-4,或x >2}.因为A B ,所以“x >2”是“x 2+2x -8>0”成立的充分不必要条件.故选B.]8.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0]上单调递增,若实数a 满足f (2log 3a )>f (-2),则a 的取值X 围是( )A .(-∞,3)B .(0,3)C .(3,+∞)D .(1,3)B [因为f (x )是定义在R 上的偶函数,且在区间(-∞,0]上单调递增,所以f (x )在区间[0,+∞)上单调递减.根据函数的对称性,可得f (-2)=f (2),所以f (2log 3a )>f (2).因为2log 3a >0,f (x )在区间[0,+∞)上单调递减,所以0<2log 3a <2⇒log 3a <12⇒0<a < 3.故选B.]二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应不同的是( )A .众数B .平均数C .中位数D .标准差ABC [只有标准差不变,众数、平均数和中位数都加2.]10.已知奇函数f (x )在R 上是增函数.若a =-f ⎝ ⎛⎭⎪⎫log 215,b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系不可能为( )A .a <b <cB .b <a <cC .c <b <aD .c <a <bABD [由f (x )是奇函数可得,a =-f ⎝ ⎛⎭⎪⎫log 215=f (log 25),因为log 25>log 24.1>log 24=2>20.8,且函数f (x )是增函数,所以c <b <a .]11.已知函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2x ,0<a <b <c ,f (a )f (b )f (c )<0,实数d 是函数f (x )的一个零点.给出下列四个判断,其中可能成立的是( )A .0<d <aB .c >d >bC .d >cD .b <d <cABD [由y =⎝ ⎛⎭⎪⎫13x在(0,+∞)上单调递减,y =log 2x 在(0,+∞)上单调递增,可得f (x )=⎝ ⎛⎭⎪⎫13x-log 2x 在定义域(0,+∞)上是单调减函数,当0<a <b <c 时,f (a )>f (b )>f (c ),又因为f (a )f (b )f (c )<0,f (d )=0,所以①f (a ),f (b ),f (c )都为负值,则a ,b ,c 都大于d ,②f (a )>0,f (b )>0,f (c )<0,则a ,b 都小于d ,c 大于d .综合①②可得d >c 不可能成立.]12.某同学在研究函数f (x )=x1+|x |(x ∈R )时,分别得出下面几个结论,其中正确的结论是( )A .等式f (-x )+f (x )=0在x ∈R 时恒成立B .函数f (x )的值域为(-1,1)C .若x 1≠x 2,则一定有f (x 1)≠f (x 2)D .函数g (x )=f (x )-x 在R 上有三个零点ABC [易知函数的定义域为R ,且f (-x )=-f (x ),故函数为奇函数,故A 正确;当x>0时,f (x )=x 1+x =11+1x,该函数在(0,+∞)上递增,且当x →0时,f (x )→0;当x →+∞时,f (x )→1.结合奇偶性,作出f (x )的图象如图所示:易知函数的值域是(-1,1),故B 正确;结合函数f (x )为定义域内的增函数,所以C 正确;当x ≥0时,g (x )=f (x )-x =x1+x -x =-x 21+x ,令g (x )=0得x =0,故此时g (x )只有一个零点0,g (x )显然是奇函数,故该函数只有一个零点,所以D 错误.]三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上) 13.命题“∃x ∈Z ,使x 2+2x +m ≤0”的否定是________. ∀x ∈Z ,使x 2+2x +m >0 [特称命题的否定为全称命题.]14.已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0)时,f (x )=2x 3+x 2,则f (2)=________.12 [依题意得,f (-2)=2×(-2)3+(-2)2=-12,由函数f (x )是奇函数,得f (2)=-f (-2)=12.]15.计算:(0.027)-13-log 32·log 83=________.3 [ (0.027)-13-log 32·log 83=(0.3)-13×3-log 32·1log 38=103-log32·13log32=103-13=3.]16.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.0.1[这组数据的平均数x=4.7+4.8+5.1+5.4+5.55=5.1,则方差s2=(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)25=0.16+0.09+0+0.09+0.165=0.1.]四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)某初级中学共有学生2 000名,各年级男、女生人数如下表:(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?[解](1)因为x2 000=0.19,所以x=380.(2)初三年级人数为y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:482 000×500=12(名).18.(本小题满分12分)某市为鼓励企业发展“低碳经济”,真正实现“低消耗、高产出”,实行奖惩制度.通过制定评分标准,每年对本市50%的企业抽查评估,评出优秀、良好、合格和不合格四个等级,并根据等级给予相应的奖惩(如下表).某企业投入100万元改造,由于自身技术原因,能达到以上四个等级的概率分别为12,13,18,124,且由此增加的产值分别为60万元、40万元、20万元、-5万元.(1)在抽查评估中,该企业能被抽到且被评为合格及其以上等级的概率是多少? (2)求该企业当年因改造而增加的利润为0的概率.[解](1)设该企业能被抽到且被评为合格及其以上等级的概率为P ,则P =⎝ ⎛⎭⎪⎫12+13+18×12=2348.(2)依题意,该企业当年因改造而增加的利润为0的概率为13×12=16.19.(本小题满分12分)某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球,记下编号后放回,连续取两次,若取出的两个小球相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.(1)求中三等奖的概率; (2)求中奖的概率.[解] 设“中三等奖”为事件A ,“中奖”为事件B ,从四个小球中有放回地取两个有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),共16种不同的结果.(1)取出的两个小球相加之和等于4或3的取法有:(1,3),(2,2),(3,1),(0,3),(1,2),(2,1),(3,0),共7种结果,则中三等奖的概率为P (A )=716.(2)由(1)知两个小球相加之和等于3或4的取法有7种; 两个小球相加之和等于5的取法有2种:(2,3),(3,2). 两个小球相加之和等于6的取法有1种:(3,3). 则中奖概率为P (B )=7+2+116=58.20.(本小题满分12分)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)某某数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,某某数a 的取值X 围. [解](1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示 )知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值X 围是(1,3].21.(本小题满分12分)已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R . (1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值X 围.[解](1)由题意知⎩⎪⎨⎪⎧-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎪⎨⎪⎧a =1,b =2.所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝ ⎛⎭⎪⎫x +12+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,故k 的取值X 围是(-∞,1).22.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年;当4≤x ≤20时,v 是x 的一次函数,当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当0<x ≤20时,求函数v 关于x 的函数解析式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.[解](1)由题意得当0<x ≤4时,v =2;当4≤x ≤20时,设v =ax +b ,显然v =ax +b 在[4,20]内是减函数,由已知得⎩⎪⎨⎪⎧20a +b =0,4a +b =2,解得⎩⎪⎨⎪⎧a =-18,b =52,所以v =-18x +52,故函数v =⎩⎪⎨⎪⎧2,0<x ≤4,-18x +52,4<x ≤20.(2)设年生长量为f (x )千克/立方米,依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧2x ,0<x ≤4,-18x 2+52x ,4<x ≤20,当0<x ≤4时,f (x )为增函数, 故f (x )max =f (4)=4×2=8;当4<x ≤20时,f (x )=-18x 2+52x =-18(x 2-20x )=-18(x -10)2+252,f (x )max =f (10)=12.5.所以当0<x ≤20时,f (x )的最大值为12.5.即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.。
高中数学必修1综合测试卷(三套+含答案)
高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数 3. 已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A 。
3B .4C 。
5D .6 4. 下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f 〉)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6。
设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A 。
2 B .3 C .9 D .187.函数1(0,1)x y a a a a=->≠的图象可能是( )8.给出以下结论:①11)(--+=x x x f 是奇函数;②221)(2-+-=x x x g 既不是奇函数也不是偶函数;③)()()(x f x f x F -= )(R x ∈是偶函数 ;④xxx h +-=11lg )(是奇函数.其中正确的有( )个A .1个B 。
人教版高一数学必修一模块综合测评卷
人教版高一数学必修一模块综合测评一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.全集U ={0,-1,-2,-3,-4},M ={0,-1,-2},N ={0,-3,-4},则(∁U M)∩N 等于( )A.{0}B.{-3,-4}C.{-1,-2}D.∅ 2.用分数指数幂表示a 3a a ,正确的是( ) A.a 43 B.a 34 C.a 112 D.a -143.函数y =1x+log 2(x +3)的定义域是( ) A.R B.(-3,+∞) C.(-∞,-3) D.(-3,0)∪(0,+∞)4.在区间(0,1)上,图像在y =x 的下方的函数为( )A.y =log 12x B.y =2x C.y =x 3 D.y =x 125.甲、乙两人在一次赛跑中,从同一地点出发,路程S 与时间t 的函数关系如图所示,则下列说法正确的是( )A.甲比乙先发出B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点6.已知函数f(x)=⎩⎪⎨⎪⎧x +2,x ≤-1,x 2,-1<x<2.若f(a)=3,则a 的取值个数是( )A.1B.2C.3D.47.已知函数f(x)=(m -1)x 2+2mx +3是偶函数,则f(x)在(-5,-2)上是( )A.增函数B.减函数C.不具有单调性D.单调性由m 确定8.若在二次函数y =ax 2+bx +c 中,a ·c<0,则函数的零点个数是( )A.1B.2C.0D.无法确定9.三个数0.32,20.3,log 0.32的大小关系为( )A.log 0.32<0.32<20.3B.log 0.32<20.3<0.32C.0.32<log 0.32<20.3D.0.32<20.3<log 0.3210.已知偶函数f(x)在(-∞,-2]上是增函数,则下列关系式中成立的是( ) A.f(-72)<f(-3)<f(4) B.f(-3)<f(-72)<f(4) C.f(4)<f(-3)<f(-72) D.f(4)<f(-72)<f(-3)11.若奇函数f(x)在[a ,b](a ,b>0)上是增函数,且最小值是1,则f(x)在[-b ,-a]上是( )A.增函数且最小值是-1B.增函数且最大值是-1C.减函数且最小值是-1D.减函数且最大值是-112.某地区植被被破坏后,土地沙漠化越来越严重,据测,最近三年该地区的沙漠增加面积分别为0.2万公顷,0.4万公顷和0.76万公顷,若沙漠增加面积y 万公顷是关于年数x 的函数关系,则此关系用下列哪个函数模拟比较好( )A.y =x 5B.y =110(x 2+2x)C.y =110·2xD.y =0.2+log 16x二、填空题(本大题共4小题,每小题5分,共20分.把答案填在横线上)13.0.25-0.5+2713-6250.25=________.14.已知集合A ={x|ax 2-3x +2=0}至多有一个元素,则a 的取值范围是________.15.已知函数f(x)是定义在R 上的奇函数,若当x ≥0时,有f(x)=x 2x ,则当x ≤0时,函数f(x)的解析式为________.16.某种商品进货价每件50元,据市场调查,当销售价格(每件x 元)在50≤x ≤80时,每天售出的件数P =100 000(x -40)2,当销售价格定为________元时所获利润最多. 三、解答题(本大题共6小题,共70分)17.(10分)已知集合A ={x|3≤x<7},B ={x|2<x<10},C ={x|x<a}.(1)求A ∪B ,(∁R A)∩B ;(2)若A ∩C ≠∅,求a 的取值范围.18.(12分)计算下列各式.(1)|1+lg0.001|+lg 212-4lg2+4+lg6-lg0.03;(2)(0.001)-13+(27)23-(14)-12+(19)-1.5.。
高中数学必修1综合测试卷(三套+含答案)
高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3. 已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C .5D .64. 下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x xf =)(, 33()g x x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6.设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A .2 B .3 C .9 D .187.函数1(0,1)x y a a a a=->≠的图象可能是( )8.给出以下结论:①11)(--+=x x x f 是奇函数;②221)(2-+-=x x x g 既不是奇函数也不是偶函数;③)()()(x f x f x F -= )(R x ∈是偶函数 ;④xxx h +-=11lg)(是奇函数.其中正确的有( )个 A .1个 B .2个 C .3个 D .4个9. 函数1)3(2)(2+-+=x a ax x f 在区间[)+∞-,2上递减,则实数a 的取值范围是( )A .(]3,-∞-B .[]0,3-C . [)0,3-D .[]0,2-10.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f(x)图象上的是( )A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a ---11. 若函数a x x x f +-=24)(有4个零点,则实数a 的取值范围是( )A . []0,4- B. []4,0 C. )4,0( D. )0,4(-12. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( )A .{}|303x x x -<<>或B .{}|303x x x <-<<或C .{}|3003x x x -<<<<或D .{}|33x x x <->或二、填空题(本大题共4小题,每小题5分)13.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 ;14.已知函数11()()142x x y =-+的定义域为[3,2]-,则该函数的值域为 ; 15. 函数()()R b a xbax x f ∈+-=,25,若()55=f ,则()=-5f ; 16.设函数()f x =x |x |+b x +c ,给出下列四个命题:①若()f x 是奇函数,则c =0②b =0时,方程()f x =0有且只有一个实根 ③()f x 的图象关于(0,c )对称 ④若b ≠0,方程()f x =0必有三个实根 其中正确的命题是 (填序号)三、解答题(解答应写文字说明,证明过程或演算步骤)17.(10分)已知集合{}0652<--=x x x A ,集合{}01562≥+-=x x x B ,集合⎭⎬⎫⎩⎨⎧<---=09m x mx xC(1)求B A ⋂(2)若C C A =⋃,求实数m 的取值范围;18.(本小题满分12分)已知函数()log (1),()log (1)a a f x x g x x =+=-其中)10(≠>a a 且,设()()()h x f x g x =-.(1)求函数()h x 的定义域,判断()h x 的奇偶性,并说明理由; (2)若(3)2f =,求使()0h x <成立的x 的集合。
高中数学 模块综合测评(含解析)新人教B版必修第一册-新人教B版高一第一册数学试题
模块综合测评(满分:150分 时间:120分钟)一、单选题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A ={x |2x 2-x ≥0},B ={y |y >-1},则A ∩B =( ) A .(-1,0] B .(-1,0]∪⎣⎢⎡⎭⎪⎫12,+∞C .⎝ ⎛⎦⎥⎤-1,12D .⎣⎢⎡⎭⎪⎫12,+∞B [A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤0或x ≥12,∴A ∩B =(-1,0]∪⎣⎢⎡⎭⎪⎫12,+∞.故选B.]2.命题p :∀x ∈N ,x 3>x 2的否定形式¬p 为( ) A .∀x ∈N ,x 3≤x 2 B .∃x ∈N ,x 3>x 2 C .∃x ∈N ,x 3<x 2D .∃x ∈N ,x 3≤x 2D [全称量词命题的否定是存在量词命题,不等号要改变,故选D.]3.已知p :x -a >0,q :x >1,若p 是q 的充分条件,则实数a 的取值X 围为( )A .(-∞,1)B .(-∞,1]C .(1,+∞)D .[1,+∞)D [已知p :x -a >0,x >a ,q :x >1,若p 是q 的充分条件,根据小X 围推出大X 围得到a ≥1.故选D.]4.已知f ⎝ ⎛⎭⎪⎫12x -1=2x +3,f (m )=6,则m 等于( )A .-14B .14C .32D .-32A [令12x -1=t ,则x =2t +2,所以f (t )=2×(2t +2)+3=4t +7.令4m +7=6,得m =-14.故选A.]5.函数f (x )=x +1+1x -3的定义域为( ) A .(-3,0]B .(-3,1]C .[-1,3)∪(3,+∞)D .[-1,3)C [由条件知⎩⎨⎧x +1≥0x -3≠0,∴x ≥-1且x ≠3,故选C.]6.函数f (x )=mx 2+(m -1)x +1在区间(-∞,1]上为减函数,则m 的取值X 围为( )A .⎝ ⎛⎦⎥⎤0,13 B .⎣⎢⎡⎭⎪⎫0,13 C .⎣⎢⎡⎦⎥⎤0,13D .⎝ ⎛⎭⎪⎫0,13C [当m =0时,f (x )=1-x ,满足在区间(-∞,1]上为减函数,当m ≠0时,因为f (x )=mx 2+(m -1)x +1的图像的对称轴为直线x =1-m2m ,且函数在区间(-∞,1]上为减函数,所以⎩⎪⎨⎪⎧m >0,1-m 2m ≥1,解得0<m ≤13.综上,0≤m ≤13.故选C.]7.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下多少钱( )A .8元B .16元C .24元D .32元D [设方形巧克力每块x 元,圆形巧克力每块y 元,小明带了a 元钱, ⎩⎨⎧3x +5y =a +8,①5x +3y =a -8,②①+②,得8x +8y =2a ,∴x +y =14a , ∵5x +3y =a -8,∴2x +(3x +3y )=a -8, ∴2x +3×14a =a -8,∴2x =14a -8,∴8x =a -32, 即他只购买8块方形巧克力,则他会剩下32元,故选D.]8.已知函数f (x )=mx +1的零点在区间(1,2)内,则m 的取值X 围是( ) A .⎝ ⎛⎭⎪⎫-∞,-12B .⎝ ⎛⎭⎪⎫-1,-12C .⎝ ⎛⎭⎪⎫-12,+∞D .()-∞,-1∪⎝ ⎛⎭⎪⎫-12,+∞B [根据题意,函数f (x )=mx +1,当m =0时,f (x )=1,没有零点, 当m ≠0时,f (x )为单调函数,若其在区间(1,2)内存在零点, 必有f (1)f (2)<0,即(m +1)(2m +1)<0,解得-1<m <-12,即m 的取值X 围为⎝ ⎛⎭⎪⎫-1,-12,故选B.]二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列命题中是真命题的是( ) A .∀x ∈R ,2x 2-3x +4>0 B .∀x ∈{1,-1,0},2x +1>0 C .∃x ∈N ,使x ≤xD .∃x ∈N *,使x 为29的约数 ACD [对于A ,这是全称量词命题,由于Δ=(-3)2-4×2×4<0,所以2x 2-3x +4>0恒成立,故A 为真命题;对于B ,这是全称量词命题,由于当x =-1时,2x +1>0不成立,故B 为假命题;对于C ,这是存在量词命题,当x =0时,有x ≤x 成立,故C 为真命题; 对于D ,这是存在量词命题,当x =1时,x 为29的约数成立,所以D 为真命题.]10.有以下说法,其中正确的为( ) A .“m 是有理数”是“m 是实数”的充分条件 B .“x ∈A ∩B ”是“x ∈A ”的必要条件 C .“x 2-2x -3=0”是“x =3”的必要条件 D .“x >3”是“x 2>4”的充分条件ACD[A正确,由于“m是有理数”⇒“m是实数”,所以“m是有理数”是“m是实数”的充分条件;B不正确.因为“x∈A”“x∈A∩B”,所以“x∈A∩B”不是“x∈A”的必要条件;C正确.由于“x=3”⇒“x2-2x-3=0”,故“x2-2x-3=0”是“x =3”的必要条件;D正确.由于“x>3”⇒“x2>4”,所以“x>3”是“x2>4”的充分条件.]11.已知f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,当x∈(-∞,0)时,f(x)=x-1,若f(a)·f(-a)=4,则实数a的值可为()A.-3 B.-1C.1 D.3BC[∵f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,当x∈(-∞,0)时,f(x)=x-1,①当a>0时,f(a)·f(-a)=[f(-a)]2=(-a-1)2=4,解得,a=1或a=-3(舍);②当a<0时,f(a)·f(-a)=[f(a)]2=(a-1)2=4,解可得,a=-1或a=3(舍),综上可得,a=-1或1,故选BC.]12.设c<0,f(x)是区间[a,b]上的减函数,下列命题中正确的是()A.f(x)在区间[a,b]上有最小值f(a)B.1f(x)在[a,b]上有最小值f(a)C.f(x)-c在[a,b]上有最小值f(b)-cD.cf(x)在[a,b]上有最小值cf(a)CD[A中,f(x)是区间[a,b]上的减函数,在区间[a,b]上有最小值f(b),A错误;B中,f(x)是区间[a,b]上的减函数,而函数1f(x)在[a,b]上单调性无法确定,其最小值无法确定,B错误;C中,f(x)是区间[a,b]上的减函数,f(x)-c在区间[a,b]上也是减函数,其最小值f(b)-c,C正确;D中,f(x)是区间[a,b]上的减函数,且c<0,则cf(x)在区间[a,b]上是增函数,则在[a ,b ]上有最小值cf (a ),D 正确.]二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.不等式-2x 2+x +3<0的解集为________.(-∞,-1)∪⎝ ⎛⎭⎪⎫32,+∞[化-2x 2+x +3<0为2x 2-x -3>0,解方程2x 2-x-3=0得x 1=-1,x 2=32,所以不等式2x 2-x -3>0的解集为(-∞,-1)∪⎝ ⎛⎭⎪⎫32,+∞,即原不等式的解集为(-∞,-1)∪⎝ ⎛⎭⎪⎫32,+∞.]14.已知函数f (x )=5-xx ,则f (1)=________,函数y =f (x )的定义域为________.(本题第一空2分,第二空3分)2 (-∞,0)∪(0,5][函数f (x )=5-x x ,则f (1)=5-11=2,令⎩⎨⎧5-x ≥0,x ≠0,解得x ≤5且x ≠0, ∴函数y =f (x )的定义域为(-∞,0)∪(0,5].]15.直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值X 围为________. ⎝ ⎛⎭⎪⎫1,54[y =⎩⎨⎧x 2-x +a ,x ≥0,x 2+x +a ,x <0, 作出图像,如图所示.此曲线与y 轴交于(0,a )点,最小值为a -14,要使y =1与其有四个交点,只需a -14<1<a ,∴1<a <54.]16.设函数f (x )=|x 2-2ax +b |(x ∈R ),给出下列命题: ①f (x )一定是偶函数;②当f (0)=f (2)时,f (x )的图像一定关于直线x =1对称;③若a 2-b ≤0,则f (x )在区间[a ,+∞)上是增函数; ④f (x )有最大值|a 2-b |.其中正确命题的序号是________.③[若a =1,b =1,则f (x )=|x 2-2x +1|=x 2-2x +1,显然f (x )不是偶函数,所以①错误;若a =-1,b =-4,则f (x )=|x 2+2x -4|,满足f (0)=f (2),但显然f (x )的图像不关于直线x =1对称,所以②错误;若a 2-b ≤0,则f (x )=|x 2-2ax +b |=x 2-2ax +b ,此时函数f (x )的图像是开口向上的抛物线,且抛物线的对称轴是直线x =a ,所以f (x )在区间[a ,+∞)上是增函数,所以③正确;显然函数f (x )=|x 2-2ax +b |(x ∈R )没有最大值,所以④错误.故填③.]四、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪4-2x x -7>0,B ={x |x 2-4x +4-m 2≤0,m >0}.(1)若m =3,求A ∩B ;(2)若A ∪B =B ,某某数m 的取值X 围.[解](1)若m =3,解得:A =(2,7),B =[-1,5], 所以A ∩B =(2,5];(2)由题意得:B =[2-m ,2+m ], 又因为A ∪B =B ,有A ⊆B ,则有:2-m ≤2①;2+m ≥7②;m >0③;同时成立. ∴m ≥5.18.(本小题满分12分)已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2.(1)求k 的取值X 围;(2)若|x 1+x 2|=x 1x 2-1,求k 的值. [解](1)依题意,得Δ=b 2-4ac ≥0, 即[-2(k -1)]2-4k 2≥0,解得k ≤12.(2)法一:依题意,得x1+x2=2(k-1),x1x2=k2.以下分两种情况讨论:①当x1+x2≥0时,则有x1+x2=x1x2-1,即2(k-1)=k2-1,解得k1=k2=1.因为k≤1 2,所以k1=k2=1不合题意,舍去.②当x1+x2<0时,则有x1+x2=-(x1x2-1),即2(k-1)=-(k2-1).解得k1=1,k2=-3.因为k≤12,所以k=-3.综合①②可知k=-3.法二:依题意,可知x1+x2=2(k-1).由(1)可知k≤12,所以2(k-1)<0,即x1+x2<0.所以-2(k-1)=k2-1,解得k1=1,k2=-3.因为k≤12,所以k=-3.19.(本小题满分12分)已知函数f(x)=x+1x+1,g(x)=ax+5-2a(a>0).(1)判断函数f(x)在[0,1]上的单调性,并用定义加以证明;(2)若对任意m∈[0,1],总存在m0∈[0,1],使得g(m0)=f(m)成立,某某数a 的取值X围.[解](1)函数f(x)在[0,1]上单调递增,证明如下:设0≤x1<x2≤1,则f(x1)-f(x2)=x1+1x1+1-x2-1x2+1=(x1-x2)+x2-x1(x1+1)(x2+1)=(x1-x2)(x1x2+x1+x2)(x1+1)(x2+1).因为x 1-x 2<0,(x 1+1)(x 2+1)>0,x 1x 2+x 1+x 2>0, 所以f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),所以函数f (x )在[0,1]上单调递增. (2)由(1)知,当m ∈[0,1]时,f (m )∈⎣⎢⎡⎦⎥⎤1,32.因为a >0,g (x )=ax +5-2a 在[0,1]上单调递增, 所以m 0∈[0,1]时,g (m 0)∈[5-2a ,5-a ]. 依题意,只需⎣⎢⎡⎦⎥⎤1,32⊆[5-2a ,5-a ]所以⎩⎪⎨⎪⎧5-2a ≤1,5-a ≥32,解得2≤a ≤72, 即实数a 的取值X 围为⎣⎢⎡⎦⎥⎤2,72.20.(本小题满分12分)已知函数f (x )=x 2-mx +2m -4(m ∈R ). (1)当m =1时,求不等式f (x )≥0的解集;(2)当x >2时,不等式f (x )≥-1恒成立,求m 的取值X 围. [解](1)因为m =1,所以f (x )=x 2-x -2. 所以x 2-x -2≥0,即(x -2)(x +1)≥0, 解得x ≤-1或x ≥2.故不等式f (x )≥0的解集为{x |x ≤-1或x ≥2}.(2)当x >2时,不等式f (x )≥-1恒成立等价于m ≤x 2-3x -2在(2,+∞)上恒成立.因为x >2,所以x -2>0,则x 2-3x -2=(x -2)2+4(x -2)+1x -2=(x -2)+1x -2+4≥2(x -2)·1x -2+4=6.当且仅当x -2=1x -2,即x =3时,等号成立. 故m 的取值X 围为(-∞,6].21.(本小题满分12分)某商场将进价为2 000元的冰箱以2 400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值X 围)(2)商场要想在这种冰箱销售中每天盈利4 800元,同时又要使消费者得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?[解](1)根据题意,得y =(2400-2000-x )⎝ ⎛⎭⎪⎫8+4×x 50,即y =-225x 2+24x +3 200.(2)由题意,得-225x 2+24x +3 200=4 800, 整理得x 2-300x +20 000=0, 解得x =100或x =200,又因为要使消费者得到实惠,所以应取x =200, 所以每台冰箱应降价200元.(3)y =-225x 2+24x +3 200=-225(x -150)2+5 000, 由函数图像可知,当x =150时,y max =5 000,所以每台冰箱降价150元时,商场每天销售这种冰箱的利润最高,最高利润是5 000元.22.(本小题满分12分)已知函数y =f (x )的定义域为D ,且f (x )同时满足以下条件:①f (x )在D 上是单调递增或单调递减函数;②存在闭区间[a ,b ]D (其中a <b ),使得当x ∈[a ,b ]时,f (x )的取值集合也是[a ,b ].那么,我们称函数y =f (x )(x ∈D )是闭函数.(1)判断f (x )=-x 3是不是闭函数?若是,找出条件②中的区间;若不是,说明理由;(2)若f (x )=k +x +2是闭函数,某某数k 的取值X 围.(注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可)[解](1)f (x )=-x 3在R 上是减函数,满足①;设存在区间[a ,b ],f (x )的取值集合也是[a ,b ],则⎩⎨⎧-a 3=b ,-b 3=a ,解得a =-1,b=1,所以存在区间[-1,1]满足②, 所以f (x )=-x 3(x ∈R )是闭函数.(2)f (x )=k +x +2是[-2,+∞)上的增函数,由题意知,f (x )=k +x +2是闭函数,存在区间[a ,b ]满足② 即:⎩⎪⎨⎪⎧k +a +2=a ,k +b +2=b .即a ,b 是方程k +x +2=x 的两根, a ,b 是方程x 2-(2k +1)x +k 2-2=0的两根. 且a ≥k ,b >k .令f (x )=x 2-(2k +1)x +k 2-2,得⎩⎪⎨⎪⎧f (k )≥0,Δ>0,2k +12>k ,解得-94<k ≤-2,所以实数k 的取值X 围为 ⎝ ⎛⎦⎥⎤-94,-2.。
高一数学必修1模块测试题(含答案)汇编
必修1期末测试题(一)一、选择题1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U AC B =( )A 、{}2B 、{}2,3C 、{}3D 、{}1,32、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 MN ( )A 、{}0B 、{}0,1C 、{}1,2D 、{}0,23、函数()21log ,4y x x =+≥的值域是 ( )A 、[)2,+∞B 、()3,+∞C 、[)3,+∞D 、(),-∞+∞4、关于A 到B 的一一映射,下列叙述正确的是 ( ) ① 一一映射又叫一一对应 ② A 中不同元素的像不同 ③ B 中每个元素都有原像 ④ 像的集合就是集合BA 、①②B 、①②③C 、②③④D 、①②③④5、在221,2,,y y x y x x y x===+= ( ) A 、1个 B 、2个 C 、3个 D 、4个6、已知函数()213f x x x +=-+,那么()1f x -的表达式是 ( )A 、259x x -+B 、23x x --C 、259x x +-D 、21x x -+7、若方程0xa x a --=有两个解,则a 的取值范围是 ( )A 、()0,+∞B 、()1,+∞C 、()0,1D 、∅8、若21025x=,则10x -等于 ( )A 、15-B 、15C 、150D 、1625 9、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )A 、01a <<B 、112a <<C 、102a << D 、1a >10、设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( )A 、3a ≤-B 、3a ≥-C 、3a =-D 、以上答案都不对12、若()lg f x x =,则()3f = ( )A 、lg 3B 、3C 、310 D 、103 二、填空题13、设{}{}12,0A x x B x x a =<<=-<,若A B ,则a 的取值范围是 ;14、函数y =的定义域为 ;15、若2x <3x -的值是 ; 16、100lg 20log 25+= 。
高一数学人教A版必修1模块综合测评 Word版含解析
模块综合测评(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).已知全集={},集合={},={},则(∁)∪=( ).{} .{}.{} .{}【解析】∵全集={},集合={},∴∁={},又={},则(∁)∪={}.故选.【答案】.可作为函数=()的图象的是( )【导学号:】【解析】由函数的定义可知:每当给出的一个值,则()有唯一确定的实数值与之对应,只有符合.【答案】.同时满足以下三个条件的函数是( )①图象过点();②在区间(,+∞)上单调递减;③是偶函数..()=-(+)+.()=.()=.()=-【解析】.若()=-(+)+,则函数关于=-对称,不是偶函数,不满足条件③..若()=,在区间(,+∞)上单调递增,不满足条件②..若()=,则三个条件都满足..若()=-,则()无意义,不满足条件①.故选.【答案】.与函数=有相同图象的一个函数是( ).=-.=.=-.=【解析】要使函数解析式有意义,则≤,即函数=的定义域为(-∞,],故===-,又因为函数=-的定义域也为(-∞,],故函数=与函数=-表示同一个函数,则他们有相同的图象,故选.【答案】.函数()=-+的零点所在区间是( ).()【解析】∵函数()=-+,∴=-,()=,∴()<,故连续函数()的零点所在区间是,故选.【答案】.幂函数=()的图象经过点,则满足()=的的值是( )【导学号:】.-..-【解析】设幂函数为=α,因为图象过点,所以有-=(-)α,解得α=-,所以幂函数解析式为=-,由()=,得-=,所以=.【答案】.函数()=+ (+)的定义域为( )。
高一数学必修1模块考试试卷(共4套)
Ay高一数学必修1模块考试卷一、选择题:本大题共8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、下列给出的各组对象中,不能成为集合的是()A、十个自然数B、方程012=+x的所有实数根C、所有的等边三角形D、小于10的所有自然数2、以下六个写法中:①{0}∈{0,1,2};②⊆∅{1,2};③{0}∅∈④{0,1,2}={2,0,1};⑤∅∈0;⑥AA=∅⋂,正确的个数有()A、1个B、2个C、3个D、4个3、下列等式能够成立的是()A、63π=-B、C=D34()x y=+4、有下列函数:①2||32+-=xxy;②]2,2(,2-∈=xxy;③3xy=;④1-=xy,其中是偶函数的有()A、①②B、①③C、②④D、①5、函数)1(14≠-=xxy在区间[2,5)上的最大值、最小值别是()A、4,1B、4,0C、1,0D、最大值4,无最小值6、已知⎩⎨⎧<+≥-=)6()2()6(5)(xxfxxxf,则(3)f为()A、2B、3C、4D、57、在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()8、若函数f(x)是定义在[6,6]-上的偶函数,且在[6,0]-上单调递减,则()A、(3)(4)0f f+> B、(3)(2)0f f---<C、(2)(5)0f f-+-< D、(4)(1)0f f-->二、填空题:本大题共5小题,每小题4分,共20分。
9、设全集U={1、2、3、4、5},{3,5},{2,3,4}M N==,则图中阴影部分所表示的集合是。
(列举法)10、函数y=_______________。
11、计算:2312527-⎛⎫=⎪⎝⎭。
12、如图,函数()f x 的图象是折线段ABC ,其中A B C ,, 的坐标分别为(04)(20)(64),,,,,,则((0))f f =_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竹溪一中高中数学 必修一模块综合测试卷
一.选择题
1.下列集合中,结果是空集的为 ( )
(A ) (B ) (C )
(D )
2.已知实数集为R ,集合{}3<=x x M ,{}1<=x x N ,则=N C M R ( )
A.φ
B.{}31<<x x
C. {}31<≤x x
D.
{}31≤≤x x
3.设集合{}3,2,1=A ,A
B A =
,则集合B 的个数是 ( )
A.1
B.6
C.7
D.8 4.下列每组函数是同一函数的是 ( )
A. 2)1()(,1)(-=-=x x g x x f
B.2
)3()(,3)(-=-=x x g x x f
C.2)(,2
4)(2
+=--=x x g x x x f
D.31)(,)3)(1()(-⋅
-=
--=
x x x g x x x f
5. 下列四个函数中,在(0,+∞)上为增函数的是 ( )
A.f (x )=3-x
B.f (x )=x 2-3x
C.f (x )=-1
1+x D.f (x )=-|x |
6.下列函数中是偶函数的是 ( ) A.3y x
=-
B.]3,3(,22
-∈+=x x y C.x y 2
l og
= D.2-=x y
7.三个数6.05,56.0,5log
6
.0的大小顺序是 ( )
A.6
.06
.05
5
5l og
6.0<< B.5l og
56.06
.06
.05<<
C.6
.05
6
.05
6.05log
<< D.5
6
.06
.06.05
5l og
<<
8.已知函数],0[,1)(2
32
∈++-=x x x x f 的最值情况为 ( ) A . 有最小值
4
1,有最大值1 B. 有最小值41
,有最大值
4
5
C. 有最小值1,有最大值4
5 D . 有最小值41
,无最大值 9.函数()2x
f x e x =+-的零点所在的一个区间是 ( )
A.(-2,-1) B (-1,0) C.(0,1) D.(1,2) 10.若函数2)1(2)(2+++=x a x x f 在区间]4,(-∞上是减函数,则实数a 的取值范围是 ( )
A. 5-<a
B. 5-≤a
C. 5->a
D. 5-≥a 二.填空题 11.已知集合
,,
则集合
12.函数
1
3
x y a
-=+的图象经过定点
13.设)(x f 在R 上是偶函数,若当0>x 时,有)1(log )(2+=x x f ,则
=-)7(f .
14.用二分法求方程3250x x --=在区间[2,3]内的实数根时,取区间中点0 2.5x =,
那么下一个有根区间是
15. 函数y =⎪⎩
⎪
⎨⎧>+≤<+≤+1)( 5-1),(0 30),
( 32x x x x x x 的最大值是_______.
必修一模块综合测试卷答题卡
一、选择题(每小题5分,满分50分) 题号 1 2 3 4 5 6 7 8 9 10 答案 二、填空题(每小题5分,满分25分)
11、 12、 13、
14、 15、
三.解答题
16.(本小题满分12分)设全集合
,,
,求
,,
,
17. (本小题满分
12分)设集合{|213A x a x
a =+-≤≤,
{|322}B x x =≤≤,求能使A A B ⊆ 成立的a 值的集合.
竹溪一中高一 班 姓名 考号 ////////////////////////////////////////////////////////////////////////////////////////// 密 封 线 /////////////////////////////////////////////////////////////////////////////////////////////////
18.(本题满分12分)二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围.
19.(本小题12分)
2
24
()log4log5
f x x x
=-+
求函数在(0,8)上的值域
,并求
出取到最小值时x的值
20.(本小题满分13分)某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床价每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲.
为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①要方便结账,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.
若用x表示床价,用y表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入)
(1)把y表示成x的函数,并求出其定义域;
(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?
21.(本小题满分14分)已知定义域为(0,)+∞的函数()f x 满足:①1x >时,
()0f x <;②1)2
1
(=f ③
对任意的正实数,x y ,都有()()()f xy f x f y =+ (1)求证:1
()()f f x x
=-;
(2)求证:()f x 在定义域内为减函数; (3)求不等式2)5()2(-≥-+x f f 的解集。