短波频率自适应通信的发展及信号监测

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

短波频率自适应通信的发展及信号监测

摘要

概要介绍了短波自适应通信产生和发展的三个主要阶段,关键信号生成的原理及其监测与识别,详细论述了正在发展的第三代短波自适应通信系统的网络功能和技术特点。

引言

短波通信是一种历史悠久的远距离通信方式,通过电离层反射实现远距离通信。由于电离层的性能随时间、空间和电波频率变化,引起信号的幅度衰落、相位起伏等,会严重影响短波通信质量;同时天波反射存在严重的多径效应,也造成频率选择性衰落和多径时延,成为短波链路数据传输的主要限制。另外,短波频段可供使用的频带比较窄,通信容量小,大气和工业无线电噪声干扰严重,也大大限制了短波通信的发展。20世纪60年代以来,卫星通信以其信道稳定、通信质量好、容量大等优势,取代了许多原属于短波的重要业务。短波通信的投入急剧减少,其地位大为降低。

然而,与卫星通信、光缆等通信手段相比,短波通信不需要建立中继站即可实现远距离通信,具有自身的特点,比如建设周期短,维护费用低;设备简单,容易隐蔽;

使用灵活,电路调度容易,临时组网便捷,抗毁能力强等。这些显著的优点,是其他通信手段不可比拟的。事实证明,曾经设想取代短波通信的卫星通信,并不能满足所有情况下的用户需求。20世纪80年代起,出于对卫星安全等方面的考虑,短波通信重新受到重视,许多国家加大了对短波通信技术的研究与开发。

近年来,由于电子技术的迅猛发展,促进了短波通信技术和装备的更新换代,原有的缺点得到了不同程度的克服,通信质量大大提高,形成了现代短波通信新技术、新体制,短波通信正走向复兴。这其中,最重要和显著的技术进步,就是短波自适应技术。

短波自适应通信的概念

短波通信主要依靠天波进行,而电离层反射信道是一种时变色散信道,其特点是路径损耗、时延散布、噪声和干扰等都随频率、地点、季节、昼夜的变化不断变化,因此,短波通信中工作频率是不能任意选择的。在相当长的时间内,短波通信频率的选择是根据频率预测资料来确定的[1]。但是,电离层的特性每天变化很大,频率预测资料是根据长期观测统计得出的,不能实时反映实际通信时信道参数,而且,长期预报也没有考虑多径效应和电台干扰等因素,造成实际短波通信质量不能令人满意。

统计表明,即使在夜间通信环境最坏的情况下,短波频段也有4%左右的无噪声信道,而中午约有27%的信道干扰很小或不存在干扰[2]。所以,实时避开干扰,找出具有良好传播条件的无噪声信道是提高短波通信质量的主要途径。实现这一目标的关键是采用自适应技术。

所谓自适应,就是能够连续测量信号和系统变化,自动改变系统结构和参数,使系统能自行适应通信条件的变化和抵御人为干扰。广义地讲,短波自适应包括频率自适应、功率自适应、传输速率自适应、分集自适应、自适应均衡及自适应调零天线等。由于选频和换频是提高短波通信质量最有效的途径,所以通常所说的短波自适应通信就是指频率自适应。

短波自适应通信经历了短波频率管理、2G-ALE两个成熟阶段,正向3G-ALE发展。

频率管理系统

短波自适应系统必须完成实时探测信道特性和干扰分布情况的双重任务,系统提供的最佳工作频率是测量和分析这两方面数据的结果,完成这一任务所采用的技术称为实时信道估值“RTCE”技术。实现短波自适应的基本方法就是利用RTCE(Real Time Channel Evaluation)技术来测量和分析各种信道参数,根据综合分析和计算结果,建立工作在最佳频率上的通信链路。

独立的信道探测系统可在一定区域内组成频率管理网格,在短波范围内对频率进行快速扫描探测,得到通信质量优劣的频率排序表。然后再根据需要,统一分配给区域

内各短波通信用户。其实质是对区域内的用户提供实时频率预报。美国CURTS系统和我国研制的实时选频系统都可以做到每10分钟向用户提供一份频率表[3],由用户在实际通信时选择最佳的通信频率。

根据所采用的技术不同,RTCE可分为电离层脉冲探测、电离层调频连续波探测(Chirp)、导频探测、8FSK信号探测等,其中8FSK探测,是目前自适应电台使用最广泛的信号格式。

CURTS系统是最早的实时选频系统,可以测量5种信道参数。它采用电离层脉冲探测,由于探测脉冲功率高达30kW,因而会造成严重的干扰,只能用于大区战略通信系统。20世纪70年代中期,美国Barry公司采用Chirp探测方式研制出AN/TRQ-35(V)实时选频战术频率管理系统,后又升级为AN/TRQ-42(V),在90年代初期的海湾战争中,这两套频率管理系统成功地支撑了短波通信网,为盟军的胜利发挥了关键的通信保障作用。

短波频率管理系统探测结果可以反映整个短波频段的频率资源情况,已经制成商业软件出售。有些无线电监测站的短波单站定位功能,也是利用这些探测结果,再通过计算来实现的。频率管理系统的特点是通信与探测分离,探测设备昂贵,这一发展过程也称为短波自适应技术的1G-ALE阶段。

2G-ALE通信系统

随着微处理器和数字信号处理技术的不断发展,20世纪80年代中期,出现了在通信系统中直接采用RTCE技术,对短波信道进行探测、评估和通信一并完成的短波自适应电台。这种电台能够实时选择出最佳的短波通信信道,减少了短波信道的时变、多径和噪声等对通信的影响,使得短波通信频率随信道条件变化而改变,从而确保通信始终在质量最佳的信道上进行。由于采用了高速DSP芯片,RTCE作为通信设备的一个嵌入式部件,使得成本大大降低,操作也变得非常方便。

为了使短波自适应电台互通和组网,1988年10月,美国军方颁布了短波自适应通信的军用标准MIL-STD-188/141A;1990年,对应的联邦标准FED-STD-1045协议也正式出台,该协议又简称1045协议,已成为事实上的国际标准。符合1045协议的短波自适应电台一般称为2G-ALE产品。2G-ALE产品型号很多,完成的功能大同小异,典型设备有美国RF-3200、7100系列,德国的ALIS电台等。

2G-ALE自适应通信系统具有以下四种基本功能。

(1)RTCE功能

RTCE功能在短波自适应通信系统中称为链路质量分析LQA (Link Quality Analysis)。为了简化设备,降低成本,一般LQA都是在通信前或间隙中进行的,并且只在有限短波信道上进行,通常有10~20个。所获得的数据存储在LQA矩阵中,实际通信时,系统根据LQA矩阵中个信道的排列次序,择优选取工作频率。

(2)自动扫描接收功能

为了接收选择呼叫和进行LQA试验,网中所有电台都具有自动扫描接收功能,可在预先规定的若干信道上循环扫描,等候呼叫信号或者LQA探测信号。

相关文档
最新文档