初三利润问题

合集下载

数学初三利润问题暴力拆解

数学初三利润问题暴力拆解

数学初三利润问题暴力拆解摘要:一、利润问题的基本概念1.利润的定义2.利润的计算公式二、利润问题的类型1.简单利润问题2.复合利润问题3.分期付款利润问题三、解决利润问题的方法1.暴力拆解法2.代数法3.图形法四、利润问题的实际应用1.投资问题2.消费问题3.生产问题正文:数学中的利润问题一直是许多学生感到困惑的问题。

本文将详细介绍利润问题的基本概念,类型,解决方法以及实际应用。

一、利润问题的基本概念利润是指企业在销售商品或提供服务过程中,收入与成本之间的差额。

利润的计算公式为:利润=销售收入-成本。

其中,销售收入是指企业销售商品或提供服务所得到的全部收入,成本是指生产商品或提供服务所需要的全部费用。

二、利润问题的类型利润问题可以分为简单利润问题、复合利润问题、分期付款利润问题等几种类型。

1.简单利润问题简单利润问题是指在销售商品或提供服务的过程中,已知销售收入和成本,求利润的问题。

例如,一件商品的成本为50元,售价为100元,销售量为10件,求利润。

2.复合利润问题复合利润问题是指在销售商品或提供服务的过程中,已知每个单位的销售收入和成本,求多单位销售时的利润问题。

例如,一件商品的成本为50元,售价为100元,销售量为10件,如果每个单位的利润为20元,求100件商品的利润。

3.分期付款利润问题分期付款利润问题是指在销售商品或提供服务的过程中,已知每个单位的销售收入和成本,以及分期付款的方式,求分期付款后的利润问题。

例如,一件商品的成本为50元,售价为100元,如果客户可以选择分期付款,每月支付20元,求分期付款后的利润。

三、解决利润问题的方法解决利润问题有多种方法,常用的有暴力拆解法、代数法和图形法。

1.暴力拆解法暴力拆解法是指通过列举所有可能的情况,逐一计算利润的方法。

此方法适用于简单利润问题的求解。

2.代数法代数法是指通过建立代数方程,求解未知数的方法。

此方法可以解决各种类型的利润问题。

中考数学利润问题专题训练

中考数学利润问题专题训练

1利润问题专题训练1、某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x (元)满足关系:m=140-2x 。

(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?2、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围. 3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.若设降价价格为x 元: (1)设平均每天销售量为y 件,请写出y 与x 的函数关系式.(2)设平均每天获利为Q 元,请写出Q 与x 的函数关系式. (3)若想商场的盈利最多,则每件衬衫应降价多少元? (4)每件衬衫降价多少元时,商场平均每天的盈利在1200元以上?4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式. (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少? 5、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台. (1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?6、某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低1元,日均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +a b 2)2+ab ac 442-的形式,写出顶点坐标,指出单价定为多少元时日均获利最多?是多少? (3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?7、一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数..,用y(元)表示该店日净收入.(日净收入=每天的销售额-套餐成本-每天固定支出)(1) 求y 与x 的函数关系式; (2) 若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元?(3) 该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少? 8、某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元,床位可以全部租出;当床价高于10元时,每提高1元,将有3张床空闲,为了获得较高效益,该宾馆要给床位定一个合适的价格,但要注意:①为了方便结账,床价服务态度是整数;②该宾馆每天的支出费用是575元,若用x 表示床价,Y 表示该宾馆一天出租床位的纯收入。

初三数学利润问题

初三数学利润问题

专题一利润问题1.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55,x=75时,y=45,(1)求一次函数y=kx+b的表达式2)若改商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少元时,商场可获得最大利润,最大利润是多少元3)若该商场获得利润不低于500元,试确定销售单价x的范围2. 某商店将进价为8元的商品按每件10元售出,每天可销售200件,现在采取提高商品售价减少售价量的方法增加利润这种商品每件的销售价每提高一元其销售量就减少20件,设售价提高x元(1)用含x的代数式表示提价后的销售量(2)提价后的利润设为w 试用含x的代数式表示w=?(3)若物价部门规定此种商品的销售价不能超过进价的百分之七十五,那么应将每天的售价定为多少元时,才能使每天利润为640元?3.某百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,没每件盈利40元,为了迎接六一,商场决定采取适当降价,扩大销售量,增加盈利,尽尽快减少库存,经市场调查发现:如果每件童装降价4元,那么平均每天可多售出8件,要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?4. 某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?。

初三利润计算练习题

初三利润计算练习题

初三利润计算练习题一、选择题1. 小明购买了一批商品,进价为2000元,他以售价3000元的价格卖出了全部商品,他的利润是多少?A. 1000元B. 1500元C. 2000元D. 3000元2. 小红在农贸市场上买来了100斤番茄,进价为每斤5元,她以每斤10元的价格卖了出去,她的利润是多少?A. 500元B. 1000元C. 1500元D. 2000元3. 小明买了一辆自行车,进价为800元,他以900元的价格卖给了小刚,小明的利润率是多少?A. 11.1%B. 12.5%C. 20%D. 25%4. 某公司购买了100件服装,总进价为3000元,以每件40元的价格卖出,公司的利润率是多少?A. 10%B. 12%C. 14%D. 16%5. 一家餐馆购买了1000斤大米,进价共计2000元,餐馆以每斤3元的价格卖出,餐馆的利润率是多少?A. 10%B. 20%C. 30%D. 40%二、计算题1. 小华购买了一批商品,进价为3500元,他以售价5000元的价格卖出了全部商品,他的利润是多少?2. 小明在市场上买了10只苹果,进价为每只2元,他以每只4元的价格卖了出去,他的利润是多少?3. 小红购买了一盒巧克力,进价为15元,她以每盒25元的价格卖出了,她的利润是多少?4. 某公司购买了500件商品,总进价为15000元,以每件30元的价格卖出,公司的利润是多少?5. 一家超市购买了1000斤西瓜,进价共计5000元,超市以每斤8元的价格卖出,超市的利润是多少?三、应用题1. 爸爸在农贸市场上购买了80斤土豆,进价为每斤4元,他以每斤6元的价格卖给了邻居,问爸爸的利润是多少?2. 小明的妈妈开了一家餐馆,小明帮妈妈算一下,如果他们购买1000斤鸡肉,总进价为6000元,以每斤12元的价格出售,他们的利润是多少?3. 某公司购买了100件电视,总进价为20000元,以每件250元的价格卖出,公司的利润率是多少?4. 一家商场购买了1000条裤子,进价共计90000元,商场以每条120元的价格卖出,商场的利润率是多少?5. 一位商人购买了一批商品,总进价为150000元,他以总售价180000元的价格卖出了全部商品,他的利润率是多少?四、综合题某公司购买了200只电子产品,总进价为30000元,以每只200元的价格卖出,公司的利润率为50%。

利润问题的练习题初三

利润问题的练习题初三

利润问题的练习题初三一、理论基础在解决利润问题之前,我们需要了解一些基本概念和计算公式。

1. 成本和收入成本是指生产或经营一定数量的商品或服务所需要的费用总和。

收入则是销售商品或提供服务所获得的金额总和。

2. 利润利润是指企业从生产或经营活动中获得的净收入,即总收入减去总成本。

3. 利润率利润率是指利润占总收入的百分比。

计算公式为:利润率 = (利润/ 总收入)* 100%。

二、练习题现在,我们通过一些练习题来巩固对利润问题的理解和计算能力。

以下为几个利润问题练习。

练习题一:小明经营一个小超市,他从供应商进货一箱牛奶的成本是200元,每箱共有20瓶牛奶。

小明将每瓶牛奶以10元的价格出售。

请计算小明每箱牛奶的收入、利润和利润率。

收入 = 售价 * 数量 = 10元/瓶 * 20瓶 = 200元利润 = 收入 - 成本 = 200元 - 200元 = 0元利润率 = (利润 / 收入)* 100% = (0元 / 200元) * 100% = 0%练习题二:小红开了一家面包店,每天的成本是200元,她设定每个面包的售价为2元。

如果每天能卖出200个面包,请计算小红的收入、利润和利润率。

解答二:收入 = 售价 * 数量 = 2元/个 * 200个 = 400元利润 = 收入 - 成本 = 400元 - 200元 = 200元利润率 = (利润 / 收入)* 100% = (200元 / 400元) * 100% = 50%练习题三:小华在网上开了一家电子产品店,最近一个月的总收入是10000元。

他的总成本是8000元。

请计算小华的利润和利润率。

解答三:利润 = 总收入 - 总成本 = 10000元 - 8000元 = 2000元利润率 = (利润 / 总收入)* 100% = (2000元 / 10000元) * 100% = 20%一家服装厂生产了500件衬衫,总成本为30000元。

如果每件衬衫的售价是100元,计算该厂的总收入、利润和利润率。

数学利润问题的应用题(5篇)

数学利润问题的应用题(5篇)

数学利润问题的应用题(5篇)数学利润问题的应用题1题目:1、甲乙两件商品本钱共200元,甲商品按30%的利润定价,乙商品按20%的利润定价,后来两件商品都按定价打九折出售,结果仍获利27.7元,求甲商品的本钱。

2、出售一件商品,现由于进货价降低了6.4%,使得利润率提过了8%,求原来出售这件商品的利润率。

答案:1、解答:200×(1+20%)÷90%200=16(27.716)÷(30% 20%)÷90%=1302、解答:设原来的利润率为x,1+x%=(16.4%)×(1+x%+8%)x=17%数学利润问题的应用题2[专题介绍]工厂和商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折就是百分之几十。

利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般状况下,商品从厂家购进的价格称为本价,商家在本钱价的基础上提高价格出售,所赚的钱称为利润,利润与本钱的百分比称之为利润率。

期望利润=本钱价×期望利润率。

[经典例题]例1、某商店将某种DVD按进价提高35%后,打出“九折优待酬宾,外送50元出租车费”的广告,结果每台照旧获利208元,那么每台DVD的进价是多少元?〔B级〕解:定价是进价的1+35%打九折后,实际售价是进价的135%×90%=121.5%每台DVD的实际盈利:208+50=258〔元〕每台DVD的进价258÷〔121.5%1〕=1200〔元〕答:每台DVD的进价是1200元例2:一种服装,甲店比乙店的进货廉价10%甲店根据20%的利润定价,乙店根据15%的利润定价,甲店比乙店的出厂价廉价11.2元,问甲店的进货价是多少元?〔B级〕分析:解:设乙店的本钱价为1〔1+15%〕是乙店的定价〔110%〕×〔1+20%〕是甲店的定价〔1+15%〕〔110%〕×〔1+20%〕=7%11.2÷7%=160〔元〕160×〔110%〕=144〔元〕答:甲店的进货价为144元。

二次函数利润问题初三

二次函数利润问题初三

二次函数利润问题1.售价或涨价1、某种商品每件的进价为30元,在某段时间内若以每件元出售,可卖出件,应如何定价才能使定价利润最大?最大利润是多少元?2、某商店经营一种小商品,进价为2元,据市场调查,销售单价是13元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.(1)设每件商品定价为x元时,销售量为y件,求出y与x的函数关系式;(2)若设销售利润为s,写出s与x的函数关系式;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件。

(1)设每件衬衫降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。

(2)每件衬衫降价多少元时,商场平均每天盈利最多?4、某商场销售一批产品零件,进价货为10元,若每件产品零件定价20元,则可售出10件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件产品零件每降价2元,商场平均每天可多售8件。

(1)设每件产品零件降价x元,平均每天可售出y件,写出y与x的函数关系式___________________。

(2)每件产品利润降价多少元时,商场盈利最多?5.某商店购进一批单价为18元的商品,如果以单价20元出售,那么一个星期可售出100件。

根据销售经验,提高销售单价会导致销售量减少,即当销售单价每提高1元,销售量相应减少10件,如何提高销售单价,才能在一个星期内获得最大利润?最大利润是多少?6、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?7、某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价元、每星期售出商品的利润为元,请写出与的函数关系式,并求出自变量的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?8、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?9、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?10、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围).(2)当x为何值时,S有最大值?并求出最大值.(参考公式:二次函数(),当时,11、某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价(元)与销售月份(月)满足关系式,而其每千克成本(元)与销售月份(月)满足的函数关系如图所示.(1)试确定的值;(2)求出这种水产品每千克的利润(元)与销售月份(月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?2524y2(元)x(月)1 2 3 4 5 6 7 8 9 10 11 12第8题图O2.其它支出1、 某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?2.青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元∕天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元∕天·间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?3、某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。

初三中考二次函数应用题最大利润问题

初三中考二次函数应用题最大利润问题

初三数学中的二次函数,是中考的必考考点,而且是必出大题的,而对于二次函数的应用,也是常考的知识点,尤其是最近几年,销售利润问题也是非常的热门,其实对于销售利润问题,如果同学们能够掌握关于销售的公式,牢牢掌握随着售价的变化,销售数量也随之变化这个关键点,这类问题也是非常简单的。

解决这类问题一般是先运用“总利润=单件商品的利润*销售的总数量”或“总利润=总售价-总成本”,建立利润与价格之间的二次函数解析式,然后求出这个函数解析式的顶点坐标,即求得最大利润。

初三数学二次函数应用专题,销售问题,牢记公式、抓住变化关键点例题1:某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱50元价格出售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数解析式;(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数解析式;(3)当每箱苹果的销售价为多少元时,可以获得最大利润?初三数学二次函数应用专题,销售问题,牢记公式、抓住变化关键点【解析】:此题是最常见的,也是最基本的利润问题,从题目中“价格每提高1元,平均每天少销售3箱”,可知价格提高a元时,每天少销售3a箱。

因此销售价x(元/箱)时,每天销售量y=90-3(x-50)=-3x+240。

然后根据利润公式,总利润=单件商品的利润*销售的总数量,得W=(x-40)(-3x+240)=-3x^2+360x-9600=-3(x-60)^2+1200。

所以当x<60时,w随x的增大而增大,又由题意可知x≤55,∴当x=55时,可获得利润最大,最大利润为w=1125元。

例题2:某商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为:初三数学二次函数应用专题,销售问题,牢记公式、抓住变化关键点(1)已知y与t之间的变化规律符合一次函数关系,试求一次函数关系是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(0﹤n<9)给“精准扶贫”对象。

利润问题应用题及答案

利润问题应用题及答案
1、解答:200×(1+20%)÷90%-200=16
(27.7-16)÷(30% -20%)÷90%=130
2、解答:设原来的利润率为x,
1+x%=(1-6.4%)×(1+x%+8%)
x=17%
【篇二】
[专题介绍]
工厂和商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折 就是百分之几十。
利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利 润,一般情况下,商品从厂家购进的价格称为本价,商家在成本价的基础上提 高价格出售,所赚的钱称为利润,利润与成本的百分比称之为利润率。期望利润=成本价×期望利润率。
分析:
要求第二次降价后的价格是原来定价的百分之几,则需要求出第二次是按 百分之几的利润定价。
解:设第二次降价是按x%的利润定价的。
38%×40%+x%×(1-40%)=30.2%
X%=25%
(1+25%)÷(1+100%)=62.5%答:第二次降价后的价格是原来价格的62.5%【篇三】
利润问题是小学奥数竞赛和小升初考试中经常考查的内容。解决利润问 题,首先要明白利润问题里的常用词汇成本、定价(售价)、利润率、打折的 意义,通过分析产品买卖前后的价格变化,从而根据公式解决这类问题。
卖价=定价×折扣的百分数
[经典例题]
例1、某商店将某DVD按进价提高35%后,打出“九折优惠酬宾,外送
50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元?(B级)
解:定价是进价的1+35%
打九折后,实际售价是进价的135%×90%=121.5%
每台DVD的实际盈利:208+50=258(元)

21.3列一元二次方程解决利润问题 初中初三九年级数学教学课件PPT 人教版

21.3列一元二次方程解决利润问题 初中初三九年级数学教学课件PPT 人教版

量(件)
盈利(元)
2.请写出解题过程。
快速填空
1.某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平
均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商 场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价 每降低0.1元,那么商场平均每天可多售出100张,商场要想平 均每天盈利120元,每张贺年卡应降价多少元?
分析:设降价为x元,平均每天的利润为
(2900 x250)0 元,每天的销售量为
( 8 4 x )台,可列方程为
50
(2900 x 2500)(8 4
x
) 5000.
50
请写出解题过程。
快速填空
3.某个体经营户以2元/kg的价格购进一批西瓜,以3元/kg
的价格出售,每天可卖出200kg,为了促销,该经营户决定降价 销售。经调查发现这种西瓜每降价0.1元/kg ,每天可多售出 40kg(每天房租等费用共计24元),该经营户要想赢利200元, 应将每千克的西瓜的售价降低多少元?
• 分析:总利润=每件平均利润×总件数.设每张贺年卡应
降价x元,则每件平均利润应是(0.3-x )元,总件数应是
( 500+x÷0.1×100) • 则 (0.3-x)(500+1000x) =120
请写出解题过程。
快速填空
2.新华商场销售某种冰箱,每台进价为2500元.市场调研表
明:当销售价为2900元时,平均每天能售出8台;而当销价每降低 50元时,平均每天能多售4台.商场要想使这种冰箱的销售利润平 均每天达到5000元,每台冰箱的定价应为多少元?
温馨提示:总利润=平均每件利润×总件数.
设每种文化衫应降价x元,则每件平均利润应是(40-x)

二次函数利润问题初三

二次函数利润问题初三

二次函数利润问题一.售价或涨价1、某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100)x 件,应如何定价才能使定价利润最大?最大利润是多少元?2、某商店经营一种小商品,进价为2元,据市场调查,销售单价是13元时平均每天销售量是500件,而销售价每降低1元,平均每天就可以多售出100件.(1)设每件商品定价为x元时,销售量为y件,求出y与x的函数关系式;(2)若设销售利润为s,写出s与x的函数关系式;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件。

(1)设每件衬衫降价x元,平均每天可售出y件,写出y与x 的函数关系式___________________。

(2)每件衬衫降价多少元时,商场平均每天盈利最多?4、某商场销售一批产品零件,进价货为10元,若每件产品零件定价20元,则可售出10件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件产品零件每降价2元,商场平均每天可多售8件。

(1)设每件产品零件降价x 元,平均每天可售出y 件,写出y 与x 的函数关系式___________________。

(2)每件产品利润降价多少元时,商场盈利最多?5.某商店购进一批单价为18元的商品,如果以单价20元出售,那么一个星期可售出100件。

根据销售经验,提高销售单价会导致销售量减少,即当销售单价每提高1元,销售量相应减少10件,如何提高销售单价,才能在一个星期内获得最大利润?最大利润是多少?6、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨元(为正整数),每个月的销售利润为元.(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的x x y y x x利润不低于2200元?7、某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?8、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?9、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?10、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围).(2)当x 为何值时,S 有最大值?并求出最大值.(参考公式:二次函数(),当时,2y ax bx c =++0a ≠2b x a =-11、某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y (元)与销售月份x (月)满足关系式3368y x =-+,而其每千克成本2y (元)与销售月份x (月)满足的函数关系如图所示.(1)试确定b c 、的值;(2)求出这种水产品每千克的利润y (元)与销售月份x (月)之间的函数关系式;(3)“五·一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?二. 其它支出1、 某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对244ac b y a -=最大(小)值y 2每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?2.青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元∕天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元∕天·间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?3、某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。

《 销售最大利润问题》九年级初三数学上册PPT课件

《 销售最大利润问题》九年级初三数学上册PPT课件
情景思考(销售最大利润问题)
某产品现在售价为每件60元,每星期可卖出300件。市场调查反映:如果调价,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,请问:1)题中调整价格的方式有哪些?2)如何表示价格与利润之间的关系?
涨价和降价
利润=每件产品利润×销售数量
当产品单价降价2.5元,即售价57.5元,利润最大,最大利润为6125元。
当产品单价涨价5元,即售价65元,利润最大,最大利润为6250元。
当产品售价65元,利润6000元。
综上所述,当涨价5元时利润最大,最大利润6250元
情景思考(销售最大利润问题)
1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如果调整价格,每涨1元,每星期要少卖8件;每降价1元,每星期可多卖12件.已知商品的进价为每件40元.
随堂测试
(1)设与的函数关系式为:,把代入,可得,解得,所以与的函数关系式为:;设售价为a元,由题意得:;当涨价5元时,即,把代入销售利润:(元)故答案为:,6750;(2)当时,(元)即当售价定为70元时会获最大利润,最大利润为9000元。
随堂测试
时间:20XX
第二十二章 二次函数
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
(2)设每件降价x元,则此时每星期多卖______件,实际卖出________________件,此时每件产品的销售价为__________元,每周产品的销售额___________________元,此时每周产品的成本______________元,因此周利润合计为:

数学有损耗利润问题的应用题初三

数学有损耗利润问题的应用题初三

数学有损耗利润问题的应用题初三1.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55,x=75时,y=45,( 1)求一次函数y=kx+b的表达式2)若改商场获得利润为w元,试写出利润w与销售单价×之间的关系式,销售单价定为多少元时,商场可获得最大利润,最大利润是多少元3)若该商场获得利润不低于500元,试确定销售单价×的范围2.某商店将进价为8元的商品按每件10元售出,每天可销售200件,现在采取提高商品售价减少售价量的方法增加利润这种商品每件的销售价每提高一元其销售量就减少20件,设售价提高×元(1)用含×的代数式表示提价后的销售量(2)提价后的利润设为w试用含×的代数式表示w=?(3)若物价部门规定此种商品的销售价不能超过进价的百分之七十五,那么应将每天的售价定为多少元时,才能使每天利润为640元?3.某百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20 件,没每件盈利40元,为了迎接六一,商场决定采取适当降价,扩大销售量,增加盈利,尽尽快减少库存,经市场调查发现:如果每件童装降价4元,那么平均每天可多售出8件,要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?4.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?。

初三利润抛物线试题大全及解析

初三利润抛物线试题大全及解析

初三利润抛物线试题大全及解析
抛物线问题
如图,在平面直角坐标系中,抛物线与轴交于两点,与轴交于点,且.
(1)求抛物线的解析式;
(2)已知点,点为线段上一动点,延长交抛物线于点,连结.
①当四边形面积为9,求点的坐标;
②设,求的最大值.
试题答案
(1)y=x2﹣x﹣4;(2)①点H的坐标为(2,﹣4)或(,﹣);②m的最大值为.
利润问题
某商店经营一种文具,已知成批购进时的单价是20元.调查发现销售单价是30元时,月销售量是230件,而销售单价每上涨1
元,月销售量就减少10件,且每件文具售价不能高于40元,设每件文具的销售单价上涨了x元时(x为正整数),月销售利润为y 元.
(1)求y与x的函数关系式;
(2)每件文具的售价定为多少元时,月销售利润为2520元?
(3)每件文具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
试题答案
(1)y=-10x2+130x+2300,自变量x的取值范围是:0<x≤10且x为正整数;
(2)每件文具的售价定为32元时,月销售利润恰为2520元.
(3)每件文具的售价定为36元或37元时,每个月可获得最大利润,最大的月利润是2720元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一种商品售价为每件10元,一周可卖出50件商场调查表明:这种商品如果每件涨价1元
一种商品售价为每件10元,一周可卖出50件商场调查表明:这种商品如果每件涨价1元,每周要少卖5件,每件降价1元,每周要多卖5件,已知该商品进价每件8元,问每件商品涨价多少,才能使每周得到的利润最多?(用2此函数解答,需给予完整过程)
因时间紧迫,请再10分钟内.越快越好.
某商品现在的售价为每件60元,每星期可卖出300件。

市场调查放映;如调整价格,每涨价1元,每星期要少卖10;每降价1元,每星期可多卖出20件,已知商品的进价为每件4 0元,如何定价才能使利润最大?
将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,而成本价又不高于10000元,售价应定为多少?这时应进货多少个?
某商店将进价为100元的某商品按120元的价格出售,可卖出300件;若商店在120元的基础上每涨价1元,就要少卖10件,而每降价1元,就可多卖30件.
(1)求所获利润y(元)与售价x(元)之间的函数关系式;
(2)为了获取最大利润,商店应将每件商品的售价定为多少元?。

相关文档
最新文档