提公因式法分解因式专项练习题

合集下载

最新因式分解分类练习(提公因式法、公式法、十字相乘法)

最新因式分解分类练习(提公因式法、公式法、十字相乘法)

因式分解:提公因式法专项训练一:确定下列各多项式的公因式。

1、ay ax +2、36mx my -3、2410a ab +4、2155a a +5、22x y xy -6、22129xyz x y -7、()()m x y n x y -+-8、()()2x m n y m n +++ 9、3()()abc m n ab m n --- 10、2312()9()x a b m b a --- 专项训练二:利用乘法分配律的逆运算填空。

1、22____()R r R r ππ+=+2、222(______)R r πππ+=3、2222121211___()22gt gt t t +=+ 4、2215255(_______)a ab a +=专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。

1、__()x y x y +=+ 2、__()b a a b -=- 3、__()z y y z -+=- 4、()22___()y x x y -=- 5、33()__()y x x y -=- 6、44()__()x y y x --=-7、22()___()()n n a b b a n -=-为自然数 8、2121()___()()n n a b b a n ++-=-为自然数 9、()1(2)___(1)(2)x y x y --=-- 10、()1(2)___(1)(2)x y x y --=-- 11、23()()___()a b b a a b --=- 12、246()()___()a b b a a b --=- 专项训练四、把下列各式分解因式。

1、nx ny -2、2a ab +3、3246x x -4、282m n mn +5、23222515x y x y - 6、22129xyz x y - 7、2336a y ay y -+8、259a b ab b -+ 9、2x xy xz -+- 10、223241228x y xy y --+11、323612ma ma ma -+- 12、32222561421x yz x y z xy z +-13、3222315520x y x y x y +- 14、432163256x x x --+专项训练五:把下列各式分解因式。

因式分解-提公因式法(含答案)

因式分解-提公因式法(含答案)

因式分解-提公因式法(含答案)1.因式分解是指将一个多项式拆分成两个或多个较简单的多项式的过程。

其中,选项A、C、D属于因式分解,选项B不属于因式分解。

2.只有选项B不属于因式分解,其余选项都属于因式分解。

3.(1)属于整式乘法,(2)属于因式分解,(3)属于因式分解,(4)属于因式分解。

4.公因式是7ab。

5.公因式是x2y。

6.正确的选项是A。

7.分解后为(x-2)(a2-a)。

8.错误的选项是C。

9.(1)3ac(2b-c),(2)a3(b-c)+a3,(3)-2(2a-5)(a-2),(4)(m-x)(m-y)。

10.XXX×11×29.11.结果是A,即2.12.(1)0.0396,(2)2044.71,(3)3x2y(x+y+z)。

14.如果3x^2 - mxy^2 = 3x(x - 4y^2),求m的值。

15.写出下列各项的公因式:1) 6x^2 + 18x + 6;2) -35a(a+b)与42(a+b).16.已知n为正整数,试判断n^2+n是奇数还是偶数,并说明理由。

17.试说明817-279-913能被45整除。

知能点分类训练】1.-b^2 + a^2 = _________。

9x^2 - 16y^2 = ___________.2.下列多项式(1) x^2 + y^2.(2) -2a^2 - 4b^2.(3) (-m)(-n)。

(4) -144x^2 + 169y^2.(5) (3a)^2 - 4(2b)^2中,能用平方差公式分解的有:A。

1个B。

2个C。

3个D。

4个3.一个多项式,分解因式后结果是(x^3 + 2)(2-x^3),那么这个多项式是:A。

x^6 - 4B。

4 - x^6C。

x^9 - 4D。

4 - x^94.下列因式分解中错误的是:A。

a^2 - 1 = (a+1)(a-1)B。

1 - 4x^2 = (1+2x)(1-2x)C。

81x^2 - 64y^2 = (9x+8y)(9x-8y)D。

八年级数学上册《提公因式法因式分解》练习题及答案

八年级数学上册《提公因式法因式分解》练习题及答案

八年级数学上册《提公因式法因式分解》练习题及答案学校:___________姓名:___________班级:___________一、单选题1.将2(2)(2)m a m a -+-分解因式,正确的是( )A .2(2)()a m m --B .(2)(1)m a m -+C .(2)(1)m a m --D .(2)(1)m a m --2.计算1110(2)(2)---等于( ).A .2-B .21(2)-C .1032-⨯D .102- 3.下列各组多项式中没有公因式的是( ).A .3x -2与 6x 2-4xB .23()a b -与311()b a -C . mx—my 与 n y—n xD .ab—ac 与 ab—bc4.如图1的8张宽为a ,长为()b a b <的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .5b a =B .4b a =C .3b a =D .b a =5.下列因式分解正确的是( )A .2()x xy x x x y x -+=-+B .32222()a a b ab a a b ++=+C .2224(1)3x x x -+=-+D .29(3)(3)ax a x x -=+•-6.把2a 2﹣4a 因式分解的最终结果是( )A .2a (a ﹣2)B .2(a 2﹣2a )C .a (2a ﹣4)D .(a ﹣2)(a +2)二、填空题7.分解因式:252020m m -+=______.8.已知221062m n m n ++=-,则m n -=______.9.一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫_________.三、解答题10.计算:(1)a b a b ab ab +--;(2)2422x x x ---;(3)24m n m n m n m n -+-++;(4)321111x x x x x x -+-+-+++. 11.(1)已知53m n =,求222m m n m n m n m n+-+--的值; (2)已知12x x +=,求221x x +的值; (3)已知34(1)(2)12x A B x x x x -=+----,求实数A ,B . 12.把下列各式分解因式:(1)2m (m ﹣n )2﹣8m 2(n ﹣m )(2)﹣8a 2b +12ab 2﹣4a 3b 3参考答案:1.C【分析】直接利用提取公因式法进行分解因式即可.【详解】解:2m ()2a -+()2m a -=2m ()2a -()2m a --=()()21m a m --;故选C .【点睛】本题主要考查提公因式法进行因式分解,熟练掌握提公因式法进行因式分解是解题的关键.2.C【详解】根据有理数的乘方可得()()111022(2)-=-⨯-,然后根据含乘方的有理数计算法则进行求解即可.【解答】解:1110(2)(2)---()()10102(2)2=-⨯---103(2)=-⨯-1032=-⨯.故选C .【点睛】本题主要考查了含乘方的有理数计算,解题的关键在于能够熟练掌握相关计算法则.3.D【分析】根据公因式的定义可直接进行排除选项.【详解】A 、由()264232x x x x -=-,所以32x -与264x x -有公因式()32x -,故不符合题意;B 、由()()2233b a a b -=-可得公因式为()2b a -,故不符合题意; C 、由()(),mx my m x y ny nx n x y -=--=--可得公因式为()x y -,故不符合题意;D 、由()(),ab ac a b c ab bc b a c -=--=-可得没有公因式,故符合题意;故选D .【点睛】本题主要考查提取公因式,熟练掌握因式分解的方法是解题的关键.4.A【分析】分别表示出左上角阴影部分的面积S 1和右下角的阴影部分的面积S 2,两者求差,根据当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,即可求得a 与b 的数量关系.【详解】解:设左上角阴影部分的面积为1S ,右下角的阴影部分的面积为2S ,S 1=(BC -3a )×b ,S 2=(BC -b )×5a12S S S =-=(BC -3a )×b -(BC -b )×5a .= 355bBC ab aBC ab=52b a BC ab当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,50b a, 5b a .故选择:A .【点睛】本题考查了多项式乘以单项式在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.5.B【分析】根据提公因式法以及公式法分解因式,提取公因式后整理注意符号变化.【详解】解:A. 2(+1)x xy x x x y -+=-,故错误,不符合题意;B. 32222()a a b ab a a b ++=+,故正确,符合题意;C. 2224(1)3x x x -+=-+,不是因式分解,故错误,不符合题意;D. 29ax -无法因式分解,故错误,不符合题意.故选B.【点睛】本题主要考查了提公因式法以及公式法分解因式,正确理解应用因式分解是解题的关键.6.A【分析】2a 2-4a 中两项的公因式是2a ,提取公因式即可【详解】解:2a 2-4a = 2a (a - 2);故选A .【点睛】本题考查了提公因式法分解因式,正确确定公因式是关键.7.5(m ﹣2)2【分析】先提取公因式,再用完全平方公式分解因式即可.【详解】解:252020m m -+=5(m 2﹣4m +4)=5(m ﹣2)2.故答案为:5(m ﹣2)2.【点睛】本题考查了提公因式法与公式法的综合运用,掌握a 2±2ab +b 2=(a ±b )2是解题的关键. 8.4【分析】根据已知式子,凑完全平方公式,根据非负数之和为0,分别求得,m n 的值,进而代入代数式即可求解. 【详解】解:221062m n m n ++=-,2210620m n m n +-+∴+=,即()()22310m n -++=,3,1m n ∴==-,()314m n ∴-=--=,故答案为:4.【点睛】本题考查了因式分解的应用,掌握完全平方公式是解题的关键.9.提公因式法【解析】略10.(1)2a;(2)2x +;(3)3-;(4)1x x +. 【分析】(1)根据同分母分式的运算法则解题,注意负号的作用;(2)利用同分母分式的减法法则,结合平方差公式进行计算;(3)利用同分母分式的减法法则,结合提公因式化简解题;(4)根据同分母分式的加减法法则解题.【详解】解:(1)()22a b a b a b a b b ab ab ab ab a+-+---===; (2)2244(2)(2)22222x x x x x x x x x --+-===+----; (3)242(4)m n m n m n m n m n m n m n -+--+-=+++33m n m n --=+3()m n m n -+=+3=-; (4)32132(1)11111x x x x x x x x x x x x -+--++--+-==+++++. 【点睛】本题考查分式的加减混合运算,涉及平方差公式、提公因式等知识,是重要考点,掌握相关知识是解题关键.11.(1)4116;(2)2;(3)A =1,B =2. 【分析】(1)先通分,再根据同分母的分式相加减法则进行计算,设m =5k ,n =3k ,再代入求出即可;(2)先根据完全平方公式进行变形,再代入求出即可;(3)先通分,再根据同分母的分式相加减法则进行计算,再得出关于A 、B 的方程组,求出方程组的解即可.【详解】解:(1)222m m n m n m n m n +-+-- 2()()()()m m n m m n n m n m n -++-=+- 222()()m n m n m n -=+-,∵53m n =, ∵设m =5k ,n =3k ,当m =5k ,n =3k 时,原式222(5)(3)41(53)(53)16k k k k k k ⨯-==+-; (2)∵12x x +=, ∵2222111()2222x x x x x x +=+-⋅=-=; (3)12A B x x +-- (2)(1)(1)(2)A xB x x x -+-=-- ()(2)(1)(2)A B x A B x x ++--=--, ∵34(1)(2)12x A B x x x x -=+----, ∵324A B A B +=⎧⎨--=-⎩, 解得:A =1,B =2.【点睛】本题考查了分式的混合运算和求值,乘法公式等知识点,能正确根据分式的运算法则进行化简是解此题的关键.12.(1)2m (m ﹣n )(5m ﹣n );(2)﹣4ab (2a ﹣3b +a 2b 2)【分析】(1)直接提取公因式2m (m ﹣n ),进而分解因式得出答案;(2)直接提取公因式﹣4ab ,进而分解因式得出答案.【详解】解:(1)2m (m ﹣n )2﹣8m 2(n ﹣m )=2m (m ﹣n )[(m ﹣n )+4m ]=2m (m ﹣n )(5m ﹣n );(2)﹣8a 2b +12ab 2﹣4a 3b 3=﹣4ab (2a ﹣3b +a 2b 2).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.。

因式分解-提公因式和公式法专项练习(原卷版)

因式分解-提公因式和公式法专项练习(原卷版)

因式分解-提公因式和公式法专项练习(一)知识点1:因式分解1.定义:把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.2.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.3.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.【典例1】下列各式由左边到右边的变形中,是因式分解的是()A.a(x﹣y)=ax﹣ay B.a2﹣b2=(a+b)(a﹣b)C.x2﹣4x+3=x(x﹣4)+3D.a2+1=(a+1)(a﹣1)【变式1-1】下列各式从左到右不属于因式分解的是()A.x2﹣x=x(x﹣1)B.x2+2x+1=x(x+2)+1C.x2﹣6x+9=(x﹣3)2D.x2﹣1=(x+1)(x﹣1)【变式1-2】下列各式从左到右的变形是因式分解的是()A.a(a+b)=a2+ab B.a2+2a+1=a(a+2)+1C.(a+b)(a﹣b)=a2﹣b2D.2a2﹣6ab=2a(a﹣3b)知识点2:公因式的公因式是.【典例2-2】4x(m﹣n)+8y(n﹣m)2的公因式是.【变式2-1】多项式.4ab2+8a2b的公因式是.【变式2-2】多项式3x+3y与x2﹣y2的公因式是.【变式2-3】多项式4x(m﹣n)+2y(m﹣n)2的公因式是.知识点3:提公因式提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.注意:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.【典例3】分解因式:(1)2y+3xy;(2)2(a+2)+3b(a+2).【变式3-1】因式分解(1)x2﹣4x;(2)8y3﹣2x2y.【变式2-2】因式分解:(1)8abc﹣2bc2;(2)2x(x+y)﹣6(x+y).【变式3-3】分解因式:x(m+n)﹣y(n+m)+(m+n).知识点4:公式法=.【变式4-1】因式分解:a2﹣169=.【变式4-2】因式分解:4a2﹣b2=.【变式4-3】把多项式a2﹣9b2分解因式结果是.【典例5】分解因式:a2+8a+16=.【变式5-1】因式分解x2﹣6ax+9a2=.【变式5-2】分解因式:a2﹣6a+9=.知识点5:提公因式与公式法综合1.提公因式:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.2.公式法:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)【典例6】分解因式(1)x2y﹣y;(2)ax2﹣6ax+9a.【变式6-1】因式分解:(1)x3y﹣xy3;(2)8a2﹣16ab+8b2.【变式6-2】因式分解:(1)2x3y﹣2xy3(2)﹣a3+2a2﹣a.【变式6-3】分解因式:(1)5x2﹣5y2;(2)2mx2+4mxy+2my2.【变式6-4】因式分解:9a2(x﹣y)+4b2(y﹣x)【达标测评】一.选择题(共8小题)1.(2023秋•泉港区期末)多项式12a3b﹣8ab2c的公因式是()A.4a2B.4abc C.2a2D.4ab 2.(2023秋•莱西市期末)多项式3m2+6mn的公因式是()A.3B.m C.3m D.3n 3.(2023秋•纳溪区期末)因式分解(x﹣1)2﹣9的结果是()A.(x﹣10)(x+8)B.(x+8)(x+1)C.(x﹣2)(x+4)D.(x+2)(x﹣4)4.(2023秋•泰山区期末)分解因式:64﹣x2正确的是()A.(8﹣x)2B.(8﹣x)(8+x)C.(x﹣8)(x+8)D.(32+x)(32﹣x)5.(2023秋•沙坪坝区校级期末)因式分解:mx2﹣4m=()A.m(x2﹣4)B.m(x+2)(x﹣2)C.mx(x﹣4)D.m(x+4)(x﹣4)6.(2023秋•哈密市期末)下面各式从左到右的变形,属于因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣1=(x﹣1)2C.x2﹣x﹣1=x(x﹣1)﹣1D.x2﹣x=x(x﹣1)7.(2024•裕华区校级开学)若a+b=3,a﹣b=,则a2﹣b2的值为()A.1B.C.D.98.(2023秋•南沙区期末)已知多项式x2+ax+16可以用完全平方公式进行因式分解,则a的值为()A.4B.8C.﹣8D.±8二.填空题(共5小题)9.(2023秋•临潼区期末)式子x(y﹣1)与﹣18(y﹣1)的公因式是.10.(2024•榆阳区校级一模)因式分解:2x2y+10xy=.11.(2024•西山区校级模拟)分解因式:m3+6m2+9m=.12.(2023秋•哈密市期末)已知x+y=10,xy=1,则代数式x2y+xy2的值为.13.(2024•临潼区一模)因式分解:3a2﹣12=.三.解答题(共3小题)14.(2023秋•海口期末)把下列多项式分解因式:(1)4a3﹣16ab2;(2)3(x﹣1)2+12x.15.(2023秋•洪山区期末)因式分解.(1)x3﹣2x2y+xy2(2)m2(a﹣b)+n2(b﹣a)16.(2023秋•寻乌县期末)因式分解:(1)﹣x3﹣2x2﹣x;(2)x2(a﹣1)+y2(1﹣a).。

初二因式分解经典题35题

初二因式分解经典题35题

初二因式分解经典题35题一、提取公因式法相关(10题)1. 分解因式:6ab + 3ac- 你看这里面每一项都有个3a呢。

就像大家都有个共同的小秘密一样。

那我们就把3a提出来呀,提出来之后就变成3a(2b + c)啦。

2. 分解因式:15x^2y−5xy^2- 哟,这里面5xy是公共的部分哦。

把5xy提出来,就剩下5xy(3x - y)啦,是不是很简单呢?3. 分解因式:4m^3n - 16m^2n^2+8mn^3- 仔细瞧瞧,8mn是都能提出来的。

提出来后就变成8mn(m^2 - 2mn + n^2)啦。

4. 分解因式:−3x^2y+6xy^2−9xy- 这里面−3xy是公因式哦。

把它提出来,就得到−3xy(x - 2y+3)啦。

5. 分解因式:2a(x - y)-3b(x - y)- 看呀,(x - y)是公共的部分呢。

提出来就变成(x - y)(2a - 3b)啦。

6. 分解因式:a(x - y)^2 - b(y - x)^2- 注意哦,(y - x)^2=(x - y)^2。

那这里面(x - y)^2是公因式,提出来就得到(x - y)^2(a - b)啦。

7. 分解因式:x(x - y)+y(y - x)- 先把y(y - x)变成-y(x - y),这样公因式就是(x - y)啦,提出来就是(x - y)(x - y)=(x - y)^2。

8. 分解因式:3a(a - b)+b(b - a)- 把b(b - a)变成-b(a - b),公因式(a - b)提出来,就得到(a - b)(3a - b)啦。

9. 分解因式:2x(x + y)-3(x + y)^2- 公因式是(x + y),提出来就变成(x + y)[2x-3(x + y)]=(x + y)(2x - 3x - 3y)=(x + y)(-x - 3y)=-(x + y)(x + 3y)。

10. 分解因式:5(x - y)^3+10(y - x)^2- 把(y - x)^2变成(x - y)^2,公因式5(x - y)^2提出来,得到5(x - y)^2[(x -y)+2]=5(x - y)^2(x - y + 2)。

因式分解提公因式法练习卷

因式分解提公因式法练习卷

提公因式法练习卷一、选择题1.多项式a n-a3n+a n+2分解因式的结果是()A.a n(1-a3+a2)B.a n(-a2n+a2)C.a n(1-a2n+a2)D.a n(-a3+a n)2.将m2(a-2)+m(a-2)分解因式的结果是()A.(a-2)(m2-m)B.m(a-2)(m-1)C.m(a-2)(m+1)D.m(2-a)(m-1)3.计算(-2)2015+22014等于()A.22015B.-22015C.-22014D.22014 4.把多项式3m(x-y)-2(y-x)2分解因式的结果是()A.(x-y)(3m-2x-2y)B.(x-y)(3m-2x+2y)C.(x-y)(3m+2x-2y)D.(y-x)(3m+2x-2y)5.多项式mx+n可分解为m(x-y),则n表示的整式为()A.m B.my C.-y D.-my6.下列因式分解中,是利用提公因式法分解的是()A.a2-b2=(a+b)(a-b)B.a2-2ab+b2=(a-b)2C.ab+ac=a(b+c)D.a2+2ab+b2=(a+b)27.分解因式a2-9a的结果是()A.a(a-9)B.(a-3)(a+3)C.(a-3a)(a+3a)D.(a-3)28.把a2-4a多项式分解因式,结果正确的是()A.a(a-4)B.(a+2)(a-2)C.a(a+2)(a-2)D.(a-2)2-49.把多项式x2-x分解因式,得到的因式是()A.只有x B.x2和x C.x2和-x D.x和x-1 10.计算a2(2a)3-a(3a+8a4)的结果是()A.3a2B.-3a C.-3a2D.16a511.若ab=3,a-4b=5,则a2b-4ab2的值是.12.已知a+b=4,ab=2,则a2b+ab2的值为.13.分解因式:3a3-12a2b+12ab2= .14.因式分解:2x2-4xy= .15.因式分解:-3x3+9x= .16.分解因式:a4b-6a3b+9a2b= .三、解答题.17.因式分解:(1)x(x-y)-y(y-x);(2)a2x2y-axy2.18.将x(x+y)(x-y)-x(x+y)2进行因式分解,并求当x+y=1,xy=12时此式的值.19.阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是,共应用了次.(2)若分解1+x+x(x+1)+x(x+1)2+x(x+1)3,则需应用上述方法次,结果是.(3)分解因式:1+x+x(x+1)+x(x+1)2…+x(x+1)n(n为正整数)的结果是.1. 将3a(x-y)-b(x-y)用提公因式法分解因式,提出的公因式是()A.3a-b B.3(x-y)C.x-y D.3a+b2. 多项式(x+2)(2x-1)-(x+2)可以因式分解成(x+m)(2x+n),则m-n的值是()A.2 B.-2 C.4 D.-43. 若ab=-3,a-2b=5,则a2b-2ab2的值是()A.-15 B.15 C.2 D.-84.下列运算中,因式分解正确的是()A.-m2+mn-m=-m(m+n-1)B.9abc-6a2b2=3bc(3-2ab)C.3a2x-6bx+3x=3x(a2-2b)D.12ab2+12a2b=12ab(a+b)5.(-8)2014+(-8)2013能被下列数整除的是()A.3 B.5 C.7 D.96.(-2)2013+(-2)2014的值为()A.2 B.-2 C.-22013D.220137. 设P=a2(-a+b-c),Q=-a(a2-ab+ac),则P与Q的关系是()A.P=Q B.P>Q C.P<Q D.互为相反数8.把a2-2a分解因式,正确的是()A.a(a-2)B.a(a+2)C.a(a2-2)D.a(2-a)二、填空题9. 若a=49,b=109,则ab-9a的值为.10. 分解因式:x2-xy= .11. 已知a-b=2,a=3,则a2-ab= .12. 把多项式-16x3+40x2y提出一个公因式-8x2后,另一个因式是.13.分解因式:m(x-y)+n(y-x)= .14.多项式4x2-12x2y+12x3y2分解因式时,应提取的公因式是.三、解答题15.化简求值:当a=2005时,求-3a2(a2-2a-3)+3a(a3-2a2-3a)+2005的值.16. 若a+b=-3,ab=1.求12a3b+a2b2+12ab3的值.17.先将代数式因式分解,再求值:2x(a-2)-y(2-a),其中a=0.5,x=1.5,y=-2.18. 已知(19x-31)(13x-17)-(17-13x)(11x-23)可因式分解成(ax+b)(30x+c),其中a、b、c均为整数,求a+b+c的值.。

因式分解(提公因式法、公式法、十字相乘法、分组分解法)

因式分解(提公因式法、公式法、十字相乘法、分组分解法)
十字相乘法
整式乘法中,有 (x+a)(x+b)=x2+(a+b)x+ab
口答计算结果
(1) (x+3)(x+4) (2) (x+3)(x-4) (3) (x-3)(x+4) (4) (x-3)(x-4)
x2 px q
=
x2 (a b)x ab (x + a )(x + b)
“头” 平方, “尾” 平方, “头” “尾”两倍中间放.
判别下列各式是不是 完全平方式
1x2 2xy y2 是 2A2 2AB B2 是 3甲2 2甲乙 乙2 是 42 2 2 是
a2 2abb2 a2 2abb2
完全平方式的特点:
1.20042+2004能被2005整除吗?
2.先分解因式,再求值
4a2(x 7) 3(x 7), 其中a 5, x 3.
20023 2 20022 2000 20023 20022 2003
六.利用分解因式计算: (1)-4.2×3.14-3.5×3.14+17.7×3.14 解:原式 =-3.14 ×(4.2+3.5-17.7)=-3.14×(-10)=-31.4
思维延伸
2. 对于任意的自然数n, (n+7)2- (n-5)2能被 24整除吗? 为什么?
巩固练习:
1.选择题:
1)下列各式能用平方差公式分解因式的是( D )
A. 4X²+y² B. 4 x- (-y)² C. -4 X²-y³ D. - X²+ y²
2) -4a²+1分解因式的结果应是 ( D )

(完整版)七年级数学提取公因式法测试题

(完整版)七年级数学提取公因式法测试题

9.1 ~9.2 因式分解提取公因式法同步练习【基础能力训练】一、因式分解1.以下变形属于分解因式的是()A . 2x2- 4x+1=2x ( x- 2)+1B . m( a+b+c) =ma+mb+mcC.x2- y2=( x+y )( x- y)D.( m- n)( b+a) =( b+a)( m- n)2.计算( m+4 )( m- 4)的结果,正确的选项是()A . m2- 4 B. m2+16 C. m2- 16 D. m2+43.分解因式 mx+my+mz= ()D. m3abcA . m( x+y ) +mzB .m( x+y+z )C.m( x+y - z)4. 20052- 2005 必定能被()整除A.2 008 B .2 004 C.2 006 D .2 0095.以下分解因式正确的选项是()A . ax+xb+x=x ( a+b)B. a2+ab+b2=( a+b)2C.a2+5a- 24= ( a-3)( a- 8) D. a( a+ab)+b( 1+b )=a2b( 1+b )6.已知多项式 2x2+bx+c 分解因式为2( x-3)( x+1),则 b,c 的值是()A . b=3, c=1B . b=- c, c=2C.b= - c, c=-4 D. b=- 4, c=- 67.请写出一个二次多项式,再将其分解因式,其结果为______.8.计算: 21× 3.14+62× 3.14+17× 3.14=_________.二、提公因式法9.多项式 3a2b3c+4a5 b2+6a3 bc2的各项的公因式是()A . a2bB . 12a5b3c2 C. 12a2bc D. a2b210.把多项式 m2( x- y)+m ( y- x)分解因式等于()A .( x- y)( m2+n )B.( x-y)( m2- m)C.m( x- y)( m- 1)D. m( x- y)( m+1)11.(- 2)2001+(- 2)2002等于()A .- 22001B .- 22002 C.22001 D.- 212.- ab(a- b)2+a( b-a)2-ac( a- b)2的公因式是()A .- a( a- b)B.( a- b)2 C.- a(a- b)( b- 1)D.- a( a- b)2 13.察看以下各式:( 1) abx-cdy (2) 3x2y+6y 2x (3) 4a3- 3a2+2a- 1 ( 4)( x- 3)2+( 3x- 9)(5) a2( x+y )( x- y) +12 ( y- x)( 6)- m2n( x- y)n+mn2(x- y)n+1此中能够直接用提公因式法分解因式的有()A .( 1)( 3)( 5)B .( 2)( 4)( 5)C.(2)( 4)(5)( 6)D.( 2)( 3)( 4)( 5)( 6)14.多项式 12x 2n- 4n n提公因式后,括号里的代数式为()A . 4x n B. 4x n- 1 C. 3x n D . 3x n-115.分解以下因式:(1) 56x3 yz- 14x 2y2z+21xy 2z2(2)( m- n)2+2n ( m- n)(3) m( a-b+c)- n(a+c- b)+p ( c- b+a)( 4) a(a- x)( a-y) +b(x- a)( y- a)【综合创新训练】三、综合测试16.若 x2( x+1) +y ( xy+y ) =(x+1 )· B,则 B=_______ .17.已知 a-2=b+c ,则代数式a(a- b- c)- b( a- b-c)- c( a- b- c) =______ 18.利用分解因式计算: 1 297 的 5%,减去 897 的 5%,差是多少?四、创新应用19.利用因式分解计算:( 1) 2 0042- 4× 2 004;(2)39×37-13× 34(3) 121× 0.13+12.1× 0.9-12× 1.21(4) 20 062 006× 2 008-20 082 008× 2 0062n 4 2 2n20.计算:22n 3五、综合创新21.计算: 2- 22- 23-- 218-219+22022.已知 2x- y= 1, xy=2 ,求 2x4y3- x3y4的值.323.已知: x3+x2+x+1=0 ,求 1+x+x 2+x 3+x 4+x 5++x2007的值.24.设 n 为整数,求证:( 2n+1)2- 25 能被 4 整除.【研究学习】猜年纪杨老师对同学们说:“我能猜出你们每一位同学的年纪,不信的话,你们就按下边方法试一试:先把你的年纪乘以 5,再加 5,而后把结果扩大 2 倍, ?最后把算得的结果告诉老师,老师就知道你的年纪了.”杨老师又说:“雨晴,你算出的是多少?”雨晴答:“ 130”.杨老师立刻说:“你 12 岁”.假如你是杨老师, ?当李强同学算出的结果是 140 时,你会说李强多少岁?答案:【基础能力训练】1.C 2. C 3.B 4.B 5. C 6.D7. 4a2- 4ab+b 2=( 2a- b)2 8.3149. A 10. C 11. C 12. D 13. C 14.D15.( 1) 7xyz( 8x2- 2xy+3yz )( 2)( m- n)( m+n)(3)( a- b+c)( m- n+p)( 4)( a- x)(a- y)( a+b)【综合创新训练】16. x2+y 2分析:x2(x+1)+y(xy+y)=x2(x+1)+y2(x+1)=(x+1)(x2+y2),故 B=x 2+y 2.17. 4分析:由 a- 2=b+c 得 a- b-c=2,a( a- b- c)- b(a- b- c)- c( a- b- c)=( a- b- c)( ?a-b- c) =(a- b- c)2=22=4 .18. 20分析:1 297× 5%-897× 5%=5%(1 297-897)=5%×400=20.19.( 1)原式 =2 004( 2 004-4) =2 004× 2 000=4 008 000(2)原式 =39 × 37- 39× 27=39( 37- 27) =390(3)原式 =1.21 ×13+1.21 ×9- 1.21×12=1.21×( 13+9-12) =1.21× 10=12.1(4)原式 =2 006× 10 001×2 008- 2 008× 10 001× 2 006=02n 4 2n 1 -3 1 720.原式 = =1-2 =1 -=2n 4 8 821.原式 =220- 219- 218-- 23- 22+2=2 19- 218-- 23- 22+2==22+2=6 .22. 2x4y3- x3y4=x 3y3( 2x- y) =( 2x- y)( xy)3把 2x-y= 1, xy=2 代入得8.3 323. 0分析:分红四个一组,该提公因式的提取公因式代入即可.24.( 2n+1 )2-25= ( 2n+1)2- 52=[ ( 2n+1) +5][ (2n+1 )- 5]=( 2n+6)( 2n-4)=2( n+3)× [?2 ( n- 2) ]=4( n+3)( n- 2),因此能被 4 整除.【研究学习】假定学生 x 岁,用老师的方法获得的式子是2( 5x+5 ),把它分解以后得10( x+1 ),所以老师只需把学生的得数÷10 再减去 1,即可获得学生的实质年纪,因此,李强13 岁.。

专项训练--因式分解(全)

专项训练--因式分解(全)

因式分解专项练习题(一)提取公因式一、分解因式1、2x2y-xy2、6a2b3-9ab23、 x(a-b)+y(b-a)4、9m2n-3m2n25、4x2-4xy+8xz6、-7ab-14abx+56aby7、6m2n-15mn2+30m2n28、-4m4n+16m3n-28m2n9、x n+1-2x n-1 10、a n-a n+2+a3n11、p(a-b)+q(b-a) 12、a(b-c)+c-b13、(a-b)2(a+b)+(a-b)(a+b)2= 14、ab+b2-ac-bc15、3xy(a-b)2+9x(b-a) 16、(2x-1)y 2+(1-2x)2y17、6m(m-n)2-8(n-m)3 18、15b(2a-b)2+25(b-2a)319、a 3-a 2b+a 2c-abc 20、2ax +3am -10bx -15bm21、m (x -2)-n (2-x )-x +2 22、(m -a )2+3x (m -a )-(x +y )(a -m )23、 ab(c 2+d 2)+cd(a 2+b 2) 24、(ax+by)2+(bx-ay)225、-+--+++a x abx acx ax m m m m 2213 26、a a b a b a ab b a ()()()-+---32222 二、应用简便方法计算1、4.3×199.8+7.6×199.8-1.9×199.82、9×10100-101013、2002×20012002-2001×200220024、1368987521136898745613689872681368987123⨯+⨯+⨯+⨯三、先化简再求值(2x +1)2(3x -2)-(2x +1)(3x -2)2-x (2x +1)(2-3x )(其中,32x =)四、在代数证明题中的应用例:证明:对于任意正整数n ,323222n n n n ++-+-一定是10的倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提公因式法分解因式专项练习题
提公因式法(1)
(一)课堂练习
一、填空题
1.把一个多项式__________________________,这样的式子变形,叫做把这个多项式因式分解,也叫做把这个多项
式______________。

2.把下列各多项式的公因式填写在横线上。

(1)x 2-5xy _________ (2)-3m 2+12mn _________
(3)12b 3-8b 2+4b _________ (4)-4a 3b 2-12ab 3 __________
(5)-x 3y 3+x 2y 2+2xy _________
3.在括号内填入适当的多项式,使等式成立。

(1)-4ab-4b=-4b( )
(2)8x 2y-12xy 3=4xy( )
(3)9m 3+27m 2=( )(m+3)
(4)-15p 4-25p 3q=( )(3p+5q)
(5)2a 3b-4a 2b 2+2ab 3=2ab( )
(6)-x 2+xy-xz=-x( )
(7)21a 2
-a=21
a( )
二、选择题
1.下列各式从左到右的变形是因式分解的是()
(A)m(a+b)=ma+mb (B)x 2+3x-4=x(x+3)-4
(C)x 2-25=(x+5)(x-5) (D)(x+1)(x+2)=x 2+3x+2
2.下列各等式从左到右的变形是因式分解的是()
(A)8a 2b 3c=2a 2·2b 3·2c (B)x 2y+xy 2+xy=xy(x+y)
(C)(x-y)2=x 2-2xy+y 2 (D)3x 3+27x=3x(x 2+9)
3.下列各式因式分解错误的是()
(A)8xyz-6x 2y 2=2xy(4z-3xy) (B)3x 2-6xy+x=3x(x-2y)
(C)a 2b 2-41ab 3=41ab 2(4a-b) (D)-a 2
+ab-ac=-a(a-b+c)
4.多项式-6a 3b 2-3a 2b 2+12a 2b 3因式分解时,应提取的公因式是()
(A)3ab (B)3a 2b 2 (C)- 3a 2b (D)- 3a 2b 2
5.把下列各多项式分解因式时,应提取公因式2x 2y 2的是()
(A)2x 2y 2-4x 3y (B)4x 2y 2-6x 3y 3+3x 4y 4
(C)6x 3y 2+4x 2y 3-2x 3y 3 (D)x 2y 4-x 4y 2+x 3y 3
6.把多项式-axy-ax 2y 2+2axz 提公因式后,另一个因式是()
(A)y+xy 2-2z (B)y-xy 2+2z (C)xy+x 2y 2-2xz (D)-y+xy 2-2z
7.如果一个多项式4x 3y-M 可以分解因式得4xy(x 2-y 2+xy) ,那么M 等于(

(A)4xy 3+4x 2y 2 (B)4xy 3-4x 2y 2 (C)-4xy 3+4x 2y 2 (D)-4xy 3-4x 2y 2
8. 下列各式从左到右的变形:①(a+b)(a-b)=a 2-b 2 ②x 2+2x-3=x(x+2)-3
③x+2=x 1(x 2+2x) ④
a 2-2ab+
b 2=(a-b)
2是因式分解的有()(A)1个 (B)2个 (C)3个 (D)4
个(二)课后作业
1.把下列各式分解因式
(1)9m 2n-3m 2n 2 (2)4x 2-4xy+8xz (3)-7ab-14abx+56aby
(4)6x 4-4x 3+2x 2 (5)6m 2n-15mn 2+30m 2n 2 (6)-4m 4n+16m 3n-28m 2
n (7)x n+1-2x n-1 (8)-2x 2n +6x n (9)a n -a n+2+a 3n
2.用简便方法计算:
(1)9×10100-10101 (2)4.3×199.7+7.5×199.7-1.8×199.7
3.已知a+b=2,ab=-3求代数式2a 3b+2ab 3
的值。

4.如果哥哥和弟弟的年龄分别为x 岁、y 岁,且x 2
+xy=99,求出哥哥、弟弟的年龄。

5.如图1为在边长为a 的正方形的一角上挖去一个边长为
b 的小正方形(a>b),把余下的部分可以剪拼成一个如图2的矩形。

由两个图形中阴影部分面积,可以得到一个分解因式的等式,这个等式是
_______________________
*6.求证:257-512能被120整除。

*7.计算:2002×20012002-2001×20022002
图2图1b a
b a
*8.已知x 2+x+1=0,求代数式x 2006+x 2005+x 2004+…+x 2+x+1的值。

提公因式法(2)
(一)课堂练习
一、填空题
1.在横线上填入“+”或“-”号,使等式成立。

(1)a-b=______(b-a) (2)a+b=______(b+a)
(3)(a-b)2=______(b-a)2 (4)(a+b)2=______(b+a)2
(5)(a-b)3=______(b-a)3 (6)(-a-b)3=______(a+b)3
2.多项式6(x-2)2+3x(2-x)的公因式是______________
3.5(x-y)-x(y-x)=(x+y)·_____________
4.a(b-c)+c-b=(b-c)·_____________
5.p(a-b)+q(b-a)=(p-q)·_____________
6.分解因式a(a-1)-a+1=_______________
7.x(y-1)-(____________)=(y-1)(x+1)
8.分解因式:(a-b)2(a+b)+(a-b)(a+b)2=(__________)(a-b)(a+b)
二、选择题
1.下列各组的两个多项式,没有公因式的一组是()
(A)ax-bx 与by-ay (B)6xy+8x 2y 与-4x-3
(C)ab-ac 与ab-bc (D)(a-b)3x 与(b-a)2y
2.将3a(x-y)-9b(y-x)分解因式,应提取的公因式是()
(A)3a-9b (B)x-y (C)y-x (D)3(x-y)
3.下列由左到右的变形是因式分解的是()
(A)4x+4y-1=4(x+y)-1 (B)(x-1)(x+2)=x 2+x-2
(C)x 2-1=(x+1)(x-1) (D)x+y=x(1+x y
)
4.下列各式由左到右的变形,正确的是()
(A)-a+b=-(a+b) (B)(x-y)2=-(y-x)2
(C)(a-b)3=(b-a)3 (D)(x-1)(y-1)=(1-x)(1-y)
5.把多项式m(m-n)2+4(n-m)分解因式,结果正确的是()
(A)(n-m)(mn-m 2+4) (B)(m-n)(mn-m 2+4)
(C)(n-m)(mn+m 2+4) (D)(m-n)(mn-m 2-4)
6.下列各多项式,分解因式正确的是()
(A)(x-y)2-(x-y)=(x-y)(x-y)2 (B)(x-y)2-(x-y)=(x-y)(x-y)=(x-y)
2(C)(x-y)2-(x-y)=(x-y)(x-y-1) (D)a 2(a-b)-ab(b-a)=a(a-b)(a-b)=a(a-b)
2
7.如果m(x-y)-2(y-x)2分解因式为(y-x)·p 则p 等于()
(A)m-2y+2x (B)m+2y-2x (C)2y-2x-m (D)2x-2y-m
三、分解因式
1.3xy(a-b)2+9x(b-a)
2.(2x-1)y 2+(1-2x)2y
3.a 2(a-1)2-a(1-a)2
4.ax+ay+bx+by
(二)课后作业
1.分解因式:(1)ab+b 2-ac-bc (2)ax 2-ax-bx+b
(3)ax+1-a-x (4)x 4-x 3
+4x-4 2.分解因式: (1)6m(m-n)2-8(n-m)3 (2)15b(2a-b)2+25(b-2a)3
(3)a 3-a 2b+a 2
c-abc (4)4ax+6am-20bx-30bm 3.当x=21,y=-3
1时,求代数式2x(x+2y)2-(2y+x)2(x-2y)的值。

*4.化简求值(2x+1)2(3x-2)-(2x+1)(2-3x)2-x(2-3x)(1+2x),其中x=2
3 *5.分解因式:
(1)ab(c 2+d 2)+cd(a 2+b 2) (2)(ax+by)2+(bx-ay)2
*6.求证:20052+20052·20062+20062
是一个完全平方数。

*7.实数a 、b 、c 、x 、y 、z 满足a<b<c ,x<y<z ,且P=ax+by+cz ,Q=ax+cy+bz ,S=bx+cy+az , R=bx+ay+cz ,试判断P 、Q 、S 、R 中那一个最大?。

相关文档
最新文档