2.2.1 等差数列-王后雄学案
高一必修5_2.2.1.1等差数列教案1
2.2.1.1 等差数列【教学目标】1.理解等差数列的概念,掌握等差数列的通项公式.2.运用等差数列的通项公式解决相关问题.【教学重难点】1.重点:等差数列的概念,等差数列的通项公式.2. 等差数列概念的理解.【课前预习框架】Ⅰ.课题导入上节课我们学习了数列的定义、给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图像法.这些方法从不同的角度反映出数列的特点.下面我们看这样几个数列.四个数列如下:①0,3,6,9,12,15,…11,16,21,2610,4,-2,-8,-14,-20105,115,125,135,145观察:请同学们仔细观察,以上四个数列有什么共同特征?共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等——应指明作差的顺序是后项减前项).我们给具有这种特征的数列一个名字——等差数列Ⅱ.新知1.等差数列概念一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示).注:(1).公差d 一定是由后项减前项所得,而不能用前项减后项来求;(2).对于数列{}n a ,若n a -1-n a =d (与n 无关的数或字母),n ≥2,n ∈N +,则此数列是等差数列,d 为公差.思考:(1).数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?(2).等差数列的通项公式是什么?2.等差数列的通项公式等差数列的定义是由一个数列相邻两项之间关系而得若一个等差数列{}n a 的首项是1a ,公差是d ,则根据等差数列的定义可得:d a a =-12 即:d a a +=1232a a d -= 即:d a d a a 2123+=+=d a a =-34 即:d a d a a 3134+=+=……由此归纳出等差数列的通项公式:因此,已知一个数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a . 由上述关系还可得:d m a a m )1(1-+=即:d m a a m )1(1--=则:=n a d n a )1(1-+=(1)(1)m a m d n d --+-()m a n m d =+-即等差数列的第二通项公式:由此可得公差 m n a a d m n-=- 【例题解析】例1 (1)求等差数列13,9,5,…的第16项(2) -137是不是等差数列-5,-9,-13…的项?如果是,是第几项?解:(1)由已知113,9134a d ==-=-,以及n =16得1613(161)(4)47a =+-⨯-=-.(2)由已知4)5(9,51-=---=-=d a得该数列通项公式为:41n a n =--.由题意可知,本题是要回答是否存在正整数n ,使得13741n -=--成立, 解得n =34,即-137是这个数列的第34项.例2 已知数列{n a }的通项公式n a kn b =+,其中k 、b 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?分析:由等差数列的定义,要判定n a 是不是等差数列,只要看1--n n a a (n ≥2)是不是一个与n 无关的常数.解:当n ≥2时, (取数列{n a }中的任意相邻两项1-n a 与n a (n ≥2))1()[(1)]n n a a kn b k n b --=+--+()kn b kn k b k =+--+=为常数∴{n a }是等差数列,首项1a k b =+,公差为k .注:①若k =0,则{n a }是公差为0的等差数列,即为常数列b ,b ,b ,… ②若k ≠0,则{n a }是关于n 的一次式,从图像上看,表示数列的各点均在一次函数y =kx +b 的图像上,一次项的系数是公差,直线在y 轴上的截距为b .③数列{n a }为等差数列的充要条件是其通项n a =kn +b (k 、b 是常数),称其为第3通项公式.④判断数列是否是等差数列的方法是否满足3个通项公式中的一个.【课堂总结】1、等差数列的概念;2、判断一个数列是不是等差数列的依据;3、等差数列的通项公式.【作业】1.求等差数列1,5,9,……的第6项与第18项.2.求等差数列15,9,3,…的第16项.3. 120是不是等差数列-8,-4,0,…的项?如果是,是第几项?如果不是,说明理由.4.-20是不是等差数列0,-321,-7,…的项?如果是,是第几项?如果不是,说明理由.参考答案1.解:根据题意可知:1a =1,d =5-1=4. ∴该数列的通项公式为:n a =1+(n -1)×4, 即n a =4n -3(n 1,n ∈N*)∴6a =4×6-3=21,18a =4×18-3=69.评述:本题关键是求出该等差数列的通项公式.2. 解:根据题意可知:1a =15,d =9-15=-6. 则该数列的通项公式为:n a =15+(n -1)×(-6),即:n a =-6n +21,从而16a =-6×16+21=-75.3. 解:根据题意可得:1a = -8,d =-4-(-8)=4. 则此数列通项公式为:n a =-8+(n -1)×4=4n -12. 令4n -12=120,解得:n =33,因此,120是这个数列的第33项.4. 解:由题意可知:1a =0,d =-321 ∴此数列的通项公式为:n a =-27n +27, 令-27n +27=-20,解得n =747, 又因为-27n +27=-20没有正整数解, 所以-20不是这个数列的项.。
2.1.1 数列-王后雄学案
张喜林制2.1.1 数列教材知识检索考点知识清单1.数列、数列的项: 叫做数列, 叫做这个数列的项. 2.数列的通项公式: ———————————————————.就叫做这个数列的通项公式.3.数列可用图象来表示,在直角坐标系中,以 来表示一个数列,数列的图象是一些 ,它们位于 .4.根据数列的项数可以把数列分为 和 ,根据数列中项与项的大小关系可以把数列分,为 、 、 和 .5.数列与函数的关系: .要点核心解读1.数列的概念(1)按照一定次序排列的一列数称为数列,数列中的每个数都叫做数列的项,数列的一般形式:,,,,,,321 n a a a a 简记为n n a a },{是数列}{n a 的第n 项.(2)数列可以看成以正整数集+N (或它的有限子集{1,2,3,…,n})为定义域的函数),(n f a n =当自变量按照从小到大的顺序依次取值时,所对应的一列函数值. 2.数列的通项公式如果数列}{n a 的第n 项与序号n 之间的关系可以用一个公式表示,那么这个公式叫做这个数列的通项公式.通项公式是数列的一个重要概念.如果已知一个数列的通项公式,那么只要依次用1,2,3,…,代替公式中的n ,就可以求出这个数列的各项.要由数列的项写出数列的一个通项公式,只需观察、分析数列中的项的构成规律(即寻找项与项数的函数关系),将项n a 表示为项数n 的函数关系.3.数列的表示(1)通项公式;(2)列表;(3)图象(一群孤立的点).4.数列的分类(1)按数列中项数的有限与无限分类:(2)按数列中项与项之间的大小关系分类:(3)按各项绝对值是否小于某一个正数分类:(注:后两种分类课本未介绍,但了解它对以后的学习有利,故在此加以介绍) 5.应注意的问题(1)由数列的定义可知:①数列中的项是数(包括表示数的式),不能是其他;②数列中的项是要考虑顺序的,不像集合里的元素有无序性;③数列中不同的项可以相等,不像集合里元素必须互异;n n a a 与④}{ 是不同的,}{n a 表示一个数列,而n a 是数列}{n a 的第n 项.(2)对于通项公式应注意:①通项公式实质是数列的项与其项数之间的函数关系式,只不过定义域是正整数集+N (或它的有限子集{1,2,3,…,n}),因此可以用函数方法研究数列的有关问题;②并不是所有的数列都有通项公式;③有些数列的通项公式有不同的形式,特别是只给出前面几项的数列更是如此;④数列的通项公式可以用分段函数表示.(3)利用数列的单调性研究数列的有关问题时,一定要注意自变量n (项数)只能取正整数.典例分类剖析考点1 根据数列的前几项,写出数列的一个通项公式 命题规律(1)根据数列的前几项,归纳出数列的通项公式.(2)根据数列的递推 关系,归纳、猜 想数列的通项公式.[例1]写出下列数列的一个通项公式,使其前几项分别是下列各数.;,225,8,29,2,21)1( ;,9,7,5,3,1)2( -- ;,,,,,,)3( b a b a b a ,9999,999,99,9)4([解析] (1)数列的项,有的是分数,有的是整数,可将各项都统一成分数再观察:,,225,216,29,24,21 所以,它的一个通项公式为⋅=22n a n(2)数列各项的绝对值为1,3, 5,7,9,…,是连续的正奇数;考虑1)1(+-n 具有转换符号的作用,所以数列的一个通项公式为).12()1(1--=+n a n n(3)这是个摆动数列,可寻找其摆动平衡位置与摆动振幅,平衡位置:,2b a +振幅:,2ba -用n )1(- 或1)1(+-n 去调节,则⋅--++=+2)1(21ba b a a n n (4)各项加l 后,变为,,10000,1000,100,10 此数列的通项公式为,10n 可得原数列的通项公式为.110-=n n a[答案] 2)1(2n a n = )12()1()2(1--=+n a n n =n a )3(2)1(21ba b a n --+++ 110)4(-=n n a[误区诊断] (1)奇数列l ,3,5,7'.,一的通项公式易误写为2n +1.应为2n -1.(2)正负相间用1)1(+-n 来调节,负正相间用n )1(-来调节.[方法技巧] 根据数列的前几项写通项公式,体现了由特殊到一般的认知过程,解决这类问题一定要注意观察项与项数的关系和相邻项间的关系. 具体可参考以下几个思路:①先统一项的结构,如都化成分数、根式等.②分析这一结构中变化的部分与不变的部分,探索变化部分的变化规律与对应序号间的函数关系式,如本例(1)中可将分子、分母分别处理.③对于符号交替出现的情况,可先观察其绝对值,再以k )1(-处理符号,如本例(2).④对于周期出现的数列,如本例(3)可考虑拆成几个简单数列和的形式,或者利用周期函数,如三角函数等.还必须熟练地掌握一些基本数列的通项公式,比如下面这些数列均属于基本数列,它们的通项公式必须记住.(1)数列-1,l ,-1,1,…的通项公式是;)1(n n a -= (2)数列1,2,3,4,…的通项公式是,n a n = (3)数列l ,3,5,7,…的通项公式是;12-=n a n (4)数列2,4,6,8,…的通项公式是⋅=n a n 2 (5)数列1,2,4,8,…的通项公式是,21-=n n a (6)数列1,4,9,16,…的通项公式是,2n a n = (7)数列 ,41,31,21,1的通项公式是na n 1=(其中).+∈N n 母体迁移 1.设数列,31,0},{11nnn n a a a a a -+==+写出数列的前4项并归纳出该数列的通项公式, 考点2 用递推公式法求数列中的项命题规律(1)利用简单的递推公式去求数列的通项. (2)利用递推公式去求数列中的某些项.[例2] (2010年黄冈市训练题)数列,}{n a 中求==21,1a a ,,612n n n a a a -=++求⋅2010a . [解析] 本题若从一般入手,难以求出其通项公式,因此不妨从特例入手,看一看数列的构成规律.一[答案] ,5,6,1,5,6,1654321-=-=-====a a a a a a 6,1,5,6,11110987-=-====a a a a a .512-=a 猜想}{n a 是以6为周期的周期数列(即相同的6项循环地出现的数列).事实上,n n n a a a -=++12n n n a a a --=-1,,31n n n a a a -=∴-=+--=∴+6n a ⋅=+n n a a 3即}{n a 是以6为周期的周期数列. .5633562010-===∴⨯a a a[启示] 本例中,通过特例(求出数列}{n a 的前几项)发现一般规律(周期数列),再利用这一般规律求出特殊项),2010a (这正是特殊与一般的思想方法的具体体现,也是人类思维活动的程序“实践—一认识——再实践——再认识……”的特殊情形.母体迁移 2.若数列}{n a 的前8项的值互异且=+8n a n a 对任意+∈N n 都成立,则下列数列中可取遍 }{n a 的前8项值的数列为( ).(其中)N k ∈ }.{12+k a A }.{13+k a B }.{14+k a C }.{16+k a D考点3 数列与函数命题归律(1)通过函数的思想来判断数列的单调性.(2)通过求函数最值的思想方法来求数列的最值. [例3] 已知数列}{n a 的通项公式为,452+-=n n a n 则 (1)数列中有多少项是负数?(2)n 为何值时,n a 有最小值?并求出最小值.[解析] 数列的通项n a 与n 之间构成二次函数关系,可结合二次函数知识去进行探求,同时要注意n 的取值范围.[答案] (1)由,0452<+-n n 解得.41<<n .3,2,=∴∈+n N n∴ 数列中有两项是负数.,49)25(45)2(22--=+-=n n n a n∴ 对称轴方程为.5.225==n 又因,+∈N n 故2=n 或3时,n a 有最小值,其最小值为-22.2425-=+⨯母体迁移 3.在数列}{n a 中,nn n a )1110)(1(+=⋅∈+)(N n (1)求证:数列}{n a 先递增,后递减; (2)求数烈}{n a 的最大项.优化分层测讯学业水平测试1.下列说法中,不正确的是( ). A .数列1,1,1,…是无穷数列B .数列l ,2,3,…不一定是递增数列C .数列)}({n f 就是定义在正整数集+N 上或它的有限子集},,3,2,1{n 上的函数.)(n f 的一列函数值D .已知数列,,,,,,321 n a a a a 则}{1++n n a a 也是一个数列2.下列解析式中不是数列l ,-1,1,-1,1,…的通项公式的是( ).n n a A )1(.-= 1)1(.+-=n n a B 1)1(.--=n n a C ⎩⎨⎧-=为偶数为奇数n n a D n ,1,1.3.设数列,,11,22,5 则52是这个数列的( ).A .第6项B .第7项C .第8项D .第9项4.数列 ,177,73,115,21,53的一个通项公式为5.若数列}{n a 的通项公式是,23n n a -=则=n a 2=32a a6.求数列}392{2++-n n 中的最大值.高考能力测试(测试时间:90分钟测试满分:100分)一、选择题(本题包括7小题,每小题5分,共35分,每小题只有一个选项符合题意) 1.(2010年辽宁调考题)数列2417,810,35ba b a -+,中,有序数对(a ,b)可以是( ). )5,21.(-A )1,16.(-B )211,241.(-C )211,241.(-D 2.数列 ,151,71,31,1--的通项n a 是( ). 121)1(--⋅n A n121)1(--⋅n nB 12)1(.1---nC n 12)1(.1---n n D3.数列}{n a 中,,11=a 对所有的2≥n 都有..321 a a a ⋅⋅,2n a n =则53a a +等于( ).1661.A 925.B 1625.C 1531.D4.(2010年山东烟台训练题)已知数列}{n a 满足:=>+n n a a a 11,0,21则数列}{n a 是( ).A .递增数列B .递减数列C .摆动数列D .不确定、 5.数列}{n a 的前n 项和为,242+-=n n S n 则该数列的通项公式为( ).)(58.+∈-=N n n a A n⎩⎨⎧∈≥-==+),2(58),1(5.N n n n n a B n )2(58.≥-=n n a C n )1(58.≥-=n n a D n6.已知数列}{n a 的前n 项和.92n n s n -=第k 项满足,85<<k a 则=k ( ).9.A 8.B 7.C 6.D7.(湖南高考题)已知数列}{n a 满足133,011+-==+n n n a a a a ),(+∈N n 则=20a ( ).0.A 3.-B 3.C 23.D 二、填空题(本题包括4小题,每小题6分,共24分)8.若数列}{n a 的前n 项和),3,2,1(102 =-=n n n S n 则此数列的通项公式为 ;数列}{n na 中数值最小的项是第 项. 9.(2010年黄冈市模拟题)把数列{2n,+l}依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数……循环分为,11,9(),7,5(),3(),21,19,17,15(),13 ,37,35(),33,31,29),27,25(),23(< ),43(),41,39则第104个括号内各数之和为10.如图2-1 -1 -1,这是一个正六边形的序列:则第(n)个图形的边数为11.(2011年陕西高考题)观察下列等式照此规律,第n 个等式为三、解答题(本题包括3小题,共41分.解答应写出文字说明、证明过程或演算步骤) 12.(13分)设数列}{n a 的前n 项和为,n S 且方程=--n n a x a x 20有一根为 ,3,2,1,1=-n s n (1)求,,21a a(2)求n a 的通项公式.(不要求证明)13. (14分)已知数列}{n a 是递增数列,且对于任意,+∈N n 都有n n a n λ+=2恒成立,(1)求实数λ的取值范围;(2)对于(1)中的λ值,数列中有没有最大或最小项?若有,求出最大或最小项的值;若没有,说明理由.14.(14分)设),10(4log log )(2<<-=x x x f x 又知数列}{n a 的通项n a 满足⋅∈=+)(2)2(N n n f n a(1)试求数列}{n a 的通项公式; (2)判断数列}{n a 的增减性.。
新人教A版必修5高中数学学案教案:《2.2.1 等差数列(一)》
数学必修五《2.2.1 等差数列(一)》教案教学要求:了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列; 正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.教学重点:等差数列的概念,等差数列的通项公式.教学难点:等差数列的性质.教学过程:一、复习准备:1. 练习:已知数列{}n a 满足1a =1, 1+n a =22+n n a a (n ∈N),写出它的前5项并归纳出它的通项公式.2. 观察数列,找出它们的共同特征:①1,2,3,4,5、、、;②1.2,0.5,0.2,0.9,--、、、;③10072,10144,10216,10288,10366,、、、;④188,168,148,128,、、、.二、讲授新课:1. 教学等差数列的概念: ① 等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示). 如:0,0,0,0,、、、是恒为0的常数数列,也是公差为0的等差数列;而1,1,1,1,--、、、和1,3,4,5,6,7,、、、就不是等差数列.2. 教学等差数列的通项公式:d n a a n )1(1-+=【或=n a d m n a m )(-+(变式:m n a a d m n-=-)】 3. 例题讲解:例1、求等差数列0,-321,-7,……的通项公式,并判断-20是不是这个等差数列的项?如果是,是第几项?如果不是,说明理由.(教师引导→学生练→教师点评)练:100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由. 例2、已知数列{n a }的通项公式q pn a n +=,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?注:数列{n a }为等差数列的充要条件是它的通项公式为q pn a n +=,此式又称为等差数列的第3通项公式.例3、在等差数列{n a }中,若1a +6a =9, 4a =7, 求3a , 9a . 结论:(性质)在等差数列中,若m+n=p+q ,则,q p n m a a a a +=+4. 小结:等差数列的概念、通项公式,等差数列的性质及其应用.三、巩固练习:1. 在等差数列{}n a 中,已知105=a ,3112=a ,求首项1a 、公差d 及15a .2. 作业:教材P46页A组第1题③④。
高中数学 2.2.1 等差数列教案 新人教B版必修5
2.2.1 等差数列整体设计教学分析本节课将探究一类特殊的数列——等差数列.本节课安排2课时,第1课时是在生活中具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据这个公式去进行有关计算.第2课时主要是让学生明确等差中项的概念,进一步熟练掌握等差数列的通项公式及其推导的公式,并能通过通项公式与图象认识等差数列的性质.让学生明白一个数列的通项公式是关于正整数n的一次型函数,使学生学会用图象与通项公式的关系解决某些问题.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究.在问题探索过程中,先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳方法进行试探,提出猜想,最后采用证明方法(或举反例)来检验所提出的猜想.其中例1是巩固定义,例2到例5是等差数列通项公式的灵活运用.在教学过程中,应遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位.使学生认识到生活离不开数学,同样数学也是离不开生活的.学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化.数列在整个中学数学内容中处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一章均得到了较为充分的应用,而学习数列又为后面学习数列与函数的极限等内容作了铺垫.教材采取将代数、几何打通的混编体系的主要目的是强化数学知识的内在联系,而数列正是在将各知识沟通方面发挥了重要作用.因此本节内容是培养学生观察问题、启发学生思考问题的好素材.三维目标1.通过实例理解等差数列的概念,通过生活中的实例抽象出等差数列模型,让学生认识到这一类数列是现实世界中大量存在的数列模型.同时经历由发现几个具体数列的等差关系,归纳出等差数列的定义的过程.2.探索并掌握等差数列的通项公式,由等差数列的概念,通过归纳或迭加或迭代的方式探索等差数列的通项公式.通过与一次函数的图象类比,探索等差数列的通项公式的图象特征与一次函数之间的联系.3.通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣.重点难点教学重点:等差数列的概念,等差数列的通项公式,等差中项及性质,会用公式解决一些简单的问题.教学难点:概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式,并会解决一些相关的问题.课时安排2课时教学过程第1课时导入新课思路 1.(直接导入)教师引导学生先复习上节课学过的数列的概念以及通项公式,可有意识地在黑板上(或课件中)出示几个数列,如:数列1,2,3,…,数列0,0,0,…,数列0,2,4,6,…等,然后直接引导学生阅读教材中的实例,不知不觉中就已经进入了新课.思路 2.(类比导入)教师首先引导学生复习上节课所学的数列的概念及通项公式,使学生明了我们现在要研究的就是一列数.由此我们联想:在初中我们学习了实数,研究了它的一些运算与性质,那么我们能不能也像研究实数一样,来研究它的项与项之间的关系、运算和性质呢?由此导入新课.推进新课新知探究提出问题回忆数列的概念,数列都有哪几种表示方法?阅读教科书本节内容中的①②③3个背景实例,熟悉生活中常见现象,写出由3个实例所得到的数列.观察数列①②③,它们有什么共同特点?根据数列①②③的特征,每人能再举出2个与其特征相同的数列吗?什么是等差数列?怎样理解等差数列?其中的关键字词是什么?数列①②③存在通项公式吗?如果存在,分别是什么?等差数列的通项公式是什么?怎样推导?活动:教师引导学生回忆上节课所学的数列及其简单表示法——列表法、通项公式、递推公式、图象法,这些方法从不同角度反映了数列的特点.然后引导学生阅读教材中的实例模型,指导学生写出这3个模型的数列:①22,22.5,23,23.5,24,24.5,…;②2,9,16,23,30;③89,83,77,71,65,59,53,47.这是由日常生活中经常遇到的实际问题中得到的数列.观察这3个数列发现,每个数列中相邻的后项减前项都等于同一个常数.当然这里我们是拿后项减前项,其实前项减后项也是一个常数,为了后面内容的学习方便,这个顺序不能颠倒.至此学生会认识到,具备这个特征的数列模型在生活中有很多,如上节提到的堆放钢管的数列为100,99,98,97,…,某体育场一角的看台的座位排列:第一排15个座位,向后依次为17,19,21,23,…,等等.以上这些数列的共同特征是:从第2项起,每一项与它前面一项的差等于同一个常数(即等差).这就是我们这节课要研究的主要内容.教师先让学生试着用自己的语言描述其特征,然后给出等差数列的定义.等差数列的定义:一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.教师引导学生理解这个定义:这里公差d一定是由后项减前项所得,若前项减后项则为-d,这就是为什么前面3个模型的分析中总是说后项减前项而不说前项减后项的原因.显然3个模型数列都是等差数列,公差依次为0.5,7,-6.教师进一步引导学生分析等差数列定义中的关键字是什么?(学生在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确、深入地理解和掌握概念的重要条件,这是学好数学及其他学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题、认识问题的能力)这里“从第二项起”和“同一个常数”是等差数列定义中的核心部分.用递推公式可以这样描述等差数列的定义:对于数列{a n},若a n-a n-1=d(d是与n无关的常数或字母),n≥2,n∈N*,则此数列是等差数列.这是证明一个数列是等差数列的常用方法.点拨学生注意这里的“n≥2”,若n包括1,则数列是从第1项向前减,显然无从减起.若n从3开始,则会漏掉a2-a1的差,这也不符合定义,如数列1,3,4,5,6,显然不是等差数列,因此要从意义上深刻理解等差数列的定义.教师进一步引导学生探究数列①②③的通项公式,学生根据已经学过的数列通项公式的定义,观察每一数列的项与序号之间的关系会很快写出:①a n=21.5+0.5n,②a n=7n-5,③a n=-6n+95.以上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性.教师点拨学生探求,对任意等差数列a1,a2,a3,…,a n,…,根据等差数列的定义都有:a2-a1=d,a3-a2=d,a4-a3=d,……所以a2=a1+d,a3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=(a1+2d)+d=a1+3d.学生很容易猜想出等差数列的通项公式a n=a1+(n-1)d后,教师适时点明:我们归纳出的公式只是一个猜想,严格的证明需要用到后面的其他知识.教师可就此进一步点拨学生:数学猜想在数学领域中是很重要的思考方法,后面还要专门探究它.数学中有很多著名的猜想,如哥德巴赫猜想常被称为数学皇冠上的明珠,对于它的证明中国已处于世界领先地位.很多著名的数学结论都是从猜想开始的.但要注意,数学猜想仅是一种数学想象,在未得到严格的证明前不能当作正确的结论来用.这里我们归纳猜想的等差数列的通项公式a n=a1+(n-1)d是经过严格证明了的,只是现在我们知识受限,无法证明,所以说我们先承认它.鼓励学生只要创新探究,独立思考,也会有自己的新奇发现.教师根据教学实际情况,也可引导学生得出等差数列通项公式的其他推导方法.例如:方法一(叠加法):∵{a n}是等差数列,∴a n-a n-1=d,a n-1-a n-2=d,a n-2-a n-3=d,……a2-a1=d.两边分别相加得a n-a1=(n-1)d,所以a n=a1+(n-1)d,方法二(迭代法):{a n }是等差数列,则有a n =a n -1+d ,=a n -2+d +d=a n -2+2d=a n -3+d +2d=a n -3+3d……=a 1+(n -1)d.所以a n =a 1+(n -1)d.讨论结果:(1)~(4)略.(5)如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.其中关键词为“从第2项起”、“等于同一个常数”.(6)三个数列都有通项公式,它们分别是:a n =21.5+0.5n ,a n =7n -5,a n =-6n +95.(7)可用叠加法和迭代法推导等差数列的通项公式:a n =a 1+(n -1)d.应用示例例1(教材本节例2)活动:本例的目的是让学生熟悉公式,使学生从中体会公式与方程之间的联系.教学时要使学生认识到等差数列的通项公式其实就是一个关于a n 、a 1、d 、n(独立的量有3个)的方程,以便于学生能把方程思想和通项公式相结合,解决等差数列问题.本例中的(2)是判断一个数是否是某等差数列的项.这个问题可以看作(1)的逆问题.需要向学生说明的是,求出的项数为正整数,所给数就是已知数列中的项,否则,就不是已知数列中的项.本例可由学生自己独立解决,也可做板演之用,教师只是对有困难的学生给予恰当点拨.点评:在数列中,要让学生明确解方程的思路.变式训练(1)100是不是等差数列2,9,16,…的项,如果是,是第几项?如果不是,请说明理由;(2)-20是不是等差数列0,-312,-7,…的项,如果是,是第几项?如果不是,请说明理由.解:(1)由题意,知a 1=2,d =9-2=7.因而通项公式为a n =2+(n -1)×7=7n -5. 令7n -5=100,解得n =15,所以100是这个数列的第15项.(2)由题意可知a 1=0,d =-312,因而此数列的通项公式为a n =-72n +72. 令-72n +72=-20,解得n =477.因为-72n +72=-20没有正整数解,所以-20不是这个数列的项.例2一个等差数列首项为125,公差d >0,从第10项起每一项都比1大,求公差d 的范围.活动:教师引导学生观察题意,思考条件“从第10项起每一项都比1大”的含义,应转化为什么数学条件?是否仅是a 10>1呢?d >0的条件又说明什么?教师可让学生合作探究,放手让学生讨论,不要怕学生出错.解:∵d>0,设等差数列为{a n },则有a 1<a 2<a 3<…<a 9<a 10<a 11<…,由题意,得⎩⎪⎨⎪⎧ 1<a 10<a 11<…,a 1<a 2<…<a 9≤1,即⎩⎪⎨⎪⎧ a 10>1a 9≤1⎩⎪⎨⎪⎧ 125+->1,125+-,解得875<d≤325. 点评:本例学生很容易解得不完整,解完此题后让学生反思解题过程.本题主要训练学生灵活运用等差数列的通项公式以及对公差的深刻理解.变式训练在数列{a n }中,已知a 1=1,1a n +1=1a n +13(n∈N *),求a 50. 解:已知条件可化为1a n +1-1a n =13(n∈N *), 由等差数列的定义,知{1a n }是首项为1a 1=1,公差为d =13的等差数列,∴1a50=1+(50-1)×13=523.∴a50=3 52 .例3已知数列{a n}的通项公式a n=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?活动:要判定{a n}是不是等差数列,可以利用等差数列的定义,根据a n-a n-1(n>1)是不是一个与n无关的常数.这实际上给出了判断一个数列是否是等差数列的一个方法:如果一个数列的通项公式是关于正整数的一次型函数,那么这个数列必定是等差数列.因而把等差数列通项公式与一次函数联系了起来.本例设置的“旁注”,目的是为了揭示等差数列通项公式的结构特征:对于通项公式形如a n=pn+q的数列,一定是等差数列,一次项系数p就是这个等差数列的公差,首项是p+q.因此可以深化学生对等差数列的理解,同时还可以从多个角度去看待等差数列的通项公式,有利于以后更好地把握等差数列的性质.在教学时教师要根据学生解答的情况,点明这点.解:当n≥2时,〔取数列{a n}中的任意相邻两项a n-1与a n(n≥2)〕a n-a n-1=(pn+q)-[p(n-1)+q]=pn+q-(pn-p+q)=p为常数,所以{a n}是等差数列,首项a1=p+q,公差为p.点评:(1)若p=0,则{a n}是公差为0的等差数列,即为常数列q,q,q,….(2)若p≠0,则a n是关于n的一次式,从图象上看,表示数列的各点(n,a n)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.(3)数列{a n}为等差数列的充要条件是其通项a n=pn+q(p、q是常数),称其为第3通项公式.变式训练已知数列的通项公式a n=6n-1.问这个数列是等差数列吗?若是等差数列,其首项与公差分别是多少?解:∵a n+1-a n=[6(n+1)-1]-(6n-1)=6(常数),∴{a n}是等差数列,其首项为a1=6×1-1=5,公差为6.点评:该训练题的目的是进一步熟悉例3的内容.需要向学生强调,若用a n-a n-1=d,则必须强调n≥2这一前提条件,若用a n+1-a n=d,则可不对n进行限制.知能训练1.(1)求等差数列8,5,2,…的第20项;(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?2.求等差数列3,7,11,…的第4项与第10项.答案:1.解:(1)由a1=8,d=5-8=-3,n=20,得a20=8+(20-1)×(-3)=-49.(2)由a1=-5,d=-9-(-5)=-4,得这个数列的通项公式为a n=-5-4(n-1)=-4n-1.由题意知,本题是要回答是否存在正整数n,使得-401=-4n-1成立.解这个关于n 的方程,得n=100,即-401是这个数列的第100项.2.解:根据题意可知a1=3,d=7-3=4.∴该数列的通项公式为a n=3+(n-1)×4,即a n=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a10=4×10-1=39.课堂小结1.先由学生自己总结回顾这节课都学习了哪些知识?要注意的是什么?都用到了哪些数学思想方法?你在这节课里最大的收获是什么?2.教师进一步集中强调,本节学习的重点内容是等差数列的定义及通项公式,等差数列的基本性质是“等差”.这是我们研究有关等差数列的主要出发点,是判断、证明一个数列是否为等差数列和解决其他问题的一种基本方法,要注意这里的“等差”是对任意相邻两项来说的.作业习题2—2 A组1、2.设计感想本教案设计突出了重点概念的教学,突出了等差数列的定义和对通项公式的认识与应用.等差数列是特殊的数列,定义恰恰是其特殊性也是本质属性的准确反映和高度概括,准确地把握定义是正确认识等差数列,解决相关问题的前提条件.通项公式是项与项数的函数关系,是研究一个数列的重要工具.因为等差数列的通项公式的结构与一次函数的解析式密切相关,因此通过函数图象研究数列性质成为可能.本教案设计突出了教法学法与新课程理念的接轨,引导综合运用观察、归纳、猜想、证明等方法研究数学,这是一种非常重要的学习方法;在问题探索求解中,常常是先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳方法进行试探,提出猜想,最后采用证明方法(或举反例)来检验所提出的猜想.本教案设计突出了发散思维的训练.通过一题多解,多题一解的训练,比较优劣,换个角度观察问题,这是数学发散思维的基本素质.只有在学习过程中有意识地将知识迁移、组合、融合,激发好奇心,体验多样性,学懂学透,融会贯通,创新思维才能与日俱增.(设计者:周长峰)第2课时导入新课思路 1.(复习导入)上一节课我们研究了数列中的一个重要概念——等差数列的定义,让学生回忆这个定义,并举出几个等差数列的例子.接着教师引导学生探究自己所举等差数列例子中项与项之间有什么新的发现?比如,在同一个等差数列中,与某一项“距离”相等的两项的和会是什么呢?由此展开新课.思路 2.(直接导入)教师先引导学生回顾上一节所学的内容:等差数列的定义以及等差数列的通项,之后直接提出等差中项的概念让学生探究,由此而展开新课.推进新课新知探究提出问题请学生回忆上节课学习的等差数列的定义,如何证明一个数列是等差数列?等差数列的通项公式是怎样得出来的?它与一次函数有什么关系?什么是等差中项?怎样求等差中项?根据等差中项的概念,你能探究出哪些重要结论呢?活动:借助课件,教师引导学生先回忆等差数列的定义,一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,即a n-a n-1=d(n≥2,n∈N*),这个数列就叫做等差数列,这个常数就叫做等差数列的公差(通常用字母“d”表示).再一起回顾通项公式,等差数列{a n}有两种通项公式:a n=a m+(n-m)d或a n=pn+q(p、q是常数).由上面的两个公式我们还可以得到下面几种计算公差d 的方法:①d=a n -a n -1;②d=a n -a 1n -1;③d=a n -a m n -m. 对于通项公式的探究,我们用归纳、猜想得出了通项公式,后又用叠加法及迭代法推导了通项公式.教师指导学生阅读课本等差中项的概念,引导学生探究:如果我们在数a 与数b 中间插入一个数A ,使三个数a ,A ,b 成等差数列,那么数A 应满足什么样的条件呢?由定义可得A -a =b -A ,即A =a +b 2. 反之,若A =a +b 2,则A -a =b -A , 由此可以得A =a +b 2,A ,b 成等差数列.由此我们得出等差中项的概念:如果三个数x ,A ,y 组成等差数列,那么A 叫做x 和y的等差中项.如果A 是x 和y 的等差中项,则A =x +y 2. 根据我们前面的探究不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项.如数列:1,3,5,7,9,11,13…中5是3与7的等差中项,也是1和9的等差中项. 9是7和11的等差中项,也是5和13的等差中项.等差中项及其应用问题的解法关键在于抓住a ,A ,b 成等差数列=a +b ,以促成将等差数列转化为目标量间的等量关系或直接由a ,A ,b 间的关系证得a ,A ,b 成等差数列.根据等差中项的概念我们来探究这样一个问题:如上面的数列1,3,5,7,9,11,13,…中,我们知道2a 5=a 3+a 7=a 1+a 9=a 2+a 8,那么你能发现什么规律呢?再验证一下,结果有a 2+a 10=a 3+a 9=a 4+a 8=a 5+a 7=2a 6.由此我们猜想这个规律可推广到一般,即在等差数列{a n }中,若m 、n 、p 、q∈N *且m +n =p +q ,那么a m +a n =a p +a q ,这个猜想与上节的等差数列的通项公式的猜想方法是一样的,是我们归纳出来的,没有严格证明,不能说它就一定是正确的.让学生进一步探究怎样证明它的正确性呢?只要运用通项公式加以转化即可.设首项为a 1,则a m +a n =a 1+(m -1)d +a 1+(n -1)d =2a 1+(m +n -2)d ,a p +a q =a 1+(p -1)d +a 1+(q -1)d =2a 1+(p +q -2)d.因为我们有m +n =p +q ,所以上面两式的右边相等,所以a m +a n =a p +a q .由此我们的一个重要结论得到了证明:在等差数列{a n }的各项中,与首末两项等距离的两项的和等于首末两项的和.另外,在等差数列中,若m +n =p +q ,则上面两式的右边相等,所以a m +a n =a p +a q .同样地,我们还有:若m +n =2p ,则a m +a n =2a p .这也是等差中项的内容.我们自然会想到由a m +a n =a p +a q 能不能推出m +n =p +q 呢?举个反例,这里举个常数列就可以说明结论不成立.这说明在等差数列中,a m +a n =a p +a q 是m +n =p +q 成立的必要不充分条件.由此我们还进一步推出a n +1-a n =d =a n +2-a n +1,即2a n +1=a n +a n +2,这也是证明等差数列的常用方法.同时我们通过这个探究过程明白:若要说明一个猜想正确,必须经过严格的证明,若要说明一个猜想不正确,仅举一个反例即可.讨论结果:(1)(2)略.(3)如果三个数x ,A ,y 成等差数列,那么A 叫做x 和y 的等差中项,且A =x +y 2. (4)得到两个重要结论:①在数列{a n }中,若2a n +1=a n +a n +2(n∈N *),则{a n }是等差数列. ②在等差数列中,若m +n =p +q(m 、n 、p 、q∈N *),则a m +a n =a p +a q . 应用示例例1在等差数列{a n }中,若a 1+a 6=9,a 4=7,求a 3,a 9.活动:本例是一道基本量运算题,运用方程思想可由已知条件求出a 1,d ,进而求出通项公式a n ,则a 3,a 9不难求出.应要求学生掌握这种解题方法,理解数列与方程的关系.解:由已知,得⎩⎪⎨⎪⎧ a 1+a 1+5d =9,a 1+3d =7,解得⎩⎪⎨⎪⎧ a 1=-8,d =5.∴通项公式为a n =a 1+(n -1)d =-8+5(n -1)=5n -13.∴a 3=2,a 9=32.点评:本例解法是数列问题的基本运算,应要求学生熟练掌握,当然对学有余力的同学来说,教师可引导探究一些其他解法,如a 1+a 6=a 4+a 3=9.∴a 3=9-a 4=9-7=2.由此可得d =a 4-a 3=7-2=5.∴a 9=a 4+5d =32.点评:这种解法巧妙,技巧性大,需对等差数列的定义及重要结论有深刻的理解.变式训练已知数列{a n }对任意的p ,q∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( )A .-165B .-33C .-30D .-21答案:C解析:依题意知,a 2=a 1+a 1=2a 1,a 1=12a 2=-3,a n +1=a n +a 1=a n -3, 可知数列{a n }是等差数列,a 10=a 1+9d =-3-9×3=-30.例2(教材本节例5)活动:本例是等差数列通项公式的灵活运用.正如边注所说,相当于已知直线过点(1,17),斜率为-0.6,求直线在x 轴下方的点的横坐标的取值范围.可放手让学生完成本例.变式训练等差数列{a n }的公差d <0,且a 2·a 4=12,a 2+a 4=8,则数列{a n }的通项公式是…( )A .a n =2n -2(n∈N *)B .a n =2n +4(n∈N *)C .a n =-2n +12(n∈N *)D .a n =-2n +10(n ∈N *)答案:D解析:由题意知⎩⎪⎨⎪⎧ a 2·a 4=12a 2+a 4=8d <0⎩⎪⎨⎪⎧ a 2=6a 4=2⎩⎪⎨⎪⎧ a 1=8,d =-2,所以由a n =a 1+(n -1)d ,得a n =8+(n -1)(-2)=-2n +10.例3 已知a 、b 、c 成等差数列,那么a 2(b +c),b 2(c +a),c 2(a +b)是否成等差数列? 活动:教师引导学生思考a 、b 、c 成等差数列可转化为什么形式的等式?本题的关键是考察在a +c =2b 的条件下,是否有以下结果:a 2(b +c)+c 2(a +b)=2b 2(a +c).教师可让学生自己探究完成,必要时给予恰当的点拨.解:∵a、b 、c 成等差数列,∴a+c =2b.又∵a 2(b +c)+c 2(a +b)-2b 2(c +a)=a 2b +a 2c +ac 2+bc 2-2b 2c -2ab 2=(a 2b -2ab 2)+(bc 2-2b 2c)+(a 2c +ac 2)=ab(a -2b)+bc(c -2b)+ac(a +c)=-abc -abc +2abc=0,∴a 2(b +c)+c 2(a +b)=2b 2(a +c).∴a 2(b +c),b 2(c +a),c 2(a +b)成等差数列.点评:如果a 、b 、c 成等差数列,常转化为a +c =2b 的形式,反之,如果求证a 、b 、c 成等差数列,常改证a +c =2b.有时还需运用一些等价变形技巧,才能获得成功.例4在-1与7之间顺次插入三个数a 、b 、c ,使这五个数成等差数列,求此数列. 活动:教师引导学生从不同角度加以考虑:一是利用等差数列的定义与通项;一是利用等差中项加以处理.让学生自己去探究,教师一般不要给予提示,对个别探究有困难的学生可适时地给以点拨、提示.解:(方法一)设这些数组成的等差数列为{a n },由已知,a 1=-1,a 5=7,∴7=-1+(5-1)d ,即d =2.∴所求的数列为-1,1,3,5,7.(方法二)∵-1,a ,b ,c,7成等差数列,∴b 是-1,7的等差中项,a 是-1,b 的等差中项,c 是b,7的等差中项,即b =-1+72=3,a =-1+b 2=1,c =b +72=5. ∴所求数列为-1,1,3,5,7.点评:通过此题可以看出,应多角度思考,多角度观察,正像前面所提出的那样,尽量换个角度看问题,以开阔视野,培养自己求异发散的思维能力.变式训练数列{a n }中,a 3=2,a 7=1,且数列{1a n +1}是等差数列,则a 11等于( ) A .-25 B.12 C.23D .5 答案:B解析:设b n =1a n +1,则b 3=13,b 7=12,因为{1a n +1}是等差数列,可求得公差d =124, 所以b 11=b 7+(11-7)d =23,即a 11=1b 11-1=12.例5某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4千米(不含4千米)计费10元.如果某人乘坐该市的出租车前往14 km 处的目的地,且一路畅通,等候时间为0,需要支付多少元的车费?活动:教师引导学生从实际问题中建立数学模型.在这里也就是建立等差数列的数学模型.引导学生找出首项和公差,利用等差数列通项公式的知识解决实际问题.解:根据题意,当该市出租车的行程大于或等于4 km 时,每增加1 km ,乘客需要支付1.2元.所以,我们可以建立一个等差数列{a n }来计算车费.令a 1=11.2表示4 km 处的车费,公差d =1.2,那么,当出租车行至14 km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元).答:需要支付车费23.2元.点评:本例中令a 1=11.2,这点要引起学生注意,这样一来,前往14 km 处的目的地就相当于n =11,这点极容易弄错.知能训练1.已知等差数列{a n }中,a 1+a 3+a 5+a 7=4,则a 2+a 4+a 6等于( )A .3B .4C .5D .62.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( )A .40B .42C .43D .45答案:1.解析:由a 1+a 3+a 5+a 7=4,知4a 4=4,即a 4=1.∴a 2+a 4+a 6=3a 4=3.答案:A2.解析:∵a 2+a 3=13,∴2a 1+3d =13.∵a 1=2,∴d=3.而a4+a5+a6=3a5=3(a1+4d)=42.答案:B课堂小结1.先由学生自己总结回顾这节课都学习了哪些知识?要注意的是什么?都用到了哪些数学思想方法?你是如何通过旧知识来获取新知识的?你在这节课里最大的收获是什么?2.教师进一步画龙点睛,本节课我们在上节课的基础上又推出了两个很重要的结论,一个是等差数列的证明方法,一个是等差数列的性质,要注意这些重要结论的灵活运用.作业课本习题2—2 A组5、6、7.设计感想本教案是根据课程标准、学生的认知特点而设计的,设计的活动主要都是学生自己完成的.特别是上节课通项公式的归纳、猜想给学生留下了很深的记忆;本节课只是继续对等差数列进行这方面的探究.本教案除了安排教材上的两个例题外,还针对性地选择了既具有典型性又具有启发性的几道例题及变式训练.为了学生的课外进一步探究,在备课资料中摘选了部分备用例题及备用习题,目的是让学生对等差数列的有关知识作进一步拓展探究,以开阔学生的视野.本教案的设计意图还在于,加强数列与函数的联系.这不仅有利于知识的融会贯通,加深对数列的理解,运用函数的观点和方法解决有关数列的问题,而且反过来可使学生对函数的认识深化一步,让学生体会到数学是有趣的,探究是愉悦的,归纳猜想是令人振奋的,借此激发学生的数学学习兴趣.备课资料一、备用例题【例1】梯子最高一级宽33 cm,最低一级宽为110 cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度.解:设{a n}表示梯子自上而下各级宽度所成的等差数列,由已知条件,可知a1=33,a12=110,n=12,所以a12=a1+(12-1)d,即得110=33+11d,解之,得d=7.因此a2=33+7=40,a3=40+7=47,a4=54,a5=61,a6=68,a7=75,a8=82,a9=89,a10=96,a11=103.答:梯子中间各级的宽度从上到下依次是40 cm,47 cm,54 cm,61 cm,68 cm,75 cm,82 cm,89 cm,96 cm,103 cm.。
高中数学必修5公开课教案2.2.1 等差数列的概念、等差数列的通项公式
2.2等差数列2.2.1等差数列的概念、等差数列的通项公式沉着说课本节课先在详细比如的基础上引出等差数列的概念,接着用不彻底归纳法归纳出等差数列的通项公式,最终依据这个公式去进行有关核算.可见本课内容的组织旨在培育学生的调查剖析、归纳猜测、运用才能.结合本节课特色,宜选用辅导自主学习办法,即学生自动调查——剖析归纳——师生互动,构成概念——启示引导,演绎定论——拓宽敞开,稳固进步.在学法上,引导学生去联想、探求,一起鼓舞学生斗胆质疑,学会探求.在教育进程中,遵从学生的认知规则,充分调动学生的活跃性,尽可能让学生阅历常识的构成和发展进程,激起他们的学习爱好,发挥他们的主观能动性及其在教育进程中的主体位置.创设问题情境,引起学生学习爱好,激起他们的求知欲,培育学生由特别到一般的认知才能.使学生知道到日子离不开数学,相同数学也是离不开日子的.学会在日子中发掘数学问题,处理数学问题,使数学日子化,日子数学化.教育要点了解等差数列的概念,探求并把握等差数列的通项公式,会用公式处理一些简略的问题.教育难点 (1)等差数列的性质,等差数列“等差”特色的了解、把握和运用;(2)归纳通项公式推导进程中表现的数学思维办法,以及从函数、方程的观念看通项公式.教具预备多媒体课件,投影仪三维方针一、常识与技术1.了解公役的概念,清晰一个数列是等差数列的限制条件,能依据界说判别一个数列是等差数列;2.正确知道运用等差数列的各种表明法,能灵敏运用通项公式求等差数列的首项、公役、项数、指定的项.二、进程与办法1.经过对等差数列通项公式的推导培育学生的调查力及归纳推理才能;2.经过等差数列变形公式的教育培育学生思维的深刻性和灵敏性.三、情感情绪与价值观经过等差数列概念的归纳归纳,培育学生的调查、剖析材料的才能,活跃思维,寻求新知的立异知道.教育进程导入新课师上两节课咱们学习了数列的界说以及给出数列和表明数列的几种办法——罗列法、通项公式、递推公式、图象法.这些办法从不同的视点反映数列的特色.下面咱们看这样一些数列的比如:(讲义P41页的4个比如)1.0,5,10,15,20,25,…;2.48,53,58,63,…;3.18,15.5,13,10.5,8,5.5…;4.10 072,10 144,10 216,10 288,10366,….请你们来写出上述四个数列的第7项.生第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510.师我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说.生这是由第二个数列的后一项总比前一项多5,依据这个规则性我得到了这个数列的第7项为78.师说得很有道理!我再请同学们仔细调查一下,看看以上四个数列有什么一起特征?我说的是一起特征.生1每相邻两项的差持平,都等于同一个常数.师作差是否有次序,谁与谁相减?生1作差的次序是后项减前项,不能倒置.师以上四个数列的一起特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);咱们给具有这种特征的数列起一个名字叫——等差数列.这便是咱们这节课要研讨的内容.推动新课等差数列的界说:一般地,假如一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公役(常用字母“d”表明).(1)公役d一定是由后项减前项所得,而不能用前项减后项来求;(2)关于数列{a n},若a n-a n-1=d(与n无关的数或字母),n≥2,n∈N*,则此数列是等差数列,d叫做公役.师界说中的关键字是什么?(学生在学习中常常遇到一些概念,能否捉住界说中的关键字,是能否正确地、深化的了解和把握概念的重要条件,更是学好数学及其他学科的重要一环.因此教师应该教会学生怎么深化了解一个概念,以培育学生剖析问题、知道问题的才能)生从“第二项起”和“同一个常数”.师很好!师请同学们考虑:数列(1)、(2)、(3)、(4)的通项公式存在吗?假如存在,别离是什么?生数列(1)通项公式为5n-5,数列(2)通项公式为5n+43,数列(3)通项公式为2.5n-15.5,….师好,这位同学用上节课学到的常识求出了这几个数列的通项公式,本质上这几个通项公式有一起的特色,无论是在求解办法上,仍是在所求的成果方面都存在许多共性,下面咱们来一起考虑.[协作探求]等差数列的通项公式师等差数列界说是由一数列相邻两项之间联系而得到的,若一个等差数列{a n}的首项是a1,公役是d,则据其界说可得什么?生a2-a1=d,即a2=a1+d.师对,持续说下去!生a3-a2=d,即a3=a2+d=a1+2d;a4-a3=d,即a4=a3+d=a1+3d;……师好!规则性的东西让你找出来了,你能由此归纳出等差数列的通项公式吗?生由上述各式能够归纳出等差数列的通项公式是a n=a1+(n-1)d.师很好!这样说来,若已知一数列为等差数列,则只需知其首项a1和公役d,便可求得其通项a n了.需求阐明的是:此公式仅仅等差数列通项公式的猜测,你能证明它吗?生前面已学过一种办法叫迭加法,我以为能够用.证明进程是这样的:由于a2-a1=d,a3-a2=d,a4-a3=d,…,a n-a n-1=d.将它们相加便能够得到:a n=a1+(n-1)d.师太好了!真是活学活用啊!这样一来咱们经过证明就能够放心运用这个通项公式了.[教师精讲]由上述联系还可得:a m=a1+(m-1)d,即a1=a m-(m-1)d.则a n=a1+(n-1)d=a m-(m-1)d+(n-1)d=a m+(n-m)d,即等差数列的第二通项公式a n=a m+(n-m)d.(这是变通的通项公式)由此咱们还能够得到.[例题剖析]【例1】(1)求等差数列8,5,2,…的第20项;(2)-401是不是等差数列-5,-9,-13…的项?假如是,是第几项?剖析(1)师这个等差数列的首项和公役别离是什么?你能求出它的第20项吗?生1这题太简略了!首项和公役别离是a1=8,d=5-8=2-5=-3.又由于n=20,所以由等差数列的通项公式,得a20=8+(20-1)×(-3)=-49.师好!下面咱们来看看第(2)小题怎么做.剖析(2)生2由a1=-5,d=-9-(-5)=-4得数列通项公式为a n=-5-4(n-1).由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)建立,解之,得n=100,即-401是这个数列的第100项.师方才两个同学将问题处理得很好,咱们做本例的意图是为了了解公式,本质上通项公式便是a n,a1,d,n组成的方程(独立的量有三个).阐明:(1)侧重当数列{a n}的项数n已知时,下标应是切当的数字;(2)实际上是求一个方程的正整数解的问题.这类问题学生曾经见得较少,可向学生着要点出本问题的本质:要判别-401是不是数列的项,关键是求出数列的通项公式a n,判别是否存在正整数n,使得a n=-401建立.【例2】已知数列{a n}的通项公式a n=p n+q,其间p、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公役别离是什么?例题剖析:师由等差数列的界说,要断定{a n}是不是等差数列,只需依据什么?生只需看差a n-a n-1(n≥2)是不是一个与n无关的常数.师说得对,请你来求解.生当n≥2时,〔取数列{a n}中的恣意相邻两项a n-1与a n(n≥2)〕a n-a n-1=(p n+1)-[p(n-1)+q]=p n+q-(p n-p+q)=p为常数,所以咱们说{a n}是等差数列,首项a1=p+q,公役为p.师这儿要要点阐明的是:1.若p=0,则{a n}是公役为0的等差数列,即为常数列q,q,q,….2.若p≠0,则a n是关于n的一次式,从图象上看,表明数列的各点(n,a n)均在一次函数y=px+q的图象上,一次项的系数是公役p,直线在y轴上的截距为q.3.数列{a n}为等差数列的充要条件是其通项a n=p n+q(p、q是常数),称其为第3通项公式.讲堂操练1.求等差数列3,7,11,…的第4项与第10项.剖析:依据所给数列的前3项求得首项和公役,写出该数列的通项公式,然后求出所求项.解:依据题意可知a1=3,d=7-3=4.∴该数列的通项公式为a n=3+(n-1)×4,即a n=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a10=4×10-1=39.评述:关键是求出通项公式.2.求等差数列10,8,6,…的第20项.解:依据题意可知a1=10,d=8-10=-2.所以该数列的通项公式为a n=10+(n-1)×(-2),即a n=-2n+12,所以a20=-2×20+12=-28.评述:要求学生留意解题过程的规范性与准确性.3.100是不是等差数列2,9,16,…的项?假如是,是第几项?假如不是,请阐明理由.剖析:要想判别一个数是否为某一个数列的其间一项,其关键是要看是否存在一个正整数n值,使得a n等于这个数.解:依据题意可得a1=2,d=9-2=7.因此此数列通项公式为a n=2+(n-1)×7=7n-5.令7n-5=100,解得n=15.所以100是这个数列的第15项.4.-20是不是等差数列0,,-7,…的项?假如是,是第几项?假如不是,请阐明理由.解:由题意可知a1=0,,因此此数列的通项公式为.令,解得.由于没有正整数解,所以-20不是这个数列的项.讲堂小结师(1)本节课你们学了什么?(2)要留意什么?(3)在日子中能否运用?(让学生反思、归纳、总结,这样来培育学生的归纳才能、表达才能)生经过本课时的学习,首先要了解和把握等差数列的界说及数学表达式a n-a n-1=d(n≥2);其非必须会推导等差数列的通项公式a n=a1+(n-1)d(n≥1).师本课时的要点是通项公式的灵敏运用,知道a n,a1,d,n中恣意三个,运用方程的思维,能够求出别的一个.最终,还要留意一重要联系式a n=a m+(n-m)d和a n=p n+q(p、q是常数)的了解与运用.安置作业讲义第45页习题2.2 A组第1题,B组第1题.板书设计等差数列的概念、等差数列的通项公式1.界说2.数学表达式例1.(略)3.等差数列的通项公式例2.(略) 操练。
2.2.2 等差数列的前n项和-王后雄学案
张喜林制2.2.2 等差数列的前n 项和教材知识检索考点知识清单1.等差数列的前n 项和公式为=n S =2.若数列}{n a 的前n 项和公式为B A Bn An S n ,(2+=为常数),则数列}{n a 为 3.以前n 项的项数为横坐标,前n 项和为纵坐标的图象为抛物线上的一些4.等差数列}{n a 的公差为d ,前n 项和为,n S 那么数列-k k 2S ,S )(,,23+∈-N k S S S k k k 是等差数列,其公差等于5.若在等差数列}{n a 中,,0,01<>d a 则n s 存在 ;若在等差数列}{n a 中,,0,01><d a 则n s 存在6.等差数列的项数若为)(2+∈N n n 项,则=n S 2 .且=-奇偶S S =偶奇S S ,7.等差数列的项数若为)(12+∈-N n n 项,则=-12n S ,).12(n a n -且1,S S -==-n nS S a n 偶奇偶奇(其中 =奇S =偶S , )8.若}{},{n n b a 为等差数列,,,11k nk n k n k n b B a A ∑∑====则=mmb a 要点核心解读1.等差数列的前n 项和公式及应用公式1:;2)(1n n a a n s +=公式2:;2)1(1d n n na s n -+= 公式3:Bn An S n +=2一般地,若已知首项1a 和n a 或,1n a a +求n S 用公式1;若已知首项1a 和公差d ,求n S 用公式2;其他情况下,应视条件灵活运用所学知识(等差数列的性质、通项公式、前n 项和公式等)进行转化,使问题得到解决.如:已知等差数列}{n a 中,(1)若,1285=+a a 求;12s (2)若,18,684==a a 求;20S (3)若,5,12125==S S 求⋅10s对于(1)可利用等差数列的性质得.72126)(62)(128512112=⨯=+=+=a a a a S对于(2)可先由条件求出首项1a 和公差d ,再由公式2求⋅20S对于(3)可先由条件利用公式3得到关于A 、B 的方程组,解出A 和B 的值,再由公式3求⋅10S 2.前n 项和公式与通项公式的结合,即方程思想的运用等差数列的通项公式与前n 项和公式反映了等差数列的首项、1a 公差d 、通项n a 前n 项和n s 以及项数n 之间的关系,通过它们可由n n t S a d a ,,,和n 五个量中的任意三个求出另外两个,即“知三求二”,运用这一方法可以解决等差数列中基本量的求解,如求1a 和d ,项数n 等问题.3.等差数列前n 项和的主要性质等差数列}{n a 的前n 项和n s 具有以下常用性质:,,,,)1(34232n n n n n n n S s s S S s s ---仍成等差数列.Bn An S n +=2)2(即n s 是n 的缺常数项的二次函数.(3)若等差数列首项1a 与公差d 异号,即01<d a 时,前n 项和n s 必有最值,若1a 与d 同号,即,01>d a 则11a s =即是n S 的最值(此种情况较明显,一般不必研究).(4)等差数列}{n a 中,当n 为奇数时,+=-1,a S S h 偶2121+=-n a d n (中间项); 21.+=n n a n S (项数与中间项的积); 11-+=n n s s 偶奇(项数加1比项数减1).当n 为偶数时,;2d n s s =-⋅奇偶 12122S ,22.++=+=nnn a n a S a n an s 偶奇4.等差数列前n 项和的最值解决等差数列前n 项和最值的基本思想是利用前n 项和公式与函数方法解决,常用的有以下几种: (1)找转折项:若给出等差数列的通项公式或首项、公差易求时,一般可找转折项来求n s 的最值,若n S d a ,01<必有最值,当0,01><d a 时,n s 有最小值;当0,01<>d a 时,n S 有最大值,由通项0≥n a (或)0≤n a 便可求出转折项,从而求出n S 的最值.(2)二次函数法:利用前n 项和公式=-+=d n n na s n 2)1(1,)2(212n da n d -+结合二次函数的性质讨论最大值或最小值.(将n s 看做自变量n 的二次函数).(3)图象法:利用二次函数图象的对称性来确定n 的值,使n S 取最值. 5.数列的前n 项和n S 与通项n a 的关系由n n n a a a a a s +++++=-1321 与++=-211a a s n ,123--+++n n a a a 可得n n n a S S =--1).2≥n (又,11a S =⎩⎨⎧⋅≥-==∴-)2(),1(11n S S n s a n nn利用此关系式可由n S 求n a 或进行n S 与n a 的相互转化.典例分类剖析考点1 前n 项和公式的运用命题规律(1)利用前n 项和公式求其他的量(如首项,1a 公差d .项数n 等).(2)利用前n 项和公式解决一些简单的求和问题. [例1] (2010年浙江模拟题)在小于100的正整数中共有多少个数被3除余27这些数的和是多少? [解析] 被3除余2的正整数可以写成)(23N n n ∈+的形式.[答案] 由,10023<+n 得,3232<n 即n 可取0,1,2,3,…,31,32,所以在小于100的正整数中共有33个数被3除余2.把这些数从小到大排列出来就是2,5,8,…,98,它们组成一个等差数列},{n a 其中,33,98,2331===n a a 因此它们的和为.16502)982(3333=+⨯=S[启示] 本题运用等差数列通项公式和前n 项和公式解题.[例2] 已知}{n a 为等差数列,,,n S m S m n ==其中,n m =/,,+∈N n m 求⋅+n m S [答案] 解法一:(常规解法,方程思想)思路:⎪⎪⎩⎪⎪⎨⎧-+=-+=d m m m a n d n n na m 2)1(,2)1(11由可解出.,1d a故 .2)1)(()(1d n m n m a n m S n m -++++=+解法二:(常规方法,整体代换,不求),1d a⎪⎪⎩⎪⎪⎨⎧-+=-+=-+=-+=],)1(2[22)1(],)1(2[22)1(1111d m a m d m m m a n d n a n d n n na m 以上两式相减,即=+--+-])()(2[21221d m m n n m n a .n m -.0,=/-∴=/n m n m∴ 上式可化为.2)1(21=--+-d n m a 即.2)1(21-=-++d n m a 由 2)1)(()(1dn m n m a n m s n m -++++=+])1(2[2)(1d n m a n m -+++=.)2(2n m n m --=-⋅+=解法三:设),(2+∈+=N x Bx Ax s x则⎩⎨⎧=+=+②①.,22m Bn An n Bm Am ①一②得.)()(22m n n m B n m A -=-+-.1)(,-=++∴=/B n m A n m故),()()(2n m n m B n m A +-=+++即.)(n m n m S n m --=+-=+ 解法四:(利用性质,简化运算)等差数列中若,q p n m +=+则⋅+=+q p n m a a a a 不妨设,n m >m m n n n m a a a a S S ++++=--++121⋅+-=-=+)(2)(1m n a a n m m n .2)(211-=--=+=+∴++nm m n a a a a m n n m.)()(2)(1n m n m a a n m S n m n m --=+-=++=∴++注意多种方法的比较.[启示] 由于本题是字母系数,用解法一太繁琐,此法不可取.d a ,1是等差数列的基本元素,通常是先求出基本元素,1a ,d 再解决其他问题.但本题解法二关键在于求出了-+-(|21a .2)=-d n m解法三的关键在于求出了,1)(4-=++B n m 这种设而不解的“整体化”思想,在解决有关数列的问题中要注意运用,同时要注意等差数列中Bn An s n +=2的应用.母体迁移 1.(1)(上海高考题)已知数列}{n a 中,=1a ,2,71+=-+n n a a 求=+++1721a a a (2)(2010年湖北省重点中学联考题)已知数列}{n a 中,,2,3,7221+==-=+n n a a a a 则=100S 考点2 等差数列的性质 命题规律(1)利用等差数列前n 项和的性质简化运算过程. (2)等差数列的性质在求和中的灵活运用.[例3] (1)等差数列}{n a 的前12项和为354,前12项中奇数项与偶数项的和之比为27:32,求公差d .(2)有两个等差数列},{},{n n b a 满足=++++++++n n b b b b a a a a 321321,327++n n 求⋅55b a[解析] (1)前12项中奇数项,偶数项分别构成以21,a a 为首项,2d 为公差的新的等差数列,n n b b b a a a ++++++ 2121,)2(分别为等差数列}{},{n n b a 的前玮项和,因此可用等差数列前n项和公式或其他相关性质解答.[答案] (1)解法一: 前12项中=⨯⨯+=d a S 225661奇,3061d a +,3662256)(611d a d d a S +=⨯⨯++=偶 ⎪⎩⎪⎨⎧=+++=++∴,354)366()306(,3236630611127:d a d a d a d a l 解得⎩⎨⎧==.2,51a d 解法二:)()(11311242a a a a a a S S +++-+++=- 奇偶)()()(11123412a a a a a a -++-+-=⋅=d 6⎪⎩⎪⎨⎧=+=,354,3227偶奇偶奇S S S S ⎩⎨⎧==∴.162,192S 奇偶S.5,6162192=∴=-=-∴d d S S 奇偶(2)解法一:设等差数列}{},{n n b a 的公差分别为,,21d d 则,21212)1(2)1(211121112121d n b d n a d n n nb d n n na b b b a a a n n -+-+=-+-+=++++++ 则有 ⋅++=-+-+32721212111n n d n b d n a ①又由于,44211155d b d a b a ++= ② 观察①②,可在①中取,9=n得⋅=++⨯=++126539297442111d b d a 故⋅=126555b a解法二:设}{},{n n b a 的前n 项和分别为,,n n B A 则有=n n B A ,327++n n 其中2)(1na a A n n +=由于,2591a a a =+即,2591a a a =+ 故.929)(5919⨯=⨯+=a a a A同理.959⨯=b B 故995599⨯⨯=b a B A 故⋅=++⨯==1265392979955B A b a解法三:因为等差数列前n 项和.2a bn an s n =+=⋅+)(abn n 根据已知,可令=+=n n B kn n A ,)27( .)3(kn n +,654)247(5)257(455k k k A A a =⨯+⨯-⨯+⨯=-=∴ .124)34(5)35(455k k k B B b =⨯+-⨯+=-=⋅==∴1265126555k k b a 解法四:由⋅=++⨯==-=--126539297,99551212B A b a k b a B A n n n n [启示] (1)把目标式用o .与d 两个基本量来表示,此法具有普遍性.若能进一步利用好等差数列的性质,则可使求解过程简捷.(2)等差数列的项随项数而均匀变化,这是等差数列的最本质特征,而等差数列的性质则是这一特征的具体反映,利用等差数列的性质解题,就是要从等差数列的本质特征入手去思考,分析题目,这样做必定会获得事半功倍的效果.母体迁移 2.(1)在等差数列}{n a 中,=++1272a a a ,24求⋅13S (2)等差数列}{n a 的公差,21=d 且,145S 001=求++31a a ⋅++995|a a (3)已知等差数列}{n a 的前n 项和为377,项数n 为奇数,且前n 项和中奇数项和与偶数项和之比为7:6,求中间项.(4)已知等差数列}{n a 的前4项和为25,后四项和为63,前n 项和为286,求项数n . 考点3 等差数列}{n a 各项取绝对值后组成的数列|}{|n a 的前n 项和 命题规律(1)将不熟悉的数列问题转化为熟悉的数列问题.(2)利用数列与二次函数的关系确定哪些项为正,哪些项为负.[例4] 在等差数列}{n a 中,,12,60171-=-=a a 求数列|}{|n a 的前n 项和.[解析] 本题实质是求等差数列}{n a 前n 项绝对值的和,需要先搞清哪些项是正的,哪些项是负的. [答案] 等差数列}{n a 的公差.316)60(12117117=---=--=a a d)1(360)1(1-+-=-+=∴n d n a a n.633-=n又.21,0633,0<<-∴<⋅n n a n∴ 等差数列}{n a 的前20项是负数,第20项以后的项是非负数.设n S 和/n S 分别表示数列}{n a 和|}{|n a 的前n 项和.当20≤n 时,]2)1(360[/-+--=-=n n n S S n n .2161232n n +-=当20>n 时,202020/2)(S S S S S S n n n -=-+-=)3219202060(22)1(360⨯⨯+⨯---+-=n n n .12602161232+-=n n ∴ 数列|}{|n a 的前n 项和为⎪⎪⎩⎪⎪⎨⎧>+-≤+-=.20,1260216123,20,21612322/n n n n n n S n[特别提醒] (1)对于这类数列的求和问题,一是要弄清哪些项为正,哪些项为负;二是要尽量将不熟悉的问题转化为熟悉的问题,即等差数列的问题.(2)解答本题的关键是确定等差数列}{n a 的前20项是负数,第20项以后的项是非负数.母体迁移3.(2010年烟台模拟题)数列}{n a 的前n 项和为,102n n S n -=求数列|}{|n a 的前n 项之和.考点4 n S 的最值问题 命题规律(1)用求二次函数的最值方法求其前,n 项和的最值,但要注意的是⋅∈+N n (2)利用二次函数图象的对称性来确定n 的值,使n S 取最值. (3)利用“通项法”来求n s 的最值.[例5]等差数列}{n a 中,,,0941S S a =>则n S 取最大时,=n [解析] 解法一:n S 有最大值,n S ∴是开口向下的抛物线.由于,94s s =故对称轴为.5.6294=+=n 从而6=n 或7时,n S 最大,如图2 -2 -2 -1所示.解法二:=⨯+∴=d a S S 2344,194 .6,289911d ka d a -=⨯+ .0,01<∴>d a-=-+-⋅=-+=∴2122)1()6(2)1(n d d n n d n d n n na S n .213n d∴<,0d 开口向下,且对称轴⋅∈==+N n n ,5.62136=∴n 或7时,n S 最大.解法三:由解法二中①得-+-=-+=n d d n a a n (6)1(1.)7()1d n d -=由⎩⎨⎧≤≥+,0,01n n a a 得⎩⎨⎧≤-≥-.0)6(,0)7(d n d n ⎩⎨⎧≥-≤-∴<.06,07,0n n d 解得,76≤≤n 故6=n 或.7 [答案] 6或7[方法点拨] 解法一利用等差数列的前n 项和n S 是关于n 的二次函数,结合二次函数的性质解答此题;解法二是从写出n s 的二次函数表达式入手;解法三是采用正负项分界法,解法更为简便.母题迁移 4.(2010年广东省部分重点中学联考题)数列}{n a 是等差数列,.6.0,501-==d a (1)从第几项开始有;0<n a(2)求此数列的前n 项和的最大值,考点5 等差数列的前n 项和公式的实际应用 命题规律(1)从实际生活应用中抽象出等差数列的前n 项和公式模型. (2)利用等差数列的前n 项和公式解决一些简单的实际问题.[例6] 某地在抗洪抢险中接到预报,24 h 后有一个超历史最高水位的洪峰到达,为保证万无一失,抗洪指挥部决定在24 h 内另筑起一道堤坝作为第二道防线.经计算,如果有20辆大型翻斗车同时工作25 h ,可以筑起第二道防线,但是除了现有的一辆车可以立即投入作业外,其余车辆需从各处紧急抽调,每隔20 min 就有一辆车到达并投入工作,问指挥部至少还需组织多少辆车这样陆续工作,才能保证24 h 内完成第二道防堤,请说明理由.[解析] 本题利用总工时来计算总工作量的应用问题,而每辆车工时之和可以表示成一个等差数列的和,问题的本身可转化为求解关于翻斗车数量的不等式即可. [答案] 设从现有的一辆车投入工作算起,各车的工作时间,依次组成数列},{n a 则⋅-=--311n n a a ∴ 数列}{n a 构成首项为24,公差为31-的等差数列,设还需组织(n-l )辆车,则=+++n a a a 21 ≥--+)31.(2)1(24n n n .2520⨯ .0)120)(25(,030001452≤--≤+-∴n n J n n η.241,2512025[]=-∴=≤≤∴n n n m i故至少还需组织24辆车陆续工作,才能保证在24 h 内完成第二道防堤[启示] 本题的基本关系是每辆车每小时的工作量×车数×时间=工作总量,母题迁移5.(原创题)假设某市2010年新建住房面积400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2010年为累计的第一年)将首次不少于4750万平方米? (2)当年建造的中低价房的面积占该年建造的住房面积的比例首次大于85%?优化分层测讯学业水平测试1.已知}{n a 是等差数列,,1010=a 前10项和,7010=s 则其公差=d ( ).23.-A 31.-B 31.C 32.D 2.等差数列}{n a 的前n 项和为,n s 若,10,242==S s 则6s 等于( ).12.A 18.B 24.C 42.D3.已知两个等差数列}{n a 和}{n b 的前n 项和分别为n A 和,n B 且,3457++=n n B A n n 则使得n n b a 为整数的正整数n 的个数有( ).A.2个B.3个C.4个 D .5个4.在项数为2n +1的等差数列中,所有奇数项的和为165.所有偶数项的和为150,则n 等于( ).A .9 B.10 C .11 D .125.等差数列的前4项和为40,最后4项的和为80,所有各项的和为720,则这个数列一共有 项.6.设,221)(+=x x f 利用课本中推导等差数列前n 项和的方法,求+-+-)4()5(f f f f +++ )0( )6()(5)f +的值为7.在数列}{n a 中,,66,2171==a a 且它的通项公式是关于正自然数n 的一次函数,则它的前10项和为8.(2010年济南市模拟题)近日国内某大报纸有如下报道:加薪的学问学数学,其实是要使人聪明,使人思维更加缜密.在美国广为流传的一道数学题目是:老板给你两种加工资的方案,一是每年增加薪水1000元;二是每半年增加薪水300元,请选一种.一般不擅数学的,很容易选前者,因为一年加1000元总比两个半年共加600元要多.其实,由于加工资是累计的,时间稍长,往往第二种方案更有利.例如:在第二年的年末依第一种方案可以加得l 000 +2000 =3000(元);而第二种方案在第一年加得300+ 600= 900(元),第二年加得900 +1200=2100(元),总数也是3000元.但到第三年,第一种方案加得1000+2000 +3000=6000(元);第二种方案则为300+600 +900 +1200 +1500 +1800=6300(元),比第一种方案多了300元.第四年、第五年会更多.因此,你若能在该公司干三年以上,则应选第二种方案根据以上材料,如果在该公司干10年,问选择第二种方案比选择第一种方案多加薪多少元?高考能力测试(测试时间:90分钟测试满分:100分)一、选择题(本题包括8小题,每小题5分,共40分.每小题只有一个选项符合题意)1.(2011年全国高考题)设n S 为等差数列}{n a 的前n 项和,若,11=a 公差,24,22=-=+k k S S d 则k=( ).8.A 7.B 6.C 5.D2.若数列}{n a 是等差数列,首项.,0,020*********a a a a >+>ω,02006<a 则使前n 项和0>n S 成立的最大自然数n 是( ).4009.A 4010.B 4011.C 4012.D3.等差数列}{n a 与},{n b 它们的前n 项之和分别为n S 与,n S 若),(27417+∈++=N n n n S S n n 则1111b a 的值是( ). 47.A 23.B 34.C 7178.D 4.已知等差数列的前n 项和为,n s 若,0,01213><S S 则此数列中绝对值最小的项为( ),A .第5项B .第6项C .第7项D .第8项5.(2009年安徽高考题)已知}{n a 为等差数列,=++531a a a .99,105642=++a a a 以n S 表示 }{n a 的前n 项和,则使得n S 达到最大值的n 是( ).21.A 20.B 19.C 18.D6.根据市场调查结果,预测某种家用电器从年初开始的n 个月内累积的需求量n S (万件),近似地满足--=2ln 2(90n n S n )12,,2,1)(5 =n 按此预测,在本年度内,需求量超过1.5万件的月份是( ). A.5月、6月 B.6月、7月 C.7月、8月 D .8月、9月7.等差数列}{n a 中,,51-=a 它的前11项的平均值为5,若从中抽去一项.余下的10项的平均值为4.则抽去的是( ).8.a A 6.a B 10.a C 11.a D8.设等差数列}{n a 满足,53138a a =且,01>a 则前n 项和n S 中最大的是( ).10.s A 11.S B 20.S C 21.s D二、填空题(本题包括4小题,每小题5分,共20分)9.等差数列}{n a 中,其前n 项和为100,其后的2n 项和为500,则紧随其后的3n 项和为10.(2009年辽宁高考题)等差数列}{n a 的前n 项和为,n S 且==-435,556a s S11.若一个等差数列前3项和为34,最后3项的和为146,且所有项的翱为390,则这个数列有 项.12.(北京高考题)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列}{n a 是等和数列,且,21=a 公和为5,那么8]a 的值为____,这个数列的前n 项和n s 的计算公式为三、解答题(本题包括3小题,共40分.解答应写出文字说明、证明过程或演算步骤)13.(13分)等差数列}{n a 的前n 项和记为,n s 已知,3010=a .5020=a(1)求通项,n a(2)令,242=n s 求n .14.(13分)甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第1分钟走2m ,以后每分钟比前1分钟多走Im ,乙每分钟走5 m .(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?15.(14分) (2010年湖北省部分重点中学联考题)已知}{n b 是首项为l ,公差为34的等差数列,且 nna a a b n n ++++++= 21221 (1)求证:}{n a 也是等差数列;(2)若++=++=+==874654332211,,,a a c a a a c a a c a c ,109a a +如此构成数列},{n c 求数列 }{n c 的通项公式,。
【K12教育学习资料】高中数学 2.2.1 等差数列教案 新人教A版必修5
课题:2.2.1 等差数列教学目标:1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。
2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力3.情感目标:①通过个性化的学习增强学生的自信心和意志力。
②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。
③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。
教学重点:教学重点是等差数列的定义和对通项公式的认识与应用。
准确把握定义是正确认识等差数列,解决相关问题的前提条件。
通项公式是研究一个数列的重要工具。
教学难点:(1)理解等差数列“等差”的特点及通项公式的含义。
(2)等差数列的通项公式的推导过程及应用。
学情分析:高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。
授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪教学过程:一、情景引入:1.观察梯田图片让学生对等差数列有一个直观的认识。
2.由生活中具体的数列实例引入(1)在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星,你能预测出下一次的大致时间吗?1682,1758,1834,1910,1986,()(2)你能根据规律在()内填上合适的数吗?1,4,7,10,(),16,…2, 0, -2, -4, -6,()…引导学生观察:以上3个数列有何规律?引导学生得出“从第2项起,每一项与前一项的差都是同一个常数”,我们把这样的数列叫做等差数列. (板书课题)二. 新课探究,推导公式1.学生自主归纳等差数列的概念.如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。
高中数学《2.2.1等差数列》导学案新人教B版必修5
2.2.1 等差数列(二)明目标、知重点1.能根据等差数列的定义推出等差数列的重要性质.2.能运用等差数列的性质解决有关问题.1.等差数列的图象等差数列的通项公式a n =a 1+(n -1)d ,当d =0时,a n 是关于n 的常函数;当d ≠0时,a n 是关于n 的一次函数;点(n ,a n )分布在以 为斜率的直线上,是这条直线上的一列孤立的点.2.等差数列的项与序号的关系(1)等差数列通项公式的推广:在等差数列{a n }中,已知a 1,d, a m, a n (m ≠n ),则d =a n -a 1n -1=a n -a m n -m,从而有a n =a m + (2)项的运算性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N +),则a m +a n =a p +a q .3.等差数列的性质 (1)等差数列的项的对称性在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和.即a 1+a n =a 2+a n -1=a 3+a n -2=….(2)若{a n(3){a n }的公差为d ,则d >0⇔{a n }为递增数列;d <0⇔{a n }为递减数列;d =0⇔{a n }为常数列.探究点一 等差数列与一次函数的关系思考1 等差数列{a n }的通项公式a n =a 1+(n -1)d 是a n 关于n 的一次函数吗? 思考2 等差数列{a n }的通项公式a n =a 1+(n -1)d (d ≠0)对应的图象是什么? 例1 已知数列{a n }的通项公式a n =an +b ,其中a 、b 为常数,那么这个数列一定是等差数列吗?若是,首项和公差分别是多少?反思与感悟 (1)如果数列{a n }是等差数列,则a n =an +b (a ,b 是常数);反之,如果数列{a n }的通项公式是a n =an +b (a ,b 是常数),则数列{a n }是等差数列.(2)判断数列{a n }是不是等差数列,可以利用等差数列的定义,即a n -a n -1(n >1)是不是一个与n 无关的常数;也可以利用等差中项,即若a n +1=a n +a n +22成立,则说明{a n }是等差数列;也可以用通项公式a n =an +b (其中a 、b 为常数的数列)是等差数列. 跟踪训练1 已知a ,b ,c 成等差数列,证明a 2(b +c ),b 2(c +a ),c 2(a +b )也能构成等差数列.探究点二 等差数列通项公式的推广思考1 已知等差数列{a n }的首项a 1和公差d 能表示出通项a n =a 1+(n -1)d ,如果已知第m 项a m 和公差d ,又如何表示通项a n?思考2 对于任意的正整数m 、n 、p 、q ,若m +n =p +q .则在等差数列{a n }中,a m +a n 与a p +a q 之间有怎样的关系?为什么?小结 (1)等差数列的第二通项公式:a n =a m +(n -m )d ;(2)对于任意的正整数m 、n 、p 、q ,若m +n =p +q ,则在等差数列{a n }中,a m +a n 与a p +a q 之间的关系为a m +a n =a p +a q .例2 梯子共有5级,从上往下数第1级宽35厘米,第5级宽43厘米,且各级的宽度依次组成等差数列{a n },求第2,3,4级的宽度. 解 方法一 方法二反思感悟 利用等差数列的第二通项公式及等差数列的性质,不难得出等差数列另外一些性质:(1){a n }为有穷等差数列,则与首末两项等距离的两项之和都相等,且等于首末两项之和.(2)下标成等差数列且公差为m 的项a k ,a k +m ,a k +2m ,…(k ,m ∈N +)组成公差为md 的等差数列.(3)若数列{a n }和{b n }均为等差数列,则{ma n +kb n }仍为等差数列,其中k ,m 为常数.跟踪训练2 已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m -n |=______. 探究点三 等差数列性质的应用例3 已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求此数列的通项公式.反思与感悟 解决本类问题一般有两种方法:一是运用等差数列{a n }的性质:若m +n =p +q =2w ,则a m +a n =a p +a q =2a w (m ,n ,p ,q ,w 都是正整数);二是利用通项公式转化为数列的首项与公差的结构完成运算,属于通性通法,两种方法都运用了整体代换与方程的思想.跟踪训练3 在等差数列{a n }中,已知a 1+a 4+a 7=39,a 2+a 5+a 8=33,求a 3+a 6+a 9的值.例4 三个数成等差数列,和为6,积为-24,求这三个数.反思与感悟 当等差数列{a n }的项数n 为奇数时,可设中间一项为a ,再用公差为d 向两边分别设项:…a -2d ,a -d ,a ,a +d ,a +2d ,…;当项数为偶数项时,可设中间两项为a -d ,a +d ,再以公差为2d 向两边分别设项:…a -3d ,a -d ,a +d ,a +3d ,…,这样可减少计算量.跟踪训练4 四个数成递增等差数列,中间两数的和为2,首末两数的积为-8,求这四个数.1.等差数列{a n }中,已知a 3=10,a 8=-20,则公差d 等于( ) A .3 B .-6 C .4 D .-32.在等差数列{a n }中,已知a 4=2,a 8=14,则a 15等于( ) A .32 B .-32 C .35 D .-353.等差数列{a n }中,a 4+a 5=15,a 7=12,则a 2等于( )A .3B .-3 C.32 D .-324.已知三个数成等差数列并且数列是递增的,它们的和为18,平方和为116,求这三个数.[呈重点、现规律]1.在等差数列{a n }中,当m ≠n 时,d =a m -a nm -n为公差公式,利用这个公式很容易求出公差,还可变形为a m =a n +(m -n )d .2.等差数列{a n }中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列.3.等差数列{a n }中,若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N +),特别地,若m +n =2p ,则a n +a m =2a p .4.在等差数列{a n }中,首项a 1与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关a 1、d 的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.2.2.1 等差数列(二)强化训练一、基础过关1.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( )A .12B .8C .6D .42.设公差为-2的等差数列{a n },如果a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( )A .-182B .-78C .-148D .-823.下面是关于公差d >0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 44.在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为( )A .4B .6C .8D .105.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________.6.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________.7.在等差数列{a n }中,已知a m =n ,a n =m ,求a m +n 的值.二、能力提升8.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( ) A .45 B .75 C .180 D .3009.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为( )A. 3 B .± 3 C .-33D .- 3 10.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________.11.成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.12.正项数列{a n }中,a 1=1,a n +1-a n +1=a n +a n . (1)数列{a n }是否为等差数列?说明理由. (2)求a n .三、探究与拓展13.已知数列{a n },满足a 1=2,a n +1=2a na n +2. (1)数列{1a n}是否为等差数列?说明理由.(2)求a n .。
高中数学 2.2.1 等差数列(1)学案 新人教A版必修5
广东省阳东广雅学校2014高中数学 2.2.1 等差数列(1)学案 新人教A 版必修5【学习目标】1. 理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;理解等差中项的概念。
2. 探索并掌握等差数列的通项公式。
3. 正确认识使用等差数列的各种表示法,能运用通项公式求等差数列的首项、公差、项数、指定的项。
【学习重难点】等差数列、公差的概念理解;利用等差数列的通项公式求等差数列的首项、公差、项数、指定的项。
【自学过程】1、【等差数列的定义】如果一个数列从第 项起,每一项与它 一项的 等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的 , 常用字母 表示.2、【等差中项】由三个数a ,A , b 组成的等差数列,这时数 叫做数 和 的等差中项,用等式表示为A = ____.3、【等差数列的通项公式】:等差数列{}n a 的首项是1a ,公差是d ,则n a =小练习:(1)判断下列数列是否为等差数列:①1,1,1,1,1; ②4,7,10,13,16; ③3,2,1---,1,2,3。
(2)a,b,c 三个数成等差数列,其中625,625-=+=c a ,则b=_______.(3)228-与2212+的等差中项是________; 【思考】如何证明一个数列是等差数列?若已知数列{}n a 的通项公式为n a =pn+q,其中p,q为常数,那么这个数列一定是等差数列吗?【教学过程】【例题讲解】【例1】⑴求等差数列8,5,2…的第20项;⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?【例2】(1)已知等差数列{}n a 的通项公式是21n a n =-,求首项1a 和公差d 。
(2)在等差数列{}n a 的首项是51210,31a a ==, 求数列的首项与公差.【变式2】在等差数列{a n }中,(1)a 4=10,a 7=19,求a 1与d; (2)a 3=9,a 9=3, 求a 12; (3)a 1=2,d=3,n=10, 求a n ;(4)a 1=3,a n =21,d=2, 求n; (5)a 1=12,a 6=27, 求d; (6)31-=d ,a 7=8, 求a 1;【反思与总结】【当堂测试】1. 等差数列1,-1,-3,…,-89的项数是( ).A. 92B. 47C. 46D. 452. 数列{}n a 的通项公式25n a n =+,则此数列是( ).A.公差为2的等差数列B.公差为5的等差数列C.首项为2的等差数列D.公差为n 的等差数列3. 等差数列的第1项是7,第7项是-1,则它的第5项是( ). A. 2 B. 3 C. 4 D. 64.(1)(a+b)2与(a-b)2的等差中项是________;(2)ABC 中,A,B,C 成等差数列,则B=________.5.(1)求等差数列3,7,11,……的第4项与第10项.(2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.6.在等差数列{}n a 中,已知310a =,928a =,求12a .。
人教版高中数学必修五探究式导学案2:2.2.1等差数列(一)
2.2.1.1 等差数列(一)【学习目标】1.理解等差数列的定义;2.探索并掌握等差数列的通项公式.3.掌握等差中项的概念,深化认识并能灵活运用.【重、难点】重点:1.理解等差数列的概念;探索并掌握等差数列的通项公式;2.体会等差数列与一次函数的联系.难点:概括通项公式推导过程中体现出的数学思想方法.【知识链接】什么是递推法和递推公式?答:通过给出数列任意相邻两项之间的数量关系给出数列的方法叫做递推法,其中任意相邻两项之间的数量关系式称为递推公式.【新知探究】探究一.等差数列的概念问题1. 还记得由y =7x+9的函数值得到的数列16,23,30,37,…,7n+9,…的特点吗?答:从第2项起,数列的每一项与前一项的差都等于同一个常数7,即a n−a n−1=7 (n≥2).获取新知:等差数列我们称上面这样的数列为等差数列,即如果一个数列从第2项起,数列的每一项与前一项的差都等于同一个常数,那么这个数列就叫做等差数列. 这个常数叫做等差数列的公差,通常用字母d表示.问题2. 如何用符号表示数列{a n}是公差为d的等差数列?答:a n−a n−1=d(n≥2)或a n+1−a n=d(n≥1)例1.判断下列数列是否为等差数列?(1)a n=3n−1(2)a n=n2+n【解析】(1)∵对任意的n∈N∗,a n+1−a n=[3(n+1)−1]−(3n−1)=3(为常数)∴该数列为等差数列.(2)∵当n≥2时,a n−a n−1=(n2+n)−[(n−1)2+(n−1)]=2n(不是常数)∴该数列不是等差数列.【解题反思】如何判断数列是否为等差数列?答:判断一个数列是否为等差数列,只需判断a n+1−a n(n≥1)或a n−a n−1(n≥2)是不是一个与n无关的常数.变式1:已知数列:①48,53,58,63;②18,15.5,13,10.5,8,5,5;③1,2,4,6,8,10,…;④2,2,2,2,2,….其中是等差数列的是_____________________.【答案】①②④探究二.等差中项问题2.一个数列至少要有多少项?等差数列呢?答:一个数列至少有1项,等差数列至少要有3项.获取新知:当三个数a,A,b成等差数列时,A叫做a与b的等差中项.例2. 在∆ABC中,若B是A与C的等差中项,则B=________.【答案】π3【解析】∵ B是A与C的等差中项∴A+C=2B又 A+B+C=π∴3B=π,即B=π3【解题反思】(1)若A是a与b的等差中项,那么它们之间有什么样的数量关系呢?(2)当a,A,b满足什么样的数量关系时,A是a与b的等差中项?(或2A=a+b).答:(1)若A是a与b的等差中项,则A=a+b2(或2A=a+b),则A是a与b的等差中项.(2)若A=a+b2变式2. 在-1与7之间顺次插入三个数a,b,c使这五个数成等差数列,求a,b,c 的值.【解析】∵-1,a,b,c,7成等差数列∴b是-1与7的等差中项.∴ b =−1+72=3又 a 是-1与3的等差中项 ∴ a =−1+32=1 c 是3与7的等差中项 ∴ a =3+72=5 ∴ a =1,b =3,c =5.问题3. 若已知等差数列{a n }的首项a 1和公差d ,你能否根据等差数列的定义推导出等差数列的通项公式?【解析】方法1)归纳法根据等差数列的定义,a 2−a 1=d ,a 3−a 2=d ,a 4−a 3=d ,… .∴ a 2=a 1+d ,a 3=a 2+d =a 1+2d ,a 4=a 1+3d ,… ,a n =a 1+(n −1)d方法2)累加法根据等差数列的定义, a n −a n−1=d ,a n−1−a n−2=d ,a n−2−a n−3=d ,…, a 2−a 1=d , 将以上n −1个等式相加,得(a n −a n−1)+(a n−1−a n−2)+(a n−2−a n−3)+⋯+(a 2−a 1)=(n −1)d即 a n −a 1=(n −1)d ,即a n =a 1+(n −1)d .方法3)迭代法根据等差数列的定义, a n =a n−1+d =(a n−2+d )+d =a n−2+2d =(a n−3+d )+2d =a n−3+3d =⋯=a 1+(n −1)d获取新知:等差数列的通项公式a n =a 1+(n −1)d例3.(1) 求等差数列8,5,2,…的第20项;(2) 判断-401是不是等差数列-5,-9,-13,…中的项?如果是,是第几项?【解析】(1) 由a 1=8,d =5-8=-3,n =20,得a 20=8+(20-1)×(-3)=-49;(2) 由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1.由题意,令-401=-4n -1,解得n =100,∴ -401是这个数列的第100项.【解题反思】(1)至少要确定1a 、n a 、n 、d 中的几项才能确定等差数列?(2)如何判断一个数是否为某等差数列中的项?答:(1)至少要知道其中的三项才能确定等差数列;(2)把该数代入数列的通项公式,然后解方程,若求出的项数是正整数,则该数就是数列中的项,否则就不是.变式3 .等差数列的第1项是11,第7项是−5,则它的第4项是()A.2 B.3 C..4 D.6【答案】B例4. 某市出租车的计价标准为1.2元/km,起步价为10元,即最初的4 km(不含4 km) 计费10元.如果某人乘坐该市的出租车去往14 km处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?【解析】根据题意,当出租车的行程达到4km时,乘客需支付10元. 之后,行程每增加1km,乘客所付车费就要多付1.2元. 为此,建立等差数列{a n}来计算4km后的车费,则a1=11.2,d=1.2.当出租车行至14 km处时,n=11, 此时,乘客所需支付车费为a11=11.2+(11−1)×1.2=23.2(元)∴乘客需要支付车费23.2元.【解题反思】在什么情况下可以用等差数列的知识解决问题呢?答:当实际问题中的数据依次成等值增加或减少时,可考虑利用等差数列方法解决.但一定要准确判断首项,项数和公差等关键问题数据.变式4:在通常情况下,从地面到10 km高空,高度每增加1 km,气温就下降某一个固定数值.如果1 km高度的气温是8.5°C,5 km高度的气温是-17.5°C,求2 km,4 km,8 km 高度的气温.【解析】由题意,从地面到10 km高空,气温关于高度n (km)成等差数列. 为此,设{a n}表示自下而上n km高度的气温,则a1=8.5,a5=-17.5.由等差数列的通项公式,a5=a1+4d=8.5+4d=-17.5,解得d=-6.5∴a n=15-6.5n∴a2=2,a4=-11,a8=-37∴即2 km,4 km,8 km高度的气温分别为2°C,-11°C,-37°C.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
张喜林制2.2.1 等差数列教材知识检索考点知识清单1.等差数列的定义:一般地,如果一个数列从第 项起,每一项与它的前一项的 都等于____ ,那么这个数列就叫做等差数列.这个常数d 叫做等差数列的 .2.等差数列的单调性:等差数列的公差 时,数列为递增数列;等差数列的公差 时,数列为递减数列; 等差数列的公差 时,数列为常数列.等差数列不会是 .3.等差数列的通项公式=n a4.要证明数列}{n a 为等差数列,只要证明:当2≥n 时,要点核心解读1.等差数列的定义在等差数列的定义中,要强调“从第二项起”和“同一常数”,这体现了等差数列的基本特征,还要注意公差是“每一项与它前一项的差”,防止将被减数和减数颠倒,如果用数学符号来描述,可叙述为:若d n d a a n n ,2(]≥=-- 为常数),则}{n a 是等差数列.还可以写成:若d N n d a a u n ,1++∈<=- 为常数),则}{n a 是等差数列.[注意] 以上定义中的常数是相对于变量n (项数)而言的.2.等差中项如果a 、b 、c 成等差数列,则称b 是a 与c 的等差中项,由以上定义知:b 是a 与c 的等差中项甘a 、b 、c 成等差数列22c a b b c a +=⇔=+⇔ 3.等差数列的判定(1)用定义判定:即判定d a a n n =-+1(常数))(+∈N n 或122++=+n n n a a a (即)112n n n n a a a a -=-+++ 是否成立.(2)用通项公式判定:即用}{n a 为等差数列q pn a n +=⇔q p 、(为常数)判定.4.等差数列的通项公式及其变式通项公式:d n a a n )1(1-+=(其中1a 为首项,d 为公差).变式1:).()(⋅=/-+=m n d m n a a m n变式2:).2(11+∈≥--=N n n n a a d n 且 变式3:).(m n m n a a d m n =/--= [注意] (1)等差数列的通项公式是关于变量n (项数)的一次函数或常数函数(d=0时),因此在解决有关问题时,可用函数方法处理.(2)等差数列的通项公式实质是d a n a n ,,,1四者之间的关系式,只要知道其中三个的值,由它们便可求出另一个的值,特别地,要求等差数列的通项公式,只需先求出首项1a 和公差d5.等差数列的性质(1)等差数列}{n a 中,⋅∈-=-+),()(N m n d m n a a m n(2)若a ,b ,c 成等差数列,则k mc k mb k ma +++,.,也成等差数列(m ,k 为常数).(3)等差数列}{n a 中,若,q p n m +=+则q p m n a a a a +=+).,,,(+∈N q p m n[特别注意] “数列}{n a 中,若,q p m +=则=m a ,,q P a a +是不成立的.(4)等差数列}{n a 中,若公差d>0,则数列}{n a 为递增数列;等差数列}{n a 中,若公差d<0,则数列}{n a 为递减数列.(5)等差数列}{n a 中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,但剩下的项按原来的顺序排列,构成的新数列不一定是等差数列,证明:假设从第p 项起,每隔q 项抽出等差数列的项,则组成的新数列是,,,,32q p q q p p a a a a +++ρ ,,)1(q n p a -+ 则有--+q n p a )1(=-+q n p a )2(---+]1)1({q n r p qd d q n p =--+]}1)2([为常数所以等差数列}{n a 中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,显然,剩下的项按原来的顺序排列,构成的新数列不一定是等差数列.(6)若数列}{n b 也是公差为d 的等差数列,则数列+n a 1{λ212}(λλλh n b 是常数)是公差为d )(21λλ+ 的等差数列.证明:因为,)1(,)1(11d n b b d n a a n n -+=-+=所以+n a ]λ])1([112d n a b n -+=λλ-++n b ([12λ,))(1()(]12]1211d n b a d λλλλ+-++=)所以=+--1211n n b a λλ+11[a λ+-])2(d n ])2([12d n b -+λ =)2()(1211-++n b a λλ+](λ,)2d λ所以=+-+--)()(121121n n n n b a b a λλλλ.)(21d λλ+所以数列2121,}{λλλλ<+n n b a 是常数)是公差为d )(21λλ+的等差数列.利用等差数列的性质可使有些问题的解题过程十分简捷.6.等差数列与一次函数的关系通项公式,)1(11d a dn d n a a n -+=-+=即n a 是n 的一次函数式,故表示等差数列各项的点都在一条直线上.如:首项为l ,公差为2的等差数列的通项公式为,12-=n a n 相应的图象是直线12)(-=x x f 上均匀排列开的无穷多个孤立的点,如图2 -2 -1 -1所示,由函数的图象可得等差数列的单调性:当d>0时,数列}{n a 为递增数列(图2 -2 -1-2甲);当d<0时,数列}{n a 为递减数列(图2 -2 -1-2乙);当d=0时,数列}{n a 为常数列(图2 -2 -1-2丙).请注意图象,公差d 恰好为所在直线的斜率,因此有=d ,(n m n m a a n m =/--斜率公式). 典例分类剖析考点1 等差数列的概念命题规律(1)判断所给出的数列是否为等差数列.(2)判断某一项或某些项是否为等差数列中的项.(3)证明某一数列为等差数列.[例1] (1)求等差数列8,5,2,…的第20项;(2) -401是不是等差数列-5,-9,-13,…中的项?如果是,是第几项?(3)若数列}{n a 的通项⎩⎨⎧≥+==),2(12),1(1n n n a n 试问数列}{n a 是等差数列吗? [解析] 第(1)小题是求等差数列的指定项,我们可以先求出首项1a 和公差d ,然后将它们代入等差数列的通项公式,即可求出相应的项,第(2)小题是判断一个数是否为一个等差数列的项,只需令此数等于通项公式,并求解此方程,如果它有正整数解,则此数为该数列的项,否则不是.[答案] (1) 由,20,385,81=-=-==n d a 得.49)3()120(820-=-⨯-+=a(2)由,4)5(9,51-=---=-=d a得到这个数列的通项公式为).1(45---=n a n设-401=-5 -4(n -1)成立.解这个关于n 的方程,得n=100.∴ -401是这个数列的第100项.(3)数列}{n a 不是等差数列,根据等差数列定义,一个数列是等差数列的充要条件是从第二项起,每一项与前一项的差都等于同一个常数,而此数列中虽然有,23423==-=- a a a a 但是,2412=/=-a a 因此此数列不满足等差数列的条件,所以它不是一个等差数列,但可以这样说:此数列从第2项起组成一个等差数列.[启示]d a ,]和n 是等差数列的三个基本量,有关等差数列的问题都可以利用这三个基本量来求解这种方法称为基本量法.[例2]在等差数列}{n a 中,已知,5,1185==a a 求⋅10a[解析] 由题目可获取以下主要信息:已知等差数列中的某两项,求另外一项,解答本题可利用通项公式进行.[答案] 设数列}{n a 的公差为d .由题意知:⎩⎨⎧=+=+,57,11411d a d a 解得⎩⎨⎧-==.2,191d a 故.212)2()1(19+-=-⨯-+=n n a n.12110210=+⨯-=∴a[规律方法] 在等差数列}{n a 中,首项1a 与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关d a 、1的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.母体迁移 1.若,2b c a =+则是否有++c b c a (),5(22)(),2b ac a +能构成等差数列.考点2 等差数列的性质及应用命题规律(1)考查对性质的灵活运用.(2)利用等差数列的性质解决一些计算繁琐的问题,达到减小计算量,优化解题过程的目的.[例3] (1)在等差数列}{n a 中,==++642741,15a a a a a a ,45求数列的通项公式;(2)设}{n a 为等差数列,若,45076543=++++a a a a a 求,82a a +(3)若数列}{n a 为等差数列,),(,q p p a q a q p =/==求⋅+q p a[答案] ,2)1(62471a a a a a +==+.1354741==++∴a a a a10,5624=+∴=∴a a a 且.962=a a62,a a ∴是方程09102=+-x x 的两根,⎩⎨⎧==∴9,162a a 或⎩⎨⎧==1,962a a 若12=a 且,96=a 则.32,2-=∴=n a d n同理可得.213n a n -=故32-=n a n 或.213n a n -=(2)解法一:,28256473a a a a a a a +==+=+.0455576543==++++∴a a a a a a.1802,905825==+∴=∴a a a a解法二:因为}{n a 为等差数列,设首项为,1a 公差为d ,+=++++++=+++∴11117435632a d a d a d a a a a ,20d 即d a d a 4,45020511+∴=+ ,90=.180********=+=+++=+∴d a d a d a a a(3)解法一:可用通项公式求解,,)1(,)1(11d q a a d p a a q p -+=-+=①⎩⎨⎧=-+=-+∴.)1(,)1(11p d q a q d p a 两式相减,得⋅-=-p q d q p )(.1,-=∴=/d q p 代入①,有.1,)1)(1(11-+=∴=--+q p a q p a故.0)1()1(1)1(1=-⋅-++-+=-++=+q p q p d q p a a q p解法二:利用关系式d m n a a m n )(-+=求解,,)(,)(d q p p q d q p a a q p -+=∴-+=即.1,.)(-=∴=/-=-d q p d q p p q故.0)1()][(=-+=-++=+q q d p q p a a p q ρ解法三:利用一次函数图象求解.不妨设p<q ,由于等差数列中,n a 关于n 的图象是一条直线上均匀排开的一群孤立的点,故三点 ,(),,q a p p (),(),q p q a q p a ++共线.设,m a q p =+由已知得三点),(),,(),,(m q p p q q p +共线(如图2 -2 -1-3).由 △ABE ∽ △BCF 得,CFBF BE AE = pm p q q p m p p q p q -=∴-+-=--∴1)( 得,0=m 即.0=+q p a[启示] (1)等差数列性质q p n m +=+“且,,,p n m ”q p n m a a a a N q +=+⇒∈+是否可推广为“若,,+∈N n m 则+m a ”?n m n a a +=不行.例如,当n a n 213-=时,则,854=+a a 而.59-=a 显然 ,n m n m a a a +=/+但该性质可推广为三项情形,即s q p t n m ++=++且+⇒∈+m a N s q p t n m ,,,,,”s q p t n a a a a a ++=+以及四项乃至一般情形,只要两边项数一样,且下标和相等即可,请你完成它的证明.(2)上述各种解法无不体现了等差数列性质的灵活运用.母体迁移 2.等差数列}{n a 中:(1)若,,147n a m a ==则=21a(2)若,1531-=++a a a 则=++++54321a a a a a(3)若,52.,34525432==+++a a a a a a 且,24a a >则=5a(4)若,53=a 则=+412a a考点3 等差数列的通项公式命题规律(1)利用解方程组的方法求1a 和d ,从而求出通项公式.(2)利用通项公式及其变形形式解决一些简单的问题[例4] (2010年辽宁省部分重点中学联考题)在等差数列{n a }中,已知,5,1185==a a 求⋅10a[答案] 方法一:设数列}{n a 的公差为d ,由题意知:⎩⎨⎧=+=+,57,11411d a d a 解得 ⎩⎨⎧-==.2,191d a 故 .212)2()1(19+-=-⨯-+=n n a n.12110210=+⨯-=∴a 方法二:,,)(m n a a d d m n a a m n m n --=∴-+=,231155858-=-=--=∴a a d .1)2(252810=-⨯+=+=d a a[方法技巧] 在等差数列}{n a 中,首项1a 与公差d 是两个最基本的元素,有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关d a 、1的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.母体迁移 3.已知两个等差数列 ,11,8,5:}{n a 与,,11,7,3:}{ n b 它们的项数均为100项,则它们有多少个彼此具有相同数值的项?考点4 等差数列与一次函数命题规律(1)深刻理解等差数列,进一步理解数列是一特殊的函数,特例是等差数列是一次函数,其中公差d 为斜率.(2)可用函数的性质来处理等差数列问题.[例5] 已知(1,1),(3,5)是等差数列}{n a 图象上的两点.(1)求这个数列的通项公式;(2)画出这个数列的图象;(3)判断这个数列的单调性.[答案] (1)由于(1,1),(3,5)是等差数列}{n a 图象上的两点,所以,5,131==a a 由1213=+=d a a,52=+d 解得,2=d 于是.12-=n a n(2)图象是直线12-=x y 上一些等间隔的点(图略).(3)因为一次函数12-=x y 是增函数,所以数列}{n a 是递增数列.[启示] 本题综合考查数列的通项公式、图象和性质.母体迁移 4.已知数列}{n a 的通项公式为+=2pn a n qn (常数).,R q p ∈(1)当p ,q 满足什么条件时,数列}{n a 是等差数列?(2)求证:对于任意的实数p 和q ,数列}{1n n a a -+是等差数列.考点5 等差数列模型的实际应用命题规律(1)利用等差数列的知识从实际问题中抽象出等差数列的模型.(2)通过构造等差数列的模型去解决实际问题.[例6] 某人有七位朋友,第一位朋友每天晚上都去他家看他,第二位朋友每隔一个晚上到他家去,第三位朋友每隔两个晚上去他家串门,第四位朋友每隔三个晚上去他家做客.依此类推,直至第七位朋友每隔六个晚上在他家出现.这七位朋友昨晚在主人家中碰面,他们还会同一个晚上在主人家中碰面吗?[答案] 第一位朋友每天晚上在主人家;第二位朋友以后在主人家中的天数为:2,4,6,8,…,这些数构成以2为首项,公差为2的等差数列,通项公式为:,2⋅=n a n第三位朋友以后在主人家中的天数为:3,6,9,…,这些数构成以3为首项,公差为3的等差数列,通项公式为:,3⋅=n a n第四、五、六、七位朋友晚上在主人家的天数分别构成以4,5,6,7为首项,公差为4,5,6,7的等差数列;通项公式分别为:;7,6,5,4n a n a n a n a n n n n ====他们要在同一晚上出现,这个数应为这七个数列的公共项,这一项是2,3,4,5,6,7的倍数,而2,3,4,5,6,7的最小公倍数为420,因此第420,840,1260,…天晚上他们会同时在主人家出现.母体迁移 5.为了测试某种金属热膨胀性质,将这种金属的一根细棒加热,从C 100开始第1次测量细棒长度,以后每升高C50测量一次,把依次量得的数据所成的数列}{n l 表示成图象如图2 -2 -1-4,根据图象解答下列问题:(1)第5次量得金属棒的长度是多少?此时金属棒的温度是多少?(2)求}{n l 的通项公式和金属长度L (单位:m )关于温度t 单位:℃)的函数关系式(设长度是关于温度的一次函数);(3)在C 30的温度条件下,如果把两块这种矩形金属板平铺在一个平面上,这个平面的最高温度可达到,500C o 问铺设时两块金属板之间至少要留多宽的空隙?优化分层测讯学业水平测试1.2006是等差数列4,6,8,…的( ).A .第1002项B .第1001项C .第1003项D .第1006项 2.在数列}{n a 中,),(122,211++∈+==N n a a a n n 则101a 的值为( ).49.A 50.B 51.C 52.D3.在等差数列中,),(,n m m a n a n m =/==则n m a +为( ).n m A -. 0.B 2.m C 2.n D4.设数列}{},{n n b a 都是等差数列,且=+==2211,75,25b a b a ,100则3737b a +等于( ). 0.A 37.B 100.C 37.-D5.在等差数列}{n a 中,若,45076543=++++a a a a a 则82a a +的值等于 6.若,b a =/两个等差数列b x x a ,,,21与b y y y a ,,,,321的公差分别为,,21d d 则=21d d 7.已知数列}{n a 中,,66,2171==a a 通项n a 是项数n 的一次函数,则通项公式=n a 8.体育场一角的看台座位是这样排列的:第一排有15个座位,从第二排起每一排都比前一排多2个座位.你能用n a 表示第n 排的座位数吗?第10排能坐多少个人?高考能力测试(测试时间:90分钟测试满分:100分)一、选择题(本题包括8小题,每小题5分,共40分.每小题只有一个选项符合题意) 1.(2011年重庆高考题)在等差数列}{n a 中,,4,232==a a 则=10a ( ).12.A 14-B 16.C 18.D)23lg(2-⋅与)23lg(+的等差中项为( ).0.A 2323lg+-⋅B )625lg(-⋅C 1.D3.等差数列}{n a 中,),(,l m m a l a i m =/==则通项公式为( ).n l m a A n ++=. n m a B n -+=1. l m n a C n --=. 2.nl m a D n ++=4.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则=-||n m ( ). 1.A 43.B 21.C 83.D5.-个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差是( ).2.-A3.-B4.-C 6.-D 6.(2010年湖北黄冈调考题)已知数列}{n a 的前n 项和为=n s ,2n 则++++322111a a a a200620051a a ++的值是( ).214010.-A 214011.-B 214012.-C 214013.-D 7.(高考题改编)下表给出一个等差数阵,其中每行每列都是等差数列,⋅ij a 表示第i 行第J 列的数,则66a 的值是( ).50.A 43.B 24.C 58.D8.(2010年北京海淀区练习题)已知数列}{},{n n b a 都是公差为l 的等差数列,其首项分别为,11b a 、且∈=+1111,,5b a b a ⋅+N 设),(+∈=N n a c n b n 则数列}{n c 的前10项和等于( ).55.A 70.B 58.C 010.D二、填空题(本题包括4小题,每小题5分.共20分)9.(2009年上海高考题)已知函数.,tan sin )(x x x f +=项数为27的等差数列}{n a 满足),2,2(ππ-∈n a 且公差.0=/d 若+)(1a f ,0)()(272=++a f a f 则当=k 时,.0)(=k a f10.(2010年南京市调考题)将等差数列2,7,12,17,22,…中的数按顺序抄写在本子上,如下表所示,若每行写12个数,每页共15行,则数2007应抄在第 页第 行第 个位置上.11.(2010年苏州市模拟题)在正整数100至500之间能被11整除的整数的个数为 12.若)23lg(),23lg(,lg +-x x x 成等差数列,则=22log x三、解答题(本题包括3小题,共40分.解答应写出文字说明、证明过程或演算步骤)13.(13分)已知数列}{n a 为等差数列,,1c a =公差为l ,若=n b ),(122++∈-N n a a n n 试判断数列}{n b 是否为等差数列?并证明你的结论.14.(13分)(2010年东北八校联考题)已知数列}{n a 为等差数列,关于x 的方程2122++++i i i a x a x a),,,2,1(0n i ==且d d a i (0=/为公差). (1)这些方程是否有公共根?若有,求出它;若没有,请说明理由; (2)在方程有一个公共根的条件下,设另一个根为,i x 则⋅+++11,,11,1121n x x x 是否成等差数列?证明你的结论.15.(14分)(2010年北京模拟题)已知数列}{n a 和}{n b 满足关系式:⋅∈+++=+)(21N n na a ab nn (1)若,2n b n =求数列}{n a 的通项公式;(2)若}{n b 是等差数列,求证:}{n a 也是等差数列.。