第七章_主成分分析
主成分分析
差 在测定。如果仅考虑X1或X2中的任何一个分量,那么包含
另一分量中的信息将会损失,因此,直接舍弃某个分量 不是“降维”的有效办法。
图6.1 主成分的几何意义
如 标果 系我y1们Oy将2 ,该这坐里标y系1 是按椭逆圆时的针长方轴向方旋向转,某y2个是角椭度圆的变短成轴新方坐向。
主要内容
主成分分析的基本思想 主成分分析的基本理论 主成分分析的几何意义 主成分的性质
引言
例子
如何评价一个学生在大学期间的表现
◦ 课程考试成绩 ◦ 社会工作 ◦ 科研
为了尽可能全面地评价,我们会引入很 多变量,目的是通过这些变量将学生的 差异显示出来
最终需要提供一种方法能够简单地概括 学生的特点和相对排名
所以
p
p
i ii
i 1
i 1
p
p
或 D(Yi ) D( X i )
i 1
i 1
性质 3 主成分 Yk 与原始变量 X i 的相关系数为
(6.20) (6.21)
(Yk , Xi )
k ii
tki
并称之为因子负荷量(或因子载荷量)。
(6.22)
证明:事实上
(Yk , Xi )
Cov(Yk , Xi ) Cov(TkX, eiX)
◦ 另条一线种,是第椭 一圆 主扁 成平 分到 包了 含极 有限二,维变空成间点y1轴的上全的部一信 息,仅用这一个综合变量代替原始数据不会有 任何的信息损失,此时的主成分分析效果是非 常理想的,其原因是,第二主成分不包含任何 信息,舍弃它当然没有信息损失。
主成分分析讲义
相关分析
F1
ቤተ መጻሕፍቲ ባይዱ
F2
F3
i
i
t
F1
1
F2
0
1
F3
0
0
1
i 0.995 -0.041 0.057
l
Δi -0.056 0.948 -0.124 -0.102 l
t -0.369 -0.282 -0.836 -0.414 -0.112 1
在力求数据信息丢失最少的原则下,对高维的变 量空间降维,即研究指标体系的少数几个线性组 合,并且这几个线性组合所构成的综合指标将尽 可能多地保留原来指标变异方面的信息。这些综 合指标就称为主成分。要讨论的问题是: (1)原指标(自变量)组合的原则? (2)选取多少个组合? (3)组合的结果怎么解释?
一、两个线性代数的结论
1、若A是p阶实对称阵,则一定可以找到正交阵U,使
1 0 0
U1AU
0
2
0
0
0
p
p p
其中i ,i 1.2. p 是A的特征根。
2、若上述矩阵的特征根所对应的单位特征向量 为 u1,,up
u11 u12 u1p
协方差矩阵的对角线上的元素之和等于特征根 之和。
三、精度分析
1)贡献率:第i个主成分的方差在全部方差中所占
比重
i
p
i 1
i
,称为贡献率 ,反映了原来P个指标多大
的信息,有多大的综合能力 。
2)累积贡献率:前k个主成分共有多大的综合能力, 用这k个主成分的方差和在全部方差中所占比重
主成分分析原理
第七章主成分分析(一)教学目的通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。
(二)基本要求了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。
(三)教学要点1、主成分分析基本思想,数学模型,几何解释2、主成分分析的计算步骤及应用(四)教学时数3课时(五)教学内容1、主成分分析的原理及模型2、主成分的导出及主成分分析步骤在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。
由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。
如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。
第 - 213 - 页第一节 主成分分析的原理及模型一、主成分分析的基本思想及数学模型(一)主成分分析的基本思想主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。
这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。
主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。
通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。
因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。
如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21 F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。
sas主成分分析
sas主成分分析sas主成分分析第七章主成分分析实验目的:熟悉并掌握主成分分析和因子分析的原理和在变量分类、综合评价、主成分回归等几个方面的应用,以及相应的SAS程序实现。
实验内容:对我国钢铁行业上市公司的财务绩效状况进行主成分分析,选择的财务指标共有以下几个:流动比率,速动比率,存货周转率,总资产周转率,净资产收益率,经营净利率,每股收益,净资产收益率增长率,股东权益增长率。
数据如下:完成以下工作:(1)选取累积贡献率>85%的前几个主成分,分别计算得分;并对选取的主成分进行解释;(2)对各上市公司的财务绩效进行综合评价;(3)利用选取的主成分得分,借助聚类分析过程对钢铁行业上市公司进行分类。
datazcf;inputname$x1-x9;cards;邯郸钢铁1.5510.9717.1650.88910.7689.2680.451-16.0246.122武钢股份2.1921.828.0880.97515.05411.1140.336-3.0392.588钢联股份1.2860.9418.0441.1247.3894.5990.205-59.988122.041宝钢股份0.9790.5718.130.6019.7428.780.205-17.6853.989莱钢股份1.3640.4975.0780.9314.1039.1370.523-24.26114.16西宁特钢1.4330.6721.4620.4716.4297.2680.1559.3493.027杭钢股份2.1081.4988.3731.41816.7567.9370.531-18.72513.662邢台轧辊2.11.5951.8830.3966.4848.9810.1325.275-1.061宁夏恒力1.3641.0641.8680.2787.46919.8420.201-35.19455.428凌钢股份1.7721.0617.8411.11912.8838.8040.5285.34310.107南钢股份1.8181.3928.8661.54612.8855.1530.409-7.0286.131酒钢宏兴1.4410.88410.1681.07112.8317.8250.36744.0376.686抚顺特钢0.9550.6523.4160.5097.1476.8510.193-8.0741.93安阳钢铁1.8931.3335.1070.9810.9497.9150.3500上海科技1.3131.1824.6430.5689.5499.4230.19935.6353.582沪昌特钢10.8139.536.5850.5671.1031.6560.01915.031-7.171山川股份1.2520.5851.4850.45110.34414.6930.209-1.6159.799浦东不锈6.1865.1212.3630.2650.7542.5130.013-45.439-1.176新华股份1.8171.3143.2910.7469.9249.0280.137-3.5771.985工益股份1.8091.2674.0460.8280.6950.450.011104.419-4.714马钢股份1.5841.0694.3180.5692.0032.1830.03235.279-12.487宝信软件3.5943.2015.0140.82114.669.7210.147126.91123.243北特钢1.3851.0922.6910.467-11.21-7.917-0.14853.839-11.058广钢股份0.8590.513.8840.7224.2472.6850.096-32.409-4.004;procprincompn=9out=prin;varX1-x9;run;procprintdata=prin;varprin1-prin9;run;主要输出结果:相关阵的特征值和特征向量EigenvalueDifferenceProportionCumulative13.626730451.710877240.40300.403021.915853210.519337180.21290.615831.396516020.349008540.15520.771041.047507480.371047740.11640.887450.676459740.478913290.07520.962660.197546440.106501190.02190.984570.091045260.044878480.01010.994680.046166770.043992140.00510.999890.002174630.00021.0000EigenvectorsPrin1Prin2Prin3Prin4Prin5Prin6Prin7Prin8Prin9x1-.2632570.5528190.3251720.0999320.0123340.1292890.077190-.0215500.697189x2-.2696730.5512290.3176490.0909930.0600930.065411-.0196680.049407-.709595x30.3207430.454750-.227474-.1958410.013020-.7729000.0382700.0086860.033825x40.3790330.331485-.342911-.1840840.0144020.490904-.3231210.4986720.026498x50.4608530.1052280.1235360.3670920.0903870.094185-.486791-.610331-.003691x60.308953-.1918380.4762280.4505290.202663-.228562-.0285870.5848690.042126x70.4802260.1255120.0219100.155827-.2454280.2558630.762567-.122168-.082054x8-.1693840.077314-.5106640.4440140.6759650.0353110.220767-.0214310.005659x90.210440-.0652010.347445-.5918860.6553280.1132300.140544-.1355950.001607由输出特征值可知,第一主成分的贡献率为40.30%,第二个主成分的.贡献率为61.58%,第三个主成分的贡献率为77.10%,前四个主成分累计贡献率为88.74%。
什么是主成分分析精选全文
可编辑修改精选全文完整版主成分分析(principal component analysis, PCA)如果一组数据含有N个观测样本,每个样本需要检测的变量指标有K个, 如何综合比较各个观测样本的性质优劣或特点?这种情况下,任何选择其中单个变量指标对本进行分析的方法都会失之偏颇,无法反映样本综合特征和特点。
这就需要多变量数据统计分析。
多变量数据统计分析中一个重要方法是主成份分析。
主成分分析就是将上述含有N个观测样本、K个变量指标的数据矩阵转看成一个含有K维空间的数学模型,N个观测样本分布在这个模型中。
从数据分析的本质目的看,数据分析目标总是了解样本之间的差异性或者相似性,为最终的决策提供参考。
因此,对一个矩阵数据来说,在K维空间中,总存在某一个维度的方向,能够最大程度地描述样品的差异性或相似性(图1)。
基于偏最小二乘法原理,可以计算得到这个轴线。
在此基础上,在垂直于第一条轴线的位置找出第二个最重要的轴线方向,独立描述样品第二显著的差异性或相似性;依此类推到n个轴线。
如果有三条轴线,就是三维立体坐标轴。
形象地说,上述每个轴线方向代表的数据含义,就是一个主成份。
X、Y、Z轴就是第1、2、3主成份。
由于人类很难想像超过三维的空间,因此,为了便于直观观测,通常取2个或者3个主成份对应图进行观察。
图(1)PCA得到的是一个在最小二乘意义上拟合数据集的数学模型。
即,主成分上所有观测值的坐标投影方差最大。
从理论上看,主成分分析是一种通过正交变换,将一组包含可能互相相关变量的观测值组成的数据,转换为一组数值上线性不相关变量的数据处理过程。
这些转换后的变量,称为主成分(principal component, PC)。
主成分的数目因此低于或等于原有数据集中观测值的变量数目。
PCA最早的发明人为Karl Pearson,他于1901年发表的论文中以主轴定理(principal axis theorem)衍生结论的形式提出了PCA的雏形,但其独立发展与命名是由Harold Hotelling于1930年前后完成。
主成分分析(principal component analysis)
一、主成分分析的思想主成分分析是数据处理中常用的降维方法。
我们需要处理的数据往往是高维数据,把它看成是由某个高维分布产生。
高维分布的不同维之间可能具有较强的相关性,这也就为数据降维提供了可能。
为了叙述清楚主成分分析的思想,我们通过二维数据进行叙述,即数据是由随机向量 (X_1,X_2) 产生,并假设X_1=X_2 。
通过该分布得到的样本点如图下所示:如果我们把每个数据点用 (x_1,x_2) 表示,那么,每个数据是二维的。
实际上,容易发现,我们只需要将坐标系进行旋转,旋转到红色坐标系位置,此时,每个数据点在新坐标系下的表示形式为为 (x_1^{'},0) ,由于每个数据点的第二维坐标都是 0 ,所以每个数据点只需要用一个数表示就行了,这样就把数据的维数从二维降到了一维。
接下来考虑不是完全线性关系,但是具有强相关性的情况,如下图所示:在这种情况下,我们不可能通过坐标系的平移与旋转,使所有点都落在一根轴上,即不可能精确地把数据用一维表示。
但是注意到 (X_1,X_2) 仍然有强相关性,我们仍然将坐标轴旋转到红色位置,可以看出,将数据在 x_1^{'} 上的投影近似代表原数据,几乎可以完全反映出原数据的分布。
直观看,如果要将数据投影到某根轴,并用投影来表示原数据,将数据压缩成一维,那么投影到 x_1^{'} 是最好的选择。
因为投影到这跟轴,相比于投影到其他轴,对原数据保留的信息量最多,损失最小。
如何衡量保留的信息量呢?在主成分分析中,我们用数据在该轴的投影的方差大小来衡量,即投影后方差越大(即投影点越分散),我们认为投影到该轴信息保留量最多。
从这种观点看,投影到 x_1^{'} 确实是最好的选择,因为投影到这根轴,可使得投影点最分散。
我们将数据的中心平移到原点(即新坐标轴的原点在数据的中心位置),为了消除单位的影响,我们将数据的方差归一化。
进一步考虑如下数据分布:根据上述,如果要将数据压缩为一维的,那么应该选择 F_1 轴进行投影,如果用该投影表示原数据的损失过大,我们可以再选择第二根轴进行投影,第二根轴应该与 F_1 垂直(保证在两根轴上的投影是不相关的)并且使得数据在该轴上投影方差最大,即图中的 F_2 轴(如果是二维情况,第一根轴确定后,第二根轴就确定了。
多元统计分析第七章主成分分析习题答案
7.1 设随机变量12X(X ,X )'=的协差阵为21,12⎡⎤∑=⎢⎥⎣⎦试求X的特征根和特征向量,并写出主成分。
解:先求X的特征根λ,λ满足方程:21012-λ=-λ,即2(2)10-λ-=,因此两个特征根分别为123, 1.λ=λ=设13λ=对应的单位特征向量为()1121a ,a ',则()1121a ,a '满足:1121a 110a 110-⎛⎫⎡⎤⎛⎫= ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭,故可以取1121a a ⎛⎛⎫ = ⎪ ⎝⎭ ⎝,其对应主成分为:112F X X 22=+;设21λ=对应的单位特征向量为()1222a ,a ',则()1222a ,a '满足:1222a 110a 110⎛⎫⎡⎤⎛⎫=⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取1222a a ⎛⎫⎛⎫ ⎪= ⎪ ⎝⎭- ⎝,其对应的主成分为:212F 22=-.7.2设随机变量123X (X ,X ,X )'=的协差阵为120250,002-⎡⎤⎢⎥∑=-⎢⎥⎢⎥⎣⎦试求X的主成分及主成分对变量X的贡献率。
解:先求X的特征根λ,λ满足方程:12025002-λ---λ=-λ,即()2(2)610-λλ-λ+=,因此三个特征根分别为1235.8284,2,0.1716λ=λ=λ=设1 5.8284λ=对应的单位特征向量为()112131a ,a ,a ',则它满足:1121314.828420a 020.82840a 000 3.8284a 0--⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥--=⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭,故可以取 112131a 10.38271a 2.41420.92392.6131a 00⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其对应主成分为: 112F 0.3827X 0.9239X =-,其贡献率为5.828472.86%5.828420.1716=++;设22λ=对应的单位特征向量为()122232a,a ,a ',则它满足:122232120a 0230a 0000a 0--⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥-= ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取122232a 0a 0a 1⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其对应主成分为: 23F X =,其贡献率为225%5.828420.1716=++;设30.1716λ=对应的单位特征向量为()132333a ,a ,a ',则它满足:1323330.828420a 02 4.82840a 000 1.8284a 0-⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥-=⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取132333a 10.92391a 0.41420.38271.0824a 00⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其对应主成分为: 312F 0.9239X 0.3827X =+,其贡献率为0.17162.14%5.828420.1716=++.7.3 设随机变量12X (X ,X )'=的协差阵为14,4100⎡⎤∑=⎢⎥⎣⎦试从∑和相关阵R出发求出总体主成分,并加以比较。
《主成分分析》幻灯片PPT
PCA的实质——简化数据
用尽可能少的变量〔主成分〕反映原始数据中尽 可能多的信息,以简化数据,突出主要矛盾。
反映原始数据特征的指标:方差-离散度 主成分:原始变量的最优加权线性组合 最优加权:
第一主成分:寻找原始数据的一个线性组合,使 之具有最大方差〔数据离散度最大的方向〕
第二主成分:寻找原始数据的一个线性组合,使 之具有次大方差,且与第一主成分无关
12.00
14.00
16.00
run100m
18.00
20.00
二、PCA的模型与算法
设:x为标准化变量, 原始数据阵 X s [x 1 ,x 2 , x p ] PCA目标:找到原始数据方差最大的线性组合
❖设:线性组合系数为p×1=[1, 2, … p]T
❖即:要找一个 使z=Xs= 1x1+ 2x2 +…+ pxp具有
What does PCA do?
Original data matrix, say n by p 正交旋转
New data matrix, say n by q, with q < p:
例:研究55个国家运发动径赛 能力,用8项径赛成绩
经PCA得到新数据阵: z55×2:选取2个主成分, 其中第一主成分表示综合
0.0
1
第一主成分-1.0包0 含的信0.0息0 量显然1.00
-21..000
售 电 量
Z2
大于第二主成分,因而忽略s 第
二主成分信息损失不大 -2.0
-2
-1
Ma Xin, North China Electric Power University
0
1
2
3
主成分分析法的原理和步骤
主成分分析法的原理和步骤主成分分析(Principal Component Analysis,简称PCA)是一种常用的多元统计分析方法,它通过线性变换将高维数据转换为低维数据,从而实现降维和数据可视化。
PCA的基本思想是通过选取少数几个主成分,将原始变量的方差最大化,以便保留大部分的样本信息。
下面我将详细介绍PCA的原理和步骤。
一、主成分分析的原理主成分分析的核心原理是将n维的数据通过线性变换转换为k维数据(k<n),这k维数据是原始数据最具有代表性的几个维度。
主成分是原始数据在新坐标系中的方向,其方向与样本散布区域最大的方向一致,而且不同主成分之间互不相关。
也就是说,新的坐标系是通过原始数据的协方差矩阵的特征值分解得到的。
具体来说,假设我们有一个m个样本、维度为n的数据集X,其中每个样本为一个n维向量,可以表示为X=\left ( x_{1},x_{2},...,x_{m} \right )。
我们的目标是找到一组正交的基变量(即主成分)U=\left ( u_{1},u_{2},...,u_{n} \right ),使得原始数据集在这组基变量上的投影方差最大。
通过对协方差矩阵的特征值分解,可以得到主成分对应的特征向量,也就是新的基变量。
二、主成分分析的步骤主成分分析的具体步骤如下:1. 标准化数据:对于每一维度的数据,将其减去均值,然后除以标准差,从而使得数据具有零均值和单位方差。
标准化数据是为了消除不同维度上的量纲差异,确保各维度对结果的影响是相等的。
2. 计算协方差矩阵:对标准化后的数据集X,计算其协方差矩阵C。
协方差矩阵的元素c_{ij}表示第i维度与第j维度之间的协方差,可以用以下公式表示:\[c_{ij}=\frac{\sum_{k=1}^{m}\left ( x_{ik}-\bar{X_{i}} \right )\left( x_{jk}-\bar{X_{j}} \right )}{m-1}\]其中,\bar{X_{i}}表示第i维度的平均值。
主成分分析完整版
X的两个主成分分别为 第一主成分的贡献率为
Y1 0.040X1 0.999X2, Y2 0.999X1 0.040X2.
1 100.16 99.2% 1 2 101
R 型分析
R型分析的概念
为消除量纲影响,在计算之前先将原始数据标准化。标准
4. 由此我们可以写出三个主成分的表达式:
F1 0.56(x1 161 .2) 0.42(x2 77.3) 0.71(x3 51.2) F2 0.81(x1 161 .2) 0.33(x2 77.3) 0.48(x3 51.2) F3 0.03(x1 161 .2) 0.85(x2 77.3) 0.53(x3 51.2)
主 旋转坐标轴
x 2
F 1
成 分 分 析 的 几 何 解
F 2
•
•••
•••
• •
•
•••••••••••••••••••••••
• •
F1 x1 cos x2 sin
F2 x1 sin x2 cos
F1
F2
cos sin
sin x1
cos
x2
x2
旋转变换的目的是为了使得n个
很显然,识辨系统在一个低维空间要比在一个高维空间容 易得多。
在力求数据信息丢失最少的原则下,对高维的变量空间降 维,即研究指标体系的少数几个线性组合,并且这几个线性 组合所构成的综合指标将尽可能多地保留原来指标变异方面 的信息。这些综合指标就称为主成分。要讨论的问题是:
(1) 基于相关系数矩阵/协方差矩阵做主成分分析? (2) 选择几个主成分? (3) 如何解释主成分所包含的实际意义?
2. 求解协方差矩阵的特征方程 S I 0
应用多元统计分析习题解答第七章
第七章因子分析7.1试述因子分析与主成分分析的联系与区别。
答:因子分析与主成分分析的联系是:①两种分析方法都是一种降维、 简化数据的技术。
②两种分析的求解过程是类似的,都是从一个协方差阵出发,利用特征值、特征向量求解。
因子分析可以说是主成分分析的姐妹篇, 将主成分分析向前推进一步便导致因子分析。
因子分析也可以说成是主成分分析的逆问题。
如果说主成分分析是将原指标综合、归纳,那么因子分析可以说是将原指标给予分解、演绎。
因子分析与主成分分析的主要区别是:主成分分析本质上是一种线性变换,将原始坐标 变换到变异程度大的方向上为止,突出数据变异的方向, 归纳重要信息。
而因子分析是从显在变量去提炼潜在因子的过程。
此外,主成分分析不需要构造分析模型而因子分析要构造因 子模型。
7.2 因子分析主要可应用于哪些方面?答:因子分析是一种通过显在变量测评潜在变量,通过具体指标测评抽象因子的统计分析方法。
目前因子分析在心理学、社会学、经济学等学科中都有重要的应用。
具体来说,①因子 分析可以用于分类。
如用考试分数将学生的学习状况予以分类;用空气中各种成分的比例对 空气的优劣予以分类等等②因子分析可以用于探索潜在因素。
即是探索未能观察的或不能观测的的潜在因素是什么,起的作用如何等。
对我们进一步研究与探讨指示方向。
在社会调查分析中十分常用。
③因子分析的另一个作用是用于时空分解。
如研究几个不同地点的不同日期的气象状况,就用因子分析将时间因素引起的变化和空间因素引起的变化分离开来从而判 断各自的影响和变化规律。
7.3简述因子模型、一 m 卜中载荷矩阵A 的统计意义。
答:对于因子模型X i =a i 1F 1 - mF ?a j F j I" a m F m•;ii =1,2,Hl , pX i 与F j 的协方差为:mCov(X i , F j ) =Cov(' a ik F k °F j )k=im= Cov(' a ik F k ,F j ) Cov(「F j )k d= a ij若对X i 作标准化处理,=a j ,因此a ij 一方面表示X i 对F j 的依赖程度;另一方面也反映了 变量X i 对公共因子F j的相对重要性。
主成分分析法
§7.1
引言 §7.2 总体的主成分 §7.3 样本的主成分
§7.1 引言
主成分分析(或称主分量分析,principal component analysis)由皮尔逊(Pearson,1901)首先引入,后来 被霍特林(Hotelling,1933)发展了。 主成分分析是一种通过降维技术把多个变量化为少 数几个主成分(即综合变量)的统计分析方法。这些 主成分能够反映原始变量的绝大部分信息,它们通 常表示为原始变量的某种线性组合。 主成分分析的一般目的是:(1)变量的降维;(2)主成 分的解释。
现比较本例中从R 出发和例7.2.2中从 Σ 出发的主成 分计算结果。从R 出发的 y1* 的贡献率0.705明显小于 从 Σ 出发的 y1的贡献率0.938,事实上,原始变量方 差之间的差异越大,这一点也就倾向于越明显, * * * (7.2.15)式有助于我们理解之。 y1 , y2 , y3 可用标准 化前的原变量表达如下: x3 3 x1 1 x2 2 *
Cov y1 , y2 0 我们在此条件和约束条件 a2a 2 1 下寻求向量a 2 ,使 得 V y2 a2 Σa2 达到最大,所求的 y2 称为第二主成
分。求得的第二主成分为
y2 t12 x1 t22 x2 t p 2 x p t x 2
3.原始变量 xi 与主成分 yk 之间的相关系数 k xi , yk tik , i, k 1, 2,, p ii
在实际应用中,通常我们只对 xi (i 1, 2,, p) 与 yk (k 1, 2,, m) 的相关系数感兴趣。
三、从相关阵出发求主成分
主成分分析完整ppt课件
这样,我们就对主成分分析的几何意义有了一个充分的了解。 主成分分析的过程无非就是坐标系旋转的过程,各主成分表达 式就是新坐标系与原坐标系的转换关系,在新坐标系中,各坐 标轴的方向就是原始数据变差最大的方向。
2021/6/12
1199
目录 上页 下页 返回 结束
其中,U为旋转变换矩阵,由上式可知它是正交阵, 即满足
U'U1 , U'UI
2021/6/12
1144
目录 上页 下页 返回 结束
§2 主成分分析的几何意义
经过这样的旋转之后,N个样品点在 Y 1 轴上的离散程度最
大,变量 Y 1 代表了原始数据绝大部分信息,这样,有时在研
究实际问题时,即使不考虑变量 Y 2 也无损大局。因此,经过
指标转化为几个综合指标的多元统计方法。通常把转化生成
的综合指标称之为主成分,其中每个主成分都是原始变量的
线性组合,且各个主成分之间互不相关,这就使得主成分比
原始变量具有某些更优越的性能。这样在研究复杂问题时就 可以只考虑少数几个主成分而不至于损失太多信息,从而更
容易抓住主要矛盾,揭示事物内部变量之间的规律性,同时
上述旋转变换就可以把原始数据的信息集中到
Y
轴上,对数
1
据中包含的信息起到了浓缩的作用。进行主成分分析的目的
就是找出转换矩阵 U ,而进行主成分分析的作用与几何意义
也就很明了了。下面我们用遵从正态分布的变量进行分析,
以使主成分分析的几何意义更为明显。为方便,我们以二元
正态分布为例。对于多元正态总体的情况,有类似的结论。
1.每一个主成分都是各原始变量的线性组合;
主成分分析
(二)汇付的当事人
1.汇款人(remitter) 2.收款人(payee; beneficiary ) 3.汇出行(remitting bank ) 4.汇入行(receiving bank )又称
第二节 信用证的审核与修改
一、信用证的审核要求 (一)审核信用证的真实性、安全可靠性 (二)审核信用证与合同条款是否一致,
信用证条款是否合理,有无前后矛盾现 象 (三)审核信用证是否包括软条款
二、信用证的修改要求
(一)接受修改信用证和接受信用证修改 的权利
(二)修改信用证应注意以下问题:
(三)对信用证修改内容的接受或拒绝有 两种表示形式:
Clause) 十六.信用证生效性条款(Valid Conditions Clause) 十七.信用证特别条款(Special Conditions)
三、信用证项下单证的流转程序
• ① 买卖双方签订贸易合同,在合同中规定 使用信用证方式支付货款。
• ② 买方向当地银行提出申请,根据所签的 贸易合同填写开证申请书,落实开证保证 金,或提供其它保证,请银行(开证行) 开证。
• ⑦寄单索汇。议付行将汇票和货运单据按 照信用证的要求寄给开证行(或其指定的 付款行)索偿。
• ⑧开证行(或其指定的付款行)核对单据 无误后,付款给议付行。
• ⑨开证行向买方(开证申请人)提示单据, 买方付款赎单。
• ⑩开证申请人取得单据后向承运人提货。
• ⑾议付行收到货款后,为企业结汇入账, 并收回垫款。
信用证是一种银行开立的有条件的承诺付款的书面文 件。即开证行根据进口商(开证申请人)的请求和指 示向出口商(受益人)开立的一定金额的,并在一定 的期限内凭规定的单据承诺付款的书面文件。 1.由银行开出; 2.应客户的申请开出(或开证行因自身的需要而开出); 3.在符合信用证的条款和条件前提下,凭规定的单据向 受益人付款;
主成分分析PPT
p
1
a1 u1,u2 ,
,
up
2
p
p
ia1uiuia1 1 a1uiuia1
i 1
i 1
1a1UUa1 1a1a1 1
u1
u2
a1
p
up
下面证明,由U的第一列元素所构成的原始变量的 线性组合有最大的方差。
设有P维单位向量 a1 a11, a21,
, a p1
y1 a11 x1 a21 x2 a p1 x p a1 x
1
D(
y1 )
a1a1
a1U
2
Ua1
主成分分析通常的做法,是寻求原指标的 线性组合yi:
y1 u11 x1 u21 x2 up1 x p y2 u12 x1 u22 x2 up2 x p
y p u1 p x1 u2 p x2
满足如下的条件:
upp x p
(1) 每个主成分的系数平方和为1(否则其方差可 能为无穷大),即
标。在实际工作中,主成分个数的选取通常有两个标准 一个是按累积贡献率达到一定的程度(如 70%或 80%
以上)来确定 m;另一个先计算协方差矩阵或相关矩阵
的特征值的均值 ,取大于 的特征值的个数作为 m.
大量实践表明,当 p 20时,第一个标准容易取太 多的主成分,第二个标准容易取太少的主成分,故最好 将两者结合起来使用,并考虑m 个主成分对 xi 的贡献率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 根据前几个较大特征根的累计贡献确定主成分 的个数m(m<p),并确定取前m 个特征向量。 4. 得到以特征向量为系数的线性组合形成的主成分 F1,F2,…,Fm ,且它们的方差等于前几个较大的 特征根,即 Var(Fi)=λ i
42
综上所述,求综合变量(主成分)F1 ,..., Fm 的过程可知,主成分在几何图形中的含义就是旋转 后的新坐标系的主轴,它们彼此不相关(图形上为 垂直),其方向就是特征向量的方向,其方差贡献 就是相应的特征值。 因此,我们利用样本数据求解主成分的过程实 际上就转化为求相关阵或离差阵的特征值和特征向 量的过程。这是最关键的。
17
18
19
2 主成分的几何意义
20
主成分的几何意义(续1)
21
主成分的几何意义(续2)
从几何上看,寻找主成分的问题,就是 寻找多维空间中椭球体的主轴问题,从数学上 容易得到它们是Xl,X2,…,Xp 的相关矩阵中 p个较大特征值所对应的特征向量,这就是主 轴的向量 通常, 用雅可比 (Jacobi) 方法计算矩阵 的特征值和特征向量。
39
注意:这个变量的顺序是不对的,应该是x3, x1, x8, x7, x2, 40 x5, x4, x6 的顺序。这是书中的错误,请上机验证。
41
再次总结前面的内容
1. 先求出向量X的协方差阵∑或数据标准化处理后 的相关阵R 2. 求该矩阵特征值(由大到小排列)1 2 p 0 以及对应的单位特征向量 u1 ,..., u p
5
但是,PCA和FA所使用的协方差矩阵
不同于前面的均值-协方差分析。均值—协方差分 析仅仅度量的是所有变量形成的集合的总体变异性, 而没有特别指明其子集合(变量的线性组合)对总 变异性的贡献。
其中,主成分分析识别并排序了各线性组合在总变 异性中的贡献,每一个线性组合称为一个“主成 分”,并根据各主成分对总方差的解释贡献(用自 己的方差占总累计方差的比例来表示)来进行排序。
7
2. 主成分分析要达到的目标
第一个目标:从众多的变量中综合得出少数 几个相互无关的综合变量(即主成分),以 降低空间的维数;
这可从原始变量中有相互关系的变量进行线 性组合来完成,并且该组合作为一个整体与 其他变量的组合是线性无关的,这个组合出 的变量就是主成分。即主成分之间是无关的。
8
第二个目标:在第一个目标的基础上解释 数据或变量。
关于主成分分析的几点说明(续)
2. 主成分分析不要求数据来自于正态总体。 3. 单位特征向量,即主成分的系数向量 u ki 仅仅是 变换系数,与因子负荷量
( Fk , X i ) u ki k / ii
是不同的,因子负荷(也叫载荷)量反映的是第k个 主成分与第i个原始变量之间的相关系数。在解释第i 个原始变量对第k个主成分的重要性时,应当根据因 子负荷量,而不能是变换系数。
第7章 主成分分析 Principal Component Analysis
它是将多个指标简化为少数几个 相互无关的综合指标的统计方法, 其核心目的是降低维数。
所以,主成分分析是一种降维的 统计方法
1
多元分析处理的是多指标的问题。由于指 标太多,使得分析的复杂性增加。众多的要素 常常给模型的构造带来很大困难。 观察指标的增加本来是为了使研究过程趋 于完整,但反过来说,为使研究结果清晰明了 而一味增加观察指标又容易使人混乱不清。 由于在实际工作中,指标间经常具有一定 的相关性,故人们希望用较少的指标代替原来 较多的指标,但依然能反映原有的全部信息, 于是就产生了主成分分析、因子分析、对应分 析和典型相关分析等降维的统计方法。
2
概括的讲,多变量的数据结构的特征主要 有两个:
1. 多变量数据结构中的波动性,即用方差 (或协方差)大小来表示其信息量多寡。 常用主成分分析。
2.多变量间的相关性或共线性。如果两个 变量是完全相关的,则不需要第二个变量, 因为它不会带来更多的信息。常用因子分 析。
3
换言之,在众多的具有错综复杂相关性的 p个变量中,
14
不难想像,这些主成分之间不仅不相关,而且 它们的方差依次递减。 因此在实际工作中,常常挑选出前面几个方 差最大的主成分,虽然这样做会损失一部分信息, 但是由于它使我们抓住了主要矛盾,并从原始数 据中进一步提取了某些新的信息,因而在某些实 际问题的研究中得益要比损失大,这种既减少了 变量的数目,又抓住了主要矛盾的做法有利于问 题的分析和处理。
11
主成分分析的基本思想
主成分分析就是设法将原来众多的具有一 定相关性的指标(比如p个指标),重新组合成 一组新的、少数几个、相互无关的、综合指标 来代替原来的指标。通常数学上的处理,就是 将原来p个指标作线性组合,作为新的少数几 个综合指标. 但是这种线性组合,如果不加限制的话, 则可以有很多组合,我们应该如何去选取合适 的线性组合呢?
28
29
30
31
其中的S为样本离差阵,它作为总体协方差∑的一个估计,数 据经过标准化处理后,离差阵S 等于相关阵R
也就是说,在将数据标准化以后再去做,只需要求出 相关阵X’X的单位特征向量即可,该特征向量就是主 成分中的线性组合的系数 32
§7.4 计算步骤及实例
设有n个样品,每个样品观测p个指标,将 原始数据写成矩阵:
16
1.主成分分析的数学模型
用矩阵 X 的p个n维向量( 即p个指标向量) Xl,X2,…,Xp 作线性组合,且具有正交(即垂直) 特征。即,将它们综合成p个新指标,即 F1=a11X1+a12X2+...+a1pXp F2=a21X1+a22X2+...+a2pXp .................. Fp=ap1X1+ap2X2+...+appXp 这样确定的综合指标 F1,F2,…,Fp分别称做原指标 的第一,第二,…,第p主成分,且 F1,F2,…,Fp 在总方差中占的比例依次递减。
如果不经简化就直接把所有变量都拿来进行分析, 不可避免增加分析的难度和计算的复杂性;另外, 由于一些变量中包含的信息量(信息量的多少往往 可用其方差代表)较少,只能增加分析的难度,给 模型的构造带来很大困难。
因而就想到,在信息量损失尽可能少的前提下,首 先设法减少变量的个数,即降低空间的维数,然后, 再对少数的几个综合变量(它们从原始变量中提取 了绝大部分信息量)进行分析。 这就是降维的思想。主成分分析和因子分析就是这 样一类降维的统计技术。
x11 x 21 X xn1 x12 x22 xn 2 x1 p x2 p = ( X1 xnp
X2
, , X p )
33
34
35
36
37
38
注意:这个特征向量的分量已经按照由大到小重新排序 了,不是原来的x1, x2 ,…, x8 的顺序,请上机验证
4
二者的区别与联系
主成分分析(principal components analysis, 简 写为PCL)是侧重于分析多变量数据结构波动时的降 维技术; 因子分析(factor analysis, 简写为FA)则是侧重 分析多变量数据结构中变量相关性时的降维技术。 二者都依赖于p×p的协方差矩阵Σ,因为这个矩阵 在一定范围内包含了变量间的全部的有用信息。因 而这两种方法有时是重复的、或相互补充的。
43
关于主成分分析的几点说明
1. 求解主成分的过程实际就是对矩阵结构进行分 析的过程,也就是求解特征值和特征向量的过程。 实际问题分析中,是从向量X的协差阵出发,还是 从相关阵(在协差阵基础上除标准差)出发,虽然 过程是一样的,但其结果是不同的。 那么, 到底如何决定从哪一个矩阵出发呢? 一般地说,如果原始数据的数量级相差不大, 且量纲相同,可以从协差阵出发来求解。但如果数 据数量级差别较大或量纲不同,要考虑数据的标准 化,然后用相关阵求解主成分。但这也不是绝对的, 该问题现在还没有一个定论。 但两种方法计算的主成分一般不同,但结论一般不44 会发生矛盾。
因为PCA识别了变量的线性相关性,并依据它们对 原始数据总方差的贡献排了序,所以用PCA来解释 变量是有可能的。 因为,第一主成分是某种线性组合所产生的具有 最大方差的新变量,第二主成分是某种线性组合 所产生的具有次大方差的新变量,依次下去,…. 可见,可以用提取了绝大部分信息的少数几个主 成分来解释数据。也就是说,可以对变量进行归 组或分类,并进一步可赋予主成分的经济含义或 命名。
10
例如,某人做衣服时为了合体,要测量很多尺寸,如 身长、袖长、胸围、腰围、肩宽、肩厚等十多个指标, 但服装厂生产的服装尺码绝对不是型号如此非常非常 之多和齐全,甚至达到人人都适合的程度,而是从多 个指标中综合成少数几个有代表性的综合指标,作为 服装分类的型号. 例如,现行市面中的上衣中,只选择了身高、胸围两 个指标作为主要尺码即可,比如,165/92B、 170/100A,这样就能满足大多数人的体形需要。当然, 由于将10多个尺寸高度综合简化成2个尺寸,就肯定 不能满足所有人的体形,其中有一部分人的体形信息 就被忽略掉或损失了。 同理,裤子中的尺寸也已经综合简化成身高、腰围两 个尺寸,如,170/76;165/72,等等
9
§7.1 何谓主成分分析及其基本思想
主成分分析就是设法将原来的众多指标重 新组合成一组新的,相互无关的较少几个综合 指标来代替原来指标,同时,根据实际需要, 从中提取出的这少数几个综合指标又能尽可能 多地反映原来指标数据的信息。 这种将多个指标转化为少数的、相互无关 的综合指标的统计方法,叫做主成分分析,或 称为主分量分析。也是数学上处理降维的一种 技术方法。
22
§7.3 主成分的推导
23