宁夏中卫市2021届新高考一诊数学试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁夏中卫市2021届新高考一诊数学试题
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知点(A 在双曲线()22
21010x y b b
-=>上,则该双曲线的离心率为( )
A B C D .
【答案】C 【解析】 【分析】
将点A 坐标代入双曲线方程即可求出双曲线的实轴长和虚轴长,进而求得离心率. 【详解】
将x =y =()22
21010x y b b
-=>得b =,而双曲线的半实轴a =,所以
10c ==,得离心率c
e a
=
=故选C. 【点睛】
此题考查双曲线的标准方程和离心率的概念,属于基础题. 2.集合*
12|x N Z x ⎧⎫
∈∈⎨⎬⎩
⎭
中含有的元素个数为( ) A .4 B .6
C .8
D .12
【答案】B 【解析】 解:因为*
12|x N Z x ⎧
⎫
∈∈⎨⎬⎩
⎭
集合中的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B
3.已知函数()1x
f x xe
-=,若对于任意的0(0,]x e ∈,函数()2
0()ln 1g x x x ax f x =-+-+在(0,]e 内
都有两个不同的零点,则实数a 的取值范围为( ) A .(1,]e B .2(,]e e e
-
C .22(,]e e e e
-
+ D .2
(1,]e e
-
【答案】D 【解析】 【分析】
将原题等价转化为方程()2
0ln 1x x ax f x -++=在(0,]e 内都有两个不同的根,先求导()'f x ,可判断
()0,1x ∈时,
()0f x '>,()f x 是增函数;
当()1,x e ∈时,()0f x '<,()f x 是减函数.因此()01f x <≤,再令2
()ln 1F x x x ax =-++,求导得
221
()x ax F x x
'
--=-
,结合韦达定理可知,要满足题意,只能是存在零点1x ,使得()0F x '=在()0,e 有解,通过导数可判断当()10,x x ∈时()0F x '>,()F x 在()10,x 上是增函数;当()1,x x e ∈时()0F x '<,
()F x 在()1,x e 上是减函数;则应满足()()1max 1F x F x =>,再结合211210x ax --=,构造函数()2ln 1m x x x =+-,求导即可求解;
【详解】
函数()2
0()ln 1g x x x ax f x =-+-+在(0,]e 内都有两个不同的零点,
等价于方程()2
0ln 1x x ax f x -++=在(0,]e 内都有两个不同的根.
111()(1)x x x f x e xe x e '---=-=-,所以当()0,1x ∈时,()0f x '>,()f x 是增函数;
当()1,x e ∈时,()0f x '<,()f x 是减函数.因此()01f x <≤.
设2
()ln 1F x x x ax =-++,2121()2x ax F x x a x x
'
--=-+=-,
若()0F x '=在()0,e 无解,则()F x 在(0,]e 上是单调函数,不合题意;所以()0F x '=在()0,e 有解,且易知只能有一个解.
设其解为1x ,当()10,x x ∈时()0F x '>,()F x 在()10,x 上是增函数; 当()1,x x e ∈时()0F x '<,()F x 在()1,x e 上是减函数.
因为0(0,]x e ∀∈,方程()2
0ln 1x x ax f x -++=在(0,]e 内有两个不同的根,
所以()()1max 1F x F x =>,且()0F e ≤.由()0F e ≤,即2ln 10e e ae -++≤,解得2a e e
≤-
. 由()()1max 1F x F x =>,即2111ln 11x x ax -++>,所以2
111ln 0x x ax -+>.
因为21
1210x ax --=,所以11
12a x x =-
,代入2111ln 0x x ax -+>,得2
11ln 10x x +->. 设()2
ln 1m x x x =+-,()1
20m x x x
'=
+>,所以()m x 在()0,e 上是增函数, 而()1ln1110m =+-=,由2
11ln 10x x +->可得()()11m x m >,得11x e <<.
由1112a x x =-
在()1,e 上是增函数,得112a e e
<<-. 综上所述2
1a e e
<≤-, 故选:D.
【点睛】
本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题
4.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( ) A .58厘米 B .63厘米
C .69厘米
D .76厘米
【答案】B 【解析】 【分析】
由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可. 【详解】
因为弧长比较短的情况下分成6等分,
所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长, 故导线长度约为230203
π
π⨯=≈63(厘米). 故选:B. 【点睛】
本题主要考查了扇形弧长的计算,属于容易题.
5.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =,则()PA PB PC ⋅+等于( ) A .
49
B .49
-
C .
43
D .43
-
【答案】B 【解析】 【分析】
由M 是BC 的中点,知AM 是BC 边上的中线,又由点P 在AM 上且满足2AP PM =可得:P 是三角形ABC 的重心,根据重心的性质,即可求解. 【详解】
解:∵M 是BC 的中点,知AM 是BC 边上的中线,