高一第一学期期末考试数学试卷含答案(word版)
高一数学第一学期期末试卷及答案5套
高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。
2021年高一上学期期末测试数学试题 Word版含答案
2021年高一上学期期末测试数学试题 Word版含答案一、选择题.共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合,,则A. B. C. D.2.A. B. C. D.3.已知△三个顶点的坐标分别为,,,若,那么的值是A. B.3 C. D.44.在下列函数中,既是偶函数又在区间上单调递减的函数为A. B. C. D.5.函数的一个对称中心A.B.C.D.6. 函数(且)的图象经过点,函数(且)的图象经过点,则下列关系式中正确的是A.B.C.D.7.如图,点在边长为的正方形的边上运动,设是的中点,则当沿着路径运动时,点经过的路程与△的面积的函数关系为,则的图象是8.已知函数,在下列结论中:①是的一个周期;②的图象关于直线对称;③在上单调递减.正确结论的个数为A. 0B.1C. 2D. 3第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分.9.如果向量,,且,共线,那么实数.10.已知集合,则 .11.sin15o sin75o的值是____________.12. 已知函数且,则的值为.13.已知是正三角形,若与向量的夹角大于,则实数的取值范围是__________.14.给出定义:若(其中为整数),则叫做离实数最近的整数,记作,即. 在此基础上给出下列关于函数的四个判断:①的定义域是,值域是;②点是的图象的对称中心,其中;③函数的最小正周期为;④函数在上是增函数.则上述判断中正确的序号是 .(填上所有正确的序号)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. (本小题满分13分)已知函数.(I)求函数的定义域;(II)求的值;(III)求函数的零点.16. (本小题满分14分)已知. 其中是第三象限角.(Ⅰ)求的值;(Ⅱ)求的值;(III) 求πθπθθ⎛⎫+-++⎪⎝⎭sin2sin()cos22的值.17. (本小题满分13分) 已知向量,,其中.(Ⅰ)当时,求的值; (Ⅱ)当时,求的最大值.18. (本小题满分14分)函数f (x )=A sin(ωx +φ) (A >0,ω>0, |φ|<π2)的部分图象如图所示.(Ⅰ)求函数的解析式;(Ⅱ)将y =f (x )的图象向右平移π6个单位后得到新函数的图象,求函数的解析式;(Ⅲ)求函数的单调增区间.19. (本小题满分13分) 设二次函数满足条件: ①, ②;③在上的最小值为.(I )求的值;(II )求的解析式;(III )求最大值,使得存在,只要,都有成立.20.(本小题满分13分)若函数对任意的,均有,则称函数具有性质. (Ⅰ)判断下面两个函数是否具有性质,并说明理由.①; ②.(Ⅱ)若函数具有性质,且(),求证:对任意有;(Ⅲ)在(Ⅱ)的条件下,是否对任意均有.若成立给出证明,若不成立给出反例.密云县xx学年度第一学期期末考试高一数学试卷参考答案及评分参考xx.01二、填空题共6小题,每小题5分,共30分.9.-210.11.12.13.14.①③④三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15. (本小题满分13分)解:(I)由题:, ----------------2分函数的定义域. ----------------4分(II)----------------8分(III)令,函数的零点为----------------13分16. (本小题满分14分)解:(Ⅰ)且是第三象限角,----------------2分----------------4分(Ⅱ)由(Ⅰ),----------------6分----------------9分(III)πθπθθ⎛⎫+-++⎪⎝⎭sin2sin()cos22----------------12分----------------14分17. (本小题满分13分)解:(Ⅰ)当时,,---------------2分----------------5分 (Ⅱ)由题:2222cos )2(cos sin 0)sin 0θθθθθθ=++⋅+⋅++. ----------------10分, .当即时, ----------------11分的最大值为. --------------- ----13分18. (本小题满分14分)解:(Ⅰ)由所给图象知A =1, ---------------1分34T =11π12-π6=3π4,T =π,所以ω=2πT =2.----------------2分 由sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,|φ|<π2得π3+φ=π2,解得φ=π6,-------4分所以f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6. ----------------5分(Ⅱ)f (x )=sin ⎝⎛⎭⎪⎫2x +π6的图象向右平移π6个单位后得到的图象对应的函数解 析式为=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+π6 ----------------7分=sin ⎝ ⎛⎭⎪⎫2x -π6. --------------9分(Ⅲ)由题:12cos 22cos 222x x x x =+-+. ----------------12分222,(),232k x k k Z πππππ-≤+≤+∈令 ----------------13分.------------14分 19.(本小题满分13分) 解:(I) ∵在上恒成立,∴即. ---------------------------2分 (II )∵,∴函数图象关于直线对称,∴∵,∴ ---------------------------4分 又∵在上的最小值为,∴,即, 由解得,∴; -------------7分 (III )∵当时, 恒成立,∴且,由得,解得 ---------------9分 由得:,解得,……………(10分)∵,∴11(4)9m t ≤-≤--=,---------------11分 当时,对于任意,恒有211(4)(109)(9)(1)044f x x x x x x --≤-+=--≤, ∴的最大值为. -------------------12分另解:(酌情给分)且 在上恒成立∵在上递减,∴, ∵在上递减,∴2min (1)11)x m -+=-+=- ∴,∴,, ∵,∴,∴,∴的最大值为 20.(本小题满分13分)(Ⅰ)证明:①函数具有性质.11(1)(1)2()222220x x x x f x f x f x -+-++-=+-⋅=>,……………1分即,此函数为具有性质.……………2分②函数不具有性质. ……………3分 例如,当时,,,所以,,……………4分 此函数不具有性质.(Ⅱ)假设为中第一个大于的值, 则,因为函数具有性质, 所以,对于任意,均有,所以0)1()()2()1()1()(>--≥≥---≥--i f i f n f n f n f n f , 所以()[()(1)][(1)()]()0f n f n f n f i f i f i =--+++-+>,与矛盾,所以,对任意的有. ……………9分 (Ⅲ)不成立.例如……………10分证明:当为有理数时,均为有理数,222(1)(1)2()(1)(1)2(112)2f x f x f x x x x n x x x -++-=-++---++-=,当为无理数时,均为无理数,22)1()1()(2)1()1(222=-++-=-++-x x x x f x f x f所以,函数对任意的,均有,即函数具有性质. ……………12分 而当()且当为无理数时,.所以,在(Ⅱ)的条件下,“对任意均有”不成立.……………13分 (其他反例仿此给分, 如等.)~34923 886B 衫f26355 66F3 曳27695 6C2F 氯K33946 849A 蒚525909 6535 攵d24485 5FA5 徥X24123 5E3B 帻}。
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案
XXX2015-2016学年高一上学期期末考试数学试卷 Word版含答案XXX2015-2016学年度第一学期期末考试高一数学一、选择题:本大题共8小题,共40分。
1.设全集 $U=\{1,2,3,4,5,6\}$,集合 $M=\{1,4\}$,$N=\{1,3,5\}$,则 $N\cap (U-M)=()$A。
$\{1\}$ B。
$\{3,5\}$ C。
$\{1,3,4,5\}$ D。
$\{1,2,3,5,6\}$2.已知平面直角坐标系内的点 $A(1,1)$,$B(2,4)$,$C(-1,3)$,则 $AB-AC=()$A。
$22$ B。
$10$ C。
$8$ D。
$4$3.已知 $\sin\alpha+\cos\alpha=-\frac{1}{\sqrt{10}}$,$\alpha\in(-\frac{\pi}{2},\frac{\pi}{2})$,则 $\tan\alpha$ 的值是()A。
$-\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$\frac{3}{4}$ D。
$\frac{4}{3}$4.已知函数 $f(x)=\sin(\omega x+\frac{\pi}{4})$($x\inR,\omega>0$)的最小正周期为 $\pi$,为了得到函数$g(x)=\cos\omega x$ 的图象,只要将 $y=f(x)$ 的图象():A.向左平移 $\frac{\pi}{4}$ 个单位长度B.向右平移$\frac{\pi}{4}$ 个单位长度C.向左平移 $\frac{\pi}{2}$ 个单位长度D.向右平移$\frac{\pi}{2}$ 个单位长度5.已知 $a$ 与 $b$ 是非零向量且满足 $3a-b\perp a$,$4a-b\perp b$,则 $a$ 与 $b$ 的夹角是()A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{3}$ C。
高一数学期末考试试题及答案doc
高一数学期末考试试题及答案doc一、选择题(每题5分,共50分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 椭圆答案:B2. 函数f(x)=2x^2-4x+3的零点是:A. x=1B. x=2C. x=3D. x=-1答案:A3. 集合{1,2,3}与集合{2,3,4}的交集是:A. {1,2,3}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 如果一个角是直角三角形的一个锐角的两倍,那么这个角是:A. 30°B. 45°C. 60°D. 90°答案:C5. 函数y=x^3-3x^2+4x-2在x=1处的导数值是:A. 0B. 1C. 2D. -1答案:B6. 以下哪个是等差数列的通项公式?A. a_n = a_1 + (n-1)dB. a_n = a_1 + n(n-1)/2C. a_n = a_1 + n^2D. a_n = a_1 + n答案:A7. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^2答案:B8. 以下哪个选项是复数的模?A. |z| = √(a^2 + b^2)B. |z| = a + biC. |z| = a - biD. |z| = a * bi答案:A9. 以下哪个选项是向量的点积?A. a·b = |a||b|cosθB. a·b = |a||b|sinθC. a·b = |a||b|tanθD. a·b = |a||b|secθ答案:A10. 以下哪个选项是三角恒等式?A. sin^2x + cos^2x = 1B. sin^2x - cos^2x = 1C. sin^2x - cos^2x = 0D. sin^2x + cos^2x = 0答案:A二、填空题(每题5分,共30分)1. 如果一个等差数列的前三项分别是2,5,8,那么它的公差是______。
高一第一学期数学期末试卷及答案5套
高一第一学期数学期末试卷及答案5套第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线023:=+-y x l 的倾斜角为( )A .30°B .60°C .120°D .150°2.空间直角坐标系中,已知点()()5433,2,1,,、B A ,则线段AB 的中点坐标为( ) A .()432,,B .()431,,C .()532,,D .()542,, 3.一个三棱锥的正视图和俯视图如图所示,则该三棱锥的俯视图可能为( )4.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确的有( ) A .1个 B .2个 C.3个 D .4个5.已知圆086221=+-+y y x C :,圆078:222=+-+x y x C ,则两圆21C C 、的位置关系为( )A .相离B .相外切 C.相交 D .相内切6.设入射光线沿直线y=2x+1射向直线12+=x y ,则被x y =反射后,反射光线所在的直线方程是( )A .032=++y xB .012=y+x 一 C.0123=y-x+ D .012=y-x- 7.直三棱柱111C B A ABC -中,若190AA AC AB BAC ==︒=∠,则异面直线1BA 与C B 1所成角的余弦值为( )A .0B .21C.22 D .238.已知βα,是两相异平面,n m ,是两相异直线,则下列错误的是( ) A .若βα⊂⊥m m ,,则βα⊥ B .若α//m ,n =⋂βα,则n m // C.若n m //,α⊥m ,则α⊥n D .若α⊥m ,β⊥n ,n m //,则βα// 9.若P 是圆1322=)+(y-C:x 上动点,则点P 到直线1y=kx-距离的最大值( ) A .3 B .4 C. 5 D .610.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积可能等于( ) A .21B .212- C.2 D .211.直线03=++m y x 与圆06422=--+x y x 相交于B A 、两点,若2|AB|≥,则m 的取值范围是( )A .[]8,8-B .[]4,4- C.[]4,8- D .[]8,4-12.已知点B A 、的坐标分别为(2,0)、(-2,0),直线BM AM ,相交于点M ,且直线BM 的斜率与直线AM 的斜率的差是1,则点M 的轨迹方程为( )A .)2(42±≠=x x yB .)2(142±≠-=x x y C. )2(142±≠+=x x y D .)2(42≠-=x x y 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 已知圆,圆,则两圆公切线的方程为 .14. 已知点),(y x P 为圆122=+y x 上的动点,则y x 42-的最小值为 . 15.如图,二面角βα--l 的大小是30°,线段α⊂AB ,AB l B ,∈与l 所成的角为45°,则AB 与平面β所成角的正弦值是 .16.如图,在平面直角坐标系xOy 中,圆36)1(:22=++y x A ,点)0,1(B ,点D 是圆A 上的动点,线段BD 的垂直平分线交线段AD 于点F ,设a b 、分别为点D F 、的横坐标,定义函数()a f b =,给出下列结论:①()11=f ;②()a f 是偶函数;③()a f 在定义域上是增函数; ④()a f 图象的两个端点关于圆心A 对称; ⑤动点F 到两定点B A 、的距离和是定值. 其中正确的是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知两条直线012)1(:1=++-y x a l ,03:2=++ay x l . (1)若21//l l ,求实数a 的值; (2)若22l l ⊥,求实数a 的值.18.如图所示,PA 是圆柱的母线,AB 是圆柱底面圆的直径,C 是底面圆周上异于B A ,的任意一点,2==AB PA . (1)求证:PC BC ⊥;(2)求三棱锥ABC P -体积的最大值,并写出此时三棱锥ABC P -外接球的表面积.19. 已知方程)(0124622R m my mx y x ∈=+-++ (1) 若此方程表示圆,求m 的取值范围;(2)若此方程表示圆C ,且点()2,2-A 在圆C 上,求过点()1,1P 的圆C 的切线方程。
完整版)高一第一学期数学期末考试试卷(含答案)
完整版)高一第一学期数学期末考试试卷(含答案)高一第一学期期末考试试卷考试时间:120分钟注:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,集合A={x|3≤x<7},B={x|x^2-7x+10<0},则(A∩B)的取值为A。
(−∞,3)∪(5,+∞)B。
(−∞,3)∪[5,+∞)C。
(−∞,3]∪[5,+∞)D。
(−∞,3]∪(5,+∞)2.已知a⋅3^a⋅a的分数指数幂表示为A。
a^3B。
a^3/2C。
a^3/4D。
都不对3.下列指数式与对数式互化不正确的一组是A。
e=1与ln1=0B。
8^(1/3)=2与log2^8=3C。
log3^9=2与9=3D。
log7^1=0与7^1=74.下列函数f(x)中,满足“对任意的x1,x2∈(−∞,0),当x1f(x2)”的是A。
x^2B。
x^3C。
e^xD。
1/x5.已知函数y=f(x)是奇函数,当x>0时,f(x)=logx,则f(f(100))的值等于A。
log2B。
−1/lg2C。
lg2D。
−lg26.对于任意的a>0且a≠1,函数f(x)=ax^−1+3的图像必经过点(1,4/5)7.设a=log0.7(0.8),b=log1.1(0.9),c=1.10.9,则a<b<c8.下列函数中哪个是幂函数A。
y=−3x^−2B。
y=3^xC。
y=log_3xD。
y=x^2+1是否有模型能够完全符合公司的要求?原因是公司的要求只需要满足以下条件:当x在[10,1000]范围内时,函数为增函数且函数的最大值不超过5.参考数据为e=2.L,e的8次方约为2981.已知函数f(x)=1-2a-a(a>1),求函数f(x)的值域和当x 在[-2,1]范围内时,函数f(x)的最小值为-7.然后求出a的值和函数的最大值。
高一数学期末(含答案)
高一数学期末(含答案)2019-2020学年度第一学期期末考试高一数学参考答案一、选择题1.解析:根据函数y=cos(-2x)的周期公式T=2π/|ω|可知,函数的最小正周期是T=π/2.故选D。
2.解析:根据勾股定理可得r=√(4^2+3^2)=5,由任意角的三角函数定义可得cosα=-4/5.故选B。
3.删除。
4.解析:由cos(π+α)=-cosα得cosα=-1/3.故选A。
5.解析:根据三角函数的基本关系sin^2α+cos^2α=1和1-cos2α=2sin^2(α/2)可得sinα=√(1-cos^2α)=√(26/169),tanα=sinα/cosα=-2/3.故选D。
6.删除。
7.解析:由题意可得函数f(x)的图像是连续不断的一条曲线,且f(-2)0,故f(0)·f(1)<0,即函数在(0,1)内有一个零点。
故选C。
8.解析:由勾股定理可得EB=√(ED^2+DB^2)=√(1+1/9)=√(10/9),AD=AB-DB=2AB/3,故EB/AD=√(10/9)/(2AB/3)=√10/2=AB/AD。
故选A。
9.解析:由a+b=a-b两边平方得a^2+2ab+b^2=a^2-2ab+b^2,即ab=0,故a⊥b。
故选A。
10.解析:大正方形的边长为10,小正方形的边长为2,故小正方形的对角线长为2√2.由勾股定理可得大正方形的对角线长为10√2,故大正方形内切圆的半径为5-√2,故其面积为(5-√2)^2π=23π-10√2.故选A。
4sinα-2cosα = 2(2sinα-cosα) = 2(2tanα-1)cosα/√(1+4tan^2α) 4(1-2sin^2α)/(5+3tanα) = 8/135cosα+3sinα = √34sin(α+0.424)sinαcosα = 22/37tanα=2.sinα=4/√20.cosα= -1/√20cos2α=5/13.cosα=±√5/13因为α是第三象限角,所以cosα=-√5/13.sinα=-2√5/131) 设X=2x+π/3,则X=2x+2πk/3.k∈Zy=sinX的单调递减区间为[2kπ+π/3.2kπ+5π/3]。
河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案
河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若$\{1,2\}\subset A\subset\{1,2,3,4,5\}$,则满足条件的集合$A$的个数是()A。
6B。
8C。
7D。
92.设$a,b\in\mathbb{R}$,集合$A=\{1,a+b,a\},B=\{0,\frac{b}{a},b\}$,若$A=B$,则$b-a=$()A。
2B。
$-1$C。
1D。
$-2$3.下列各组函数中$f(x)$与$g(x)$的图象相同的是()A。
$f(x)=x,g(x)=|x|$B。
$f(x)=x^2,g(x)=\begin{cases}x,&(x\geq 0)\\-x,&(x<0)\end{cases}$C。
$f(x)=1,g(x)=x$D。
$f(x)=x,g(x)=\begin{cases}x,&(x\geq0)\\0,&(x<0)\end{cases}$4.下列函数中,既是偶函数又在$(-\infty,0)$内为增函数的是()A。
$y=-\frac{1}{2}$B。
$y=x^2$C。
$y=x+1$D。
$y=\log_3(-x)^2$5.三个数$a=0.32,b=\log_2 0.3,c=2^0.3$之间的大小关系为()A。
$a<c<b$B。
$a<b<c$C。
$b<a<c$D。
$b<c<a$6.下列叙述中错误的是()A。
若点$P\in\alpha,P\in\beta$且$\alpha\cap\beta=l$,则$P\in l$B。
三点$A,B,C$能确定一个平面C。
若直线$a\parallel b$,则直线$a$与$b$能够确定一个平面D。
若点$A\in l,B\in l$且$A\in\alpha,B\in\alpha$,则$l\subset\alpha$7.方程$\log_3 x+x=3$的解所在区间是()A。
高一上期末数学试卷带答案
一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是()A. -3B. 2C. -1/2D. 0答案:D2. 若函数f(x) = x^2 - 4x + 4的图像的对称轴是()A. x = 2B. y = 2C. x = -2D. y = -2答案:A3. 已知等差数列{an}的前三项分别是2,5,8,则该数列的公差是()A. 1B. 2C. 3D. 4答案:B4. 在三角形ABC中,若角A、B、C的对边分别为a、b、c,且a^2 + b^2 = c^2,则三角形ABC是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 无法确定答案:B5. 下列函数中,在定义域内单调递减的是()A. y = x^2B. y = 2xC. y = -x^2D. y = x^3答案:C6. 已知等比数列{an}的前三项分别是1,2,4,则该数列的公比是()A. 1B. 2C. 4D. 1/2答案:D7. 在直角坐标系中,点P(2,3)关于直线y=x的对称点是()A. (3,2)B. (2,3)C. (3,3)D. (2,2)答案:A8. 若函数f(x) = |x| + 1在x=0处的导数等于()A. 1B. 0C. -1D. 不存在答案:A9. 在等差数列{an}中,若a1 = 3,d = 2,则第10项an等于()A. 19B. 20C. 21D. 22答案:C10. 已知函数f(x) = x^3 - 3x + 2,则f'(x) =()A. 3x^2 - 3B. 3x^2 - 2C. 3x^2 + 3D. 3x^2 + 2答案:A二、填空题(每题5分,共50分)11. 函数y = (x - 1)^2 + 2的最小值是__________。
答案:212. 等差数列{an}的前10项和S10 = 110,则第5项a5 =__________。
答案:1113. 若等比数列{an}的首项a1 = 3,公比q = 2,则第4项a4 =__________。
安徽省宣城市2014-2021学年高一上学期期末数学试卷 Word版含解析
安徽省宣城市2022-2021学年高一上学期期末数学试卷一、选择题(每小题5分,共50分)1.(5分)sin42°cos18°+cos42°sin18°=()A.B.C.D.2.(5分)下列函数中既是奇函数,又在区间(﹣1,1)上是增函数的为()A.y=e x+e﹣x B.y=|x| C.y=sinx D.y=﹣x33.(5分)在平行四边形ABCD中,对角线AC与BD交于点O ,若+=,则λ的值为()A.2B.1C.D.﹣14.(5分)下列函数中,表示同一函数的一组是()A.f(x)=,g(x)=B.f(x)=lg(x(x+1)),g(x)=lgx+lg(x+1)C.f(x)=x﹣1(x∈R),g(x)=x﹣1(x∈N)D.f(x)=x2+x﹣1,g(x)=t2+t﹣15.(5分)函数f(x)=的大致图象是()A.B.C.D.6.(5分)函数f(x)=lnx ﹣的零点所在的区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)7.(5分)已知a=log34,b=log43,c=log53,则a,b,c的大小关系是()A.c<a<b B.b<a<c C.a<c<b D.c<b<a8.(5分)已知α为第一象限角,sinα=cosα,则tan为()A.2+B.2﹣C.﹣±2 D.±2 9.(5分)若函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤)的部分图象如图所示,其中A,B两点的间距为5,则()A.ω=,φ=B.ω=,φ=C.ω=,φ=D.ω=,φ=10.(5分)已知函数f(x)=ln (﹣3x)+1,若f(lg(log210))=m,则f(lg(lg2))=()A.﹣m B.m C.m+2 D.2﹣m二、填空题(每小题5分,共20分)11.(5分)函数y=的定义域为.12.(5分)函数f(x)=,则f[f(16)]=.13.(5分)已知=(a>0),则a=.14.(5分)函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.15.(5分)设α∈(0,π),且α≠,当∠xOy=α时,定义坐标系xOy为α﹣仿射坐标(如图),在α﹣仿射坐标系中,任意一点P的坐标这样定义“,分别是与x轴,y轴方向同向的单位向量,若向量=x +y,则记=(x,y),下列结论正确的是(写上全部正确结论的序号)①设向量=(m,n),=(s,t),若=,则有m=m,s=t;②设向量=(m,n),则||=;③设向量=(m,n )=(s,t),若,则有mt﹣ns=0;④设向量=(m,n )=(s,t),若,则有mt+ns=0;⑤设向量=(1,2)=(2,1),若与的夹角为,则有.三、解答题16.(12分)集合A={x|x2﹣px+15=0}和B={x|x2﹣ax﹣b=0},若A∪B={2,3,5},A∩B={3},分别求实数p、a、b的值.17.(12分)已知角α的终边过点P(x,﹣1),(x<0),且cosα=x.(1)求tanα的值;(2)求的值.18.(12分)已知向量,是夹角为的两个单位向量,=2+,=k +2,(1)若,求实数k的值;(2)若k=﹣3,求与的夹角θ.19.(12分)已知函数f(x)=(a>0,a≠1)(1)判定函数f(x)的奇偶性;(2)判定函数f(x)的单调性并证明你的结论.20.(13分)设向量=(2sin(x+),﹣1),=(2cosx ,),设函数f(x)=(1)求函数f(x)的最小正周期(2)若2f(x)﹣m+1=0在[0,]内有两个相异的实根,求实数m的取值范围.21.(14分)依据市场调查,某商品在最近40天内的价格P与时间t的关系用图(1)中的一条折线表示,销售量Q与时间t的关系用图(2)中的线段表示(t∈N*)(1)分别写出图(1)表示的价格与时间的函数关系式P=f(t),图(2)表示的销售量与时间的函数关系式Q=g(t).(2)求这种商品的销售额S(销售额=销售量×价格)的最大值及此时的时间.安徽省宣城市2022-2021学年高一上学期期末数学试卷参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)sin42°cos18°+cos42°sin18°=()A.B.C.D .考点:两角和与差的正弦函数.专题:三角函数的求值.分析:由两角和的正弦公式可得sin42°cos18°+cos42°sin18°=sin(42°+18°),计算可得.解答:解:由两角和的正弦公式可得:sin42°cos18°+cos42°sin18°=sin(42°+18°)=sin60°=故选:B点评:本题考查两角和与差的三角函数,属基础题.2.(5分)下列函数中既是奇函数,又在区间(﹣1,1)上是增函数的为()A.y=e x+e﹣x B.y=|x| C.y=sinx D.y=﹣x3考点:函数奇偶性的推断;函数单调性的推断与证明.专题:函数的性质及应用.分析:依据函数奇偶性和单调性的定义分别进行推断即可.解答:解:A.y=e x+e﹣x为偶函数,不满足条件.B.y=|x|为偶函数,不满足条件.C.y=sinx是奇函数,在区间(﹣1,1)上是增函数,满足条件.D.y=﹣x3是奇函数,在区间(﹣1,1)上是减函数,不满足条件.故选:C点评:本题主要考查函数奇偶性和单调性的推断,要求娴熟把握常见函数的奇偶性和单调性的性质.3.(5分)在平行四边形ABCD中,对角线AC与BD交于点O ,若+=,则λ的值为()A.2B.1C.D.﹣1考点:向量的三角形法则.专题:平面对量及应用.分析:画出图形,依据题意得出+==2,从而求出λ的值.解答:解:如图所示,平行四边形ABCD中,对角线AC与BD交于点O,∴+==2,∴λ=2.故选:A.点评:本题考查了平面对量的加法运算的几何意义,是基础题目.4.(5分)下列函数中,表示同一函数的一组是()A.f(x)=,g(x)=B.f(x)=lg(x(x+1)),g(x)=lgx+lg(x+1)C.f(x)=x﹣1(x∈R),g(x)=x﹣1(x∈N)D.f(x)=x2+x﹣1,g(x)=t2+t﹣1考点:推断两个函数是否为同一函数.专题:函数的性质及应用.分析:依据两个函数的定义域相同,对应关系也相同,推断它们是同一函数.解答:解:对于A,f(x)==,与g(x)=的定义域不同,∴不是同一函数;对于B,f(x)=lg(x(x+1))(x<﹣1或x>0),与g(x)=lgx+lg(x+1)=lg(x(x+1))(x>0)的定义域不同,∴不是同一函数;对于C,f(x)=x﹣1(x∈R),与g(x)=x﹣1(x∈N)的定义域不同,∴不是同一函数;对于D,f(x)=x2+x﹣1(x∈R),与g(x)=t2+t﹣1(t∈R)的定义域相同,对应关系也相同,∴是同一函数.故选:D.点评:本题考查了推断两个函数是否为同一函数的问题,是基础题目.5.(5分)函数f(x)=的大致图象是()A.B.C.D.考点:函数的图象;幂函数图象及其与指数的关系.专题:函数的性质及应用.分析:筛选法:利用幂函数的性质及函数的定义域进行筛选即可得到答案.解答:解:由于﹣<0,所以f(x)在(0,+∞)上单调递减,排解选项B、C;又f(x)的定义域为(0,+∞),故排解选项D,故选A.点评:本题考查幂函数的图象及性质,属基础题,筛选法是解决选择题的常用技巧,要把握.6.(5分)函数f(x)=lnx ﹣的零点所在的区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)考点:函数零点的判定定理.专题:函数的性质及应用.分析:依据函数零点的推断条件,即可得到结论.解答:解:∵f(x)=lnx ﹣,则函数f(x)在(0,+∞)上单调递增,∵f(2)=ln2﹣1<0,f(3)=ln3﹣>0,∴f(2)f(3)<0,在区间(2,3)内函数f(x)存在零点,故选:B点评:本题主要考查方程根的存在性,利用函数零点的条件推断零点所在的区间是解决本题的关键.7.(5分)已知a=log34,b=log43,c=log53,则a,b,c的大小关系是()A.c<a<b B.b<a<c C.a<c<b D.c<b<a考点:对数值大小的比较.专题:函数的性质及应用.分析:利用对数函数的单调性即可得出.解答:解:∵a=log34>1,1>b=log43=>=log53=c,∴a>b>c.故选:D.点评:本题考查了对数函数的单调性,属于基础题.8.(5分)已知α为第一象限角,sinα=cosα,则tan为()A.2+B.2﹣C.﹣±2 D .±2考点:同角三角函数基本关系的运用;二倍角的正切.专题:三角函数的求值.分析:由α为第一象限角,确定出的范围,进而确定出tan大于0,已知等式整理求出tanα的值,利用二倍角的正切函数公式化简求出tan的值即可.解答:解:∵α为第一象限角,∴2kπ≤α≤2kπ+,k∈Z,即k π≤≤kπ+,k∈Z,∴tan>0,已知等式sinα=cosα,整理得:tanα=,∴=,即tan 2+2tan﹣1=0,解得:tan=2﹣,故选:B.点评:此题考查了同角三角函数基本关系的运用,以及二倍角的正切函数公式,娴熟把握基本关系是解本题的关键.9.(5分)若函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤)的部分图象如图所示,其中A,B两点的间距为5,则()A.ω=,φ=B.ω=,φ=C.ω=,φ=D.ω=,φ=考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;三角函数的图像与性质.分析:由函数图象经过点(0,1),代入解析式得sinφ=,解出φ=.依据A、B两点之间的距离为5,由勾股定理解出横坐标的差为3,得函数的周期T=6,由此算出ω=.解答:解:∵函数图象经过点(0,1),∴f(0)=2sinφ=1,可得sinφ=,又∵0≤φ≤,∴φ=.∵其中A、B两点的纵坐标分别为2、﹣2,∴设A、B的横坐标之差为d,则|AB|==5,解之得d=3,由此可得函数的周期T=6,得=6,解之得ω=.故选:C.点评:本题给出正弦型三角函数的图象,确定其解析式并求f(﹣1)的值.着重考查了勾股定理、由y=Asin (ωx+φ)的部分图象确定其解析式等学问,属于中档题.10.(5分)已知函数f(x)=ln (﹣3x)+1,若f(lg(log210))=m,则f(lg(lg2))=()A.﹣m B.m C.m+2 D.2﹣m考点:函数的值.专题:函数的性质及应用.分析:设g(x)=ln (﹣3x),则g(x)+g(﹣x)=ln[(﹣3x)•(﹣3x)]=ln1=0,从而f(x)+f(﹣x)=2,再由lg(log210)=﹣lg(lg2),得到f(lg(log210))+f(lg(lg2))=2,由此能求出f(lg(lg2)).解答:解:∵设g(x)=ln (﹣3x),∴g(﹣x)=ln (+3x),∴g(x)+g(﹣x)=ln[(﹣3x)•(﹣3x)]=ln1=0,∴g(x)=ln (﹣3x)是奇函数,∴f(x)+f(﹣x)=2,∵lg(log210)=﹣lg(lg2),∴f(lg(log210))+f(lg(lg2))=2,∴f(lg(lg2))=2﹣f(lg(log210))=2﹣m.故选:D.点评:本题考查函数值的求法,是基础题,解题时要认真审题,留意函数的奇偶性和对数运算法则的合理运用.二、填空题(每小题5分,共20分)11.(5分)函数y=的定义域为[2,3)∪(3,+∞).考点:函数的定义域及其求法.专题:函数的性质及应用.分析:依据函数y的解析式,列出不等式组,求出解集即可.解答:解:∵函数y=,∴,解得,即x≥2且x≠3;∴函数y的定义域为[2,3)∪(3,+∞).故答案为:[2,3)∪(3,+∞).点评:本题考查了依据函数的解析式求函数定义域的问题,是基础题目.12.(5分)函数f(x)=,则f[f(16)]=8.考点:函数的值.专题:函数的性质及应用.分析:由16>7,得f(16)==4,由4<7,得f[f(16)]=f(4)=2×4=8.解答:解:∵函数f(x)=,∴f(16)==4,f[f(16)]=f(4)=2×4=8.故答案为:8.点评:本题考查函数值的求法,是基础题,解题时要认真审题,留意分段函数的性质的合理运用.13.(5分)已知=(a >0),则a=.考点:对数的运算性质;函数的最值及其几何意义.专题:函数的性质及应用.分析:由=(a>0),两边取以为底的对数即可得出.解答:解:∵=(a>0),则a==2,∴a=.故答案为:.点评:本题考查了对数的运算法则,属于基础题.14.(5分)函数y=cos (2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin (2x+)的图象重合,则φ=.考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;压轴题;三角函数的图像与性质.分析:依据函数图象平移的公式,可得平移后的图象为y=cos[2(x﹣)+φ]的图象,即y=cos(2x+φ﹣π)的图象.结合题意得函数y=sin(2x+)=的图象与y=cos(2x+φ﹣π)图象重合,由此结合三角函数的诱导公式即可算出φ的值.解答:解:函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,得平移后的图象的函数解析式为y=cos[2(x﹣)+φ]=cos(2x+φ﹣π),而函数y=sin(2x+)=,由函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,得2x+φ﹣π=,解得:φ=.符合﹣π≤φ<π.故答案为.点评:本题给出函数y=cos(2x+φ)的图象平移,求参数φ的值.着重考查了函数图象平移的公式、三角函数的诱导公式和函数y=Asin(ωx+φ)的图象变换等学问,属于基础题.15.(5分)设α∈(0,π),且α≠,当∠xOy=α时,定义坐标系xOy为α﹣仿射坐标(如图),在α﹣仿射坐标系中,任意一点P的坐标这样定义“,分别是与x轴,y轴方向同向的单位向量,若向量=x +y,则记=(x,y),下列结论正确的是③⑤(写上全部正确结论的序号)①设向量=(m,n),=(s,t),若=,则有m=m,s=t;②设向量=(m,n),则||=;③设向量=(m,n )=(s,t),若,则有mt﹣ns=0;④设向量=(m,n )=(s,t),若,则有mt+ns=0;⑤设向量=(1,2)=(2,1),若与的夹角为,则有.考点:平面对量的基本定理及其意义.专题:平面对量及应用.分析:.①利用向量相等可得,m=s,n=t,即可推断出正误;②利用向量是数量积运算性质即可推断出正误;③利用向量共线定理即可推断出;④利用向量垂直与数量积的关系即可推断出正误;⑤利用向量数量积运算及其向量夹角公式即可推断出.解答:解:.①设向量=(m,n),=(s,t),若=,则有m=s,n=t,因此不正确;②设向量=(m,n),则||=≠,因此不正确;③设向量=(m,n),=(s,t),若,则有mt﹣ns=0,因此正确;④设向量=(m,n),=(s,t),若,则有ms+nt=0,因此不正确;⑤设向量=(1,2),=(2,1),与的夹角为,则==,==,==2+2+5=4+5cosα.∴==,化为,则正确.综上可得:正确的结论为:③⑤.故答案为:③⑤.点评:本题考查了向量共线定理、数量积运算性质、向量垂直与数量积的关系、向量相等,考查了推理力量与计算力量,属于中档题.三、解答题16.(12分)集合A={x|x2﹣px+15=0}和B={x|x2﹣ax﹣b=0},若A∪B={2,3,5},A∩B={3},分别求实数p、a、b的值.考点:交集及其运算;并集及其运算.专题:计算题.分析:由于A∩B={3},所以3∈A,从而可得p=8,又由于3∈A,且A∪B={2,3,5},方程x2﹣ax﹣b=0的二根为2和3.由韦达定理可得a,b,从而解决问题.解答:解:由于A∩B={3},所以3∈A,从而可得p=8,所以A={3,5}(4分)又由于3∈A,且A∪B={2,3,5},,所以B={2,3}.(6分)所以方程x2﹣ax﹣b=0的二根为2和3.由韦达定理可得a=5,b=﹣6综上可知p=8,a=5,b=﹣6..(10分)点评:本题考查同学的等价转化力量,将所求的取值化为相应的方程通过求解方程解出答案,正确进行转化是解决该题的关键.17.(12分)已知角α的终边过点P(x,﹣1),(x<0),且cosα=x.(1)求tanα的值;(2)求的值.考点:同角三角函数基本关系的运用;任意角的三角函数的定义.专题:三角函数的求值.分析:利用任意角的三角函数定义,依据P坐标表示出cosα,代入已知等式求出x的值,确定出P坐标;(1)依据P坐标求出tanα的值即可;(2)依据P坐标求出sinα的值,原式分子利用二倍角的余弦函数公式化简,分母利用两角和与差的余弦函数公式化简,整理后把sinα与tanα的值代入计算即可求出值.解答:解:由条件知cosα=x=,解得:x=﹣2,即P(﹣2,﹣1),(1)tanα==;(2)∵P(﹣2,﹣1),∴sinα=﹣,∴原式===2sinαtanα=﹣.点评:此题考查了同角三角函数基本关系的运用,以及任意角的三角函数定义,娴熟把握基本关系是解本题的关键.18.(12分)已知向量,是夹角为的两个单位向量,=2+,=k +2,(1)若,求实数k的值;(2)若k=﹣3,求与的夹角θ.考点:平面对量数量积的运算.专题:计算题;平面对量及应用.分析:(1)运用向量的数量积的定义和向量垂直的条件:数量积为0,解方程即可得到k;(2)运用向量的夹角公式,首先分别求出向量a,b的模和数量积,计算即可得到.解答:解:(1)•=||•||•cos =,若,则=0,即(2+)•(k +2)=0,即有2k +2+(k+4)=2k+2+(k+4)=0,解得k=﹣;(2)若k=﹣3,则=﹣6+2+(﹣3+4)=﹣6+2+=﹣,||2=4++4=4+1+2=7,||2=9+4﹣12=9+4﹣6=7,则cosθ===﹣,由0≤θ≤π,解得θ=.点评:本题考查向量的数量积的定义和性质,主要考查向量垂直的条件,以及向量的夹角的求法,考查运算力量,属于基础题.19.(12分)已知函数f(x)=(a>0,a≠1)(1)判定函数f(x)的奇偶性;(2)判定函数f(x)的单调性并证明你的结论.考点:函数奇偶性的推断;函数单调性的推断与证明.专题:函数的性质及应用.分析:(1)依据函数奇偶性的定义即可判定函数f(x)的奇偶性;(2)依据函数单调性的定义进行判定函数f(x)的单调性并证明.解答:解:(1)函数的定义域为R,则f(﹣x)==﹣=﹣f(x),即f(﹣x)=﹣f(x),则函数f(x)是奇函数;(2)设x1<x2,则f(x1)﹣f(x2)=﹣==,若a>1,则<,则f(x1)<f(x2),此时函数f(x)为单调递增函数,若0<a<1,则>,则f(x1)>f(x2),此时函数f(x)为单调递减函数.点评:本题主要考查函数奇偶性和函数单调性的推断,利用奇偶性和单调性的定义是解决本题的关键.20.(13分)设向量=(2sin(x+),﹣1),=(2cosx ,),设函数f(x)=(1)求函数f(x)的最小正周期(2)若2f(x)﹣m+1=0在[0,]内有两个相异的实根,求实数m的取值范围.考点:三角函数中的恒等变换应用;平面对量数量积的运算;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:(1)由平面对量数量积的运算,三角函数中的恒等变换应用化简函数解析式可得f(x)=2sin(2x+),由三角函数的周期性及其求法即可得解.(2)由已知可转化为方程f(x)=两个相异的实根,即y=f(x)图象与y=图象有两个交点,结合函数图象,有<2或﹣2<≤﹣1,即可解得m的取值范围.解答:解:(1)∵f(x)==4sin(x+)cosx ﹣…1分=2sinxcosx+2cos2x ﹣…2分=sin2x+cos2x=2sin(2x+)…4分∴T=π…6分(2)2f(x)﹣m+1=0在[0,]内有两个相异的实根,即有方程:f(x)=两个相异的实根,即y=f(x)图象与y=图象有两个交点,…8分结合函数图象,当<2或﹣2<≤﹣1,即m∈[2+1,5)∪(﹣3,﹣1]时原方程有两个相异的实根,故m∈[2+1,5)∪(﹣3,﹣1]…13分点评:本题主要考查了平面对量数量积的运算,三角函数中的恒等变换应用,三角函数的周期性及其求法,考查了转化思想,属于中档题.21.(14分)依据市场调查,某商品在最近40天内的价格P与时间t的关系用图(1)中的一条折线表示,销售量Q与时间t的关系用图(2)中的线段表示(t∈N*)(1)分别写出图(1)表示的价格与时间的函数关系式P=f(t),图(2)表示的销售量与时间的函数关系式Q=g(t).(2)求这种商品的销售额S(销售额=销售量×价格)的最大值及此时的时间.考点:依据实际问题选择函数类型.专题:函数的性质及应用.分析:(1)直接通过图(1)表示的价格与时间的函数关系式P=f(t),图(2)表示的销售量与时间的函数关系式Q=g(t).注明函数的定义域.(2)利用函数的解析式,通过平方,分别求出函数的最值,取得最值的时间.解答:(本小题满分8分)解:(I )…(2分)…(3分)(II)当1≤t<20时,.∵t∈N*,∴t=10或11时,S的最大值为176 …(5分)当20≤t<40时,为减函数.∴t=20时,S的最大值为161,…(7分)∴t=10或11时,S的最大值为176.…(8分)点评:本题考查函数的实际应用,二次函数的最值的求法,考查分析问题解决问题的力量.。
北京市西城区2022-2023学年高一上学期期末考试数学试卷(word版,含答案)
北京市西城区2022-2023学年高一上学期期末考试数学试卷数 学2023.1本试卷共6页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|51}A x x =-<≤,2{|9}B x x =≤,则A B =(A )[5,3]- (B )(3,1]-(C )[3,1)-(D )[3,3]-(2)已知命题:p 1x ∃<,21x ≤,则p ⌝为(A )1x ∀≥,21x > (B )1x ∃<,21x > (C )1x ∀<,21x >(D )1x ∃≥,21x >(3)如图,在平行四边形ABCD 中,AC AB -=(A )CB (B )AD (C )BD(D )CD(4)若a b >,则下列不等式一定成立的是(A )11a b< (B )22a b > (C )e e a b --< (D )ln ln a b >(5)不等式2112x x +-≤的解集为 (A )[3,2]- (B )(,3]-∞- (C )[3,2)-(D )(,3](2,)-∞-+∞(6)正方形ABCD 的边长为1,则|2|AB AD +=(A )1(B )3(C(D(7)某物流公司为了提高运输效率,计划在机场附近建造新的仓储中心. 已知仓储中心建造费用C (单位:万元)与仓储中心到机场的距离s (单位:km )之间满足的关系为80022000C s s=++,则当C 最小时,s 的值为(A )20(B ) (C )40(D )400(8)设2log 3a =,则122a +=(A )8 (B )11(C )12(D )18(9)已知a 为单位向量,则“||||1+-=a b b ”是“存在0λ>,使得λb =a ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(10)近年来,踩踏事件时有发生,给人们的生命财产安全造成了巨大损失. 在人员密集区域,人员疏散是控制事故的关键,而能见度x (单位:米)是影响疏散的重要因素. 在特定条件下,疏散的影响程度k 与能见度x 满足函数关系: 0.20.1,1.4,0.110,110,b x k ax x x ⎧<⎪⎪=+⎨⎪⎪>⎩≤≤,,(,a b 是常数). 如图记录了两次实验的数据,根据上述函数模型和实验数据,b 的值是 (参考数据:lg30.48≈) (A )0.24- (B )0.48-(C )0.24(D )0.48第二部分(非选择题共110 分)二、填空题共5小题,每小题5分,共25分。
高一第一学期数学期末考试试卷(含答案)(K12教育文档)
高一第一学期数学期末考试试卷(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一第一学期数学期末考试试卷(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一第一学期数学期末考试试卷(含答案)(word版可编辑修改)的全部内容。
高一第一学期期末考试试卷考试时间:120分钟;学校:___________姓名:___________班级:___________考号:___________注息事项:1。
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2。
问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上。
写在本试卷上无效· 4。
考试结束后.将本试卷和答且卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R ,集合{}{}0107|,73|2<+-=<≤=x x x B x x A ,则)(B A C R ⋂=( )A .()),5(3,+∞⋃∞-B .()),5[3,+∞⋃∞-C .),5[]3,(+∞⋃-∞D .),5(]3,(+∞⋃-∞2.3a a a ⋅⋅的分数指数幂表示为 ( )A .23aB . a 3C .43aD .都不对3。
下列指数式与对数式互化不正确的一组是( )A. 01ln 10==与e B. 3121log 2188)31(-==-与 C 。
(完整版)高一数学上学期期末考试试题(含答案),推荐文档
(2)若I的倾斜角为,li与圆C相交于P Q两点,求线段PQ勺中点M的坐标;
14
(3)若I与圆C相交于P Q两点,求三角形CPQ勺面积的最大值,并求此时li的
i
直线方程.
19(本题14分)已知圆M:2(2丫1
x y,定点A4,2在直线x 2y0上,点P在
厂
线段0/上,过P点作圆M的切线PT,切点为T.⑴若MP5,求直线PT的方程;
01pA={01的所有集合A的个数是
:若点P(34,Q(ab关于直线x- y-W0对称,则2a- b的值是
[•解答题
15(1)解方程:lg(x+1)+lg(x-2)=lg4)解不等式
16(本小题12分)二次函数f(x满足f(灶1)- f(x)= 2x且f(0)=1.
⑴求f(x的解析式;
⑵当x [—11]时,不等式:f(x)2x m恒成立,求实数m的范围.
⑵经过P,M ,T三点的圆的圆心是D,求线段DO长的最小值L.
2y2
20.已知OG:x(5)5,点A(1-3)
(I)求过点A与OG相切的直线I的方程;
(n)设OG为OG关于直线I对称的圆,则在x轴上是否存在点P使得P到两圆的切线长之比为2?荐存在,求出点P的坐标;若不存在,试
说明理由.
高一上学期期末考试
亠、填空题
1集合A 4-10}, B {0,1}, C {1,2}=则(A B) C=___.
2.函数f(x)log(21)
1X的定义域为厂
2-\-~
3•过点(1,0)且倾斜角是直线x 3y1 0的倾斜角的两倍的直线方程
是.
4球的表面积与它的内接正方体的表面积之比是
占函数y=x
+x(-K x<3 )的值域是」
(完整word版)高一数学第一学期期末试卷(附答案)
绝密★启用前高一第一学期期末复习一.选择题:本大题共12个小题。
每小题4分;共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}{}5,3,2,3,2==B A ,则集合B A =A. {}2B. {}3,2C. {}5,3,2 D 。
{}5,3,2,3,22.点(21)P -,到直线4310x y -+=的距离等于 A 。
45 B.107 C.2 D.1253.下列命题中正确的是①平行于同一条直线的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③平行于同一个平面的两条直线互相平行; ④垂直于同一个平面的两条直线互相平行. A 。
①② B 。
①④ C. ②③ D. ③④ 4。
如图,正方体ABCD-A 1B 1C 1D 1中,①DA 1与BC 1平行;②DD 1与BC 1垂直;③A 1B 1与BC 1垂直.以上三个命题中, 正确命题的序号是A 。
①② B.②③ C.③ D 。
①②③5.已知奇函数()f x ,当0x >时1()f x x x=+,则(1)f -= A.1 B.2 C 。
—1 D 。
—2 6.下列函数中,在区间)2,0(上是增函数的是A.542+-=x x y B 。
x y = C 。
2x y -= D.12log y x =7.函数()f x 是定义域为R 的奇函数,当0x >时()1f x x =-+,则当0x <时,()f x 的表达式为A 1 D 1B ACDC 1B 1第4题图A .()1f x x =+B .()1f x x =-C .()1f x x =-+D .()1f x x =-- 8.已知过点A (2,)m -、B (,4)m 的直线与直线210x y +-=平行,则m 的值为 A 。
0 B 。
—8 C 。
2 D. 109.两圆0122=-+y x 和042422=-+-+y x y x 的位置关系是A .内切B .相交C .外切D .外离10.函数()312f x ax a =+-,在区间(1,1)-上存在一个零点,则a 的取值范围是 A .115a -<<B .15a >C .15a >或1a <- D .1a <- 11.右图是一个几何体的三视图,可得该几何体的表面积是 A.9π B.10π C.11π D 。
高一数学上学期期末考试试卷含答案(共3套)
高一级第一学期期末考试数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列四组函数,表示同一函数的是()A. B.C. D.2. 平行于同一平面的两条直线的位置关系是()A. 平行B. 相交C. 异面D. 平行、相交或异面3. 已知集合,,则()A. B. C. D.4. 图中的直线的斜率分别是,则有()A. B. C. D.5. 设,,则()A. B. C. D.6. 方程在下面哪个区间内有实根()A. B. C. D.7. 一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.8. 一圆锥的侧面展开图是一个半圆,则这个圆锥的母线与底面所成角是()A. B. C. D.9. 若函数的值域为,则实数的取值范围是()A. B. C. D.10. 如图,二面角的大小是,线段,,与所成的角为,则与平面所成的角的余弦值是()A. B. C. D.11. 正四面体中,是棱的中点,是点在底面内的射影,则异面直线与所成角的余弦值为()A. B. C. D.12. 已知函数在闭区间上的值域为,则满足题意的有序实数对在坐标平面内所对应点组成图形为()A. B.C. D.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,则__________.14. 已知两条平行直线分别过点,,且的距离为5,则直线的斜率是__________.15. 已知函数,若函数有3个零点,则实数的取值范围是__________.16. 如图,将一边为1的正方体沿相邻三个面的对角线截出一个棱锥,则三棱锥的内切球半径是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 求值或化简:(1);(2).18. 如图,正三角形的边长为6,,,点分别在边上,且,,相交于.(1)求点的坐标;(2)判断和是否垂直,并证明.19. 已知函数.(1)求函数的定义域;(2)判断函数的奇偶性,并证明你的结论;(3)在函数图像上是否存在两个不同的点,使直线垂直轴,若存在,求出两点坐标;若不存在,说明理由.20. 如图,在四棱锥中,底面,,,,为棱的中点.(1)求证:;(2)试判断与平面是否平行?并说明理由.21. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金(扣除三险一金后)所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额个人所得税计算公式:应纳税额=工资-三险一金=起征点. 其中,三险一金标准是养老保险8%、医疗保险2%、失业保险1%、住房公积金8%,此项税款按下表分段累计计算:(1)某人月收入15000元(未扣三险一金),他应交个人所得税多少元?(2)某人一月份已交此项税款为1094元,那么他当月的工资(未扣三险一金)所得是多少元?22. 设,函数,其中.(1)求的最小值;(2)求使得等式成立的的取值范围.参考答案1【答案】D【解析】试题分析:A.,对应法则不同;B.,定义域不同;C.,定义域不同;故选D。
高一数学第一学期期末试卷及答案5套
高一数学第一学期期末试卷及答案5套(满分:100分 时间:90分钟)一、选择题(每题4分,共40分)1.设集合{}{}3,22,1,0==B A ,,则=⋃B A ( ) {}3,2,1,0.A {}3,1,0.B {}1,0.C {}2.D2.(普通班)直线AB 的倾斜角为ο45,则直线AB 的斜率等于( )1.A 1.-B 5.C 5.-D(兰天班)已知直线0y =++C B Ax 不经过第一象限,且C B A ,,均不为零,则有( )0.<C A 0.>C B 0.>BC C 0.<BC D3.下列函数中,既是奇函数又是增函数的是( )3.x y A = 1.-=x y B x y C 3log .= xy D ⎪⎭⎫⎝⎛=21.4.若直线02=++a y x 经过圆04222=-++y x y x 的圆心,则a 的值为( ) 4.A 0.B 4.-C 3.D5.下列说法中,正确的是( ).A 经过不同的三点有且只有一个平面 .B 分别在两个平面内的两条直线是异面直线 .C 垂直于同一个平面的两条直线平行.D 垂直于同一个平面的两个平面平行6.已知一个几何体的三视图如图所示,则该几何体的体积为( )π12.A π8.B π38.C π320.D7.点()1,2-P 为圆()25122=+-y x 的弦AB 的中点,则直线AB 的方程为( ) 01.=-+y x A 032.=-+y x B 03.=--y x C 052.=--y x D8.(普通班)圆02:22=-+x y x A 和圆04:22=-+y y x B 的公切线条数是( ) A .4条 B .3条 C .2条 D .1条(兰天班)已知半径为1的动圆与定圆()()167522=++-y x 相切,则动圆圆心的轨迹方程是()()()2575.22=++-y x A ()()()()1575375.2222=++-=++-y x y x B 或()()975.22=++-y x C ()()()()9752575.2222=++-=++-y x y x D 或9.已知点()b a M ,在直线1543=+y x 上,则22b a +的最小值为( )2.A3.B415.C 5.D10.定义在R 上的奇函数()x f ,满足()01=f ,且在()∞+,0上单调递增,则()0>⋅x f x 的解集为( ){}11.>-<x x x A 或 {}0110.<<-<<x x x B 或{}110.-<<<x x x C 或 {}101.><<-x x x D 或二、填空题(每题4分,共16分)11.(普通班)在正方体1111D C B A ABCD -中,异面直线C B AD 11,所成的角的大小为 . (兰天班)直三棱柱111C B A ABC -中,1AA AB AC ==,且异面直线B A AC 11与所成角为ο60,则CAB ∠等于 .12. 若直线()03412:1=+-+m y x m l 与直线()035:2=-++m y m x l 平行,则m 的值为 .13. (普通班)一个正方体的顶点都在同一个球面上,且棱长为4,这个球的体积为 . (兰天班)球的内接圆柱的底面积为π4,侧面积为π12,则该球的表面积为 . 14. 设点()()2,2,5,3---B A ,直线l 过点()1,1P 且与线段AB 相交,则直线l 的斜率k 的取值范围是(用区间表示) .三、解答题(共44分)15.(10分)已知圆()()()025522>=-+-a y a x ,截直线05=-+y x 的弦长为25.(1)求圆的一般式方程;(2)求过点()15,10P 的圆的切线所在的直线一般式方程.16.(10分)(普通班)如图,在三棱锥ABC V -中,ABC 平面平面⊥VAB ,VAB ∆为正三角形,2==⊥BC AC BC AC 且,M O 、分别为VA AB 、的中点 .(1)求证:MOC VB 平面//; (2)求证:VAB MOC 平面平面⊥ .(兰天班)已知椭圆C 的中心在原点,焦点在x 轴上,左右焦点分别为21,F F ,且221=F F ,点⎪⎭⎫ ⎝⎛23,1在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)过1F 的直线l 与椭圆C 相交于B A ,两点,且B AF 2∆的面积为7212,求以2F 为圆心与直线l 相切的圆的方程.17.(12分)如图,边长为2的正方形中,BC BF BE 41==,M 是BD 和EF 的交点,将DCF AED ∆∆、分别沿DF DE 、折起,使C A 、两点重合与点A '. (1)求证:MD A EF '⊥面; (2)求三棱锥EFD A -'的体积;(3)求二面角E DF A --'的平面角的余弦值.18. (12分)已知函数()11log 21--=x axx f ,其中a 为常数且0<a ,若函数的图像关于原点对称. (1)求a 的值;(2)当()+∞∈,1x 时,()()mx x f <-+1log 21恒成立,求实数m 的取值范围;(3)若关于x 的方程()()k x x f +=21log 在[]3,2上有解,求k 的取值范围.答案一、 选择题1、A2、A C3、A4、B5、C6、D7、C8、CD9、B 10、A 二、填空题11、(普通班)60°(兰天班)90°12、m=﹣ , 13、32π. 25π 14、K -3或k 1三、解答题15、(1)解:,圆心 到直线距离,,圆的一般式方程为(2)解:若切线斜率不存在, ,符合若切线斜率存在,设,切线:或切线的一般式方程为x-10=0或16、(普通班)(1)证明:因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB .又因为OM ⊂平面MOC ,VB ⊄平面MOC ,所以VB ∥平面MOC .(2)证明:因为AC=BC ,O 为AB 中点, 所以OC ⊥AB .因为平面VAB ⊥平面ABC ,平面VAB∩平面ABC=AB ,OC ⊂平面ABC ,所以OC ⊥平面VAB .因为OC ⊂平面MOC ,所以平面MOC ⊥平面VAB(兰天班)(1)设椭圆的方程为, 由题意可得:椭圆C 两焦点坐标分别为,所以,所以,又,17、18、(1)解:∵函数f(x)的图象关于原点对称,∴函数f(x)为奇函数,∴f(﹣x)=﹣f(x),即log =﹣log = log ,解得:a=﹣1或a=1(舍)(2)解:f(x)+ log (x-1)= log (1+x),x>1时,它是减函数,log (1+x)<﹣1,∵x∈(1,+∞)时,f(x)+ log (x﹣1)<m恒成立,∴m≥﹣1;(3)解:由(1)得:f(x)= log (x+k),即log = log (x+k),即=x+k,即k= ﹣x+1在[2,3]上有解,g(x)= ﹣x+1在[2,3]上递减,g(x)的值域是[﹣1,1],∴k∈[﹣1,1]高一数学第一学期期末试卷及答案一.选择题:共12小题,每小题5分,共60分。
北京市门头沟区2022-2023学年高一上学期期末考试数学试卷(word版,含答案)
【解析】
【分析】根据函数的解析式,列出函数有意义时满足的不等式,求得答案.
【详解】函数 需满足 ,
解得 且 ,
故函数 定义域为 ,
故答案为:
12.【答案】 ##0.5
【解析】
【分析】根据分段函数求函数值解决即可.
【详解】由题知, ,
所以 ,
故答案为:
13.【答案】
【解析】
【分析】根据分段函数的两段单调递增和两段的端点值之间的大小关系列式可求出结果.
阅读名著的本数
1
2
3
4
5
男生人数
3
1
2
1
3
女生人数
1
3
3
1
2
(1)试根据上述数据,求这个班级女生阅读名著的平均本数;
(2)若从阅读5本名著的学生中任选2人交流读书心得,求选到男生和女生各1人的概率;
(3)试比较该班男生阅读名著本数的方差 与女生阅读名著本数的方差 的大小(只需写出结论).
参考答案
一、单选题
1.【答案】C
【解析】
【分析】由交集的定义求解即可
【详解】因为 , ,
所以 ,
故选:C
2.【答案】A
【解析】
【分析】利用作差法比较即可得到答案.
【详解】因为 ,所以 , , ,
所以 ,即 ,
,
所以 .
故选:A
3.【答案】A
【解析】
【分析】根据奇函数的定义及性质可以得出答案.
【详解】首先定义域必须关于0对称,C错; 不是奇函数,D错;在定义域内不是增函数,B错;
(3)若 时,求函数 的最小值.
17.化简求值:
(1) ;
高一数学上册期末试题附答案
高一数学上册期末试题附答案一、选择题1.设全集{0,1,2,3,4}U =,集合{21}A x U x =∈-≥‖∣则UA( )A .{13}xx <<∣ B .{13}xx ≤≤∣ C .{2}D .{}1,2,3-2.函数1()ln(1)2f x x x =-+-的定义域为( ) A .()()0,22,+∞B .[)()0,22,+∞C .()()1,22,⋃+∞D .[)()1,22,⋃+∞3.一个扇形的面积是21cm ,它的半径是1cm ,则该扇形圆心角的弧度数是A .12B .1C .2D .2sin14.若45︒角的终边上有一点(),4a a --,则a =( ) A .2B .4C .2-D .4-5.已知函数()ln 2f x x x =+-的零点为a ,记函数()ln 2g a a a k =+-,若()0g a >恒成立,则正整数k 的最大值为( ) A .1B .2C .3D .46.某工厂拟建一座平面图为矩形且面积为200平方米的三级污水处理池(如图),由于地形限制,长、宽都不能超过16米.如果池四周围壁建造单价为400元/米,中间两道隔壁墙建造单价为248元/米,池底建造单价为每平方米80元,池壁的厚度忽略不计.设污水池的长为x 米,总造价为()Q x (元),则()Q x 的解析式为( )A .3241()800()16000(1216)2Q x x x x =++≤≤ B .324()800()16000(016)Q x x x x=++<≤ C .3241()800()12000(1216)2Q x x x x =++≤≤ D .324()800()12000(016)Q x x x x=++<≤7.已知2()log (1)f x x =-()2120f x x -+-<,则x 的取值范围为( )A .(,0)(1,)-∞⋃+∞B .⎝⎭C .151,2⎫⎛+⎪ ⎪ ⎝⎭⎝⎭D .(1,0)(1,2)-8.已知函数231,2()1024,2xx f x x x x ⎧-≤⎪=⎨-+>⎪⎩,若函数2()2(())()F x f x mf x =-,且函数()F x 有6个零点,则非零实数m 的取值范围是 A .()()2,00,16⋃- B .()216, C .[)2,16D .()()2,00,-+∞二、填空题9.已知幂函数()f x 的图象经过点(.则( ) A .()f x 的定义域为[)0,+∞ B .()f x 的值域为[)0,+∞ C .()f x 是偶函数D .()f x 的单调增区间为[)0,+∞10.下列说法中,正确的是( ) A .不等式21031x x -≤+的解集是11,32⎡⎤-⎢⎥⎣⎦B .“1,1a b >>”是“1ab >”成立的充分条件C .函数2()f x =的最小值为2D .“tan 1x =”是“4x π=”成立的必要条件11.若0a b >>,则下列不等式中一定不成立的是( ) A .11b b a a +>+ B .11a b a b+>+ C .11a b b a+>+ D .22a b aa b b+>+ 12.双曲函数是一类与常见的三角函数类似的函数.最基本的双曲函数是双曲正弦函数2x x e e shx --=和双曲余弦函数2x xe e chx -+=,其中e 是自然对数的底数.则下列结论正确的是( )A .222ch x ch x sh x =+B .222sh x ch x sh x =-C .()sh x y shxchy chxshy +=+D .()ch x y chxchy shxshy +=+三、多选题13.若集合{}2||40A x x x mx =++=,且A R +=∅,则实数m 的取值范围是______________.14.31log 43321ln 83log 4+--=e _______.15.若不等式2(2)()0ax x b +-≤对任意的0x >恒成立,则a ______. 16.已知,0a b ∈>R ,若存在实数[0,1)x ∈,使得2||bx a b ax --成立,则ab的取值范围是________.四、解答题17.已知函数()()lg 6x f x -的定义域为A ,不等式11139x -⎛⎫≤⎪⎝⎭的解集为B . (1)求A B ;(2)已知非空集合{}2C x x m =<<,若A C C =,则实数m 的取值范围.18.已知α,β为锐角,3cos 5α=,()cos αβ+= (1)求cos2α的值; (2)求tan β的值. 19.已知函数()21x b f x ax +=+是定义在[1-,1]上的奇函数,且()112f =. (1)求a ,b 的值;(2)判断()f x 在[1-,1]上的单调性,并用定义证明;(3)设()52g x kx k =+-,若对任意的[]111x ∈-,,总存在[]201x ∈,,使得()()12f x g x ≤成立,求实数k 的取值范围.20.某公司为调动员工工作积极性拟制定以下奖励方案,要求奖金y (单位:万元)随投资收益x (单位:万元)的增加而增加,奖金不超过90万元,同时奖金不超过投资收益的20%.即假定奖励方案模拟函数为()y f x =时,该公司对函数模型的基本要求是:当[]25,1600x ∈时,①()f x 是增函数;②()90f x ≤恒成立;③()5xf x ≤恒成立.(1)现有两个奖励函数模型:①1()1015f x x =+;②()6f x =.试分析这两个函数模型是否符合公司要求?(2)已知函数()10(2)f x a =≥符合公司奖励方案函数模型要求,求实数a 的取值范围. 21.已知()()()2log 2f x g x x +=-,其中()f x 为奇函数,()g x 为偶函数. (1)求()f x 与()g x 的解析式;(2)判断函数()f x 在其定义域上的单调性; (3)解关于t 不等式()()12130f t f t t -++->.22.已知函数()2226f x x mx m =-++,()2x g x =.(1)求()()g f m 的值;(2)若方程()()128g f x =在区间[]1,2-上有唯一的解,求实数m 的取值范围; (3)对任意m R ∈,若关于x 的不等式()()()()()()f g x f g x t g x g x +-≥+-⎡⎤⎣⎦在x ∈R 上恒成立,求实数t 的取值范围.【参考答案】一、选择题 1.C 【分析】先求出集合A ,再根据补集定义即可求出. 【详解】{0,1,2,3,4}U =,{}21={1A x U x x U x ∴=∈-≥∈≤或}{}30,1,3,4x ≥=,{}2U A ∴=.故选:C. 2.C 【分析】由题可得1020x x ->⎧⎨-≠⎩,即可解出定义域.【详解】 1()ln(1)2f x x x =-+-, 1020x x ->⎧∴⎨-≠⎩,解得1x >且2x ≠, ()f x ∴的定义域为()()1,22,⋃+∞.故选:C.3.C 【分析】由题意首先求得弧长,然后求解圆心角的弧度数即可. 【详解】设扇形的弧长为l ,由题意可得:111,22l l ⨯=∴=,则该扇形圆心角的弧度数是221=. 本题选择C 选项. 【点睛】本题主要考查扇形面积公式,弧度数的定义等知识,意在考查学生的转化能力和计算求解能力. 4.C 【分析】利用三角函数的定义即可求解. 【详解】 由题意可得4tan 451aa--==(0a ≠), 整理可得24a =-,即2a =-. 故选:C 5.C 【分析】确定出()f x 零点的范围,再根据不等式恒成立得k 的范围,然后可确定出最大的正整数. 【详解】易知()f x 是增函数,(1)10,(2)ln20f f =-<=>, ∴零点(1,2)a ∈,且ln 20a a +-=,()ln 20g a a a k =+->,则ln 22k a a a <+=+,又(1,2)a ∈,∴2(3,4)a +∈,∴正整数k 的最大值为3. 故选:C . 6.A 【分析】分别计算池壁,池底和隔离墙的造价,得出解析式,再列不等式得出x 的范围即可. 【详解】由题意,污水池的宽为200x ,则四周池壁总造价为2002004002800x x x x ⎛⎫⎛⎫⨯+⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭, 池底造价为:2008016000⨯=,两道隔壁墙造价为:200992002482x x⨯⨯=, 所以()200992003248001600080016000Q x x x x x x ⎛⎫⎛⎫=⨯+++=⨯++ ⎪ ⎪⎝⎭⎝⎭, 又016200016x x <≤⎧⎪⎨<≤⎪⎩,解得:25162x <≤. 故选:A. 【点睛】本题考查了函数解析式的求解,函数模型的应用,属于基础题. 7.C 【分析】首先判断函数的单调性和定义域,再解抽象不等式. 【详解】函数()f x 的定义域需满足210240x x x ->⎧⎨-+≥⎩,解得:1x >,并且在区间()1,+∞上,函数单调递增,且()22f =,所以()()()2212012f x x f x x f -+-<⇔-+<,即221112x x x x ⎧-+>⎨-+<⎩,解得:1x <<0x <<.故选:C 【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域. 8.C 【分析】作出函数()f x 的图像,原问题转化为函数()y f x =与,02my y ==共有6个交点,等价于()y f x =与2my =有三个交点,结合图像得出其范围. 【详解】解:作出函数()f x 的图像如下:数2()2(())()F x f x mf x =-,且函数()F x 有6个零点等价于()(())02mf x f x -=有6个解, 等价于()0f x =或()2mf x =共有6个解 等价于函数()y f x =与,02my y ==共有6个交点, 由图可得()y f x =与0y =有三个交点,所以()y f x =与2my =有三个交点 则直线2my =应位于1,8y y ==之间, 所以182162mm ≤<⇒≤< 故选:C. 【点睛】根据函数零点的情况求参数有三种常用方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(2)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.二、填空题9.ABD 【分析】先求出幂函数的解析式,再根据解析式判断各项的正误. 【详解】因为()f x 为幂函数,故()af x x =,所以33a =,故12a =, 故()f x x所以函数的定义域为[)0,+∞,值域为[)0,+∞,单调增区间为[)0,+∞, 且()f x 不是偶函数,故选:ABD. 10.BD 【分析】对于A :取13x =-即可判断;对于B :利用定义法进行判断; 对于C :求出2()f x =的最小值即可判断;对于D :利用定义法进行判断. 【详解】 对于A :不等式21031x x -≤+的解集是11,32⎡⎤-⎢⎥⎣⎦,13x =-没意义,不在解集内.故A 错误; 对于B :因为“1,1a b >>”由同向不等式相乘可以得到“1ab >”,但是,当“1ab >”时,可以有1,2a b =-=-,不符合“1,1a b >>”,所以“1,1a b >>”是“1ab >”成立的充分条件.故B 正确;对于C :对于函数2()f x =,令t t =≥,则1y t t =+在)+∞上单增,所以miny =,即2()f x 故C 错误; 对于D :因为“4x π=”可以推出“tan 1x =”,但是“tan 1x =”时有()4x k k Z ππ=+∈,所以“tan 1x =”是“4x π=”成立的必要条件.故D 正确.故选:BD 11.AD 【分析】根据不等式的性质及作差法判断即可. 【详解】解:对于A ,()()()()111111b a a b b b b a a a a a a a +-++--==+++0a b >>,所以0a b ->,所以()01b aa a -<+,所以11b b a a +<+,故选项A 一定不成立;对于B ,不妨取2a =,1b =,则11a b a b +>+,故选项B 可能成立; 对于C ,不妨取2a =,1b =,则11a b b a+>+,故选项C 可能成立;对于D ,222(2)(2)02(2)(2)a b a a b b a a b b a a b b b a b b a b ++-+--==<+++,故22a b aa b b+<+,故选项D 一定不成立; 故选:AD . 12.ACD 【分析】利用指数的运算以及双曲正弦、余弦函数的定义可判断各选项的正误. 【详解】 对于A 选项,()()2222222222224x x x x x x x x e e e e e e e e ch x sh x ----++++-⎛⎫⎛⎫+-+=+=⎪ ⎪⎝⎭⎝⎭2222x x e e ch x -+==,A 选项正确; 对于B 选项,()()222222222212224x x x xx x x x e e e e e e e e ch x sh x sh x ----++-+-⎛⎫⎛⎫+--=-==≠ ⎪ ⎪⎝⎭⎝⎭,B 选项错误; 对于C 选项,()()()()4xx y y x x y y e e e e e e e e shxchy chxshy -----+++-+=()()()42x yx yy xx yx yx yy x x y x y x y eeeeeee e e e sh x y +----+----+--+--+-+--===+,C 选项正确; 对于D 选项,()()()()4xx y y x x y y ee e e e e e e chxchy shxshy ----+++--+=()()()42x yx y y x x y x y x y y x x y x y x y e e e e e e e e e e ch x y +----+----+--++++--++===+,D 选项正确.故选:ACD.三、多选题 13.4m >-【分析】由交集结果可得方程240x mx ++=无正数根,按照A =∅、A ≠∅分类,结合韦达定理即可得解. 【详解】由A R +=∅可得方程240x mx ++=无正数根,当A =∅时,则方程240x mx ++=的判别式2160m ∆=-<,解得44m -<<,符合题意;当A ≠∅时,则4m ≤-或4m ≥, 设方程的两个根为12,x x , 则1240x x =>,所以120x x m +=-<,解得0m >,所以4m ≥; 综上,实数m 的取值范围是4m >-. 故答案为:4m >-.14.π【分析】根据指对数的运算性质计算,()log 0,1na a n a a =>≠,()log 0,1NaaN a a =>≠ 【详解】原式3324(2)π=-++---33242π=-++-+π=【点睛】本题考查利用指数幂运算、对数运算法则化简求值的问题,属于基础题.15.-【分析】由题分析得到0b ≥,0a <,再求得两函数的零点,分析得出若不等式2(2)()0ax x b +-≤对任意的0x >恒成立,则有2b a,再利用基本不等式求得最大值得解.【详解】0x →时,有20b -≤成立,所以0b ≥x →+∞时,有20x b ->,所以200ax a +≤⇒<令2()2,()f x ax g x x b =+=-()2f x ax =+的零点是2x a =-,在2(0,)a-上()0f x >,在2(,)a -+∞上()0f x <2()g x x b =-的零点是x =上()0>g x ,在)+∞上()0<g x若不等式2(2)()0ax x b +-≤对任意的0x >恒成立,则2b a22()a a a a a∴+=--+≤--=a =.故答案为:-【点睛】解含参数的一元二次不等式时分类讨论的依据(1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为一次不等式或二次项系数为正的形式.(2)当不等式对应方程的实根的个数不确定时,讨论判别式∆与0的关系.(3)确定无实根时可直接写出解集,确定方程有两个实根时,要讨论两实根的大小关系,从而确定解集形式.16.-⎡⎢⎣⎦【分析】不等式两边同除以b ,先将题意转化为2x t tx -≤-在[0,1)x ∈上有解,即22111111x t x x t x x +⎧≤⎪⎪+⎨--⎪≥=⎪-+⎩在[0,1)x ∈上有解,设1()1f x x -=+,21()1x g x x +=+,[0,1)x ∈,即min ()t f x ≥且max ()t g x ≤,再求出函数对应最值即得结果. 【详解】解:因为0b >,故不等式两边同除以b ,得21a a x x b b -≤-,令at b=∈R ,即不等式21x t tx -≤-在[0,1)x ∈上有解.去绝对值即得2211tx x t tx -≤-≤-,即2211tx x t x t tx ⎧-≤-⎨-≤-⎩ 即22111111x t x x t x x +⎧≤⎪⎪+⎨--⎪≥=⎪-+⎩在[0,1)x ∈上有解,设1()1f x x -=+,21()1x g x x +=+,[0,1)x ∈,即min ()t f x ≥且max ()t g x ≤即可, 由1()1f x x -=+在[0,1)x ∈上,1[1,2)x +∈,11,112x ⎛⎤∈ ⎥+⎝⎦,即()11,2f x ⎡⎫∈--⎪⎢⎣⎭,故min ()1t f x ≥=-;由()()()22111()211221121x x g x x x x x x ++===+++-+++-+,利用基本不等式()211x x ++≥+211x x +=+即,)11[0x ∈=时等号成立,故()g x =max ()g x =t ≤综上:t的取值范围是1t -≤≤,即a b的取值范围是1b a-≤≤.故答案为:-⎡⎢⎣⎦.【点睛】 方法点睛:由不等式恒成立(或能成立)求参数(或范围)时的常用方法:(1)对不等式变形,分离参数,根据分离参数后的结果,构造函数,求出函数的最值,进而可求出结果;(2)根据不等式,直接构成函数,利用分类讨论求函数的最值,即可得出结果.四、解答题17.(1)[)3,6A B =;(2)26m <≤. 【分析】(1)求出集合A ,B ,再进行交集运算即可求解;(2)由A C C =,可得C A ⊆,结合集合C 是非空集合列不等式组即可求解. 【详解】(1)因为函数()()lg 6x f x =-的定义域为A ,所以1060x x -≥⎧⎨->⎩,解得16x ≤<,即{}|16A x x =≤<,由12111393x -⎛⎫⎛⎫≤= ⎪ ⎪⎝⎭⎝⎭可得12x -≥,解得:3x ≥,所以{}|3B x x =≥, 所以{}{}{}[)3|1,||36636A B x x x x x x =≤<⋂≥=≤<=; (2)因为A C C =,所以C A ⊆, 因为{}2C x x m =<<是非空集合,所以26m m >⎧⎨≤⎩,所以26m <≤,所以实数m 的取值范围为26m <≤. 18.(1)725-;(2)2. 【分析】(1)由二倍角公式,结合题意,可直接求出结果; (2)先由题意求出()tan 2αβ+=-,4tan 3α=, 根据()tan tan βαβα=+-⎡⎤⎣⎦,由两角差的正弦公式,即可求出结果. 【详解】 (1)因为3cos 5α=,因此27cos 22cos 125αα=-=-. (2)因为α,β为锐角,所以()0,παβ+∈.又因为()cos αβ+=()sin αβ+==()tan 2αβ+=-. 由3cos 5α=,sin 45α==,得4tan 3α=,所以()()()()42tan tan 3tan tan 241tan tan 123αβαβαβααβα--+-=+-===⎡⎤⎣⎦++⋅+-⨯19.(1)1,0a b ==;(2)()f x 在[]1,1-上递增,证明详见解析;(3)92k ≤. 【分析】(1)利用()()100,12f f ==求得,a b 的值. (2)利用定义法判断出()f x 在区间[]1,1-上的单调性.(3)将问题转化为()()max max f x g x ≤,对k 进行分类讨论,结合一次函数的单调性,求得k 的取值范围.【详解】(1)依题意函数()21x bf x ax +=+是定义在[1-,1]上的奇函数, 所以()00f b ==, ()111112f a a ==⇒=+, 所以()21xf x x =+,经检验,该函数为奇函数. (2)()f x 在[]1,1-上递增,证明如下: 任取1211x x ,()()()()()()221221121222221212111111x x x x x x f x f x x x x x +-+-=-=++++()()22121212221211x x x x x x x x +--=++()()()()()()()()12212112212222121211111x x x x x x x x x x x x x x -----==++++, 其中122110,0x x x x -<->,所以()()()()12120f x f x f x f x -<⇒<, 故()f x 在[]1,1-上递增.(3)由于对任意的[]111x ∈-,,总存在[]201x ∈,,使得()()12f x g x ≤成立, 所以()()max max f x g x ≤. ()()max 112f x f ==.当0k ≥时,()52g x kx k =+-在[]0,1上递增,()()max 15g x g k ==-, 所以195022k k ≤-⇒≤≤. 当0k <时,()52g x kx k =+-在[]0,1上递减,()()max 052g x g k ==-, 所以15202k k ≤-⇒<. 综上所述,92k ≤.20.(1) 函数模型:②()6f x =符合公司要求;(2) 522a ≤≤. 【分析】(1)由(30)126f =>判断函数模型:①1()1015f x x =+不符合条件③,故不符合公司要求;一一验证函数模型: ②()6f x =满足题目给出的三个条件,说明函数模型:②()6f x =符合公司要求;(2)由2a ≥说明()10(2)f x a =≥符合条件①,再求解基本不等式及基本不等式取最值时满足的条件求出a 满足②③的范围,取交集即可. 【详解】(1)对于函数模型:①1()1015f x x =+,验证条件③:当30x =时()12f x =,而65x =,即()5xf x ≤不成立,故不符合公司要求;对于函数模型:②()6f x =,当[]25,1600x ∈时,条件①()f x 是增函数满足; ∴max ()624067490f x ==⨯-=<,满足条件②;对于条件③:记()6(251600)5xg x x =-≤≤则21()515g x =--()∵[]5,40∴时,2max 1()551=105g x =----≤()∴()5xf x ≤恒成立,即条件③也成立.故函数模型: ②()6f x =符合公司要求.(2)∵2a ≥,∴函数()10f x =符合条件①;由函数()10f x =符合条件②,得10401090a =⨯-≤,解得:52a ≤;由函数()10f x =符合条件③,得105x≤对[]25,1600x ∈恒成立,即a []25,1600x ∈恒成立.∵≥x =50时等号成立,∴a ≤综上所述,实数a 的取值范围52,2⎡⎤⎢⎥⎣⎦.【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式: (1)求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;(2)求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围.21.(1)()()()()22121log log 22222,x f x g x x x x ⎛⎫-==+ ⎝+⎭-⎪;(2)详见解析;(3)()1,0-. 【分析】(1)根据()()()2log 2f x g x x +=-,其中()f x 为奇函数,()g x 为偶函数,得到()()()2log 2f x g x x -+=+,两式联立求解. (2)由(1)知()f x 的定义域为()2,2-,令24122x t x x-==-+++,用函数单调性的定义,证明t 在()2,2-上递减,再利用复合函数的单调性证明.(3)将()()12130f t f t t -++->转化为()()()()112121f t t f t t --->-+-+⎡⎤⎣⎦,令()()g x f x x =-,()()121g t g t ->-+再研究()g x 在()2,2-上的单调性和奇偶性求解.【详解】(1)()()()2log 2f x g x x +=-,其中()f x 为奇函数,()g x 为偶函数. 所以()()()2log 2f x g x x -+-=+, 即()()()2log 2f x g x x -+=+,两式联立解得()()()()22121log log 22222,x f x g x x x x ⎛⎫-==+ ⎝+⎭-⎪. (2)由(1)知()f x 的定义域为()2,2-, 令24122x t x x-==-+++, 任取()1212,2,2,x x x x ∈-<, 则()()()21121212444112222x x t t x x x x -⎛⎫-=-+--+= ⎪++++⎝⎭,因为()12,2,2∈-x x ,所以()()12220x x ++>, 因为12x x <, 所以210x x ->, 所以120t t ->,即12t t >, 所以t 在()2,2-上递减,又21log 2y x =在()0,∞+上递增,由复合函数的单调性得:()f x 在()2,2-上递减. (3)因为()()12130f t f t t -++->, 所以()()()()112121f t t f t t --->-+-+⎡⎤⎣⎦,令()()h x f x x =-,由(2)知()h x 在()2,2-上递减,又()()221212log log 2222x x h x x x h x x x +⎡-⎤⎛⎫⎛⎫-=+=--=- ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎣⎦, 所以()h x 在()2,2-上是奇函数, 即()()()12121h t h t h t ->-+=--,则2122212121t t t t -<-<⎧⎪-<--<⎨⎪-<--⎩, 解得10t -<<,所以不等式的解集是()1,0-. 【点睛】方法点睛:复合函数的单调性对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数; 若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数. 22.(1)64;(2)[)(]2,01,3-;(3)(,-∞.【分析】(1)由函数()f x 、()g x 的解析式可求得()()g f m 的值;(2)由()()128g f x =可得出22210x mx m -+-=,解出该方程的两个根,可得出关于m 的不等式,由此可得出实数m 的取值范围;(3)由()()()()()()f g x f g x t g x g x +-≥+-⎡⎤⎣⎦可得出()()()()22222222212220x x x x x x m m t ----+⋅+++-+≥,利用0∆≥可得出()()222222222x x x xt --++≤+,令222x x u -=+≥可得出202t u u≤+,利用基本不等式求出20u u +的最小值,由此可求得实数t 的取值范围. 【详解】 (1)()()222266f x x mx m x m =-++=-+,则()6f m =,所以,()()()66264g f m g ===;(2)由()()128g f x =,得2226722x mx m -++=,即22267x mx m -++=,即22210x mx m -+-=,因式分解得()()110x m x m ---+=,解得1x m =+或1x m =-. 因为,方程()()128g f x =在区间[]1,2-上有唯一的解,注意到11m m +>-,所以11212m m -≤-≤⎧⎨+>⎩或11112m m -<-⎧⎨-≤+≤⎩,解得13m <≤或20m -≤<.因此,m 的取值范围是[)(]2,01,3-;(3)由()()()()()()f g x f g x t g x g x +-≥+-⎡⎤⎣⎦,得()()()22222226222622x x x x x x m m m m t ----⋅+++-⋅++≥+,整理得()()()()22222222212220x x x x x x m m t ----+⋅+++-+≥①;因为,①式对任意m ∈R 恒成立,()()()()22242282212220x x x x x x t ---⎡⎤∴∆=+-++-+≤⎢⎥⎣⎦, 整理得()()()222222222xxx x t --+≤++,即()()222222222x x xxt --++≤+②;记()()()22222222x x x xx ϕ--++=+,因为,②式在x ∈R 上恒成立,()min 2t x ϕ∴≤.令22x x u -=+,则122222x x x x u -=+=+≥, 当且仅当0x =时,等号成立,则2u ≥,则()()22020u x h u u u u ϕ+===+≥=当且仅当[)2,u =+∞时,等号成立,()min x ϕ∴=2t ∴≤t ≤因此,实数t 的取值范围是(,-∞. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.。
高一上学期期末考试数学试卷含答案(共3套,word版)
高一年级第一学期期末考试试题数 学说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.............) 1.若A (-2,3),B (3,-2),C (12,m )三点共线,则m 的值是( ) A. 12-B. 12C. 2-D. 22.半径为R 的半圆卷成一个圆锥,则它的体积为( ) A.324R B.38R C.324R D.38R 3.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A.2+ B .12+ C .22+ D .1+4.如图,三棱柱A 1B 1C 1-ABC 中,侧棱AA 1⊥底面ABC ,底面三角形ABC 是正三角形,E 是BC 中点,则下列叙述正确的是( )A .AC ⊥平面ABB 1A 1 B .CC 1与B 1E 是异面直线 C .A 1C 1∥B 1ED .AE ⊥BB 15.设m ,n 是两条不同的直线,α,β是两个不同的平面,且m ⊂α,n ⊂β,则下列命题正确的是( )A .若m ⊥β,则α⊥β;B .若α⊥β,则m ⊥n ;C .若m ∥β,则α∥β;D .若α∥β,则m ∥n . 6.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限11C .第一、三、四象限D .第二、三、四象限7.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .108 cm 3B .100 cm 3C .92 cm 3D .84 cm 38.若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A .12B .1C .22D . 29.在四面体ABCD 中,已知棱AC 的长为2,其余各棱长都为1,则二面角A —CD —B 的余弦值为( )A .12B .13C .3D .310.如图,在正方体ABCD -A1B 1C 1D 1中,E 、F 、G 、H 分别为AA 1、AB 、BB 1、B 1C 1的中点,则异面直线EF 与GH 所成的角等于( )A .45°B .60°C .90°D .120°11.若曲线21x y -=与直线b x y +=始终有交点,则b 的取值范围是( )A .[- B .[- C . D .12.已知正三棱锥P —ABC (顶点在底面的射影是底面正三角形的中心)的侧面是顶角为30°腰长为2的等腰三角形,若过A 的截面与棱PB ,PC 分别交于点D 和点E ,则截面△ADE 周长的最小值是( )A .B .CD .第Ⅱ卷(非选择题)二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上..........) 13.两个球的体积之比为8 :27,则这两个球的表面积之比为________. 14.经过点(3,1)P ,且在x轴上的截距等于在y轴上的截距的2倍的直线l 的方程是______________________.15.等腰直角△ABC 中,AB =BC =1,M 为AC 的中点,沿BM 把△ABC 折成二面角,折后A 与C 的距离为1,则二面角C —BM —A 的大小为_____________.16.已知点A (-1,1),B (2,-2),若直线l :x +my +m =0与线段AB 相交(包含端点的情况),则实数m 的取值范围是________________.三、解答题(本大题共6 小题,共70分) 17. (本小题满分10分)求满足以下条件的m 值. (1)已知直线2mx +y +6=0与直线 (m -3)x -y +7=0平行;(2)已知直线mx +(1-m )y =3与直线(m -1)x +(2m +3)y =2互相垂直.18. (本小题满分12分)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2. (1)求圆C 的标准方程;(2)求圆C 在点B 处的切线方程.19.(本小题满分12分)如图,平行四边形ABCD 中,CD =1,∠BCD =60°,BD ⊥CD ,正方形ADEF ,且面ADEF ⊥面ABCD . (1)求证:BD ⊥平面ECD ; (2)求D 点到面CEB 的距离.20.(本小题满分12分)已知△ABC 的顶点B (-1,-3),边AB 上的高CE 所在直线的方程为4370x y +-=,BC 边上中线AD 所在的直线方程为330x y --=. (1) 求直线AB 的方程; (2) 求点C 的坐标.21.(本小题满分12分)如图,直三棱柱ABCA 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点.(1)证明:平面AEF ⊥平面B 1BCC 1;(2)若直线A 1C 与平面A 1ABB 1所成的角为45°,求三棱锥F AEC 的体积.22.(本小题满分12分)如图,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =25,AA 1=7,BB 1=27,点E 和F 分别为BC 和A 1C 的中点. (1)求证:EF ∥平面A 1B 1BA ;(2)求直线A 1B 1与平面BCB 1所成角的大小.1A答案一、选择题(本大题共12 小题,每小题5分,共60分)二、选择题(本大题共4小题,每小题5分,共20分,)13.4:9 14.或(只写对一个方程不给分)15.16.三、解答题(本大题共6 小题,共70分)17. (10分)也可用m(m-1)+(1-m)(2m+3)=0,即m2+2m-3=0,解得m=1,或m=-3.………10分18.(12分解:(1)过点C作CM⊥AB于M,连接AC,则|CM|=|OT|=1,|AM|=|AB|=1,所以圆的半径r=|AC|==,从而圆心C(1,),即圆的标准方程为(x-1)2+(y-)2=2…………6分(2)令x=0得,y=±1,则B(0,+1),所以直线BC的斜率为k==-1,由直线与圆相切的性质知,圆C在点B处的切线的斜率为1,则圆C在点B处的切线方程为y-(+1)=1×(x-0),即y=x++1………….12分19.(12分)解:(1)证明:∵四边形ADEF为正方形,∴ED⊥AD,又∵平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,∴ED⊥平面ABCD,∴ED⊥BD.又∵BD⊥CD,ED∩CD=D,∴BD⊥平面ECD.…………..4分(2)∵CD=1,∠BCD=60°,BD⊥CD,又∵正方形ADEF,∴CB=2,CE=,,∴,∴,Rt△BCD的面积等于S△BCD=1=,由得(I)ED⊥平面ABCD,∴点E到平面BCD的距离为ED=2,设点D到到面CEB的距离为h,∴=,∴h=,即点D到到面CEB的距离为………………12分20.(12分)解:(1)∵,且直线的斜率为,∴直线的斜率为,∴直线的方程为,即.………………6分(2)设,则,∴,解得,∴.………………12分21.(12分)解:(1)证明:如图,因为三棱柱ABC A1B1C1是直三棱柱,所以AE⊥BB1.又E是正三角形ABC的边BC的中点,所以AE⊥BC.又,因此AE⊥平面B1BCC1.……3分而AE⊂平面AEF,所以平面AEF⊥平面B1BCC1.……5分(2)设AB的中点为D,连接A1D,CD.因为△ABC是正三角形,所以CD⊥AB.又三棱柱ABC A1B1C1是直三棱柱,所以CD⊥AA1.又,因此CD⊥平面A1ABB1,于是∠CA1D为直线A1C与平面A1ABB1所成的角.……8分由题设,∠CA1D=45°,所以A1D=CD=AB=.在Rt△AA1D中,AA1===,所以FC=AA1=.……10分故三棱锥F AEC的体积V=S△AEC·FC=××=.……12分22.(12分)解:(1)证明:如图,连接A1B.在△A1BC中,因为E和F分别是BC和A1C的中点,所以EF∥BA1.又EF⊄平面A1B1BA,所以EF∥平面A1B1BA………..4分(2)解:因为AB=AC,E为BC的中点,所以AE⊥BC.因为AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,从而BB1⊥AE.又BC∩BB1=B,所以AE⊥平面BCB1,.取BB1的中点M和B1C的中点N,连接A1M,A1N,NE.因为N和E分别为B1C和BC的中点,所以NE∥B1B,NE=B1B,故NE∥A1A且NE=A1A,所以A1N∥AE,且A1N=AE.因为AE⊥平面BCB1,所以A1N⊥平面BCB1,从而∠A1B1N为直线A1B1与平面BCB1所成的角.在△ABC中,可得AE=2,所以A1N=AE=2.因为BM∥AA1,BM=AA1,所以A1M∥AB,A1M=AB,由AB⊥BB1,有A1M⊥BB1.在Rt△A1MB1中,可得A1B1==4.在Rt△A1NB1中,sin∠A1B1N==,因此∠A1B1N=30°.所以直线A1B1与平面BCB1所成的角为30°……………12分2018--2019学年度第一学期期末考试高中一年数学科试卷完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24x B x =>,则A B ⋂=( ) A .R B .),1(+∞ C .)2,(-∞ D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( )A. -2B. 2C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.4 9、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝ ⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34 B.1334⎛⎤ ⎥⎝⎦, C. 103⎛⎤ ⎥⎝⎦, D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( ) A. 0 B. 2 C. 6 D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上)13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分)已知是的三个内角,向量,,且. (1) 求角;(2)若,求. 19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年上学期高一期末考试试卷数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2018·五省联考]已知全集U =R ,则下列能正确表示集合{}0,1,2M =和{}220N x x x +==关系的韦恩(Venn )图是( )A .B .C .D .2.[2018·三明期中]已知函数()lg ,011,0x x f x x x >⎧=⎨+≤⎩,则()()1f f -=( )A .2-B .0C .1D .1-3.[2018·重庆八中]下列函数中,既是偶函数,又在(),0-∞内单调递增的为( ) A .22y x x =+B .2x y =C .22x x y -=-D .12log 1y x =-4.[2018·大庆实验中学]已知函数()32x f x a x=--的一个零点在区间()1,3内,则实数a 的取值范围是( )A .51,2⎛⎫- ⎪⎝⎭B .5,72⎛⎫⎪⎝⎭C .()1,7-D .()1,-+∞5.[2018·金山中学]某三棱锥的三视图如图所示,则该三棱锥的各个面中,最大的面积是( )A .6B .22C .1D 66.[2018·黄山八校联考]若m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( )A .若αβ⊥,m β⊥,则//m αB .若//m α,n m ⊥,则n α⊥C .若//m α,//n α,m β⊂,n β⊂,则//αβD .若//m β,m α⊂,n αβ=,则//m n7.[2018·宿州期中]已知直线1:30l mx y -+=与211:22l y x =-+垂直,则m =( )A .12-B .12C .2-D .28.[2018·合肥九中]直线l 过点()0,2,被圆22:4690C x y x y +--+=截得的弦长为23线l 的方程是( ) A .423y x =+ B .123y x =-+C .2y =D .423y x =+或2y =9.[2018·南宁模拟]如图,棱长为a 的正方体1111ABCD A B C D -中,M 为BC 中点,这直线1D M 与平面ABCD 所成角的正切值为( )A .32B .55C .255D .1210.[2018·东城期末]已知圆22:4C x y +=,直线():l x y m m +=∈R ,设圆C 上到直线l 的距离为1的点的个数为S ,当032m ≤<时,则S 的可能取值共有( ) A .2种B .3种C .4种D .5种11.[2018·云天化中学]如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =.则下列结论中正确的个数.....为( )①AC BE ⊥; ②EF ∥平面ABCD ;③三棱锥A BEF -的体积为定值; ④AEF △的面积与BEF △的面积相等. A .1 B .2C .3D .412.[2018·湛江调研]点A 、B 、C 、D 在同一个球的球面上,3AB BC AC ===, 若四面体ABCD 体积的最大值为3,则这个球的表面积为( ) A .169π16B .289π16C .25π16D .8π第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.[2018·华东师大附中]已知()214f x x +=-,则()f x 的解析式为__________.14.[2018·嘉兴三中]已知点()2,1A ,()2,3B -,()0,1C ,则ABC △中,BC 边上中线所在的直线方程为________.15.[2018·赣州期中]设某几何体的三视图如图所示,则该几何体的表面积是__________.主视图 左视图 俯视图16.[2018·嘉兴一中]若函数()224422f x x ax a a =-+-+在区间[]0,2上有两个零点, 则实数a 的取值范围是_______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)[2018·安庆期中]设全集{}1,2,3,4,5,6U =,A ,B 都是U 的子集,{}1,2A =,(){}4,6UA B =,(1)写出所有符合题意的集合B ;(2)计算:341lg2lg 3lg5log 2log 94-+-⋅.18.(12分)[2018宜昌期中·]设a 是实数,()2221x x a a f x ⋅+-=+,(1)证明:()f x 是增函数;(2)试确定a 的值,使()f x 为奇函数.19.(12分)[2018·华安一中]已知点()2,3A ,()4,1B ,ABC △是以AB 为底边的等腰 三角形,点C 在直线:220l x y -+=上.(1)求AB 边上的高CE 所在直线的方程;(结果写成直线方程的一般式) (2)求ABC △的面积.20.(12分)[2018·定远月考]如图,一个圆锥的底面半径为1,高为3,在圆锥中有一个半径为x的内接圆柱.(1)试用x表示圆柱的高;(2)当x为何值时,圆柱的侧面积最大,最大侧面积是多少?21.(12分)[2018·泸化中学]如图,四棱锥P ABCD -中,底面ABCD 是矩形,22AB AD ==,PD ⊥底面ABCD ,E ,F 分别为棱AB ,PC 的中点.(1)求证:EF ∥平面PAD ; (2)求证:平面PDE ⊥平面PEC .22.(12分)[2018·陕西四校联考]如图,直三棱柱111ABC A B C -的所有棱长都是2,D ,E 分别是AC ,1CC 的中点.(1)求证:AE ⊥平面1A BD ; (2)求三棱锥11B A BD -的体积.2018-2019学年上学期高一期末考试数学 答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A【解析】N 为220x x +=的解集,解220x x +=可得,0x =或2-, 则{}2,0N =-,{}0M N =≠∅,由选项中的Venn 图可得选项A 符合题意,故选A .2.【答案】C【解析】由题意得()111110f -=-+=,∴()()()110lg101f f f -===.故选C . 3.【答案】D【解析】根据奇偶性的定义知A 即不是奇函数也不是偶函数,C 是奇函数,B 、D 是偶函数,在(),0-∞上B 是减函数,D 是增函数.故选D . 4.【答案】C【解析】函数()32x f x a x=--是增函数,且一个零点在区间()1,3内,根据零点存在定理得到()()1030f f <>⎧⎪⎨⎪⎩解得a 的范围是()1,7-.故答案为C .5.【答案】A【解析】画出直观图如下图所示,计算各面的面积为1122ABC S ==△,12112ABD BCD S S ==⨯⨯=△△,12ACD S ==△,A .6.【答案】D【解析】对于A ,若αβ⊥,m β⊥,则//m α或m α⊂,故A 错误; 对于B ,若//m α,n m ⊥,则n α⊥或n α⊂或n 与α相交,故B 错误; 对于C ,若//m α,//n α,m β⊂,n β⊂,则//αβ或α、β相交,故C 错误; 对于D ,若//m β,m α⊂,n αβ=,由线面平行的性质定理,可得//m n ,故D 正确,故选D . 7.【答案】D【解析】很明显直线的斜率存在,直线方程即3y mx =+,1122y x =-+,由直线垂直的充分必要条件可得:112m -⨯=-,解得2m =.本题选择D 选项.8.【答案】D【解析】因为直线l 被圆22:4690C x y x y +--+=,()()22234x y -+-=截得的弦长为23()2431-=,设直线l 的方程为2y kx =+,(斜率不存在时不满足题223211k k -+=+,0k ∴=或43k =,即直线l 的方程是423y x =+或2y =,故选D . 9.【答案】C【解析】连接DM ,因为几何体是正方体,所以1D MD ∠就是直线1D M 与平面ABCD 所成角,1125tan 55DD D MD DM a∠===,故选C . 10.【答案】B【解析】因为圆C 上到直线l 的距离为[)0,32m ∈,所以当12m =时,圆C 上到直线l 的距离为1的点的个数为3;当()1,32m ∈时,圆C 上到直线l 的距离为1的点的个数为2;当[)0,12m ∈时,圆C 上到直线l 的距离为1的点的个数为4;因此S 的可能取值共有3种,故选B . 11.【答案】C【解析】连结BD ,则AC ⊥平面11BB D D ,11BD B D ∥.AC BE ∴⊥,EF ∥平面ABCD ,从而①②正确,又BEF △面积为定值,A 到平面11BB D D 距离为定值,所以三棱锥A BEF -的体积为定值,从而③正确,因为A 到11B D 的距离不等于1BB .所以AEF △的面积与BEF △的面积不相等,④错误. 故选C . 12.【答案】B【解析】根据题意知,ABC △是一个等边三角形,其面积为334,外接圆的半径为1,小圆的圆心为Q ,由于底面积ABC S △不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为133ABC S DQ ⨯=△4DQ =,设球心为O ,半径为R ,则在直角AQO △中,222OA AQ OQ =+,即()22214R R =+-,∴178R =, 则这个球的表面积为217289π4π816S ⎛⎫== ⎪⎝⎭,故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】()223f x x x =--【解析】因为()214f x x +=-,∴令1x t +=,则1x t =-,()()()2211423f x f t t t t ∴+==--=--,∴函数()f x 的解析式为()223f x x x =--,故答案为()223f x x x =--.14.【答案】350x y +-=【解析】设BC 中点为(),D x y ,已知()2,3B -,()0,1C ,则()1,2D -, 因为()121213AD k -==---,所以BC 边上中线所在的直线方程为350x y +-=.15.【答案】36【解析】由几何体的三视图可知,该几何体是一个长、宽、高分别为4,2,2的长方体截去一个三棱锥1D ACD -后剩下的部分(如图所示).∵1AD C △的三边长分别分2,5511223262AD C S =⨯=△.故该几何体的表面积111422242424222636222S =⨯+⨯+⨯+⨯⨯+⨯⨯+⨯⨯+=.16.【答案】(1,57【解析】由题意,要使函数()224422f x x ax a a =-+-+在区间[]0,2上有两个零点,只要()()002002202f f a a f ≥≥<<⎛⎧⎪⎪⎪⎨⎫< ⎪⎝⎭⎪⎪⎪⎩,即2222010180022220a a a a a a -+≥-+≥<⎧⎪⎪⎪<⎨-+<⎪⎪⎪⎩,解得(1,5a ∈,故答案为(1,5. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1){}4,6,{}1,4,6,{}2,4,6,{}1,2,4,6;(2)2. 【解析】(1)集合B 为{}4,6,{}1,4,6,{}2,4,6,{}1,2,4,6.(2)341lg2lg 3lg5log 2log 94-+-⋅232lg 2lg 23lg 5log 2log 3-=-+-⋅lg22lg23lg51=++-()3lg2lg51=+-3lg101=-312=-=.18.【答案】(1)见解析;(2)1.【解析】(1)证明:设1x 、2x ∈R 且12x x <,()()()()()121212122222*********x x x x x x f x f x a a -⎛⎫⎛⎫-=---= ⎪ ⎪++++⎝⎭⎝⎭, 又由2x y =在R 上为增函数,则120x >,220x >, 由12x x <,可得12220x x -<,则()()120f x f x -<,故()f x 为增函数,与a 的值无关,即对于任意a ,()f x 在R 为增函数. (2)若()f x 为奇函数,且其定义域为R ,必有有()()f x f x -=-,即222121x x a a -⎛⎫-=-- ⎪++⎝⎭,变形可得()2212221x xa +==+, 解可得,1a =,即当1a =时,()f x 为奇函数.19.【答案】(1)10x y --=;(2)2.【解析】(1)由题意可知,E 为AB 的中点,13142AB k -==--, ∴()3,2E ,且11CE ABk k =-=,∴CE 所在直线方程为23y x -=-,即10x y --=. (2)由22010x y x y -+=--=⎧⎨⎩,得43x y =⎧⎨⎩=,∴()4,3C ,∴2AC BC ==,22AB =,∴AC BC ⊥,∴122ABC S AC BC =⋅=△. 20.【答案】(1)33h x =-;(2)当12x =时,它的侧面积最大为3π2.【解析】(1)设所求的圆柱的底面半径为x ,它的轴截面如图,1BO =,3PO =,圆柱的高为h ,由图,得313x h-=,即33h x =-. (2)∵()()22π2π336πS hx x x x x =-=-=圆柱侧,当12x =时,圆柱的侧面积取得最大值为3π2. ∴当圆柱的底面半径为12时,它的侧面积最大为3π2.21.【答案】(1)见解析;(2)见解析.【解析】(1)证明:如图,取PD 的中点G ,连接AG ,FG . 因为F ,G 分别是PC ,PD 的中点,所以GF DC ∥,且12GF DC =. 又E 是AB 的中点,所以AE DC ∥,且12AE DC =, 所以GF AE ∥,且GF AE =,所以四边形AEFG 是平行四边形,故EF AG ∥.又AG ⊂平面PAD ,EF ⊄平面PAD ,所以EF ∥平面PAD .(2)因为PD ⊥底面ABCD ,CE ⊂底面ABCD ,所以CE PD ⊥. 因为四边形ABCD 是矩形,且2AB AD =,所以AD AE =,BC BE =,所以45AED BEC ∠=∠=︒,DE CE ⊥.又PD DE D =,PD ⊂平面PDE ,DE ⊂平面PDE ,所以CE ⊥平面PDE , 又CE ⊂平面PEC ,所以平面PDE ⊥平面PEC . 22.【答案】(1)见解析;(2)33. 【解析】(1)∵AB BC CA ==,D 是AC 的中点,∴BD AC ⊥,∵直三棱柱111ABC A B C -中1AA ⊥平面ABC ,∴平面11AA C C ⊥平面ABC , ∴BD ⊥平面11AAC C ,∴BD AE ⊥.又∵在正方形11AAC C 中,D ,E 分别是AC ,1CC 的中点,∴1A D AE ⊥. 又1A DBD D =,∴AE ⊥平面1A BD .(2)连结1AB 交1A B 于O ,∵O 为1AB 的中点,∴点1B 到平面1A BD 的距离等于点A 到平面1A BD 的距离.∴111111113213332B A BD A A BD B AA D AA D V V V S BD ---===⨯⨯=⨯⨯⨯=△.。