解析几何三角形面积问题答案

合集下载

解析几何三角形面积问题

解析几何三角形面积问题

解析几何三角形面积问题1、已知两定点12(1,0),(1,0)F F -,满足124PF PF +=u u u r u u u u r的动点P 的轨迹是曲线C .(Ⅰ) 求曲线C 的标准方程;(Ⅱ)直线:l y x b =-+与曲线C 交于,A B 两点, 求AOB ∆面积的最大值.2、已知椭圆(2222:1>>0)y x C a b a b+=的离心率为22,且椭圆上一点到两个焦点的距离之和为22.斜率为()0≠k k 的直线l 过椭圆的上焦点且与椭圆相交于P Q ,两点,线段PQ 的垂直平分线与y 轴相交于点(0)M m ,. (1)求椭圆的标准方程;(2)求m 的取值范围.(3)试用m 表示MPQ ∆的面积S ,并求面积S 的最大值.3、(2012潍坊期末)如图,椭圆G 的中心在坐标原点,其中一个焦点为圆F :0222=-+x y x 的圆心,右顶点是圆F 与x 轴的一个交点.已知椭圆G 与直线l :01-=-my x 相交于A 、B 两点.(I)求椭圆的方程;(Ⅱ)求∆AOB 面积的最大值.4、直线l 与椭圆22221(0)y x a b a b +=>>交于11(,)A x y ,22(,)B x y 两点,已知m ),(11by ax =,n ),(22by ax =,若n m ⊥且椭圆的离心率32e =,又椭圆经过点,1)2,O 为坐标原点. (1)求椭圆的方程;(2)若直线l 过椭圆的焦点(0,)F c (c 为半焦距),求直线l 的斜率k 的值; (3)试问:AOB ∆的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5、已知椭圆的焦点坐标为1F (-1,0),2F (1,0),过2F 垂直于长轴的直线交椭圆于P 、Q两点,且|PQ |=3,(1) 求椭圆的方程;(2) 过2F 的直线l 与椭圆交于不同的两点M 、N ,则△1F MN 的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.6、椭圆E 的中心在坐标原点O ,焦点在x 轴上,离心率为12,点P(1,32),A,B 在椭圆E 上,且→PA+→PB=m →OP (m ∈R)(1) 求椭圆E 的方程及直线AB 的斜率;求证:当△PAB 的面积取得最大值时,原点O 是△PAB 的重心7、已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,短轴一个端点到右焦点的距离为3.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为32,求△AOB 面积的最大值.8、已知A (23-,0),B (23,0)为平面内两定点,动点P 满足|PA |+|PB |=2. (I )求动点P 的轨迹方程; (II )设直线)0)(23(>+=k x k y l :与(I )中点P 的轨迹交于M 、N 两点.求△BMN 的最大面积及此时直线l 的方程.9、平面直角坐标系内已知两点A (-1,0)、B (1,0),若将动点P (x ,y )的横坐标保持不变,纵坐倍后得到点Q (x y ),且满足AQ uuu r ·BQ uuu r=1.(Ⅰ)求动点P 所在曲线C 的方程;(Ⅱ)过点B 作斜率为的直线l 交曲线C 于M 、N 两点,且OM u u u u r +ON uuu r +OH u u u r =0r ,试求△MNH 的面积.10、在平面直角坐标系内已知两点(1,0)A -、(1,0)B ,若将动点(,)P x y 的横坐标保持不变,()Q x,且满足1AQ BQ⋅=u u u r u u u r.(Ⅰ)求动点P所在曲线C的方程;(Ⅱ)过点B作斜率为的直线l交曲线C于M、N两点,且0OM ON OH++=u u u u r u u u r u u u r r,又点H关于原点O的对称点为点G,试问M、G、N、H四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.11、[2011·湖南卷] 如图,椭圆1C:22221x ya b+=(0)a b>>,x轴被曲线2C:2y x b=-截得的线段长等于1C的长半轴长.(Ⅰ)求1C、2C的方程;(Ⅱ)设2C与y轴的交点为M,过坐标原点O的直线l与2C相交于点A、B,直线,MA MB 分别与1C相交与,D E.(i)证明:MD ME⊥;(ii)记,MAB MDE∆∆的面积分别是12,S S.问:是否存在直线l,使得121732SS=?请说明理由.12、设椭圆C1:22221(0)x ya ba b+=>>的左.右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图,若抛物线C2:21y x=-与y轴的交点为B,且经过F1,F2点。

文科数学高考二轮复习专题篇平面解析几何4由向量形式的三角形面积公式得到的坐标式三角形面积公式及其应

文科数学高考二轮复习专题篇平面解析几何4由向量形式的三角形面积公式得到的坐标式三角形面积公式及其应

由向量形式的三角形面积公式获得的坐标式三角形面积公式及其应用高考题1(2010 年高考辽宁卷理科第8 题 )平面上 O, A, B 三点不共线,设 OA a,OB b ,则 OAB 的面积等于()22(a b ) 222(a b) 2 C. 122( a b) 2 D.122(a b )2A. a bB. a b a b a b22答案: C.这道高考题的结论就是向量形式的三角形面积公式:定理 1若三点 O, A, B 不共线,则 S OAB122(OA OB )2 . OA OB21122证明S OAB OA OB 1 c o 2s AOB OA OB(OA OB )2 .22由此结论,还可证得定理 2若三点 O, A, B 不共线,且点O是坐标原点,点 A, B 的坐标分别是(x1 , y1 ), ( x2 , y2 ) ,则S OAB 1x1 y2x2 y1 . 2证法 1由定理1,得S OAB12y122y22( x1 x2y1 y2 ) 21x1 y2 x2 y1(x1)( x2)22证法 2可得直线 AB 的方程是( y1y2 ) x (x1x2 ) y ( x1 y2x2 y1 ) 0因此坐标原点 O 到直线AB的距离是x1y2x2 y1,从而可得AOB 的面积是ABS OAB 1AB x1y2x2 y11x1 y2x2 y1 .AB22下边用定理 2 来简解 10 道高考题 .高考题2(2014 年高考四川卷理科第10 题 )已知 F 为抛物线 y2= x 的焦点,点 A,B 在该抛物线上且位于x 轴的双侧,→→OA· OB=2(此中 O 为坐标原点 ),则△ABO 与△ AFO 面积之和的最小值是 ()172A . 2B . 3 C.8 D.10解 B.得 F 1,0,可不如设 A(x1 , y1 ), B(x2 , y2 )( y10y2 ) . 4由OA OB x1x2y1 y222y1 y2 2 ,可得 y1 y222,得y1 y2,因此由定理SABO 1x1 y2x2 y11y1y2y2y11y1 y2y1y2y1 y2y1y222222因此SABOSAFOy 1 y 21 1 y 19 y 1 y 2 2 9y 1 y 2 32 4 8 8(可适当且仅当 y 14, y 29时取等号 )38因此选 B.高考题 3 (2011 年高考四川卷文科第12 题 )在会合1,2,3,4,5 中任取一个偶数 a 和一个奇数 b 构成以原点为起点的向量 (a, b) . 从全部获得的以原点为起点的向量中任取两个向量为邻边作平行四边形, 记全部作为平行四边形的个数为 n ,此中面积等于 2 的平行四边形的个数 m ,则m( )n2141A.B.C.D.155153解B.所 有满足题意 的 向 量 有 6个1 (2,1),2 (2,3),3 (2,5),4( 4,1), 5 ( 4,3), 6 (4,5) ,以此中的两个向量为邻边的平行四边形有 nC 62 15 个.设i(x 1 , y 1 ), j ( x 2 , y 2 ) ,得 x 1 , x 2(2,4); y 1 , y 2 (1,3,5) ,由定理 2 得,以i ,j为邻边的平行四边形的面积是S1x 1 y 2 x 2 y 1 2 ,可得这样的向量i ,j有3对:2(2,3), (4,5); (2,1), (4,3); (2,1), ( 4,1) .因此m3 1 . n15 5高考题 4 (2011 年高考四川卷理科第12 题 ) 在会合 {1,2,3,4,5} 中任取一个偶数 a 和一个奇数 b 构成以原点为起点的向量 (a, b) . 从全部获得的以原点为起点的向量中任取两个向量为邻边作平行四边形 .记全部作成的平行四边形的个数为 n ,此中面积不超出 4 的平行四边形的个数为 m ,则m()4 n1 22A.B.C.D.153 5 3解 基本领件是由向量(2,1), (2,3), (2,5), (4,1), (4,5), ( 4,3) 中任取两个向量为邻边作平行四边形,得 nC 26 15 .由定理 2 可得:构成面积为 2 的平行四边形的向量有3 对: (2,3), (4,5); (2,1), (4,3); (2,1),(4,1) .构成面积为 4 的平行四边形的向量有2 对: (2,3), (2,5); (2,1), (2,3) .构成面积为 6 的平行四边形的向量有 2 对: (2,3), (4,3); (2,1), (4,5) .构成面积为 8 的平行四边形的向量有 3 对: (2,1), (2,5); (4,1), (4,3);( 4,3),( 4,5) .构成面积为 10 的平行四边形的向量有 2 对: (2,3), (4,1); (2,5), ( 4,5) .构成面积为 14 的平行四边形的向量有 1 对: (2,5), (4,3) .构成面积为 16 的平行四边形的向量有 1 对: (4,1),( 4,5) .构成面积为 18 的平行四边形的向量有 1 对: (2,5), (4,1) .知足条件的事件有 m3 2 5个,因此m5 1 .n15 3高考题 5 (2009 年高考陕西卷文科、理科第21 题)已知双曲线C 的方程为y 2 x 2 1( a 0, b0) ,离心率 e52 5 a 2b 2 2,极点到渐近线的距离为.5(1)求双曲线 C 的方程;(2)如图 1 所示, P 是双曲线 C 上一点,A, B 两点在双曲线 C 的两条渐近线上,且分别位于第一、二象限 .若 APPB,1,2 ,求AOB 面积的取值范围 .3图 1解(1)( 过程略 ) y2x 21.4(2)可设 A(t ,2t), B( s,2s), s 0,t 0 ,由定理 2 及题设可得 S AOB 2st .由 APt2 s2t 2 s PB ,可得 P,,把它代入双曲线 C 的方程,化简得11(1 )24 st ,因此SAOB1 111223可得AOB 面积的取值范围是82,.3高考题 6 (2007 年高考陕西卷理科第 21 题即文科第 22 题)已知椭圆C : x2y 2 1(a b0) 的离心率是6,短轴的一个端点与右焦点的距离是3 .a 2b 23(1)求椭圆 C 的方程;(2)设直线 l 与椭圆 C 交于 A, B 两点,坐标原点O 到直线 l 的距离为3,求 AOB 面积2的最大值 .解(1)( 过程略 ) x 2y 21.3(2)设 A( x 1 , y 1 ), B(x 2 , y 2 ) ,由定理 2 及题设得2SAOBx 1 y 2 x 2 y 1由椭圆的参数方程知,可设 x 1 3 cos , y 1sin , x 23 cos , y 2 sin ,得2S AOB x 1 y 2 x 2 y 1 3 sin()从而可得,当且仅当点A, B 是椭圆 C 的两个极点且AOB时AOB 的面积取到最2大值,且最大值是3.2高考题 7(2010 年高考重庆卷理科第20 题 )已知以原点 O 为中心, F ( 5,0) 为右焦点的双曲线 C 的离心率 e5 .2(1)求双曲线 C 的标准方程及其渐近线方程;(2) 如图2 所示,已知过点M (x 1, y 1 ) 的直线l 1 : x 1 x 4y 1 y4 与过点 N ( x 2 , y 2 ) ( 此中x 2x 1 )的直线l 2 : x 2 x4 y 2 y4 的交点E 在双曲线C上,直线MN 与两条渐近线分别交于G 、 H两点,求OGH的面积.图 2解(1)( 过程略 )双曲线C的标准方程为x2y21,其渐近线方程为x 2 y0 .4(2)由“两点确立向来线”可得直线MN 的方程为: x E x 4 y E y 4 .分别解方程组x E x 4 y E y 4x E x 4 y E y 4,得x 2 y0,x 2y0G4,2, H4,2.x Ex E 2 y E x E2y E 2 y E x E2y E由于点 E 在双曲线C上,因此x E2 4 y E2 4 .由定理2,得S OGH 188882 2x E2 4 y E2x E2 4 y E2x E2 4 y E24注下边将指出图 2 的错误:由于点 E 对于 x 轴的对称点 E ( x E ,y E ) 也在双曲线 C 上,而双曲线C在点 E处的切线方程为xEx( y E ) y1即 x E x 4 y E y 4 也即直线 MN ,因此直线 MN 与双曲线 C 应该相4切,而不是相离 .高考题 8 (2011年高考山东卷理科第22题 )已知动直线x2y2交于l 与椭圆 C :132P(x1, y1 )、 Q (x2 , y2 ) 两不一样点,且OPQ 的面积 S6OPQ,此中 O 为坐标原点.22x2222(1)证明:x1和 y1y2均为定值;(2)设线段PQ的中点为M,求OM PQ 的最大值;(3)椭圆C上能否存在三点D、 E、 G ,使得 S ODE S ODG S OEG6?若存在,判2断 DEG 的形状;若不存在,请说明原因.解(1) 可设P(3cos , 2 sin )、 Q( 3cos , 2 sin ) ,由定理2,得SOPQ6sin()6 22SOPQ6sin()6, sin ()1,cos() 0 22k( k Z)2因此x12x223(cos2cos2) 3(sin 2cos2) 3, y12y223.(2)在 (1)的解答中:当k为奇数时,得P( 3 sin,2cos )、 Q ( 3cos , 2 sin),M3(sin cos),2(sin cos),因此 OM PQ125sin 2 2.222当k为偶数时,得P( 3 sin,2cos )、Q ( 3cos , 2 sin),M3(cos sin),2(cos sin),因此 OM PQ125sin 2 2.222因此 OM PQ 的最大值是5. 2(3)可设D(3cos ,2 sin )、 E(3cos ,2 sin)、G(3cos , 2 sin) ,由(1)的解答知k,l,m(k, l , m Z )2322把这三式相加,得0( k l m)(k l m Z ),这不行能!因此椭圆 C 上不存2在三点 D、 E、G ,使得 S ODE SODGSOEG6.2高考题 9(2013 年高考山东卷文科第22 题 )在平面直角坐标系xOy 中,已知椭圆C的中心在原点 O ,焦点在 x 轴上,短轴长为2,离心率为2 .2(1)求椭圆 C 的方程;(2) A, B 为椭圆 C 上知足AOB 的面积为6的随意两点, E 为线段 AB 的中点,射线4OE 交椭圆 C 与点 P ,设 OPtOE ,务实数 t 的值 .解 (1)( 过程略 )x 2y 2 1 .22 (2)当直线 OE 的斜率不存在时,可求得t 2或3 .3当直线 OE 的斜率存在时,可设A( 2 cos ,sin ), B( 2 cos ,sin ) ,由定理 2 得SOAB2 sin()6 )3, cos( 1 , cos1 3 2, sin()2或.42222可得E2 coscos, sin2 cos2, 所以直线22OE : yx tan ,求得 P2 cos, sin,因此2222y P12 或2t3y E cos32总之, t2或23.31高考题 10 (2008 年高考海南、宁夏卷理科第21 题 )设函数 f (x)ax(a ,b Z ) ,x b曲线 yf ( x) 在点 (2, f (2)) 处的切线方程为 y 3 .(1)求 f ( x) 的分析式 .(2)证明:函数 y f ( x) 的图象是一此中心对称图形,并求其对称中心;(3)证明:曲线 yf (x) 上任一点的切线与直线x 1 和直线 yx 所围三角形的面积为定值,并求出此定值.答案: (1) y x1.(2)略 .(3)2.x 1高考题 11(2008 年高考海南、宁夏卷文科第21 题 )设函数f (x)bf ( x) ax,曲线 yx在点 (2, f (2)) 处的切线方程为7x 4 y120.(1)求f ( x)的分析式;(2)证明:曲线y f (x) 上任一点处的切线与直线x 0和直线 y x 所围成的三角形面积为定值,并求此定值.答案: (1)y x 3.(2)6. x下边给出这两道高考题结论的推行.定理 3(1) 双曲线x2y 21( a0,b0)上任一点的切线与两条渐近线a 2b2b bS ab ;yx, y x 围成三角形的面积是a ab(2) 曲线y ax0)上任一点的切线与两条渐近线x 0, y ax 围成三角形的面(bx积是 S b ;(3) 曲线y ax c b(b0) 上任一点的切线与两条渐近线x d0, y ax cdx围成三角形的面积是S b .证明(1) 如图 3 所示,可求得过双曲线上任一点(,)(222222) 的切P x0y0 b x0 a y0 a b线方程是b2x0x a2 y0 y a2 b2,还可求得它与两条渐近线y bx, ybx 的交点分别为a aMa2 b,ab2a2b,ab22 可立得欲证建立 .bx0ay0, Nbx0bx0,再由定理bx0ay0ay0ay0图 3(2)由y axb b.因此过该曲线上任一点P x0 , ax0b(b 0) ,得 y ax 2的切x x0线方程是yb b( x x0 ) ax 0a2x0x0从而可求得它与两条渐近线x0, y ax 的交点分别为M0, 2b, N (2 x0 ,2ax0 ) ,再由x0定理 2 可立得欲证建立 .(3)因为y ax cba( x d )b所以曲线xc ad ,b d x dy ax c0) 是由曲线y ax b0) 沿向量 ( d , c ad ) 平移后获得的,(b(bx d x 因此由结论 (2) 立得结论 (3) 建立 .(4)。

解析几何-吕林根-课后习题解答一到五

解析几何-吕林根-课后习题解答一到五

第一章矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.解:2. 设点O是正六边形ABCDEF的中心,在矢量OA、OB、OC、OD、OE、OF、AB、BC、CD、DE、EF和FA中,哪些矢量是相等的?[解]:图1-13. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=NM. 当ABCD是空间四边形时,这等式是否也成立?[证明]:.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB、CD; (2) AE、CG; (3) AC、EG;(4) AD、GF; (5) BE、CH.解:§1.2 矢量的加法1.要使下列各式成立,矢量b a ,应满足什么条件? (1=+ (2+=+ (3-=+ (4+=- (5= 解:§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解:2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF . 解:3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 解:4 在四边形ABCD中,→→→+=baAB2,→→→--=baBC4,→→→--=baCD35,证明ABCD为梯形.解:6. 设L、M、N分别是ΔABC的三边BC、CA、AB的中点,证明:三中线矢量AL, BM, CN可以构成一个三角形.7. 设L、M、N是△ABC的三边的中点,O是任意一点,证明OBOA++OC=OL+OM+ON.解:8. 如图1-5,设M是平行四边形ABCD的中心,O是任意一点,证明OA+OB+OC+OD=4OM.解:9在平行六面体ABCDEFGH(参看第一节第4题图)中,证明→→→→=++AGAHAFAC2.证明:.10.用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.解11. 用矢量法证明,平行四边行的对角线互相平分.解12. 设点O 是平面上正多边形A 1A 2…A n 的中心,证明: 1OA +2OA +…+n OA =0.解,13.在12题的条件下,设P 是任意点,证明 证明:§1.4 矢量的线性关系与矢量的分解1.在平行四边形ABCD 中,(1)设对角线,,b BD a AZ ==求.,,,DA CD BC AB 解(2)设边BC 和CD 的中点M 和N ,且q AN P AM ==,求CD BC ,。

解析几何s三角形oab的面积

解析几何s三角形oab的面积

解析几何s三角形oab的面积要解析三角形OAB的面积,我们可以使用以下方法:
1. 使用三角形的高和底边,首先,我们可以计算出三角形OAB 的底边OA的长度和高AB的长度。

然后,我们可以使用面积公式
S=1/2底边高来计算三角形的面积。

2. 使用三角形的两边和夹角,如果我们知道三角形OAB的两边OA和OB的长度以及它们之间的夹角,我们可以使用面积公式S=1/2边1边2sin(夹角)来计算三角形的面积。

3. 使用海伦公式,如果我们知道三角形OAB的三条边的长度,我们可以使用海伦公式来计算三角形的面积。

海伦公式为
S=√[p(p-a)(p-b)(p-c)],其中p是半周长,a、b和c分别是三角形的三条边的长度。

以上是几种常见的方法,你可以根据你手头的具体信息选择合适的方法来计算三角形OAB的面积。

希望这些方法能够帮助你解决问题。

过定点与坐标轴围成的三角形面积最小问题

过定点与坐标轴围成的三角形面积最小问题

过定点与坐标轴围成的三角形面积最小问题1.引言在平面解析几何中,经常会遇到求解围成的三角形面积的问题。

本文将围绕着过定点与坐标轴围成的三角形面积最小问题展开讨论。

我们将从基本原理开始,逐步推导出解决该问题的方法。

2.问题描述给定一个坐标轴上的一点P(x,y),以及坐标轴上的两个端点A(0,0)和B(a,0),其中a为正实数。

我们的目标是找到通过点P的直线与坐标轴围成的三角形A BC,使得该三角形的面积最小。

3.解决方法为了解决这个问题,我们可以按照以下步骤进行推导。

3.1建立坐标轴表示首先,我们可以将问题抽象为在坐标系中求解面积最小的三角形。

我们以P点在坐标系的位置为起点,建立坐标轴表示。

3.2确定点B的坐标由于点B在坐标轴上,且横坐标为a,纵坐标为0,我们可以确定B的坐标为B(a,0)。

3.3确定点C的坐标为了求得面积最小的三角形A BC,我们需要确定点C在坐标系中的位置。

由于P点在过点C的直线上,我们可以假设点C的坐标为C(c,0),其中c为正实数。

3.4确定三角形面积根据解析几何的面积公式,我们可以计算出三角形AB C的面积S为:S=0.5*|x*0-0*c+a*c-x*0|经过计算化简,可以得到:S=0.5*a*c3.5最小化面积为了使三角形AB C的面积最小,我们需要找到使S最小的c值。

由于c为正实数,所以我们可以对S进行求导,然后令导数为0,解得最小值。

3.6求解最小面积对S=0.5*a*c求导,并令导数为0,我们可以得到c的值:0.5*a*c'=0解得c'=0,即c为任意的正实数。

这说明无论c取多少,都不会改变S的最小值。

3.7结论根据上述推导,我们可以得出结论:过定点与坐标轴围成的三角形面积最小的条件是无论c取多少,c为任意的正实数。

4.总结通过以上推导,我们解决了过定点与坐标轴围成的三角形面积最小问题。

我们发现,无论点C在坐标系中的位置如何,三角形A BC的面积都不会改变。

解析几何面积公式

解析几何面积公式

解析几何面积公式
1.解析几何法:由众多三角形的面积公式得出的结果:
(r是三角形内切圆半径)(R是三角形外接圆半径)
其中:
2.向量叉积法:任意两边向量的叉积的绝对值的1/2即为三角形的面积。

Code:
double TriangleArea(V l1,V l2){
return fabs((l1.end-l1.start)^(l2.end-l2.start))/2;}
多边形面积的计算。

现在讨论简单多边形,不考虑自交多边形,计算时采用剖分思想,将其转化为求多个三角形面积的子问题集合。

有三种转化方法:
1.将多边形内的一点与多边形顶点连线,可将多边形划分成多个三角形,分别求出每个三角形的面积,累加起来即为多边形的面积。

如图,J为多边形内一点。

2.采用三角剖分的方法,取多边形的一个顶点作为剖分出的三角形顶点,三角形的其他点作为多边形上相邻的点,
由于叉乘有正有负,所以正好可以抵消掉多余的面积部分。

面积的计算公式为:如图,以A点为剖分顶点。

解析几何教程习题答案

解析几何教程习题答案

第一章 向量代数习题1.11. 试证向量加法的结合律,即对任意向量,,a b c 成立()().a b c a b c ++=++证明:作向量,,AB a BC b CD c ===(如下图),则 ()(),a b c AB BC CD AC CD AD ++=++=+=()(),a b c AB BC CD AB BD AD ++=++=+=故()().a b c a b c ++=++2. 设,,a b c 两两不共线,试证顺次将它们的终点与始点相连而成一个三角形的充要条件是0.a b c ++=证明:必要性,设,,a b c 的终点与始点相连而成一个三角形ABC ∆,则0.a b c AB BC CA AC CA AA ++=++=+== 充分性,作向量,,AB a BC b CD c ===,由于ABCabcABCDabca b +b c +0,a b c AB BC CD AC CD AD =++=++=+=所以点A 与D 重合,即三向量,,a b c 的终点与始点相连构成一个三角形。

3. 试证三角形的三中线可以构成一个三角形。

证明:设三角形ABC ∆三边,,AB BC CA 的中点分别是,,D E F (如下图),并且记,,a AB b BC c CA ===,则根据书中例 1.1.1,三条中线表示的向量分别是111(),(),(),222CD c b AE a c BF b a =-=-=- 所以,111()()()0,222CD AE BF c b a c b a ++=-+-+-=故由上题结论得三角形的三中线,,CD AE BF 可以构成一个三角形。

4. 用向量法证明梯形两腰中点连线平行于上、下底且等于它们长度和的一半。

证明:如下图,梯形ABCD 两腰,BC AD 中点分别为,E F ,记向量,AB a FA b ==,则,DF b =而向量DC 与AB 共线且同向,所以存在实数0,λ>使得.DC AB λ=现在,FB b a =+,FC b a λ=-+由于E 是BC 的中点,所以1111()()(1)(1).2222FE FB FC b a a b a AB λλλ=+=++-=+=+且A BabcE FD C111(1)()().222FE AB AB AB AB DC λλ=+=+=+ 故梯形两腰中点连线平行于上、下底且等于它们长度和的一半。

已知顶点坐标三角形面积

已知顶点坐标三角形面积

已知顶点坐标三角形面积
在解析几何中,如果给定了三角形三个顶点的坐标,我们可以通过下面的公式计算三角形的面积:
设三个顶点坐标分别为(x1,y1)、(x2,y2)、(x3,y3),则三角形面积S可以通过以下公式计算:
S = 1/2 * |x1(y2-y3) + x2(y3-y1) + x3(y1-y2)|
其中|...|表示取绝对值。

这个公式实际上是利用了向量外积的性质。

我们可以将三角形的两个边向量进行外积,所得向量的模长就等于这两个边向量所围成的平行四边形的面积。

由于三角形面积是平行四边形面积的一半,所以最终的公式就是上面这个形式。

需要注意的是,在使用该公式时,我们输入的顶点坐标必须按照逆时针或顺时针的顺序给出,否则将得到负值。

通过这个公式,我们可以快速而准确地计算出任意三角形的面积,只要知道它的三个顶点坐标即可。

这在计算机辅助设计、图形学等领域有着广泛的应用。

三角形面积公式在解析几何中的若干应用

三角形面积公式在解析几何中的若干应用

垂 直 平分 线 为 , 轴 . 设 ! F I F 月 二 c2 c( > 0) 则 : 万 :
仍 ) ( 0 一 。 ,
,
F , c( , 0) , M 为所 求轨 迹上 任意一 点 ②连
>a 卜 M M M ! F I ,
F Z,
F,
IM 尸 2! 二 ?。 (
c)
合 一 △M F , F , 积 一
’ 一 一 二一

冬 一 显 然 当 二一 时 , t
。 犷百 一 1 ~ ~ 。
= 牙一 四 叭 取 人 刀
写 3 一 2斌
.
三、 曲线性质的证 明和求解
例 4 若抛 物线 护 = ZP x 的 焦点弦 被焦 点分成长
’fn 恤 为 m、 n 两 段 , 试 证 : 一l 一p1 .
等差 数 列。
考试题 ) 解 : 设 内切 圆 圆心 M 坐 标是 ( 殉 , 的 ) 有 二。 > O,
玩 > n 。 且 卜召C }二 IM D 卜 }M E 卜 如 } O B 卜 旧 C { + }C B 卜 !O D }+ ID M I= 二。 + g 。
l刁 B l 二 {A E }十 {E 习 二 1 一 二。 + g 。
,一 M尸 卜
工厂
告 △ M D F 面 积一 : D M 、 !。 ,
丽 价 蚤!。 } 飞)

: △M D F 面 积 _ 一
…史 _
口nU `ǎ ,1.
2
`
夕xZō
i 夕l
二、 求 曲线的轨迹方程
例 1, 求平面 丙到一个定点 F 和一条定直线 l 的
距离相 等的点 的轨迹方程。

直线与椭圆相交的三角形面积问题探究

直线与椭圆相交的三角形面积问题探究

直线与椭圆相交的三角形面积问
题探究
直线与椭圆相交所产生的三角形面积问题是高中解析几何中的常见问题.它不仅能充分体现数形结合、分类讨论及转化与化归等重要数学思想,更重要的是对于提升学生的整体数学素养具有很大的作用.本文从直线与椭圆相交所构成三角形的基本特点出发,就定直线与定点构成三角形、定直线与动点构成三角形以及动直线与定点构成三角形这三类问题对椭圆内三角形面积的问题求法进行探究.
以上是笔者对直线与椭圆相交的三角形有关面积问题的一点总结.但在实际解决问题中,题目的已知条件都是灵活多变的,有时甚至还要考虑其它因素的存在,比如说椭圆的焦点在y 轴上等情形.
因此,在日常的学习过程中,还需要多进行归纳总结,丰富解决问题的经验,才能真正做到灵活处理有关椭圆的问题.另外,椭圆内部的图形也不全是由三角形构成,常见的还有求椭圆内四边形面积的最值,有待我们进一步探究.。

高考解析几何大题

高考解析几何大题

高考解析几何大题高考解析几何大题:1. 说明:本题涉及三角形的面积计算和相似三角形的性质。

要求:给定一个平面内的三角形ABC,点D、E分别位于边AC、BC上,且满足AD:DC = 1:2,BE:EC = 1:3。

已知△BED与△ABC相似,且其面积为8平方厘米,求△ABC的面积。

解析:根据已知条件可知,△ABC与△BED相似,则△ABC与△EDC也相似。

因此,设△ABC和△EDC的对应边长分别为a和3a。

根据相似三角形的性质,有:∴△ABC的面积 : △EDC的面积 = a² : (3a)² = 1 : 9。

已知△EDC的面积为8平方厘米,代入上述比例关系,得到:△ABC的面积 = 9 × 8 = 72(平方厘米)。

2. 说明:本题涉及平行线、相似三角形的性质和比例关系的运用。

要求:平面内给定一组平行线l、m和n,其中l与m的距离为d₁,l与n的距离为d₂,且d₁:d₂ = 5:9。

现有一个等腰直角三角形ABC,BC边上有一点P,该点到距离m的距离为h₁,到距离n的距离为h₂,求证:h₁:h₂ = 25:81。

解析:由于△ABC是等腰直角三角形,所以AD ⊥ BC,其中D为BC的中点。

假设直线l经过B点,与AD交于点E,则E为线段AD的中点。

根据相似三角形的性质,可得△ABE ∽△BCD。

因此,h₁:h₂ = AD:DC = AE:DB = 5:4。

又已知d₁:d₂ = 5:9。

由于△ABE ∽△BCD,所以BE:BC = AE:AD = 5:4。

由此可得:BE:BC = h₁:h₂ = d₁:d₂ × AE:AD = 5:9 × 5:4 = 25:81。

所以,h₁:h₂ = 25:81。

解析几何三角形面积最值问题-解析版

解析几何三角形面积最值问题-解析版

解析几何三角形面积最值问题未命名一、解答题1.(2019·黑龙江哈尔滨市·哈师大附中高三开学考试(文))已知(0,2)A -,椭圆2222:1(0)x y E a b a b +=>>的离心率2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点.(1)求椭圆的方程;(2)设过点A 的动直线l 与椭圆E 相交于P ,Q 两点,当OPQ ∆的面积最大时,求直线l 的方程.【答案】(1)22182x y +=;(2)22y x =-或22y x =--【解析】试题分析:(1)由离心率与斜率可求得a,b,c.(2) 设:2l y kx =-,与椭圆组方程组,由弦长公式,点到距离公式,求得三角形面积. 试题解析:(1)设(),0F c,由条件知,2c c =⇒=又22c a b a =⇒==, 故椭圆E 的方程为22182x y +=;(2)当l x ⊥轴时,不合题意,故可设:2l y kx =-,()22222,1416801,82y kx k x kx x y =-⎧⎪⇒+-+=⎨+=⎪⎩, ()221164104k k ∆=->⇒>, 设()11,P x y ,()22,Q x y ,121222168,1414k x x x x k k +==++,241PQ k ==+又点O 到直线l 的距离d =∴△OPQ 的面积12OPQS PQ d ∆==,t =,则0t >, ∴2OPQ S t t∆==≤+,当且仅当2t t t =⇒=k =时等号成立,满足0∆>,∴当k =±时,△OPQ 的面积取得最大值2,此时直线l 的方程为2y x =-或2y x =-. 【点睛】弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B x y ,所以12AB x =-或12AB y =-2.(2020·江苏高二单元测试)已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,以椭圆长、短轴四个端点为顶点为四边形的面积为(Ⅰ)求椭圆C 的方程;(Ⅱ)如图所示,记椭圆的左、右顶点分别为A 、B ,当动点M 在定直线4x =上运动时,直线AM BM 、分别交椭圆于两点P 、Q ,求四边形APBQ 面积的最大值.【答案】(Ⅰ)22143x y +=;(Ⅱ)6. 【分析】(Ⅰ)由离心率为12,以椭圆长、短轴四个端点为顶点为四边形的面积为222,ce a b c a==+,列方程组求得,a b 的值,即可求出椭圆C 的方程;(Ⅱ)点()4,M t ,直线AM 的方程()26t y x =+代入椭圆方程22143x y +=,得()222227441080t xt x t +++-=,利用韦达定理解出P 点坐标,同理可求得Q 点的坐标,利用三角形面积公式将四边形面积表示为t 的函数,利用换元法结合函数单调性求解即可. 【详解】(Ⅰ)由题设知,2,2a c ab ==又222a b c =+,解得2,1a b c ===,故椭圆C 的方程为22143x y +=.(Ⅱ)由于对称性,可令点()4,M t ,其中0t >.将直线AM 的方程()26t y x =+代入椭圆方程22143x y +=,得()222227441080t xt x t +++-=,由22410827A P t x x t -⋅=+,2A x =-得2225427Pt x t -=+,则21827P t y t =+. 再将直线BM 的方程()22t y x =-代入椭圆方程22143x y +=,得()2222344120t xt x t +---=,由224123B Q t x x t -⋅=+,2B x =得22263Q t x t-=+,则263Q t y t -=+. 故四边形APBQ 的面积为122P Q P Q S AB y y y y =⋅-=-= 221862273t t t t ⎛⎫+ ⎪++⎝⎭()()()()()22222222248948948912273912)9t t t t t t t tt t t t ++===+++++++.由于296t tλ+=≥,且12λλ+在[)6,+∞上单调递增,故128λλ+≥,从而,有48612S λλ=≤+. 当且仅当6λ=,即3t =,也就是点M 的坐标为()4,3时,四边形APBQ 的面积取最大值6.注:本题也可先证明”动直线PQ 恒过椭圆的右焦点()0,1F ”,再将直线PQ 的方程1x ty =+ (这里t R ∈)代入椭圆方程22143x y +=,整理得()2234690t y ty ++-=,然后给出面积表达式2P Q S y y =-==令211m t =+≥,则S =当且仅当6λ=即3t =时, max 6S =. 3.(2020·宁夏银川一中高二期中(理))已知椭圆()2222:10x y M a b a b+=>>的一个焦点与短轴的两端点组成一个正三角形的三个顶点,且椭圆经过点⎭.(1)求椭圆M 的标准方程;(2)直线l :x ky n =+与椭圆M 相交于A ,B 两点,且以线段AB 为直径的圆过椭圆的右顶点C ,求ABC 面积的最大值.【答案】(1)2214x y +=;(2)1625. 【分析】(1)首先根据题意得到2b a =,再根据椭圆经过点⎭,即可得到答案.(2)首先设直线l 的方程为x ky n =+,联立2214x y x ky n ⎧+=⎪⎨⎪=+⎩,得到()2224240ky kny n +++-=,根据0CA CB ⋅=得到所以直线l 恒过点6,05D ⎛⎫⎪⎝⎭,再计算ABC 面积的最大值即可. 【详解】(1)设椭圆的上下顶点为()10,B b ,()20,B b -,左焦点为()1,0F c -, 则12B B F △是正三角形,所以2b a ==,则椭圆方程为222214x y b b+=.将⎭代入椭圆方程,可得2221142b b +=, 解得2a =,1b =,故椭圆的方程为2214x y +=.(2)由题意,设直线l 的方程为x ky n =+,联立2214x y x ky n ⎧+=⎪⎨⎪=+⎩,消去x 得()2224240k y kny n +++-=. 设()11,A x y ,()22,B x y ,则有12224kn y y k -+=+,212244n y y k -=+,因为以线段AB 为直径的圆过椭圆的右顶点()2,0C ,所以0CA CB ⋅=, 由()112,CA x y =-,()222,CB x y =-,则()()1212220x x y y --+=, 将11x ky n =+,22x ky n =+代入上式,并整理得()()()()2212121220k y y k n y y n ++-++-=,则()()()()22222214222044kn k n n n k k +---++-=++, 化简得()()5620n n --=,解得65n =或2n =,因为直线x ky n =+不过点()2,0C , 所以2n ≠,故65n =.所以直线l 恒过点6,05D ⎛⎫ ⎪⎝⎭. 故121||||2ABC S DC y y =⋅-△16225⎛=⨯-= ⎝=, 设211044t t k ⎛⎫=<≤ ⎪+⎝⎭,则ABCS=10,4t ⎛⎤∈ ⎥⎝⎦上单调递增, 当14t=时,1625ABCS ==, 所以ABC 面积的最大值为1625. 【点睛】关键点点睛:本题主要考查直线与椭圆的位置关系,属于难题.本题中直线方程代入椭圆方程整理后应用韦达定理求出12y y +,12y y ⋅,然后利用0CA CB ⋅=得到直线l 恒过点6,05D ⎛⎫⎪⎝⎭为解题的关键,考查了学生的运算求解能力,逻辑推理能力. 4.(2021·安庆市第十中学高二期末(理))已知椭圆()2222:10x y C a b a b+=>>的短轴长为12e =. (1)求椭圆C 的标准方程;(2)若12F F 、分别是椭圆C 的左、右焦点,过2F 的直线l 与椭圆C 交于不同的两点A B 、,求1F AB 的面积的最大值. 【答案】(1)22143x y +=;(2)3.【分析】(1)由题意,列出方程组,求得2,a b ==,即可得到椭圆的标准方程; (2)设()()1122,,,A x y B x y ,设直线l 的方程为1x my =+,根据根与系数的关系,求得1212,y y y y +,结合三角形的面积公式,得到1121212F ABSF F y y =⋅-=,利用换元法,结合函数的单调性,即可求解. 【详解】(1)由题意, 椭圆()2222:10x y C a b a b+=>>的短轴长为12e =.可得222212b c a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩,解得2,a b ==,故椭圆的标准方程为22143x y +=.(2)设()()1122,,,A x y B x y ,因为直线l 的斜率不为零,可设直线l 的方程为1x my =+,由221143x my x y =+⎧⎪⎨+=⎪⎩,得()2234690m y my ++-=,所以12122269,3434m y y y y m m --+==++, 又因直线l 与椭圆C 交于不同的两点,故0∆>,即()22(6)36340,m m m R ++>∈,则112121221234F ABSF F y y y y m =⋅-=-==+,令t =,则1t ≥,则12124113132F ABt St t t ===++.令13()f t t t=+,由函数的性质可知,函数()ft 在⎫+∞⎪⎪⎣⎭上是单调递增函数, 即当1t ≥时,()f t 在[1,)+∞上单调递增,因此有4()(1)3f t f ≥=,所以13F AB S ≤△,即当1,0t m ==时,1F ABS最大,故当直线l 的方程为1x =时,1F AB 面积的最大值为3. 【点睛】求解圆锥曲线的最值问题的解答策略:1、若题目中的条件和结论能明显体现几何特征和意义,则考虑利用圆、圆锥曲线的定义、图形,以及几何性质求解;2、当题目给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个目标函数的最值(或值域),常用方法:①配方法;②基本不等式;③单调性法;④三角换元法;⑤导数法等,要特别注意自变量的取值范围.5.(2021·全国高二课时练习)已知点A (0,-2),椭圆E :22221x y a b+= (a >b >0)的离心F 是椭圆E 的右焦点,直线AF ,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y += (2)22y x =±-【解析】试题分析:设出F ,由直线AF c ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求.试题解析:(1)设(),0F c ,因为直线AF ,()0,2A -所以2c =c =又222c b a c a ==-解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即k <或k > 1212221612,1414k x x x x k k+==++. 所以PQ ==214k =+ 点O 到直线l 的距离d =所以12OPQS d PQ ∆==0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++, 当且仅当2t=2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l 的方程为:2y x =-或2y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.6.(2020·黑龙江建三江分局第一中学高二期中(文))已知椭圆C :22221(0)x y a b a b+=>>倍,且经过点).(1)求C 的标准方程;(2)C 的右顶点为A ,过C 右焦点的直线l 与C 交于不同的两点M ,N ,求AMN ∆面积的最大值.【答案】(1)22142x y +=;(2)2- 【分析】(1)利用已知条件,结合椭圆方程求出,a b ,即可得到椭圆方程.(2)设出直线方程,联立椭圆与直线方程,利用韦达定理,弦长公式,列出三角形的面积,再利用基本不等式转化求解即可. 【详解】(1)解:由题意22,211,a a b⎧=⎪⎨+=⎪⎩解得2a =,b = 所以椭圆的标准方程为22142x y +=.(2)点(2,0)A,右焦点)F,由题意知直线l 的斜率不为0,故设l的方程为x my =+()11,M x y ,()22,N x y ,联立方程得22142x y x my ⎧+=⎪⎨⎪=+⎩,消去x,整理得22(2)20m y ++-=,∴216(1)0m ∆=+>,12y y +=,12222y y m =-+,()()()21212122222222)224281m y y y y y y m m m ⎛⎫∴--=+ ⎪ ⎪+=+=++⎝+⎭16(1222y y m ∴-=+(12122AMNS y y ∆∴=⨯⨯-(22=(()122221=-,当且仅当0m =时等号成立,此时l :x = 所以AMN 面积的最大值为2- 【点睛】本题考查椭圆的性质和方程的求法,考查联立直线方程和椭圆方程消去未知数,运用韦达定理化简整理和运算能力,属于中档题.7.(2021·浙江高三专题练习)平面直角坐标系xOy 中,过椭圆M :22221x y a b+=(0a b >>)右焦点的直线0x y +=交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求椭圆M 的方程;(Ⅱ)C ,D 为M 上的两点,若四边形ABCD 的对角线CD AB ⊥,求四边形ABCD 面积的最大值.【答案】(Ι) 22163x y +=(Ⅱ)12AB CD ⋅=【分析】(1)把右焦点()c,0代入直线方程可求出c ,设()11,,A x y ()22,B x y ,线段AB 的中点()00,P x y ,利用“点差法”即可得出a,b 的关系式,再与222a b c =+联立即可求出a,b ,进而可得椭圆方程;(2)由CDAB ⊥,可设直线CD 方程为y x m =+,与椭圆方程联立可得根与系数关系,即可得到弦长CD ,把直线0x y AB +=与椭圆的方程联立得到根与系数关系,即可得到弦长,利用ABCD 1S 2AB CD =⋅四边形即可得到关于m 的表达式,利用二次函数的单调性即可求出其最大值. 【详解】(Ι)设()11,,A x y ()22,,B x y 则()22112211x y a b +=,()22222212x y a b+=,(1)-(2)得:()()()()12121212220x x x x y y y y ab-+-++=,因为12121y y x x -=--,设()00,P x y ,因为P 为AB 的中点,且OP 的斜率为12,所以0012y x =,即()121212y y x x +=+,所以可以解得222a b =,即()2222a a c=-,即222ac =,又因为c =,所以26a =,所以M 的方程为22163x y +=.(Ⅱ)因为CD AB ⊥,直线AB 方程为0x y +=,所以设直线CD 方程为y x m =+,将0x y +=代入22163x y +=得:230x -=,即(A 、B ⎝⎭,所以可得AB =;将y x m =+代入22163x y +=得:2234260x mx m ++-=,设()33,,C x y ()44,,D x y 则CD =()221612260m m ∆=-->,即33m -<<,所以当0m =时,|CD|取得最大值4,所以四边形ACBD 面积的最大值为12AB CD ⋅= . 【点睛】本小题考查椭圆的方程的求解、直线与椭圆的位置关系,考查数学中的待定系数法、设而不求思想 ,考查同学们的计算能力以及分析问题、解决问题的能力.圆锥曲线是高考的热点问题,年年必考,熟练本部分的基础知识是解答好本类问题的关键.8.(2021·长春市第二十九中学高二期末(理))已知椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为()1F,)2F,且经过点)M.(1)求椭圆C 的标准方程;(2)若斜率为2的直线与椭圆C 交于,A B 两点,求AOB 面积的最大值(O 为坐标原点).【答案】(1)22142x y +=;(2. 【分析】(1)根据椭圆的定义求得a ,由此求得b ,从而求得椭圆C 的标准方程;(2)设出直线AB 的方程2y x m =+,联立直线AB 的方程和椭圆方程,化简后写出根与系数关系,求出弦长AB ,表示出AOB 的面积,利用不等式求出最值即可. 【详解】(1)由椭圆的定义,可知12214a MF MF =+==.解得2a =.又2222b a =-=.所以椭圆C 的标准方程为22142x y +=.(2)设直线l 的方程为2y x m =+, 联立椭圆方程,得2298240x mx m ++-=,2264721440m m ∆=-+>,得m -<<设()11,A x y ,()22,B x y ,1289m x x ∴+=-,212249m x x -=,12AB x x ∴=-=== 点()0,0O 到直线:20l x y m -+=的距离d=11||22AOBS AB d ∴=⋅⋅=⋅△=≤=当2218m m-=即29m=,3m=±时取等;所以AOB.【点睛】方法点睛:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生逻辑思维能力和计算能力,直线y kx b=+上两点()()1122,,,A x yB x y间的距离公式为:1.12AB x x=-;2.12A yB y=-;3.若AB过焦点,也可以使用焦半径公式.9.(2019·广东中山市·中山纪念中学高三月考(文))已知椭圆C:22221(0)x ya ba b+=>>的左、右焦点分别为1F,2F1F的直线l与C交于A,B两点,2ABF的周长为()1求椭圆C的方程;()2当2ABF的面积最大时,求l的方程.【答案】(1)2212xy+=;(2)1x=-.【解析】试题分析:()1根据椭圆定义及2ABF∆的周长为得出a=cea=知1c ea==,求出21b=,进而得到椭圆C的方程;()2将三角形分割,以12F F为底,A B、两点的纵坐标差的绝对值为高表示三角形面积,运用基本不等式求得结果解析:(1)由椭圆的定义知4a=,a=由cea=知1c ea==2221b a c =-=所以椭圆C 的方程为2212x y +=(2)由(1)知()()121,0,1,0F F -,122F F = 设()()1122,,,A x y B x y ,:1l x my =-联立1x my =-与2212x y +=得到()222210m y my +--=,12y y -=2ABF S ==当211,0m m +==时,2ABF S ∆,:1l x =-点睛:在求过焦点的弦与另一个焦点构成的三角形面积时可以对其分割,转化为两点纵坐标差的绝对值,为简化计算,由于直线过横坐标上一定点,故设直线方程1x my =- 10.(2016·云南昆明市·高三一模(理))已知离心率为√22的椭圆E:x 2a2+y 2b 2=1 (a >b >0)经过点A(1,√22). (1)求椭圆E 的方程; (2)若不过点A 的直线l:y =√22x +m 交椭圆E 于B,C 两点,求ΔABC 面积的最大值.【答案】(1)x 22+y 2=1,(2)√22【解析】试题分析:(Ⅰ)由椭圆的离心率为√22,可得c a=√2,可设椭圆方程为x 22n 2+y 2n 2=1,再代入点A 的坐标得代入设出的椭圆的方程,即可得椭圆E 的方程(Ⅱ)先设点B ,C 的坐标分别为(x 1,y 1),(x 2,y 2),将直线方程与椭圆的方程联立:消去一个元,得到一个一元二次方程.再求解判别式:写出根与系数的关系.计算点A 到直线l 的距离,得到用m 表示ΔABC 的面积,利用基本不等式求出ΔABC 面积的最大值. 试题解析:(Ⅰ)因为ca =√2,所以设a =√2n ,c =n ,则b =n ,椭圆E 的方程为x 22n 2+y 2n 2=1. 代入点A 的坐标得12n 2+12n 2=1,n 2=1,所以椭圆E 的方程为x 22+y 2=1.(Ⅱ)设点B ,C 的坐标分别为(x 1,y 1),(x 2,y 2),由{y =√22x +m x 2+2y 2=2得x 2+2(12x 2+√2mx +m 2)=2,即x 2+√2mx +m 2−1=0, x 1+x 2=−√2m ,x 1⋅x 2=m 2−1 Δ=2m 2−4(m 2−1)>0,m 2<2.|BC|=√(1+k 2)[(x 1+x 2)2−4x 1x 2] =√32[2m 2−4(m 2−1)] =√32(4−2m 2),点A 到直线l 的距离d =√32,ΔABC 的面积S =12|BC|⋅d =12√32(4−2m 2)√32=√22√m 2(2−m 2)≤√22⋅m 2+2−m 22=√22,当且仅当m 2=2−m 2,即m 2=1时等号成立.所以当m =±1时,ΔABC 面积的最大值为√22.考点:(1)椭圆的方程;(2)直线与椭圆的综合问题.【方法点睛】解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.。

高考数学一轮复习专题03 圆锥曲线面积问题(解析版)

高考数学一轮复习专题03 圆锥曲线面积问题(解析版)

F 2F 1OyxBA解析几何专题三:圆锥曲线面积问题一、知识储备 1、三角形面积问题直线AB 方程:y kx m =+ 0021kx y md PH k-+==+00002211122'2'1ABP kx y m kx y mS AB d k A A k ∆-+∆-+∆=⋅=+⋅=+2、焦点三角形的面积直线AB 过焦点21,F ABF ∆的面积为 112121212'ABF c S F F y y c y y A ∆∆=⋅-=-= 2222222222222224()11||S =||d 22AOB a b a A b B C C AB A B a A b B A B∆+-=+++2222222222()C ab a A b B C a A b B+-=+注意:'A 为联立消去x 后关于y 的一元二次方程的二次项系数3、平行四边形的面积直线AB 为1y kx m =+,直线CD 为2y kx m =+ 1221m m d CH k-==+222222121212''11()41()41'''B C AB k x x k x x x x k k A A A ∆=+-=++-=+--⋅=+1212221''1ABCDm m m m SAB d k A A k -∆-∆=⋅=+⋅=+注意:'A 为直线与椭圆联立后消去y 后的一元二次方程的系数. 4、范围问题首选均值不等式,其实用二次函数,最后选导数CDHOyxBA均值不等式 222(,)a b ab a b R +≥∈变式:2,);()(,)2a b a b a b R ab a b R ++++≥∈≤∈ 作用:当两个正数的积为定值时求出这两个正数的和的最小值; 当两个正数的和为定值时求出这两个正数的积的最大值 注意:应用均值不等式求解最值时,应注意“一正二定三相等” 圆锥曲线经常用到的均值不等式形式列举: (1)2226464t S t t t==++(注意分0,0,0t t t =><三种情况讨论)(2)224222121212333196123696k AB t k k k=+=+≤+++⨯+++ 当且仅当2219k k =时,等号成立 (3)222002200259342593464925y x PQ x y =+⋅+⋅≥+= 当且仅当22002200259259925y x x y ⋅=⋅时等号成立. (4)2282m m S -+===当且仅当228m m =-+时,等号成立(5)2221121k m m S -++==≤=当且仅当221212k m +=时等号成立. 二、例题讲解1.(2022·广东高三月考)已知椭圆G :()222210x y a b a b +=>>,且过点()3,1.(1)求椭圆G 的方程;(2)斜率为1的直线l 与椭圆G 交于A 、B 两点,以AB 为底边作等腰三角形,顶点为()3,2P -,求PAB ∆的面积.【答案】(1)221124x y +=;(2)92.【分析】(1)根据椭圆离心率、及所过的点,结合椭圆参数关系求参数,写出椭圆方程.(2)设1122(,),(,)A x y B x y ,AB :y x b =+,其线段AB 中垂线为1y x =--,联立椭圆方程并应用韦达定理求12x x +、12x x ,进而可得12y y +,由AB 中点在中垂线上代入求参数b ,进而求||AB 、P 到AB 的距离,即可求△PAB 的面积. 【详解】(1)由题意,22222911a b a b c c e a ⎧==⎪⎪⎪+⎨==+⎪⎪⎪⎩,解得22124a b ⎧=⎪⎨=⎪⎩,故椭圆G 的方程221124x y+=.(2)令AB 为y x b =+,则AB 中垂线方程为(3)21y x x =-++=--, 联立AB 与椭圆方程得:223()12x x b ++=,整理得22463120x bx b ++-=, 若1122(,),(,)A x y B x y ,则1232b x x +=-,2123124b x x -=, △121222by y x x b +=++=,又1212(,)22x x y y ++在AB 中垂线上,△3144b b-=,可得2b =,即123x x +=-,120x x =,△||AB == 又()3,2P -到AB的距离d △19||PABSAB d =⋅=. 2.(2022·全国高三模拟预测)已知双曲线C :22221x ya b -=()0,0a b >>的左、右焦点分别为1F ,2F ,虚轴上、下两个端点分别为2B ,1B ,右顶点为A ,且双曲线过点,22213B F B A ac a ⋅=-.(1)求双曲线1C 的标准方程;(2)设以点1F 为圆心,半径为2的圆为2C ,已知过2F 的两条相互垂直的直线1l ,2l ,直线1l 与双曲线交于P ,Q 两点,直线2l 与圆2C 相交于M ,N 两点,记PMN ∆,QMN ∆的面积分别为1S ,2S ,求12S S +的取值范围.【答案】(1)2213y x -=;(2)[)12,+∞.【分析】(1)由22213B F B A ac a ⋅=-得223a b =,由双曲线过点得22231a b -=,两个方程联立求出a 和b ,可得双曲线1C 的标准方程;(2)设直线1l :2x my =+,根据垂直关系得直线2l :()2y m x =--,求出弦长||MN 和||PQ ,求出121||||2S S MN PQ +=,再根据参数的范围可求出结果. 【详解】(1)由双曲线的方程可知(),0A a ,()10,B b -,()20,B b ,()2,0F c , 则()22,B F c b =-,()1,B A a b =.因为22213B F B A ac a ⋅=-,所以223ac b ac a -=-,即223a b =.①又双曲线过点,所以22231a b -=.② 由①②解得1a =,b = 所以双曲线1C 的标准方程为2213y x -=. (2)设直线1l :2x my =+,()11,P x y ,()22,Q x y , 则由21l l ⊥,得直线2l :()2y m x =--,即20mx y m +-=. 因为圆心()12,0F -到直线MN的距离d ==所以MN =2d <,故2103m ≤<. 联立221,32,y x x my ⎧-=⎪⎨⎪=+⎩消去x 得()22311290m y my -++=, ()222144363136(1)0m m m ∆=--=+>,则1221231m y y m +=--,122931y y m =-,所以()22126113m PQ y m +=-=-,则1212S S PQ MN +=⋅=, 又2103m ≤<,所以[)1212,S S +∈+∞. 即12S S +的取值范围为[)12,+∞. 【点睛】关键点点睛:设直线1l :2x my =+,用m 表示||MN 和||PQ 是本题的解题关键.3.(2022·浙江高三开学考试)如图,已知抛物线()2:20C y px p =>的焦点为()1,0F ,D 为x 轴上位于F 右侧的点,点A 为抛物线C在第一象限上的一点,且AF DF =,分别延长线段AF 、AD 交抛物线C 于M 、N .(1)若AM MN ⊥,求直线AF 的斜率; (2)求三角形AMN 面积的最小值. 【答案】(1(2)16.【分析】(1)由抛物线的焦点坐标求出p 的值,可得出抛物线C 的方程,设点()2,2A t t ,可知0t >,求出M 、N 的纵坐标,利用斜率公式结合已知条件得出1AM MN k k ⋅=-,可得出关于t 的方程,解出正数t 的值,进而可求得直线AF 的斜率;(2)求出点M 、N 的坐标,求得AM 以及点N 到直线AM 的距离d ,可求得AMN 的面积关于t 的表达式,利用基本不等式可求得AMN 面积的最小值. 【详解】(1)()1,0F ,则12p=,得2p =,所以,抛物线C 的方程为24y x =, 设()2,2A t t ,点A 为抛物线C 在第一象限上的一点,故0t >,设点(),0D d ,由AF DF =得211t d +=-,则22d t =+,得()22,0D t +,所以,221AMt k t =-,直线AM 的方程为2112t x y t-=+, 联立224112y xt x y t ⎧=⎪⎨-=+⎪⎩,得222240t y y t ---=,所以,42M A y y t -==-, 进一步得()2222AN AD tk k t t t ===--+,直线AN 的方程为212x y t t=-++, 联立22124x y t t y x⎧=-++⎪⎨⎪=⎩,得()224420y y t t +-+=,4N A y y t ∴+=-,则42N y t t=--,又AM MN ⊥,22224414444A M M N A M M N AM MN A M M N A M M N A M M Ny y y y y y y y k k y y y y x x x x y y y y ----∴⋅=⋅=⋅=⋅=---++--, 代入得44122422t tt t t⋅=-----,化简得:42230t t --=, 又0t >,t ∴=(3,A,AF k ∴==(2)由(1)知224,2N t t t t ⎛⎫⎛⎫+-- ⎪ ⎪ ⎪⎝⎭⎝⎭,212,M t t ⎛⎫- ⎪⎝⎭, ()222221122A M t AM x x t tt+=++=++=,直线AM 的方程2112t x y t-=+即为()22120tx t y t ---= 所以点N 到直线AM 的距离为()()()222221211t t d tt t++==+,()332331122216AMN t S t t t +⎛⎛⎫==+≥= ⎪ ⎝⎭⎝△, 当且仅当1t =时,S 取到最小值16. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.1.(2022·江苏南京·高三月考)已知抛物线1G :24y x =与椭圆2G :22221x y a b+=(0a b >>)有公共的焦点,2G 的左、右焦点分别为1F ,2F ,该椭圆的离心率为12. (1)求椭圆2G 的方程;(2)如图,若直线l 与x 轴,椭圆2G 顺次交于P ,Q ,R (P 点在椭圆左顶点的左侧),且1PFQ ∠与1PF R ∠互补,求1F QR ∆面积S 的最大值.【答案】(1)22143x y +=.(2【分析】(1)由已知条件推导出1c =,结合12e =和隐含条件222a b c =+,即可求出椭圆标准方程; (2)设1(Q x ,1)y ,2(R x ,2)y ,(1,0)F -,1PFQ ∠与1PF R ∠互补,可得110QF RF k k +=,根据已知条件,结合韦达定理、点到距离公式和均值不等式,即可求解. 【详解】解:(1)由题意可得,抛物线的焦点为(1,0),∴椭圆的半焦距1c =,又椭圆的离心率为12,∴12c e a ==,即2a =, 222a b c =+,222413b a c ∴=-=-=,即b =∴椭圆2C 的方程为22143x y +=. (2)设1(Q x ,1)y ,2(R x ,2)y ,(1,0)F -,1PFQ ∠与1PF R ∠互补,∴110QF RF k k +=, ∴1212011y yx x +=++,化简整理,可得1222110x y y x y y +++=①, 设直线PQ 为(0)x my n m =+≠,联立直线与椭圆方程22143x my n x y =+⎧⎪⎨+=⎪⎩,化简整理,可得222(34)63120m y mny n +++-=,∆222224364(34)(312)0b ac m n m n =-=-+->,可得2234n m <+②,由韦达定理,可得21212226312,3434mn n y y y y m m -+=-=++③, 将11x my n =+,22x my n =+代入①,可得12122(1)()0my y n y y +++=④, 再将③代入④,可得2226(4)6(1)3434m n mn n m m -+=++,解得4n =-,PQ ∴的方程为4x my =-,由点(1,0)F -到直线PQ的距离d =,11||2F QRSQR d =⋅= 由②可得,23416m +>,即24m >,设()f m =24m t -=,0t >,()f t ∴= 由均值不等式可知,25625692996t t t t+⋅=, 当且仅当2569t t =时,即163t =,等号成立,当2569t t+取最小值时,()f t 取最大值,即1FQR 面积S 最大,∴()18max f t =, ∴△1FQR 面积S2.(2022·重庆市第十一中学校高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为点与右焦点的连线构成正三角形. (△)求椭圆C 的标准方程;(△)设过点(0,2)P -的动直线l 与椭圆C 相交于M ,N 两点,当OMN ∆的面积最大时,求l 的方程. 【答案】(△)2214x y +=;(△)2y -或2y =-. 【分析】(△)由题意知,c =c a =222b a c =-,即可求得椭圆的方程; (△)设直线:2l y kx =-,()11,M x y ,()22,N x y ,联立22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得()221416120k x kx +-+=,利用韦达定理,弦长公式结合OMN的面积公式得到OMNS =,利用换元结合基本不等式求解. 【详解】(△)由题意知,c =cos 6c a π==, 2a ∴=,2221b a c =-=所以椭圆的方程为2214x y +=.(△)当l x ⊥轴时不合题意,由题意设直线:2l y kx =-,()11,M x y ,()22,N x y . 联立22214y kx x y =-⎧⎪⎨+=⎪⎩,整理得()221416120k x kx +-+=. 当()216430k ∆=->,即234k >,且1221614k x x k +=-+,1221214x x k =+.从而12||MN x-=.又点O 到直线MN的距离d =所以OMN 的面积1||2OMNSd MN =⋅=t ,则0t >,24444OMNt St t t==++.因为44t t +≥,当且仅当2t =,即2k =±时等号成立,且满足0∆>. 所以,当OMN 的面积最大时,直线l的方程为2y x =-或2y x =-. 【点睛】思路点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.3.(2022·全国高三月考)已知椭圆()2222:10x y E a b a b+=>>的左、右焦点分别是()1F和)2F ,点Р在椭圆E 上,且12PF F △的周长是4+ (1)求椭圆E 的标准方程;(2)已知、、A B C 为椭圆E 上三点,若有0OA OB OC ++=,求ABC ∆的面积. 【答案】(1)2214x y +=;(2【分析】(1)根据题设条件和椭圆的定义得到12124PF PF F F ++=+124PF PF +=,得到2a =,进而求得21b =,即可求得椭圆的方程;()2当直线AB 斜率存在时,设AB 方程为:y kx m =+,联立方程组求得1212,x x x x +,根据0OA OB OC ++=,求得2282(,)1414km m C k k -++,结合点到直线的距离公式和面积公式,求得3332ABCOABS S=⋅=;当直线AB 斜率不存在时,得到直线AB 方程为1x =±,求得332ABCABOS S==. 【详解】(1)由题意,双曲线2222:1xy E a b+=的焦点()1F 和)2F ,可得12F F =因为12PF F △的周长是4+12124PF PF F F ++=+所以124PF PF +=,即24a =,可得2a =,又由222431b a c =-=-=, 所以椭圆E 的方程是2214x y +=.()2当直线AB 斜率存在时,设AB 方程为:y kx m =+,()()()112233,,,,,A x y B x y C x y ,联立方程组2214x y y kx m ⎧+=⎪⎨⎪=+⎩,整理得2221484()40k x kmx m +++-=,则22212122284416(41)0,,1414km m k m x x x x k k -∆=-+>+=-=++ 由0OA OB OC ++=,可得12312300x x x y y y ++=⎧⎨++=⎩,又由122814kmx x k +=-+,可得()12121222214m y y kx m kx m k x x m k +=+++=++=+ 所以332282,1414km m x y k k ==-++, 将()33,x y 代入椭圆方程可得222282441414km m k k ⎛⎫⎛⎫+-= ⎪ ⎪++⎝⎭⎝⎭,整理得22414m k =+, 又O 到直线AB的距离为d =则()2112OABSk =⋅+= 又由0OA OB OC ++=,可得点O 为ABC 的重心,所以3332ABCOABS S=⋅=; 当直线AB 斜率不存在时,根据坐标关系可得,直线AB 方程为1x =±,可得AB112ABOS ==所以13312ABC ABOSS==⨯综上可得:ABC S △. 【点睛】直线与圆锥曲线的综合问题的求解策略:对于直线与圆锥曲线的位置关系的综合应用问题,通常联立直线方程与圆锥曲线方程,应用一元二次方程根与系数的关系,以及弦长公式等进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力.4.(2022·榆林市第十中学高三月考(理))已知1F ,2F 分别是椭圆()2222:10x yE a b a b+=>>的左,右焦点,126F F =,当P 在E 上且1PF 垂直x 轴时,217PF PF =.(1)求E 的标准方程;(2)A 为E 的左顶点,B 为E 的上顶点,M 是E 上第四象限内一点,AM 与y 轴交于点C ,BM 与x 轴交于点D .(i )证明:四边形ABDC 的面积是定值. (ii )求CDM 的面积的最大值.【答案】(1)221123x y +=;(2)(i )证明见解析;(ii )())max 31CDM S =△.【分析】(1)由通径长公式得21b PF a=,结合椭圆定义可得,a b 关系,再由3c =求得,a b ,得椭圆方程;(2)(i )由题意知()A -,(B ,设(),M m n ,()0,C t ,(),0D s ,由三点共线把,s t 用,m n 表示,然后计算四边形面积可得结论;(ii )由(i )只要ABM 面积最大即可,求出椭圆的与AB 平行的切线方程,切点即为M (注意有两个切点,需要确定其中一个),从而得面积最大值. 【详解】解:(1)由题意知21b PF a=,212PF PF a +=,217PF PF =,则182PF a =,得2a b =,又3c =,222a b c =+,解得2a b == 所以E 的标准方程是221123x y +=.(2)(i )由题意知()A -,(B ,设(),M m n ,()0,C t ,(),0D s ,因为A ,C ,M 三点共线,则AC AM λ=,解得t =B ,D ,M 三点共线,则BD BM μ=,解得s =,AD s =+BC t =,221123m n +=,66AD BC st ⋅--+==6612m n +==. 162ABDC S AD BC =⋅=. (ii )因为CDM ABM ABDC S S S =-四边形△△, 所以当ABM S △最大时,CDMS 最大.1:2AB l y x =AB 平行的直线()1:02l y x p p =+<, 与221123x y +=联立,消y 得222260x px p ++-=,()2244260pp ∆=--=,解得p =p =(舍去),两平行线AB l ,l间的距离25d =,())max1312ABM S AB d =⋅=△,则())max 31CDM S =△.5.(2022·山西祁县中学高三月考(理))在平面直角坐标系xOy 中,已知(1,0)F ,动点P 到直线6x =的距离等于2||2PF +.动点P 的轨迹记为曲线C . (1)求曲线C 的方程;(2)已知(2,0)A ,过点F 的动直线l 与曲线C 交于B ,D 两点,记AOB ∆和AOD ∆的面积分别为1S 和2S ,求12S S +的最大值.【答案】(1)221123x y +=;(2)3.【分析】(1)设点P (x ,y ),再根据动点P 到直线x =6的距离等于2|PF |+2列出方程化简即可;(2)设直线l 的方程为x =my +1,联立直线与(1)中所得的椭圆方程,得出韦达定理,再得出S 1+S 2=12|OA ||y 1-y 2|关于m 的表达式,换元求解最值即可 【详解】(1)设点P (x ,y ),当6x ≥时,P 到直线x =6的距离显然小于PF ,故不满足题意; 故()62,6x x -=<,即4x -=整理得3x 2+4y 2=12,即24x +23y =1.故曲线C 的方程为24x +23y =1.(2)由题意可知直线l 的斜率不为0,则可设直线l 的方程为x =my +1,B (x 1,y 1),D (x 2,y 2).联立221143x my x y =+⎧⎪⎨+=⎪⎩,, 整理得(3m 2+4)y 2+6my -9=0,Δ>0显然成立, 所以y 1+y 2=-2634m m +,y 1y 2=-2934m +, 所以|y 1-y 2|故S 1+S 2=12|OA ||y 1|+12|OA ||y 2|=12|OA ||y 1-y2|.设t t ≥1,则m 2=t 2-1,则S 1+S 2=21231tt +=1213t t+. 因为t ≥1,所以3t +1t≥4(当且仅当t =1时,等号成立).故S 1+S 2=1213t t+≤3, 即S 1+S 2的最大值为3.6.(2022·西藏拉萨中学高三月考(理))(1)一动圆过定点(1,0)A ,且与定圆22:(1)16C x y ++=相切,求动圆圆心的轨迹E 的方程.(2)直线l 经过点A 且不与x 轴重合,l 与轨迹E 相交于P 、Q 两点,求CPQ ∆的面积的最大值.【答案】(1)22143x y +=;(2)3. 【分析】(1)设动圆圆心为(),M x y ,半径为R .由与定圆22:(1)16C x y ++=相切,且点A 的圆C 内,由||44||MC R MA =-=-,即||||4MC MA +=,利用椭圆的定义求解;(2)设l 的方程为:1x my -=,代入22143x y +=,由121||2CPQSCA y y =⋅-,结合韦达定理求解. 【详解】(1)设动圆圆心为(),M x y ,半径为R .定圆C 的圆心(1,0)C -,半径为4. 点A 的圆C 内.||44||||||4MC R MA MC MA ∴=-=-∴+=,且4AC > ,∴轨迹E 是以C 、A 为焦点,长轴长为4的椭圆,所以椭圆方程为:22143x y +=. (2)设l 的方程为:1x my -=,代入22143x y +=, 得()2234690m y my ++-=,设()()1122,,P x y Q x y ⋅, 则122634m y y m -+=+,122934y y m -=+,121||2CPQSCA y y =⋅-,=令21(1)t m t =+,则1212CPQS=1()9f t t t=+在[1,)+∞为增函数1t ∴=,即0m =时,CPQ S △取最大值3.7.(2022·山东高三模拟预测)已知双曲线C :()222210,0x y a b a b-=>>的右焦点F 与抛物线28y x =的焦点重合,一条渐近线的倾斜角为30o . (1)求双曲线C 的方程;(2)经过点F 的直线与双曲线的右支交与,A B 两点,与y 轴交与P 点,点P 关于原点的对称点为点Q ,求证:QABS>【答案】(1)2213x y -=;(2)证明见解析.【分析】(1)由题意可得2c =,o tan 30b a ==222c a b =+可求出22,a b ,从而可求出双曲线C 的方程; (2)由题意知直线的斜率存在,设直线方程为:()2y k x =-,可得()02P k -,,()02Q k ,,将直线方程与双曲线方程联立方程组,消去y ,利用根与系数的关系,从而可表示出()()2222248131QABk k Sk +=-,再由直线与双曲线的右支交与,A B 两点,可得231k >,则2310t k =->,代入上式化简可求得结果 【详解】解:(1)由题意得2c =,o tan 30b a ==222c a b =+ 解得2231a b ==,所以双曲线C 的方程为:2213x y -=(2)由题意知直线的斜率存在,设直线方程为:()2y k x =-,得()02P k -,,()02Q k ,, 设()11A x y ,,()22B x y ,,联立()22132x y y k x ⎧-=⎪⎨⎪=-⎩,整理可得()222231121230k x k x k --++=21221231k x x k +=-,212212331k x x k +⋅=- 所以1212QABQPB QPASSSPQ x x =-=-122k x x =- 所以()()2222221212224123124443131QABk k Sk x x x x k k k ⎡⎤+⎛⎫⎡⎤⎢⎥=+-=- ⎪⎣⎦--⎢⎥⎝⎭⎣⎦2()()222248131k k k+=-直线与双曲线右支有两个交点,所以22121222121230,03131k k x x x x k k ++=>⋅=>-- 所以231k >,设2310t k =->,()2221111645334813QABt t St t t ++⎛⎫⋅+⎪⎛⎫⎝⎭==++ ⎪⎝⎭2641564251633383643t ⎛⎫=+->⨯-=⎪⎝⎭所以QAB S >【点睛】关键点点睛:此题考查双曲线方程的求法,考查直线与双曲线的位置关系,解题的关键是将直线方程与双曲线方程联立后,利用根与系数的有关系,从而可表示出()()2222248131QABk k S k+=-,再结合231k >,换元后求其最小值即可,考查计算能力,属于中档题 8.(2022·全国高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>的两个焦点分别为()12,0F -,()22,0F,点(P 在双曲线C 上.(1)求双曲线C 的方程;(2)记O 为坐标原点,过点()0,2Q 的直线l 与双曲线C 交于不同的两点A ,B ,若OAB ∆的面积为求直线l 的方程.【答案】(1)22122x y -=;(2)2y =+和2y =+. 【分析】(1)根据焦点坐标,可得2c =,所以224a b +=,代入双曲线方程,可得()222221044x y a a a-=<<-,将P 点坐标代入,即可求得a 值,即可得答案;(2)设直线l 的方程为2y kx =+,与双曲线C 联立,可得关于x 的一元二次方程,利用韦达定理,可得1212,x x x x +的表达式,代入弦长公式,即可求得AB ,根据点到直线的距离公式,可求得原点到直线l 的距离d ,代入面积公式,结合题意,即可求得k 的值,即可得答案. 【详解】(1)依题意,2c =,所以224a b +=,则双曲线C 的方程为()222221044x y a a a-=<<-,将点P 代入上式,得22252314a a -=-, 解得250a =(舍去)或22a =, 故所求双曲线的方程为22122x y -=.(2)依题意,可设直线l 的方程为2y kx =+,代入双曲线C 的方程并整理,得()221460k x kx ---=.因为直线l 与双曲线C 交于不同的两点,A B ,所以()22210(4)2410k k k ⎧-≠⎪⎨-+->⎪⎩,解得1k k ≠±⎧⎪⎨<⎪⎩(*) 设()()1122,,,A x y B x y ,则12122246,11k x x x x k k +==---,所以||AB =又原点O 到直线l 的距离d =所以11||22OABSd AB =⋅==.又OABS=1=,所以4220k k --=,解得k =(*).故满足条件的直线l 有两条,其方程分别为2y =+和2y =+. 【点睛】解题的关键是熟练掌握弦长公式、点到直线的距离公式等知识,并灵活应用,易错点为:解得k 值,需检验是否满足判别式0∆>的条件,考查计算化简的能力,属中档题.9.(2022·全国高三专题练习)已知双曲线22:1164x y C -=的左、右焦点分别为1F ,2F . (1)求与双曲线C 有共同渐近线且过点()2,3的双曲线标准方程; (2)若P 是双曲线C 上一点,且12150F PF ∠=︒,求12F PF △的面积.【答案】(1)221832y x -=;(2)8-【分析】(1)根据题意,设所求双曲线方程为22(0)164x y k k -=≠,代入点()2,3,求得k 值,即可得答案; (2)不妨设P 在C 的右支上,根据双曲线定义,可得1228PF PF a -==,根据方程可得12F F 的值,在12F PF △中,利用余弦定理可得12PF PF 的值,代入面积公式,即可求得答案. 【详解】(1)因为所求双曲线与22:1164x y C -=共渐近线,所以设该双曲线方程为22(0)164x y k k -=≠, 又该双曲线过点()2,3, 所以49164k -=,解得k =-2, 所以所求双曲线方程为:221832y x -=(2)不妨设P 在C 的右支上,则1228PF PF a -==,122F F c == 在12F PF △中,2222121212121212()280cos15022PF PF F F PF PF PF PF PF PF PF PF +--+-︒===解得1232PF PF =- 所以12F PF △的面积1212111sin (328222F P S F PF PF ∠==⨯-⨯=-【点睛】解题的关键是:掌握共渐近线的双曲线方程的设法,即与22221x y a b-=共渐近线的方程可设为:2222(0)x y k k a b -=≠;与22221x y a b -=共焦点的方程可设为:22221x y a b λλ-=+-,再代入点求解即可,考查分析计算的能力,属中档题.10.(2022·浙江高三开学考试)已知抛物线T :()22y px p N +=∈和椭圆C :2215x y +=,过抛物线T 的焦点F 的直线l 交抛物线于A ,B 两点,线段AB 的中垂线交椭圆C 于M ,N 两点.(1)若F 恰是椭圆C 的焦点,求p 的值;(2)若MN 恰好被AB 平分,求OAB 面积的最大值. 【答案】(1)4p =;(2【分析】(1)根据椭圆方程求出椭圆的焦点坐标,再根据F 恰是椭圆C 的焦点,即可得出答案;(2)设直线l :2p x my =+,()()()()11223344,,,,,,,A x y B x y M x y N x y ,联立222p x my y px⎧=+⎪⎨⎪=⎩,求得AB 的中点坐标,根据因为MN 恰好被AB 平分,则直线MN 的斜率等于m -,再根据点差法求得直线MN 的斜率,求得2m ,根据由AB 的中点在椭圆内,求得p 的最大值,从而可求得OAB 面积的最大值. 【详解】解:(1)在椭圆中,2224c a b =-=,所以2c =, 因为F 恰是椭圆C 的焦点, 所以22p=,所以4p =; (2)设直线l :2px my =+,()()()()11223344,,,,,,,A x y B x y M x y N x y , 联立222p x my y px ⎧=+⎪⎨⎪=⎩,得2220y mpy p --=, 则212122,y y mp y y p +=⋅=-,则2122x x m p p +=+,故AB 的中点坐标为2,2p m p mp ⎛⎫+ ⎪⎝⎭,又因为MN 恰好被AB 平分,则2342x x m p p +=+,342y y mp +=,直线MN 的斜率等于m -,将M 、N 的坐标代入椭圆方程得:223315x y +=,224415x y +=, 两式相减得:()()()()3434343405x x x x y y y y +-++-=, 故234342110y y m x x m-+=--, 即直线MN 的斜率等于22110m m+-, 所以22110m m m+-=-,解得218m =, 由AB 的中点在椭圆内,得2222()15p m p mp ⎛⎫+ ⎪⎝⎭+<,解得26413p <, 因为p Z ∈,所以p 的最大值是2,12y y -== 则OAB面积212122p S y y p =⨯-==≤, 所以,当2p =时,OAB . 11.(2022·普宁市第二中学高三月考)在平面直角坐标系xOy 中,原点为O ,抛物线C 的方程为24x y =,线段AB 是抛物线C 的一条动弦.(1)求抛物线C 的准线方程;(2)求=4OA OB ⋅-,求证:直线AB 恒过定点;(3)过抛物线的焦点F 作互相垂直的两条直线1l 、2l ,1l 与抛物线交于P 、Q 两点,2l 与抛物线交于C 、D 两点,M 、N 分别是线段PQ 、CD 的中点,求FMN 面积的最小值.【答案】(1)准线方程:1y =-;(2)直线AB 恒过定点()0,2,证明见解析;(3)4.【分析】(1)由焦点在y 轴正半轴上,且2p =,即可得准线方程;(2)设直线AB 方程为y kx b =+,与抛物线方程联立由韦达定理和向量数量积的坐标运算,解方程可得b 的值,即可得所过的定点;(3)设1l 的方程为1y kx =+,()33,P x y ,()44,Q x y ,与抛物线方程联立,运用韦达定理和中点坐标公式求M 、N 两点坐标,由两点间距离公式求FM 、FN 的长,再计算12FMN SFM FN ,由基本不等式求最值即可求解.【详解】 (1)由24x y =可得:2p =,焦点为()0,1F ,所以准线方程:1y =-,(2)设直线AB 方程为y kx b =+,()11,A x y ,()22,B x y由24y kx b x y=+⎧⎨=⎩得2440x kx b --=, 所以124x x k +=,124x x b =-,222121212124416x x OA OB x x y y x x b b ⋅=+=+=-+=-, 即2440b b -+=,解得:2b =所以直线2y kx =+过定点()0,2(3)()0,1F ,由题意知直线1l 、2l 的斜率都存在且不为0,设直线1l 的方程为1y kx =+,()33,P x y ,()44,Q x y ,则直线2l 的方程为11y x k=-+, 由241x y y kx ⎧=⎨=+⎩得2440x kx --=, 所以344x x k +=,344x x =-,所以()34122M x x x k =+=,2121M M y kx k =+=+,所以()22,21M k k + 用1k -替换k 可得2N x k =-,221N y k =+,所以222,1N k k⎛⎫-+ ⎪⎝⎭,所以12FMN S FM FN ====224≥=⨯=,当且仅当221k k =即1k =±时,等号成立, 所以FMN 的面积取最小值4.【点睛】方法点睛:解决圆锥曲线中的范围或最值问题时,若题目的条件和结论能体现出明确的函数关系,则可先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求出新参数的范围,解题的关键是建立两个参数之间的等量关系;③利用基本不等式求出参数的取值范围;④利用函数值域的求法,确定参数的取值范围.。

解析几何历年高考真题试卷--带详细答案

解析几何历年高考真题试卷--带详细答案

解析几何高考真题一、单选题(共11题;共22分)1.(2020·新课标Ⅲ·理)设双曲线C :x 2a 2−y 2b 2=1 (a>0,b>0)的左、右焦点分别为F 1 , F 2 , 离心率为 √5 .P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a=( ) A. 1 B. 2 C. 4 D. 82.(2020·新课标Ⅲ·理)设O 为坐标原点,直线x=2与抛物线C :y 2=2px(p>0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( )A. ( 14 ,0)B. ( 12 ,0) C. (1,0) D. (2,0) 3.(2020·新课标Ⅱ·理)设O 为坐标原点,直线 x =a 与双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于 D,E 两点,若 △ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8 C. 16 D. 32 4.(2020·天津)设双曲线 C 的方程为x 2a 2−y 2b 2=1(a >0,b >0) ,过抛物线 y 2=4x 的焦点和点 (0,b) 的直线为l .若C 的一条渐近线与 l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24−y 24=1 B. x 2−y 24=1 C.x 24−y 2=1 D. x 2−y 2=15.(2019·天津)已知抛物线 的焦点为F ,准线为l.若与双曲线x 2a2−y 2b 2=1(a >0,b >0) 的两条渐近线分别交于点A 和点B , 且 |AB|=4|OF| (O 为原点),则双曲线的离心率为( ) A. √2 B. √3 C. 2 D. √56.(2020·北京)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作 PQ ⊥l 于Q ,则线段 FQ 的垂直平分线( ).A. 经过点OB. 经过点PC. 平行于直线 OPD. 垂直于直线 OP7.(2019·天津)已知抛物线 y 2=4x 的焦点为 F ,准线为 l ,若 l 与双曲线 x 2a 2−y 2b 2=1 (a >0,b >0) 的两条渐近线分别交于点 A 和点 B ,且 |AB|=4|OF| ( O 为原点),则双曲线的离心率为( )A. √2B. √3C. 2D. √5 8.(2019·全国Ⅲ卷理)双曲线 C:x 24−y 22=1 的右焦点为F,点P 在C 的一条渐近线上,O 为坐标原点,若|PO|=|PF|,则△PFO 的面积为( )A. 3√24B. 3√22C. 2√2D. 3√29.已知椭圆E:x 2a 2+y 2b 2=1(a >b >0)的右焦点为F .短轴的一个端点为M ,直线l:3x-4y=0交椭圆E 于A,B两点.若|AF+BF|=4,点M 到直线l 的距离不小于45 , 则椭圆E 的离心率的取值范围是( )A. (0,√32] B. (0,34] C. [√32.1) D. [34,1)10.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b , e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b , e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 211.将离心率为e 1的双曲线c 1的实半轴长a 和虚半轴长b (a ≠b )同时增加(m >0)个单位长度,得到离心率为e 2的双曲线c 2 , 则( )A. 对任意的a,b,e 1>e 2B. 当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C. 对任意的a,b,e 1<e 2D. 当a >b 时,e 1<e 2;当a <b 时,e 1>e 2二、填空题(共5题;共6分)12.(2020·新课标Ⅰ·理)已知F 为双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的右焦点,A 为C 的右顶点,B 为C上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________.13.(2019·江苏)在平面直角坐标系 xOy 中,P 是曲线 y =x +4x (x >0) 上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 14.(2019·浙江)已知椭圆x 29+y 25=1 的左焦点为F ,点P 在椭圆且在x 轴上方,若线段PF 的中点在以原点O 为圆心,|OF|为半径的圆上,则直线PF 的斜率是________ 15.(2018·北京)已知椭圆 M:x 2a 2+y 2b 2=1(a >b >0) ,双曲线 N:x 2m 2−y 2n 2=1 . 若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________16.(2017·江苏)在平面直角坐标系xOy 中,双曲线x 23﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1 , F 2 , 则四边形F 1PF 2Q 的面积是________.三、解答题(共9题;共85分)17.(2020·新课标Ⅲ·理)已知椭圆 C:x 225+y 2m 2=1(0<m <5) 的离心率为√154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线 x =6 上,且 |BP|=|BQ| , BP ⊥BQ ,求 △APQ 的面积.18.(2020·新课标Ⅱ·文)已知椭圆C 1:x 2a 2+y 2b 2=1 (a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD|= 43 |AB|. (1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.19.(2020·新课标Ⅰ·理)已知A 、B 分别为椭圆E :x 2a 2+y 2=1 (a>1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ⋅GB ⃗⃗⃗⃗⃗ =8 ,P 为直线x=6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.20.(2020·新高考Ⅱ)已知椭圆C : x 2a 2+y 2b 2=1(a >b >0) 过点M (2,3),点A 为其左顶点,且AM 的斜率为 12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.21.(2019·天津)设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,左顶点为A,顶点为B.已知√3|OA|=2|OB|(O为原点).(Ⅰ)求椭圆的离心率;(Ⅱ)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为p,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP,求椭圆的方程.22.(2019·全国Ⅲ卷文)已知曲线C:y= x22,D为直线y= −12上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点:(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.23.(2019·全国Ⅲ卷理)已知曲线C: y=x22,D为直线y=- 12的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E(0,52)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.24.(2019·全国Ⅱ卷文)已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点。

1963年的高考数学试题及答案

1963年的高考数学试题及答案

1963年的高考数学试题及答案1963年的高考数学试题及答案反映了那个时代教育的特点和难度。

试题涵盖了代数、几何、三角学和解析几何等基础数学知识,旨在考查学生的数学基础和解题能力。

以下是1963年高考数学试题的详细内容及答案。

试题一:代数部分1. 解方程:x^2 - 5x + 6 = 0答案:x = 2 或 x = 32. 计算表达式:(2x + 3)(x - 1) - (x + 1)^2答案:x^2 - 2x - 4试题二:几何部分1. 已知三角形ABC,其中AB = 5cm,BC = 7cm,AC = 6cm,求三角形ABC的面积。

答案:面积= 10√3 cm²2. 证明:如果一个三角形的两边相等,则这两个边所对的角也相等。

答案:根据等边对等角的性质,可以证明此命题成立。

试题三:三角学部分1. 已知sin A = 3/5,且A为锐角,求cos A和tan A的值。

答案:cos A = 4/5,tan A = 3/42. 计算:sin 30° + cos 45° - tan 60°答案:1/2 + √2/2 - √3试题四:解析几何部分1. 已知直线方程为y = 2x + 3,求该直线与x轴和y轴的交点。

答案:与x轴交点为(-3/2, 0),与y轴交点为(0, 3)。

2. 已知圆的方程为(x - 2)^2 + (y + 1)^2 = 9,求圆心坐标和半径。

答案:圆心坐标为(2, -1),半径为3。

这些试题和答案展示了1963年高考数学的难度和覆盖范围,同时也体现了当时教育对于数学基础知识的重视。

通过这些试题,我们可以了解到那个时代的学生需要掌握的数学知识和解题技巧。

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析

高三数学解析几何试题答案及解析1.(本小题满分10分)选修4-1:几何证明选讲如图,是圆的直径,是半径的中点,是延长线上一点,且,直线与圆相交于点、(不与、重合),与圆相切于点,连结,,.(Ⅰ)求证:;(Ⅱ)若,求.【答案】(Ⅰ)详见解析(Ⅱ)【解析】(Ⅰ)证明目标可看做线段成比例,即证明思路确定为证明三角形相似:利用切割线定理得:,又由与相似,得;所以(Ⅱ)由(1)知,,与相似,则,所以试题解析:(1)连接,,,为等边三角形,则,可证与相似,得;又,则(2)由(1)知,,与相似,则因为,所以【考点】三角形相似,切割线定理2.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系下,圆的方程为.(Ⅰ)求直线的普通方程和圆的圆心的极坐标;(Ⅱ)设直线和圆的交点为、,求弦的长.【答案】(Ⅰ)的普通方程为,圆心;(Ⅱ).【解析】(Ⅰ)消去参数即可将的参数方程化为普通方程,在直角坐标系下求出圆心的坐标,化为极坐标即可;(Ⅱ)求出圆心到直线的距离,由勾股定理求弦长即可.试题解析:(Ⅰ)由的参数方程消去参数得普通方程为 2分圆的直角坐标方程, 4分所以圆心的直角坐标为,因此圆心的一个极坐标为. 6分(答案不唯一,只要符合要求就给分)(Ⅱ)由(Ⅰ)知圆心到直线的距离, 8分所以. 10分【考点】1.参数方程与普通方程的互化;2.极坐标与直角坐标的互化.:的焦点,且抛物线3.(本题满分12分)如图,O为坐标原点,点F为抛物线C1C1上点P处的切线与圆C2:相切于点Q.(Ⅰ)当直线PQ的方程为时,求抛物线C1的方程;(Ⅱ)当正数变化时,记S1,S2分别为△FPQ,△FOQ的面积,求的最小值.【答案】(Ⅰ);(Ⅱ).【解析】第一问要求抛物线的方程,任务就是求的值,根据导数的几何意义,设出切点坐标,从而求得,再根据切点在切线上,得,从而求得,进而得到抛物线的方程,第二问根据三角形的面积公式,利用题中的条件,将两个三角形的面积转化为关于和切点横坐标的关系式,从而有,利用基本不等式求得最值.试题解析:(Ⅰ)设点,由得,,求导,……2分因为直线PQ的斜率为1,所以且,解得,所以抛物线C1的方程为.(Ⅱ)因为点P处的切线方程为:,即,根据切线又与圆相切,得,即,化简得,由,得,由方程组,解得,所以,点到切线PQ的距离是,所以,,所以,当且仅当时取“=”号,即,此时,,所以的最小值为.【考点】导数的几何意义,三角形的面积,基本不等式.4.(本小题满分12分)已知椭圆的左、右焦点分别为F1(-3,0),F2(3,0),直线y=kx与椭圆交于A、B两点.(Ⅰ)若三角形AF1F2的周长为,求椭圆的标准方程;(Ⅱ)若,且以AB为直径的圆过椭圆的右焦点,求椭圆离心率e的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)直接由题意和椭圆的概念可列出方程组,进而可求出椭圆的标准方程即可;(Ⅱ)首先设出点,然后联立直线与椭圆的方程并整理可得一元二次方程,进而由韦达定理可得,再结合可列出等式并化简即可得到等式,最后结合已知,即可求出参数的取值范围,进而得出椭圆离心率e的取值范围即可.试题解析:(Ⅰ)由题意得,得.结合,解得,.所以,椭圆的方程为.(Ⅱ)由得.设.所以,易知,,因为,,所以.即,将其整理为.因为,所以,即,所以离心率.【考点】1、椭圆的标准方程;2、直线与椭圆的相交综合问题;5.(本小题满分12分)椭圆()的上顶点为,是上的一点,以为直径的圆经过椭圆的右焦点.(1)求椭圆的方程;(2)动直线与椭圆有且只有一个公共点,问:在轴上是否存在两个定点,它们到直线的距离之积等于?如果存在,求出这两个定点的坐标;如果不存在,说明理由.【答案】(1);(2)存在两个定点,.【解析】(1)由题设可得①,又点P在椭圆C上,可得②,又③,由①③联立解得c,b2,即可得解.(2)设动直线l的方程为y=kx+m,代入椭圆方程消去y,整理得(﹡),由△=0,得,假设存在,满足题设,则由对任意的实数k恒成立.由即可求出这两个定点的坐标.试题解析:(1),,由题设可知,得①又点在椭圆上,,②③①③联立解得,,故所求椭圆的方程为(2)当直线的斜率存在时,设其方程为,代入椭圆方程,消去,整理得()方程()有且只有一个实根,又,所以,得假设存在,满足题设,则由对任意的实数恒成立,所以,解得,或当直线的斜率不存在时,经检验符合题意.总上,存在两个定点,,使它们到直线的距离之积等于.……12分【考点】1、直线与圆锥曲线的关系;2、椭圆的标准方程.【方法点晴】本题主要考查了椭圆的标准方程的解法,考查了直线与圆锥曲线的关系,综合性较强,属于中档题.处理直线与圆锥曲线的关系问题时,注意韦达定理的应用,同时还得特别注意直线斜率不存在时的情况的验证.6.直线被圆截得的弦长为()A.1B.2C.4D.【答案】C【解析】圆心,圆心到直线的距离,半径,所以最后弦长为.故选C.【考点】点到直线的距离.7.(本小题12分)己知、、是椭圆:()上的三点,其中点的坐标为,过椭圆的中心,且,。

高考数学复习考点题型专题讲解28 解析几何中优化运算的方法

高考数学复习考点题型专题讲解28 解析几何中优化运算的方法

高考数学复习考点题型专题讲解专题28 解析几何中优化运算的方法1.焦点三角形的面积(1)设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,△PF1F2的面积记为S△PF1F2,则S△PF1F2=b2tanθ2.(2)设P点是双曲线x2a2-y2b2=1(a>0,b>0)上异于实轴端点的任一点,F1,F2为其焦点,记∠F1PF2=θ,△PF1F2的面积记为S△PF1F2,则S△PF1F2=b2tanθ2.2.中心弦的性质设A,B为圆锥曲线关于原点对称的两点,P为该曲线上异于A,B的点.(1)若圆锥曲线为椭圆x2a2+y2b2=1(a>b>0),则k PA k PB=-b2a2=e2-1.(2)若圆锥曲线为双曲线x2a2-y2b2=1(a>0,b>0),则k PA k PB=b2a2=e2-1.3.中点弦的性质设圆锥曲线以M(x0,y0)(y0≠0)为中点的弦AB所在的直线的斜率为k.(1)若圆锥曲线为椭圆x2a2+y2b2=1(a>b>0),则k AB=-b2xa2y,k AB·k OM=-b2a2=e2-1.(2)若圆锥曲线为双曲线x2a2-y2b2=1(a>0,b>0),则k AB=b2xa2y,k AB·k OM=b2a2=e2-1.(3)若圆锥曲线为抛物线y2=2px(p>0),则k AB=py0 .4.圆锥曲线的切线方程设M(x0,y0)为圆锥曲线上的点,(1)若圆锥曲线为椭圆x2a2+y2b2=1(a>b>1),则椭圆在M处的切线方程为xxa2+yyb2=1.(2)若圆锥曲线为双曲线x2a2-y2b2=1(a>0,b>0),则双曲线在M处的切线方程为xxa2-yyb2=1.(3)若圆锥曲线为抛物线y2=2px(p>0),则抛物线在M处的切线方程为y0y=p(x+x0).5.与抛物线的焦点弦有关的二级结论过抛物线y2=2px(p>0)的焦点F倾斜角为θ的直线交抛物线于A(x1,y1),B(x2,y2)两点,则(1)x1x2=p24,y1y2=-p2;(2)两焦半径长为p1-cos θ,p1+cos θ;(3)1|AF|+1 |BF|=2p;(4)|AB|=2psin2θ,S△AOB=p22sin θ.类型一优化运算的基本途径途径1 回归定义当题目条件涉及圆锥曲线的焦点时,要考虑利用圆锥曲线的定义表示直线与圆锥曲线相交所得的弦长.例1 已知抛物线C:y2=3x的焦点为F,斜率为32的直线l与C的交点为A,B,与x轴的交点为P .若|AF |+|BF |=4,求l 的方程. 解 设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2).由题设得F ⎝⎛⎭⎪⎫34,0,故结合抛物线的定义可得|AF |+|BF |=x 1+x 2+32. 由题设可得x 1+x 2=52.由⎩⎨⎧y =32x +t ,y 2=3x ,可得9x 2+12(t -1)x +4t 2=0, 则x 1+x 2=-12(t -1)9,从而-12(t -1)9=52,解得t =-78,所以直线l 的方程为y =32x -78.途径2 设而不求在解决直线与圆锥曲线的相关问题时,通过设点的坐标,应用“点差法”或借助根与系数的关系来进行整体处理,设而不求,避免方程组的复杂求解,简化运算. 例2 已知点M 到点F (3,0)的距离比它到直线l :x +5=0的距离小2. (1)求点M 的轨迹E 的方程;(2)过点P (m ,0)(m >0)作互作垂直的两条直线l 1,l 2,它们与(1)中轨迹E 分别交于点A ,B 及点C ,D ,且G ,H 分别是线段AB ,CD 的中点,求△PGH 面积的最小值.解(1)由题意知,点M到点F(3,0)的距离与到直线l′:x+3=0的距离相等,结合抛物线的定义,可知轨迹E是以F(3,0)为焦点,以直线l′:x+3=0为准线的抛物线,则知p2=3,解得p=6,故M的轨迹E的方程为y2=12x.(2)设A(x1,y1),B(x2,y2),则有y21=12x1,y22=12x2,以上两式作差,并整理可得y1-y2x1-x2=12y1+y2=6yG.即k AB=6y G ,同理可得k CD=6yH,易知直线l1,l2的斜率存在且均不为0,又由于l1⊥l2,可得k AB·k CD=36yGyH=-1,即y G y H=-36,所以S△PGH=12|PG|·|PH|=12·1+1k2AB|y G| ·1+1k2CD|y H|=182+1k2AB+1k2CD≥182+2|k AB k CD|=182+2=36,当且仅当|k AB|=|k CD|=1时,等号成立,故△PGH面积的最小值为36. 途径3 换元引参结合解决问题的需要,根据题目条件引入适当的参数或相应的参数方程,巧妙转化相应的解析几何问题,避开复杂的运算.例3 设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.若|AP |=|OA |,证明直线OP 的斜率k 满足|k |> 3. 证明法一 设P (a cos θ,b sin θ)(0≤θ<2π),则线段OP 的中点Q 的坐标为⎝ ⎛⎭⎪⎫a 2cos θ,b 2sin θ.|AP |=|OA |⇔AQ ⊥OP ⇔k AQ ×k =-1. 又A (-a ,0), 所以k AQ =b sin θ2a +a cos θ,即b sin θ-ak AQ cos θ=2ak AQ . 2ak AQ =b 2+a 2k 2AQ sin(θ-α), tan θ=ak AQb, 从而可得|2ak AQ |≤b 2+a 2k 2AQ <a 1+k 2AQ ,解得|k AQ |<33,故|k |=1|k AQ |> 3.法二 依题意,直线OP 的方程为y =kx , 可设点P 的坐标为(x 0,kx 0).由点P 在椭圆上,得x 20a 2+k 2x 20b 2=1.因为a >b >0,kx 0≠0,所以x 20a 2+k 2x 20a2<1,即(1+k 2)x 20<a 2.①由|AP |=|OA |及A (-a ,0),得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0, 于是x 0=-2a1+k 2, 代入①,得(1+k 2)·4a 2(1+k 2)2<a 2,解得k 2>3,所以|k |> 3.法三 依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).联立⎩⎨⎧y 0=kx 0,x 20a 2+y 20b2=1,消去y 0并整理,得x 20=a 2b2k 2a 2+b 2.① 由|AP |=|OA |,A (-a ,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2,整理得(1+k 2)x 20+2ax 0=0. 而x 0≠0,于是x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2⎝ ⎛⎭⎪⎫a b 2+4.又a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3,所以|k |> 3.训练1 (1)(2022·杭州质检)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A.2B. 3C.32D.62(2)已知抛物线C :y 2=2px (p >0)过点(1,-2),经过焦点F 的直线l 与抛物线C 交于A ,B 两点,A 在x 轴的上方,Q (-1,0),若以QF 为直径的圆经过点B ,则|AF |-|BF |=( ) A.23B.2 5 C.2 D.4答案 (1)D (2)D解析 (1)由已知,得F 1(-3,0),F 2(3,0), 设双曲线C 2的实半轴长为a , 由椭圆及双曲线的定义和已知,可得 ⎩⎨⎧|AF 1|+|AF 2|=4,|AF 2|-|AF 1|=2a ,|AF 1|2+|AF 2|2=12,解得a 2=2,故a =2,所以双曲线C 2的离心率e =32=62.(2)由于抛物线C :y 2=2px (p >0)过点(1,-2), 则有4=2p ,解得p =2,设直线l 的倾斜角为α∈⎝ ⎛⎭⎪⎫0,π2,根据焦半径公式,可得|AF |=21-cos α,|BF |=21+cos α,由于以QF 为直径的圆经过点B ,则有BQ ⊥BF ,在Rt△QBF 中,|BF |=2cos α, 则有|BF |=21+cos α=2cos α,即1-cos 2α=cos α, 所以|AF |-|BF |=21-cos α-21+cos α=4cos α1-cos 2α=4cos αcos α=4,故选D. 类型二 优化运算之二级结论的应用圆锥曲线中有很多的二级结论,应用这些结论能够迅速、准确地解题. 应用1 椭圆中二级结论的应用例4 (1)A ,B 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,M 是椭圆上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为-49,则椭圆C 的离心率为( )A.23B.33C.23D.53(2)已知椭圆方程为x 25+y 2=1,右焦点为F ,上顶点为B .直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于N ,过N 与BF 垂直的直线交x 轴于点P .若MP ∥BF ,则直线l 方程为________.答案 (1)D (2)x -y +6=0解析 (1)椭圆上不同于A ,B 的任意一点与左、右顶点的斜率之积为-b 2a 2,∴-b 2a 2=-49,∴b 2a 2=49,∴椭圆的离心率e =1-b 2a2=1-49=53. (2)设点M (x 0,y 0)为椭圆x 25+y 2=1上一点.由过点M 与椭圆相切的结论,可设l :x 0x 5+y 0y =1,在直线MN 的方程中, 令x =0,可得y =1y 0,由题意可知y 0>0,即点N ⎝⎛⎭⎪⎫0,1y 0. 直线BF 的斜率为k BF =-b c =-12,所以,直线PN 的方程为y =2x +1y 0.在直线PN 的方程中, 令y =0,可得x =-12y 0, 即点P ⎝ ⎛⎭⎪⎫-12y 0,0.因为MP ∥BF ,则k MP =k BF , 即y 0x 0+12y 0=2y 202x 0y 0+1=-12,整理可得(x 0+5y 0)2=0, 所以x 0=-5y 0.又因为x 205+y 20=1,所以6y 20=1.因为y 0>0,故y 0=66,x 0=-566, 所以直线l 的方程为-66x +66y =1,即x -y +6=0. 训练2 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点,若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 (2)(2022·金华模拟)已知P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上一动点,F 1,F 2是椭圆的左、右焦点,当∠F 1PF 2=π3时,S △F 1PF 2=43;当线段PF 1的中点落到y 轴上时,tan∠F 1PF 2=43,则椭圆的标准方程为( )A.x216+x212=1 B.x216+y29=1C.x225+y212=1 D.x225+y29=1答案(1)D (2)A解析(1)由题意知c=3,即a2-b2=9,AB的中点记为P(1,-1),由k AB·k OP=-b2 a2,则(-1)×-1-01-3=-b2a2,∴a2=2b2,又a2-b2=9,∴a2=18,b2=9,∴E的方程为x218+y29=1.(2)设|PF1|=m,|PF2|=n,当∠F1PF2=π3时,由题意知S△F1PF2=b2tanθ2,即43=b2tan π6,所以b2=12.当线段PF1的中点落到y轴上时,又O为F1F2的中点,所以PF2∥y轴,即PF2⊥x轴.由tan∠F1PF2=43,得|F1F2||PF2|=43,即n =3c 2,则m =52c ,且n =b 2a =12a.所以联立⎩⎪⎨⎪⎧3c 2+5c 2=2a ,3c 2=12a ,解得⎩⎨⎧a =4,c =2,所以椭圆标准方程为x 216+y 212=1.应用2 双曲线中二级结论的应用例5 (1)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为M (-12,-15),则E 的方程为( ) A.x 23-y 26=1 B.x 24-y 25=1 C.x 26-y 23=1 D.x 25-y 24=1 (2)已知P (1,1)是双曲线外一点,过P 引双曲线x 2-y 22=1的两条切线PA ,PB ,A ,B为切点,求直线AB 的方程为________. 答案 (1)B (2)2x -y -2=0解析 (1)由题意可知k AB =-15-0-12-3=1,k MO =-15-0-12-0=54,由双曲线中点弦性质得k MO ·k AB =b 2a 2,即54=b 2a2,又9=a 2+b 2, 联立解得a 2=4,b 2=5,故双曲线的方程为x 24-y 25=1.(2)设切点A (x 1,y 1),B (x 2,y 2), 则PA :x 1x -y 1y 2=1,PB :x 2x -y 2y 2=1,又点P (1,1)代入得x 1-12y 1=1,x 2-12y 2=1,∴点A (x 1,y 1),B (x 2,y 2)均在直线x -12y =1上,∴过直线AB 的方程为x -12y =1,即2x -y -2=0.训练3 (1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,实轴的两个端点为A ,B ,点P 为双曲线上不同于顶点的任一点,则直线PA 与PB 的斜率之积为________.(2)已知P 是椭圆x 2a 21+y 2b 21=1(a 1>b 1>0)和双曲线x 2a 22-y 2b 22=1(a 2>0,b 2>0)的一个交点,F 1,F 2是椭圆和双曲线的公共焦点,e 1,e 2分别为椭圆和双曲线的离心率,若∠F 1PF 2=π3,则e 1·e 2的最小值为________. 答案 (1)3 (2)32解析 (1)由题意知c a =2,即c 2a 2=4,∴c 2=4a 2,∴a 2+b 2=4a 2,∴b 2=3a 2,∴k PA ·k PB =b 2a2=3.(2)因为点P 为椭圆和双曲线的公共点,F 1,F 2是两曲线的公共焦点,则由焦点三角形的面积公式得S △PF 1F 2=b 21tan π6=b 22tanπ6,化简得b 21=3b 22,即a 21-c 2=3(c 2-a 22),等式两边同除c 2,得1e 21-1=3-3e 22,所以4=1e 21+3e 22≥23e 1·e 2,解得e 1·e 2≥32,所以e 1·e 2的最小值为32.应用3 抛物线中二级结论的应用例6 (1)(2022·泰州调研)已知F 是抛物线C :y 2=4x 焦点,过点F 作两条相互垂直的直线l 1,l 2,直线l 1与C 相交于A ,B 两点,直线l 2与C 相交于D ,E 两点,则|AB |+|DE |的最小值为( ) A.16 B.14 C.12 D.10(2)已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线交于A ,B 两点(点A 在第一象限),若BA →=4BF →,则△AOB 的面积为( ) A.833 B.433C.823 D.423答案 (1)A (2)B解析 (1)如图,设直线l 1的倾斜角为θ,θ∈⎝⎛⎭⎪⎫0,π2,则直线l 2的倾斜角为π2+θ,由抛物线的焦点弦弦长公式知 |AB |=2p sin 2θ=4sin 2θ,|DE |=2p sin 2⎝ ⎛⎭⎪⎫π2+θ=4cos 2θ, ∴|AB |+|DE |=4sin 2θ+4cos 2θ=4sin 2θcos 2θ≥4⎝⎛⎭⎪⎫sin 2θ+cos 2θ22=16,当且仅当sin 2θ=cos 2θ,即sin θ=cos θ, 即θ=π4时取“=”.(2)由题意知|AF ||BF |=3,设l 的倾斜角为θ,则|AF |=p 1-cos θ,|BF |=p1+cos θ,∴1+cos θ1-cos θ=3,cos θ=12,sin θ=32, S =p 22sin θ=43=433. 训练4 (1)已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若△AOB 的面积为26,则|AB |=( ) A.24 B.8 C.12 D.16(2)已知抛物线y2=4x的焦点为F,过点F的直线l交抛物线于M,N两点,且|MF|=2|NF|,则直线l的斜率为( )A.±2B.±2 2C.±22D.±24答案(1)A (2)B解析(1)由题意知p=2,S△AOB=p22sin θ=26,∴sin θ=16,∴|AB|=2psin2θ=24.(2)由抛物线的焦点弦的性质知1|MF|+1|NF|=2p=1,又|MF|=2|NF|,解得|NF|=32,|MF|=3,∴|MN|=92,设直线l的倾斜角为θ,∴k=tan θ,又|MN|=2psin2θ,∴4sin2θ=92,∴sin2θ=89,∴cos2θ=19,∴tan2θ=8,∴tan θ=±22,故k=±2 2.一、基本技能练1.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△AOB 的面积为( ) A.334 B.938C.6332D.94 答案 D解析 抛物线C :y 2=3x 中,2p =3,p =32,故S △OAB =p 22sin θ=942sin 30°=94.2.已知椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在椭圆C 上,且直线PA 2的斜率的取值范围是[-2,-1],那么直线PA 1的斜率的取值范围是( ) A.⎣⎢⎡⎦⎥⎤12,34B.⎣⎢⎡⎦⎥⎤38,34 C.⎣⎢⎡⎦⎥⎤12,1D.⎣⎢⎡⎦⎥⎤34,1 答案 B解析 由周角定理得k PA 1·k PA 2=-b 2a 2=-34,又k PA 2∈[-2,-1], ∴k PA 1=-34k PA 2∈⎣⎢⎡⎦⎥⎤38,34.3.已知斜率为k (k >0)的直线l 与抛物线C :y 2=4x 交于A ,B 两点,O 为坐标原点,M 是线段AB 的中点,F 是C 的焦点,△OFM 的面积等于3,则k =( ) A.14B.13C.12D.263答案 B解析设AB的中点M(x0,y0),由中点弦的性质得k=py(y0≠0).由抛物线方程知p=2,所以k=2y0,另焦点F(1,0),又S△OFM=3,可知12×1×y0=3,所以y0=6,再代入k=2y=13.4.椭圆x216+y24=1上的点到直线x+2y-2=0的最大距离是( )A.3B.11C.22D.10 答案 D解析设椭圆x216+y24=1上的点P(4cos θ,2sin θ),则点P到直线x+2y-2=0的距离为d=|4cos θ+4sin θ-2|5=⎪⎪⎪⎪⎪⎪42sin⎝⎛⎭⎪⎫θ+π4-25,所以d max=|-42-2|5=10,故选D.5.已知点A(0,-5),B(2,0),点P为函数y=21+x2图象上的一点,则|PA|+|PB|的最小值为( ) A.1+25B.7 C.3 D.不存在 答案 B解析 由y =21+x 2,得y 24-x 2=1(y >0).设点A ′(0,5),即点A ′(0,5),A (0,-5)为双曲线y 24-x 2=1的上、下焦点.由双曲线的定义得|PA |-|PA ′|=4, 则|PA |+|PB |=4+|PA ′|+|PB |≥4+|BA ′|=7,当且仅当B ,P ,A ′共线时取等号,故选B.6.(2022·丽水调研)已知椭圆Г:x 2a 2+y 2b 2=1(a >b >0)的长轴长是短轴长的2倍,过右焦点F 且斜率为k (k >0)的直线与Г相交于A ,B 两点,且AF →=3FB →,则k =( ) A.1 B.2 C.3D. 2 答案 D解析 依题意a =2b ,e =1-⎝ ⎛⎭⎪⎫b a 2=32,因为AF →=3FB →,所以λ=3,设直线的倾斜角为α,则e =⎪⎪⎪⎪⎪⎪λ-1(λ+1)cos α 得32=⎪⎪⎪⎪⎪⎪3-1(3+1)cos α,|cos α|=33, 又k >0,∴α∈⎝ ⎛⎭⎪⎫0,π2,得cos α=33,所以k =tan α= 2. 7.抛物线y 2=2px (p >0)的焦点为F ,过焦点F 且倾斜角为π6的直线与抛物线相交于A ,B 两点,若|AB |=8,则抛物线的方程为________. 答案y 2=2x 解析∵|AB |=2psin 2θ=2psin 2π6=8p =8,∴p =1,∴抛物线的方程为y 2=2x .8.已知点P ⎝ ⎛⎭⎪⎫12,12为椭圆:x 22+y 2=1内一定点,经过点P 引一条弦,使此弦被点P 平分,则此弦所在的直线方程为________. 答案 2x +4y -3=0解析 直线与椭圆交于A ,B ,P 为AB 中点.由k AB ·k OP =-b 2a 2得k AB ×1=-12,即k AB =-12,则直线方程为y -12=-12⎝ ⎛⎭⎪⎫x -12,即2x +4y -3=0.9.(2022·南京模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),过原点的直线与双曲线交于A ,B两点,以线段AB 为直径的圆恰好过双曲线的右焦点F ,若△ABF 的面积为2a 2,则双曲线的离心率为________. 答案 3解析 如图.设双曲线的左焦点为F ′,连接AF ′,BF ′,因为以AB 为直径的圆恰好过双曲线的右焦点F (c ,0), 所以S △AF ′F =S △ABF =2a 2且∠F ′AF =∠θ=π2, 根据双曲线焦点三角形面积公式,得S △AF ′F =b 2tanθ2.所以2a 2=b 2,即b 2a2=2,e =1+b 2a2= 3. 10.(2022·武汉调研)已知双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)与C 2:y 2a 22-x 2b 22=1(a 2>0,b 2>0)有相同的渐近线,若C 1的离心率为2,则C 2的离心率为________. 答案233解析 设双曲线C 1,C 2的半焦距分别为c 1,c 2, 因为C 1的离心率为2,所以C 1的渐近线方程为y =±b 1a 1x =±⎝ ⎛⎭⎪⎫c 1a 12-1x =±22-1x =±3x , 所以C 2的渐近线方程为y =±a2b 2x =±3x ,所以a 2b 2=3,所以C 2的离心率为c 22a 22=1+⎝ ⎛⎭⎪⎫b 2a 22=233.11.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线l :y =kx +a ,直线l 与椭圆C 交于M ,N 两点,与y 轴交于点P ,O 为坐标原点.(1)若k =1,且N 为线段MP 的中点,求椭圆C 的离心率;(2)若椭圆长轴的一个端点为Q (2,0),直线QM ,QN 与y 轴分别交于A ,B 两点,当PA →·PB →=1时,求椭圆C 的方程.解 (1)由题意知直线l :y =x +a 与x 轴交于点(-a ,0), ∴点M 为椭圆C 的左顶点,即M (-a ,0). 设N ⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆C :x 2a 2+y 2b 2=1得14+a 24b 2=1,即b 2a 2=13, 则e 2=c 2a 2=1-b 2a 2=23,∴e =63,即椭圆C 的离心率e =63. (2)由题意得a =2,∴椭圆C :b 2x 2+4y 2=4b 2(b >0), 联立⎩⎨⎧b 2x 2+4y 2=4b 2,y =kx +2,消去y 得(4k 2+b 2)x 2+16kx +16-4b 2=0,⎩⎪⎨⎪⎧Δ=16b 2(4k 2+b 2-4)>0,x M+x N=-16k 4k 2+b 2,x M ·x N =16-4b24k 2+b2,∵直线QM :y =y M x M -2(x -2),∴A ⎝ ⎛⎭⎪⎫0,-2y M x M -2,PA →=⎝ ⎛⎭⎪⎫0,2y M +2x M -42-x M . ∵y M =kx M +2, ∴y M -2=kx M ,即PA →=⎝ ⎛⎭⎪⎫0,2(k +1)x M 2-x M , 同理PB →=⎝ ⎛⎭⎪⎫0,2(k +1)x N 2-x N , ∴PA →·PB →=4(k +1)2x M x Nx M x N -2(x M +x N )+4=4-b 2=1,即b 2=3,∴椭圆C 的标准方程为x 24+y 23=1.12.在平面直角坐标系xOy 中,已知点F 1(-17,0),F 2(17,0),点M 满足|MF 1|-|MF 2|=2.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |·|TB |=|TP |·|TQ |,求直线AB 的斜率与直线PQ 的斜率之和. 解 (1)因为|MF 1|-|MF 2|=2<|F 1F 2|=217,所以点M 的轨迹C 是以F 1,F 2分别为左、右焦点的双曲线的右支.设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),半焦距为c ,则2a =2,c =17,得a =1,b 2=c 2-a 2=16, 所以点M 的轨迹C 的方程为x 2-y 216=1(x ≥1).(2)设T ⎝ ⎛⎭⎪⎫12,t ,由题意可知直线AB ,PQ 的斜率均存在且不为零,设直线AB 的方程为y-t =k 1⎝ ⎛⎭⎪⎫x -12(k 1≠0),直线PQ 的方程为y -t =k 2⎝ ⎛⎭⎪⎫x -12(k 2≠0),由⎩⎪⎨⎪⎧y -t =k 1⎝ ⎛⎭⎪⎫x -12,x 2-y 216=1,得(16-k 21)x 2-2k 1⎝ ⎛⎭⎪⎫t -k 12x -⎝⎛⎭⎪⎫t -k 122-16=0.设A (x A ,y A ),B (x B ,y B )⎝ ⎛⎭⎪⎫x A >12,x B>12, 由题意知16-k 21≠0,则x A x B =-⎝⎛⎭⎪⎫t -k 122-1616-k 21,x A +x B =2k 1⎝⎛⎭⎪⎫t -k 1216-k 21,所以|TA |=1+k 21⎪⎪⎪⎪⎪⎪x A -12=1+k 21⎝⎛⎭⎪⎫x A -12,|TB |=1+k 21⎪⎪⎪⎪⎪⎪x B -12=1+k 21⎝ ⎛⎭⎪⎫x B -12, 则|TA |·|TB |=(1+k 21)⎝⎛⎭⎪⎫x A -12⎝ ⎛⎭⎪⎫x B -12=(1+k 21)⎣⎢⎡⎦⎥⎤x A x B -12(x A +x B )+14=(1+k 21)⎣⎢⎡-⎝ ⎛⎭⎪⎫t -k 122-1616-k 21-12·⎦⎥⎤2k 1⎝ ⎛⎭⎪⎫t -k 1216-k 21+14=(1+k 21)(t 2+12)k 21-16. 同理得|TP |·|TQ |=(1+k 22)(t 2+12)k 22-16.因为|TA |·|TB |=|TP |·|TQ |,所以(1+k 21)(t 2+12)k 21-16=(1+k 22)(t 2+12)k 22-16,所以k 22-16+k 21k 22-16k 21=k 21-16+k 21k 22-16k 22,即k 21=k 22,又k 1≠k 2,所以k 1=-k 2,即k 1+k 2=0. 故直线AB 的斜率与直线PQ 的斜率之和为0. 二、创新拓展练13.(2022·广东四校联考)倾斜角为π3的直线经过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F ,与双曲线C 的右支交于A ,B 两点,且AF →=λFB →(λ≥5),则双曲线C 的离心率的范围是( ) A.⎣⎢⎡⎭⎪⎫43,+∞B.⎝ ⎛⎦⎥⎤1,43C.(1,2)D.⎣⎢⎡⎭⎪⎫43,2答案 D解析 tan π3>b a ⇒b a <3⇒b 2<3a 2⇒c 2-a 2<3a 2⇒c 2<4a 2,∴c 2a 2<4,即e <2;|e cos θ|=|λ-1||λ+1|⇒e 2=⎪⎪⎪⎪⎪⎪λ-1λ+1=λ-1λ+1=1-2λ+1∈⎣⎢⎡⎭⎪⎫23,1,即23≤e 2<1,故43≤e <2.14.(多选)(2022·海南调研)已知斜率为3的直线l 经过抛物线C :y 2=2px (p >0)的焦点F ,与抛物线C 交于点A ,B 两点(点A 在第一象限),与抛物线的准线交于点D ,若|AB |=8,则以下结论正确的是( ) A.1|AF |+1|BF |=1 B.|AF |=6C.|BD |=2|BF |D.F 为AD 中点 答案 BCD解析 法一 如图,过点B 作x =-p 2的垂线,垂足为B ′,F ⎝ ⎛⎭⎪⎫p 2,0,直线l 的斜率为3,则直线l 的方程为y =3⎝⎛⎭⎪⎫x -p 2,联立⎩⎨⎧y 2=2px ,y =3⎝⎛⎭⎪⎫x -p 2, 得12x 2-20px +3p 2=0. 解得x A =3p 2,x B =p6,由|AB |=|AF |+|BF |=x A +x B +p =8p3=8,得p =3.所以抛物线方程为y2=6x.则|AF|=x A+p2=2p=6,故B正确;所以|BF|=8-|AF|=2,|BD|=|BB′|cos 60°=|BF|cos 60°=4,∴|BD|=2|BF|,故C正确;所以|AF|=|DF|=6,则F为AD中点,故D正确;而1|AF|+1|BF|=23,故A错误.法二设直线AB的倾斜角为θ,利用抛物线的焦点弦的性质,由|AB|=2psin2θ=8,则p=3,|AF|=p1-cos θ=6,|BF|=p1+cos θ=2,1 |AF|+1|BF|=2p=23,在Rt△DBB′中,cos θ=|BB′||BD|,所以|BD|=4,|DF|=|BF|+|BD|=6,因此F为AD中点.故选BCD.15.已知A,B是抛物线y2=4x上的两点,F是焦点,直线AF,BF的倾斜角互补,记AF,AB的斜率分别为k1,k2,则1k22-1k21=________.答案 1解析F(1,0),设A(x1,y1),B(x2,y2),根据抛物线的对称性,且两直线的倾斜角互补, 所以(x 2,-y 2)在直线AF 上, 直线AF :y =k 1(x -1),代入y 2=4x ,化简可得k 21x 2-(2k 21+4)x +k 21=0,根据韦达定理,可得⎩⎨⎧x 1+x 2=2k 21+4k 21,x 1x 2=1,又k 2=y 2-y 1x 2-x 1=4x 2-4x 1x 2-x 1=2x 2+x 1, 所以k 22=4x 1+x 2+2x 1x 2=42k 21+4k 21+2=k 21k 21+1,故1k 22-1k 21=1.16.已知P 是圆C :(x -2)2+(y +2)2=1上一动点,过点P 作抛物线x 2=8y 的两条切线,切点分别为A ,B ,则直线AB 斜率的最大值为________. 答案34解析 由题意可知,PA ,PB 的斜率都存在,分别设为k 1,k 2,切点A (x 1,y 1),B (x 2,y 2), 设P (m ,n ),过点P 的抛物线的切线为y =k (x -m )+n , 联立⎩⎨⎧y =k (x -m )+n ,x 2=8y ,得x 2-8kx +8km -8n =0, 因为Δ=64k 2-32km +32n =0, 即2k 2-km +n =0,所以k1+k2=m2,k1k2=n2,又由x2=8y得y′=x 4,所以x1=4k1,y1=x218=2k21,x 2=4k2,y2=x228=2k22,所以k AB=y2-y1x2-x1=2k22-2k214k2-4k1=k2+k12=m4,因为点P(m,n)满足(x-2)2+(y+2)2=1,所以1≤m≤3,因此14≤m4≤34,即直线AB斜率的最大值为3 4 .17.已知点A为圆B:(x+2)2+y2=32上任意一点,定点C的坐标为(2,0),线段AC的垂直平分线交AB于点M.(1)求点M的轨迹方程;(2)若动直线l与圆O:x2+y2=83相切,且与点M的轨迹交于点E,F,求证:以EF为直径的圆恒过坐标原点.(1)解圆B的圆心为B(-2,0),半径r=42,|BC|=4. 连接MC,由已知得|MC|=|MA|,∵|MB |+|MC |=|MB |+|MA |=|BA |=r =42>|BC |,∴由椭圆的定义知:点M 的轨迹是中心在原点,以B ,C 为焦点,长轴长为42的椭圆, 即a =22,c =2,b 2=a 2-c 2=4, ∴点M 的轨迹方程为x 28+y 24=1.(2)证明 当直线EF 的斜率不存在时, 直线EF 的方程为x =±83, E ,F 的坐标分别为⎝⎛⎭⎪⎫83,83,⎝⎛⎭⎪⎫83,-83或⎝⎛⎭⎪⎫-83,83,⎝⎛⎭⎪⎫-83,-83, OE →·OF →=0.当直线EF 斜率存在时,设直线EF 的方程为y =kx +m , ∵EF 与圆O :x 2+y 2=83相切,∴|m |1+k2=83,即3m 2=8k 2+8. 设E (x 1,y 1),F (x 2,y 2),∴OE →·OF →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2,(*)联立⎩⎨⎧x 28+y 24=1,y =kx +m ,消去y 得(1+2k 2)x 2+4kmx +2m 2-8=0, ∴x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-81+2k 2,代入(*)式得OE→·OF→=(1+k2)·2m2-81+2k2-4k2m21+2k2+m2=3m2-8k2-81+2k2,又∵3m2=8k2+8,∴OE→·OF→=0,综上,以EF为直径的圆恒过定点O.31 / 31。

椭圆中有关顶点在原点的三角形面积问题

椭圆中有关顶点在原点的三角形面积问题

椭圆中有关顶点在原点的三角形面积问题近几年高考中的很多解析几何试题的背景是圆锥曲线的性质,对这些性质采用特殊化的处理可命制出鲜活的高考题.由于以椭圆中顶点在原点的三角形面积为背景的试题往往与图形的本质特性和运动不变性有关,涉及定值、最值、轨迹等问题,所以这类问题常成为解析几何中的热点.在2011年山东卷(理科)、2013山东卷(文科)、2014年全国卷(新课标Ⅰ理科)和2015年山东卷(理科)中均有考察.本文将针对这类问题进行探究.问题提出: 例1已知椭圆C 的中心在原点O ,焦点在x 轴上,其长轴长为焦距的2倍,且过点3(1,)2M . (1)求椭圆C 的标准方程;(2)若斜率为1的直线l 与椭圆交于不同两点A 、B ,求△AOB 面积的最大值及此时直线l 的方程.例2(2014年全国卷(新课标Ⅰ理科))已知点A(0,-2),椭圆E :22221(0)x y a b a b+=>>,F 是椭圆E 的右焦点,直线AF 的斜率为3,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.例3(2015年山东卷(理科))平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,左、右焦点分别是F 1,F 2,以F 1为圆心以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222144x y a b+=,P 为椭圆C 上任意一点,过点P 的直线y=kx+m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q . (ⅰ)求OQ OP的值;(ii )求△ABQ 面积的最大值.说明:本题中3ABQ OAB S S ∆∆=,可先求△OAB 面积.例4(2013山东卷(文科))在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2. (Ⅰ)求椭圆C 的方程;(Ⅱ)A ,B 为椭圆C 上满足△AOB 的面积为4的任意两点,E 为线段AB 的中点,射线OE 交椭圆C 于点P .设OP =tOE ,求实数t 的值.例5(2011年山东卷(理科))已知直线l 与椭圆C: 22132x y +=交于P ()11,x y ,Q ()22,x y 两不同点,且△OPQ 的面积S=其中O 为坐标原点.(Ⅰ)证明x 12+x 22和y 12+y 22均为定值(Ⅱ)设线段PQ 的中点为M ,求OM PQ ⋅的最大值;(Ⅲ)椭圆C 上是否存在三点D,E,G ,使得S △ODE =S △ODG =S △OEG. 若存在,判断△DEG 的形状;若不存在,请说明理由.以上题目均涉及到椭圆中顶点在原点的三角形面积的求解问题,例1中给出了直线l 的斜率,例2中给出了直线l 在y 轴上的截距,例3中的直线为y=kx+m ,例4、例5均以三角形的面积值作条件.那么该类问题如何求解,是否存在通法,三角形的面积表示是否存在统一的表达式,其形式又是怎样的呢?探究一:为解决上面提出的问题,我们从一般性出发,给出下面的问题:已知不过原点O 的直线:(0)l y kx m m =+≠与椭圆2222:1(0)x y C a b a b+=>>交于11(,),A x y 22(,)B x y 两不同点. 求三角形OAB 的面积S ∆OAB .解:由22221y kx m x y a b=+⎧⎪⎨+=⎪⎩消去y 得22222222()2()0a k b x a kmx a m b +++-=.2222224()a b a k b m ∆=+-当>0时,222212122222222(),a km a m b x x x x a k b a k b --+=⋅=++,2222(0,1)m a k b∈+.12x x ∴-==. 1212OABS m x x ∆∴=⋅-12m ==.利用上面的结果,例1、例2中三角形面积的最大值可用均值不等式求得,即22222222+12m m a k b a k b ab⎛⎫- ⎪++⎝⎭≤=12ab ,当且仅当22221=2m a k b +时三角形面积取得最大值.但在例3中222214m a k b ≤+,用均值不等式求解时等号不成立,无法求得三角形面积的最大值.为了解决例3中均值不等式失效的问题,设2222m a k b λ=+,由题意可求得10,4λ⎛⎤∈ ⎥⎝⎦.所以三角形OAB 的面积S ∆OAB 1)λ==<<,当且仅当1=4λ三角形面积取得最大值. 我们不难发现,令2222m a k b λ=+是求解顶点在原点的三角形面积最值及取值范围的通法,它可将三角形面积最值及取值范围问题转化为求解2222m a k b λ=+的取值范围问题,二者通过S ∆OAB =1)λ=<<……(*)建立等量关系.补充说明一点,当不过原点O 的直线l 的斜率不存在时,可设直线l 的方程为(0)x n n =≠,记22,n aλ=上述(*)式仍然成立.同样利用(*)式,例4中的三角形面积可转化为3144λλ==或,例5中的三角形面积可转化为12λ=. 至此,每个例题中的三角形面积问题得以完美求解和转化,但新的问题又出现了,在这么完美的换元方式背后,2222m a k bλ=+是否存在几何意义呢,它又是怎样的呢? 探究二:受益于例4这道高考试题的启发,我得到提出如下问题:已知不过原点O 的直线:(0)l y kx m m =+≠与椭圆2222:1(0)x y C a b a b +=>>交于11(,),A x y 22(,)B x y 两不同点.设线段AB 的中点为P,射线OP 交椭圆2222:1(0)x y C a b a b+=>>于点Q ,求22OPOQ的值. 解:由22221y kx m x y a b=+⎧⎪⎨+=⎪⎩消去y 得22222222()2()0a k b x a kmx a m b +++-=.2222224()a b a k b m ∆=+-当>0时,222212122222222(),a km a m b x x x x a k b a k b --+=⋅=++,2222(0,1)m a k b ∈+. 设OP OQ μ=,3344(,),(,)P x y Q x y ,则OP =33(,)x y ,OQ =44(,)x y.33(,)x y =μ44(,)x y =44(,)x y μμ,∴3434,x x y y μμ==.∴21232222x x a km x a k b +-==+,233222b my kx m a k b =+=+.∴22222233222222222211x y a km b m a b a a k b b a k b ⎛⎫⎛⎫-+=+ ⎪ ⎪++⎝⎭⎝⎭2222222222222()()a k mb m a k b a k b =+=++2222m a k b +.……①又224422x y a b+=1, ∴()()22222244223344222222x y x y x y a b a b a b μμμμ⎛⎫+=+=+= ⎪⎝⎭.……② 由①,②知22222m a k bμ=+又OP OQ μ=,∴2222222OPm a k b OQμ==+.解:由22221y kx m x y a b =+⎧⎪⎨+=⎪⎩消去y 得22222222()2()0a k b x a kmx a m b +++-=.2222224()a b a k b m ∆=+->0,2222(0,1)m a k b λ∴=∈+. 又222212122222222(),a km a m b x x x x a k b a k b--+=⋅=++. 12x x ∴-==. 1212OABS m x x ∆∴=⋅-12m ==1)λ==<<.结论2:设线段AB 的中点为P ,射线OP 交椭圆2222:1(0)x y C a b a b +=>>于点Q ,则22OP OQλ=. 证明:设OP OQ μ=,3344(,),(,)P x y Q x y ,则OP =33(,)x y ,OQ =44(,)x y.33(,)x y =μ44(,)x y =44(,)x y μμ,∴3434,x x y y μμ==.由结论1的证明知,21232222x x a km x a k b +-==+,233222b my kx m a k b=+=+. 所以22222233222222222211x y a km b m a b a a k b b a k b ⎛⎫⎛⎫-+=+ ⎪ ⎪++⎝⎭⎝⎭2222222222222()()a k mb m a k b a k b =+=++2222m a k b λ=+. 224422x y a b +=1,∴()()22222244223344222222x y x y x y a b a b ab μμμμ⎛⎫+=+=+= ⎪⎝⎭=λ.又OP OQ μ=,∴2222222OPm a k b OQμ==+.解:(1)略,E 的方程为2214x y +=. (2) 当l ⊥x 轴时不合题意,故可设l :y =kx -2.2441k λ=+,∴由结论1知S △OPQ==≤1(01)λ<<,当且仅当λ=12,即k =±72时等号成立. 所以,当△OPQ 的面积最大时,k =±72,l 的方程为y =72x -2或y =-72x -2.1.两个结论,揭示本质已知不过原点O 的直线:(0)l y kx m m =+≠与椭圆2222:1(0)x y C a b a b +=>>交于11(,),A x y 22(,)B x y 两不同点,设2222m a k bλ=+. 结论1:三角形OAB的面积1)S λ∆=<<OAB .证明:由22221y kx m x y a b =+⎧⎪⎨+=⎪⎩消去y 得22222222()2()0a k b x a kmx a m b +++-=.2222224()a b a k b m ∆=+->0,2222(0,1)m a k b λ∴=∈+.又222212122222222(),a km a m b x x x x a k b a k b--+=⋅=++. 12x x ∴-==. 1212OABS m x x ∆∴=⋅-12m ==1)λ=<<.结论2:设线段AB 的中点为P,射线OP 交椭圆2222:1(0)x y C a b a b +=>>于点Q ,则22OP OQλ=. 证明:设OP OQ μ=,3344(,),(,)P x y Q x y ,则OP =33(,)x y ,OQ =44(,)x y.33(,)x y =μ44(,)x y =44(,)x y μμ,∴3434,x x y y μμ==.由结论1的证明知,21232222x x a km x a k b +-==+,233222b my kx m a k b =+=+. 所以22222233222222222211x y a km b m a b a a k b b a k b ⎛⎫⎛⎫-+=+ ⎪ ⎪++⎝⎭⎝⎭2222222222222()()a k m b m a k b a k b =+=++2222m a k b λ=+. 224422x y a b +=1,∴()()22222244223344222222x y x y x y a b a b ab μμμμ⎛⎫+=+=+= ⎪⎝⎭=λ.又OP OQ μ=,∴2222222OPm a k b OQμ==+. 2.三年高考,提炼通法例1(2014年全国卷(新课标Ⅰ理科))已知点A(0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.解:(1)略,E 的方程为2214x y +=. (2) 当l ⊥x 轴时不合题意,故可设l :y =kx -2.2441k λ=+,∴由结论1知S △OPQ2=≤1(01)λ<<,当且仅当λ=12,即k =±72时等号成立. 所以,当△OPQ 的面积最大时,k =±72,l 的方程为y =72x -2或y =-72x -2.例2(2015年山东卷(理科))平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>,左、右焦点分别是F 1,F 2,以F 1为圆心以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆E :2222144x y a b+=,P 为椭圆C 上任意一点,过点P 的直线y=kx+m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q . (i )求OQ OP的值;(ii )求△ABQ 面积的最大值.解:(Ⅰ)略,椭圆C 的方程为22 1.4x y += (Ⅱ)(i )略,OQ OP的值为2.(ii )椭圆E 的方程为221164x y +=.22(01),164m k λλ=<<+∴由结论1知S △OAB ==.(不可用均值不等式)将直线y=kx+m 代入椭圆C 的方程,可得(1+4k 2)x 2+8kmx+4m 2﹣4=0,由△2≥0可得m 2≤1+4k 2,所以221.1644m k λ=≤+所以S △OAB ≤当且仅当λ=14等号成立.由(i )知,△ABQ 的面积为3S △OAB ,即△ABQ 面积的最大值为点评:通过例1和例2的解答可知在用常规方法得到△OPQ 与△OAB 的面积表达式之后可统一采用换元法,即令2222m a k bλ=+,可转化为结论1中的二次函数配方求解. 例3(2013山东卷(文科))在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2(Ⅰ)求椭圆C 的方程;(Ⅱ)A ,B 为椭圆C 上满足△AOB的面积为4E 为线段AB 的中点,射线OE 交椭圆C 于点P.设OP =tOE ,求实数t 的值.解:(Ⅰ)略,椭圆C 的方程为22x +y 2=1.(Ⅱ)当A ,B 两点关于x 轴对称时,设直线AB 的方程为x =n,由题意<n <0或0<n将x =n 代入椭圆方程22x +y 2=1,得|y|所以S △AOB ==.解得n 2=32或n 2=12. 又OP =tOE =()12t OA OB +=12t (2n,0)=(nt,0),且P 为椭圆C 上一点,所以22nt ()=1.由①②得t 2=4或t 2=43.又因为t >0,所以t =2或t.当A ,B 两点关于x 轴不对称时,设直线AB 的方程为y =kx +m.由结论1知S △OAB=解得3144λλ==或.由结论2知λ=222221=.OE OE t OP tOE = 所以t 2=4或t 2=43.又因为t >0,所以t =2或t.综上所得t =2或t=3.点评:通过例3的解答可知△AOB 的面积为43144λλ==或,再用结论2中λ的几何意义求解.,而换元法正是解决这类问题的通法.文中参数λ与三角形面积取值范围之间的相互转化是解决这类问题的关键,希望大家复习中要引起足够的重视.同时也提醒我们要加强对高考试题的研究,提炼通法.最后作一点说明,当不过原点O 的直线l 的斜率不存在时,可设直线l 的方程为(0)x n n =≠,记22,n aλ=结论1和结论2仍然成立.已知椭圆:的离心率为,右焦点为(,0).(1) 求椭圆的方程;(2) 过原点作两条互相垂直的射线,与椭圆交于,两点,求证:点到直线的距离为定值; (3) 在(2)的条件下,求面积的最大值.C )0(12222>>=+b a by a x 362C O A B O AB OAB ∆解:(1) ………………………… 3分(2) 设,,若k 存在,则设直线AB :y =kx +m.由,得 ……………………………5分 △ >0, ……………………………6分 有OA ⊥OB 知x 1x 2+y 1y 2=x 1x 2+(k x 1+m ) (k x 2+m )=(1+k 2) x 1x 2+k m (x 1+x 2)=0 ………………………8分代入,得4 m 2=3 k 2+3原点到直线AB 的距离d. ………………9分当AB 的斜率不存在时,,可得,依然成立. 所以点O 到直线的距离为定值……………………………10分 说明:直接设直线OA 的斜率为K 相应给分(3)= =≤4 …………………12分当且仅当,即时等号成立. ……………………………13分 当斜率不存在时,经检验|AB |<2.所以≤综合得:面积的最大值为 ………………………14分1322=+y x 11()A x y ,22()B x y ,2233y kx m x y =+⎧⎨+=⎩222(13)6330k x kmx m +++-=12221226133313km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩=11x y =12x d ==AB 22222221222633(1)()(1)()41313km m AB k x x k k k ⎡⎤-=+-=+-⨯⎢⎥++⎣⎦42242423(9101)123961961k k k k k k k ++=+++++22123196k k+++2219k k =k =OAB S ∆122⨯=OAB ∆23已知椭圆的一个顶点为A (0,-1),焦点在x 轴上,离心率(1)求椭圆标准方程;(2)设直线l :y =x +m ,直线与(1)中的椭圆有两个不同的交点M 、N ,求m 的取值范围; (3)直线:与(1)中的椭圆有两个不同的交点,当的面积取到最大值时,求直线的方程。

解析几何初中试题答案

解析几何初中试题答案

解析几何初中试题答案一、选择题1. 若点A(2,3)关于直线x=-1的对称点为A',则A'的坐标为()。

A. (-4,3)B. (-2,3)C. (0,3)D. (-6,3)答案:A解析:点A(2,3)关于直线x=-1对称,意味着A'的横坐标是直线x=-1与A的横坐标之和的相反数。

因此,A'的横坐标为-1-(2-(-1))=-4。

纵坐标不变,所以A'的坐标为(-4,3)。

2. 下列哪个方程表示的是一个圆?()A. x^2 + y^2 = 9B. (x-2)^2 + (y+1)^2 = 4C. x^2 + y^2 - 6x + 9 = 0D. x^2 + y^2 + 4x - 6y + 9 = 0答案:B解析:圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)是圆心坐标,r是半径。

A项是圆心在原点,半径为3的圆,但不是标准形式;B项是圆心在(2,-1),半径为2的圆,符合标准方程;C项是圆心在(3,0),半径为0的圆,实际上是一个点;D项是圆心在(-2,3),半径为√2的圆。

3. 已知三角形ABC的三个顶点坐标分别为A(1,4),B(5,2),C(3,0),则三角形ABC的面积为()。

A. 4B. 6C. 8D. 10答案:C解析:根据行列式计算三角形面积的公式,设三角形ABC的面积为S,则有S = 1/2 * |(x1-x3)(y2-y1) - (x2-x1)(y1-y3)|将A(1,4),B(5,2),C(3,0)的坐标代入公式,得S = 1/2 * |(1-3)(2-4) - (5-1)(4-0)| = 1/2 * |-2*-2 - 4*4| = 84. 直线y=2x+3与y轴的交点坐标为()。

A. (0,-3)B. (0,3)C. (3,0)D. (-3,0)答案:B解析:直线与y轴相交时,x的值为0。

将x=0代入直线方程y=2x+3,得到y=3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何三角形面积问题答案1、解: (Ⅰ)由题意知,曲线C 是以12,F F 为焦点的椭圆.∴2,1,a c ==23b ∴= 故曲线C 的方程为:22143xy+=. 3分(Ⅱ)设直线l 与椭圆22143xy+=交点1122(,),(,)A x y B x y ,联立方程223412y x b x y =-+⎧⎨+=⎩得22784120x bx b -+-= 4分 因为248(7)0b ∆=->,解得27b <,且212128412,77b b x x x x -+==5分点O 到直线l的距离d =6分AB == 9分∴12AO B S ∆=⋅= 10分≤当且仅当227b b =-即2772b =<时取到最大值.∴A O B ∆. 12分2、解:(1)依题意可得⎪⎩⎪⎨⎧-=-+=+,12,12c a c a 解得.1,2==c a从而.1,22222=-==c a b a 所求椭圆方程为.1222=+x y…………………4分(2)直线l 的方程为.1+=kx y由⎪⎩⎪⎨⎧=++=,12,122x y kx y 可得().012222=-++kx x k 该方程的判别式△=()22288244kkk +=++>0恒成立.设()(),,,,2211y x Q y x P 则.21,22221221+-=+-=+k x x k k x x ………………5分可得().24222121+=++=+k x x k y y设线段PQ 中点为N ,则点N 的坐标为.22,222⎪⎭⎫⎝⎛++-k k k………………6分线段PQ 的垂直平分线方程为.212222⎪⎭⎫ ⎝⎛++-+=k k x k k y 令0=x ,由题意.212+=k m ………………………………………………7分又0≠k ,所以0<m <.21…………………………………………………8分(3)点M ()m ,0到直线1:+=kx y l 的距离221111km km d +-=+-=()212212212411x x x x k x x kPQ -+⋅+=-+=242212222++⎪⎭⎫ ⎝⎛+-⋅+=k k k k =2881222++⋅+k k k于是28811121212222++⋅+⋅+-⋅=⋅⋅=∆k k k k m PQ d S MPQ.2882122++⋅-=k k m由,212+=k m 可得.212-=mk代入上式,得(),123m m S MPQ -=∆即()(0123m m S -=<m <⎪⎭⎫21.…………………………………………11分 设()(),13m m m f -=则()()().4112m m m f --='而()m f '>0⇔0<m <()m f ',41<041⇔<m <,21所以()m f 在⎪⎭⎫ ⎝⎛41,0上单调递增,在⎪⎭⎫ ⎝⎛21,41上单调递减. 所以当41=m 时,()m f 有最大值.2562741=⎪⎭⎫⎝⎛f ……………………13分 所以当41=m 时,△MPQ 的面积S 有最大值.1663…………………14分3、解:(Ⅰ)设椭圆方程为22221(0)x y a b ab+=>>.圆F 的标准方程为22(1)1x y -+=,圆心为(1,0)F ,圆与x 轴的交点为(0,0)和(2,0).………………………2分由题意2a =,半焦距1c =.∴222413b a c =-=-=.∴椭圆方程为22143xy+=.………………………………4分(Ⅱ)设1122(,),(,)A x y B x y 由2214310x yx m y ⎧+=⎪⎨⎪--=⎩得22(34)690m y m y ++-=. ∴12122269,3434m y y y y m m --+==++.……………………………6分122||34y y m -==+.1221||||234AO B S O F y y m =-=+ .…………………………8分t =,则221,1,t m t ≥=-∴2631A OB t S t =+22222226(31)(6)6(13)(31)(31)AO B t t t S t t +--'==++.……………………10分∵1t ≥,∴0AO B S '<.∴A O B S 在[1,)t ∈+∞上是减函数, ∴当1t =时,A O B S 取得最大值,最大值为32.………………………12分4、解:(1)∵2221314c e a a ab ⎧===⎪⎪⎨⎪+=⎪⎩ …………………2分 ∴2,1a b == ∴椭圆的方程为2214yx += ………………4分(2)依题意,设l的方程为y kx =+由2222(4)1014y kx k x y x ⎧=+⎪⇒++-=⎨+=⎪⎩ 显然0∆>1212221,44x x x x k k --+==++ ………………5分由已知=⋅n m 0得:22121212124(a x x b y y x x kx kx +=+++21212(4)()3k x x x x =++++221(k 4)()30k 4k 4=+-++=++ ……………7分解得k =……………………8分 (3)①当直线A B 斜率不存在时,即2121,x x y y ==-,由已知=⋅n m 0,得22221111404x y y x -=⇒=又11(,)A x y 在椭圆上,所以22111141||,||42x x x y +=⇒==1121111||||||2||122S x y y x y =-== ,三角形的面积为定值.………9分②当直线A B 斜率存在时:设A B 的方程为y kx t =+22222(4)24014y kx t k x ktx t y x =+⎧⎪⇒+++-=⎨+=⎪⎩ 必须0∆> 即222244(4)(4)0k t k t -+-> 得到12224kt x x k -+=+,212244t x x k -=+ ………………10分∵n m ⊥,∴12121212404()()0x x y y x x kx t kx t +=⇔+++= 代入整理得:2224t k -= …………………11分1|||2S AB t ==…………12分2||142||t k t ===+所以三角形的面积为定值. …………………14分 5、解:(1) 设椭圆方程为2222x y ab+=1(a>b >0),由焦点坐标可得c =1………1分由PQ |=3,可得22b a=3,……………………………………………2分解得a =2,b故椭圆方程为2243x y+=1……………………………………………4分(2) 设M 11(,)x y ,N 22(,)x y ,不妨1y >0, 2y <0,设△1F MN 的内切圆的径R ,则△1F MN 的周长=4a =8,112F MN S =(MN +1F M +1F N )R =4R因此1F MN S 最大,R 就最大,………………………………………6分1212121()2AMN S F F y y y y =-=-,由题知,直线l 的斜率不为零,可设直线l 的方程为x =my +1,由221143x my x y =+⎧⎪⎨+=⎪⎩得22(34)m y ++6my -9=0,………………………8分得1y =,2y =,则12AMN S =AB (12y y -)=12y y -,……………9分令则t ≥1,则212121313AMN t S t t t===++,………………………10分令f (t )=3t +1t,则f ′(t ) =3-21t,当t ≥1时,f ′(t )≥0,f (t)在[1,+∞)上单调递增,有f (t )≥f (1)=4, AMN S ≤123=3,即当t =1,m =0时,AMN S ≤123=3, AMN S =4R ,∴max R =34,这时所求内切圆面积的最大值为916π.故直线l :x =1,△AMN 内切圆面积的最大值为916π………………12分6、解:(1)由2221ab e -==41及149122=+ba解得a 2=4,b 2=3,椭圆方程为13422=+yx;…………………………………………………………2分设A (x 1,y 1)、B (x 2,y 2), 由OP m PB PA =+得(x 1+x 2-2,y 1+y 2-3)=m (1,23),即⎪⎩⎪⎨⎧+=++=+m y y mx x 23322121又1342121=+y x ,1342222=+y x ,两式相减得212332434*********-=++⨯-=++⨯-=--=mm y y x x x x y y k AB ; ………………………6分(2)设AB 的方程为 y =t x +-21,代入椭圆方程得:x 2-tx +t 2-3=0,△=3(4-t 2),|AB |=224215)4(3411tt -⨯=-⨯+,点P 到直线AB 的距离为d =5|24|t -,S △PAB=24|2|23tt --=t)(2t)-3(2213+ (-2<t <2). ……………….10分令f (t ) =3(2-t )3(2+t ),则f ’(t )=-12(2-t )2(t +1),由f ’(t )=0得t =-1或2(舍),当-2<t <-1时,f ’(t )>0,当-1<t <2时f ’(t )<0,所以当t =-1时,f (t )有最大值81, 即△PAB 的面积的最大值是29;根据韦达定理得 x 1+x 2=t =-1,而x 1+x 2=2+m ,所以2+m =-1,得m =-3, 于是x 1+x 2+1=3+m =0,y 1+y 2+23=3+23m +23=0,因此△PAB 的重心坐标为(0,0).……………………………………………………13分 7、解:(1)设椭圆的半焦距为c ,依题意⎪⎩⎪⎨⎧==336a a c ∴b =1.∴所求椭圆方程为x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2), ①当AB ⊥x 轴时,|AB |=3,②当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m .由已知|m |1+k2=32, 得m 2=34(k 2+1),把y =kx +m 代入椭圆方程,整理得(3k 2+1)x 2+6kmx +3m 2-3=0∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)3k 2+1.∴|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2)⎣⎡⎦⎤36k 2m 2(3k 2+1)2-12(m 2-1)3k 2+1=12(k 2+1)(3k 2+1-m 2)(3k 2+1)2=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k 29k 4+6k 2+1=3+129k 2+1k2+6(k ≠0)≤3+122×3+6=4. 当且仅当9k 2=1k 2,即k =±33时等号成立|AB |=2.当k =0时,|AB |=3,综上所述,|AB |max =2.∴当|AB |最大时,△AOB 面积取最大值,S =12×|AB |max ×32=32.8、解:(1)∵|PA |+|PB |=2>3=|AB |, ∴点P 的轨迹是以A ,B 为焦点,长轴长2a =2的椭圆.………………………………2分∴a =1, .21,2322=-==ca b c ………………………………4分设P (x ,y ),∴点P 的轨迹方程为14122=+yx . ………………………………6分(2)将)23(+=x k y l :代入1422=+yx ,消去x ,整理为.0413)14(22=--+y ky k…………………………………7分设),(),(2211y x N y x M ,,则21221214)(2321y y y y y y AB S BMN -+=-⋅=∆ ………………………………8分=.2131131)1()3(13411322222222≤+++=+++⋅=++⋅kk kk k k kk kk k ………………10分 当且仅当kk kk 311322+=+,即22=k 时,△BMN 的最大面积为.21此时直线l 的方程是4622+=x y . …………………………………………12分9、解:(Ⅰ)设点P 的坐标为(x ,y ),则点Q 的坐标为(x).依据题意,有A Q=(x), B Q=(x). ……2分∵A Q ·B Q =1,∴x 2-1+2 y 2=1.∴动点P 所在曲线C 的方程是22x + y 2=1 …4分(Ⅱ)因直线l 过点B ,且斜率为k2,故有l ∶y=-2(x -1).……5分联立方程组22121)2x y y x ⎧+=⎪⎪⎨⎪=--⎪⎩,消去y ,得2x 2-2x -1=0. ………7分设M (x 1,y 1)、N (x 2,y 2),可得12121,12x x x x +=⎧⎪⎨=-⎪⎩,于是121212x x y y +=⎧⎪⎨+=⎪⎩. …………8分又O M +O N +O H =0 ,得O H =(- x 1- x 2,- y 1- y 2),即H (-1,2)………9分∴|MN=……………………10分又l+2y,则H 到直线l 的距离为d|2(⨯--=故所求驻MNH 三角形的面积为S=124⨯= ………………12分10、解(Ⅰ)设点P 的坐标为(,)x y ,则点Q的坐标为()x ,依据题意,有(),().AQ x BQ x =+=-…………………1分221,12 1.AQ BQ x y ⋅=∴-+=∴动点P 所在曲线C 的方程是221.2xy +=………………3分(Ⅱ)因直线l 过点B,且斜率为2k =-,故有:1).2l y x =--………5分联立方程组22121)2x y y x ⎧+=⎪⎪⎨⎪=--⎪⎩,消去y ,得22210.x x --=………………6分设11(,)M x y 、22(,)N x y ,可得1212112x x x x +=⎧⎪⎨=-⎪⎩,于是121212x x y y +=⎧⎪⎨+=⎪⎩.………………………7分又0OM ON OH ++=,得1212(,),O H x x y y =----即(1,2H --而点G 与点H 关于原点对称,于是,可得点2G ……………………………8分若线段M N 、G H 的中垂线分别为1l 和2l,2G H k =121:),:.42l y x l y -=-= (9)分联立方程组1)42y x y ⎧-=-⎪⎨⎪=⎩,解得1l 和2l的交点为11(,88O -………………………10分因此,可算得1||8O H =1||8O M =所以M 、G 、N 、H四点共圆,且圆心坐标为11(,88O8…12分11、【解析】(I)由题意知2c e a==,从而2a b =,又a =,解得2,1a b ==。

相关文档
最新文档