人教版八年级数学上册分式方程的复习

合集下载

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结(带答案)

八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。

数学八年级上册【分式方程】知识点梳理

数学八年级上册【分式方程】知识点梳理

数学八年级上册【分式方程】知识点梳理知识点汇总一、分式方程的概念分母中含有未知数的方程叫分式方程.要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.二、分式方程的解法解分式方程的基本思想:将分式方程转化为整式方程,转化方法是方程两边都乘以最简公分母,去掉分母。

在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根。

因为解分式方程时可能产生增根,所以解分式方程时必须验根。

三、解分式方程的一般步骤:(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);(2)解这个整式方程,求出整式方程的解;(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.今日练习1.校运动会上,初二(3)班啦啦队买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为:A.B.C. D .2.以下是解分式方程,去分母后的结果,其中正确的是:A.B.C. D .【参考答案】1.B若设甲种雪糕的价格为x元,根据等量关系“甲种雪糕比乙种雪糕多20根”可列方程求解解:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:故选B考点:由实际问题抽象出分式方程2.B。

人教版数学八年级上册第十五章分式全章复习(第二课时)教学设计

人教版数学八年级上册第十五章分式全章复习(第二课时)教学设计
(2)运用问题驱动的教学方法,设计具有挑战性的问题,激发学生的学习兴趣,引导学生主动参与课堂。
(3)采用分组合作学习,培养学生的团队协作能力和交流表达能力。
2.教学过程:
(1)导入:通过回顾分式的概念,引导学生思考分式在生活中的应用,为新课的学习做好铺垫。
(2)新知传授:以问题为导向,引导学生探究分式的性质和运算法则,总结解题方法。
4.能够利用分式解决一些生活中的优化问题,如折扣、百分比等,提高学生的应用能力。
(二)过程与方法
1.通过对分式的复习,培养学生自主探究、合作交流的学习习惯,提高学生分析问题和解决问题的能力。
2.引导学生运用数形结合的思想,通过绘制图像、列式分析等方法,加深对分式性质和运算的理解。
3.通过设计不同难度的练习题,让学生在解答过程中逐步掌握分式运算的技巧和方法,提高解题效率。
4.引导学生总结分式学习中的常见错误,分析原因,培养学生自我纠正和反思的能力。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣和热情,激发学生主动参与课堂活动的积极性。
2.通过分式的学习,让学生认识到数学与实际生活的紧密联系,增强学生的应用意识。
3.培养学生严谨、细致的学习态度,提高学生的逻辑思维能力和判断力。
4.鼓励学生面对困难时,保持积极的心态,培养良好的学习习惯和自主学习能力。
在教学过程中,教师要关注学生的个体差异,因材施教,充分调动学生的积极性,使学生在复习分式的过程中,既能巩固基础知识,又能提高解决问题的能力,从而达到教学目标。
二、学情分析
八年级学生在学习分式这一章节时,已经具备了一定的代数基础,掌握了整式的运算和方程求解,这为学习分式打下了基础。然而,分式的概念和运算对学生来说仍存在一定的难度,尤其是在分式的有理化、分式方程的求解等方面,学生容易产生混淆和错误。此外,学生在解决实际问题时,往往难以将分式知识灵活运用,需要教师引导和指导。

人教版八年级上册数学《分式方程》分式说课复习(分式方程及其解法)

人教版八年级上册数学《分式方程》分式说课复习(分式方程及其解法)

x+5=10.
解得
x=5.
x=5是原分式方 程的解吗?
将x=5代入原分式方程检验,发现这时分母 x-5和x2-25的值都为0,相应的分式无意义.因 此x=5虽是整式方程x+5=10的解,但不是原分式 方程的解,实际上,这个分式方程无解.
巩固练习
练习3 解方程并检验.
1 2 . 2x x 3
解:最简公分母为
巩固练习
练习4
解关于x 的方程
x
a
a
b
1( b ≠ 1).
解:方程两边同乘x-a,得
a+b(x-a)= x-a
去括号,得 a+bx-ab =x-a
移项、合并同类项,得
(b-1)x = ab-2a
∴x
ab 2a b 1
检验:当 x
ab b
2a 1
时,∵
b

1,∴b-1
≠0,
x ab 2a
方程① 当v=6时,(30+v)(30-v)≠0,这就是说,去分
母时,方程①两边乘了同一个不为0的式子,因此
方程② 所当得x=整5时式,方(程x的-5)解(与x①+的5)解=相0,同这. 就是说,去分母
时,方程②两边乘了同一个等于0的式子,这时所 得整式方程的解使②出现分母为0的现象,因此这 样的解不是②的解.
解:设该厂原来每天加工x个零件,则采用新技 术后,每天加工2x个零件,
根据完成时间的等量关系,得
100 600 100 7
x
2x
去分母,得200 + 500 =14x,
解得
x = 50.
检验:x = 50时,2x ≠ 0.
所以x = 50是原方程的根.

八年级数学上册 16.3分式方程复习课件 新人教版

八年级数学上册 16.3分式方程复习课件 新人教版

解分式方程的一般思路 去分母 分式方程
两边都乘以最简公分母
整式方程
【解分式方程】
10 1 解分式方程 x-5 = x2-25 解: 在方程两边都乘以最简公分母(x+5)(x-5)得, x+5=10 解这个整式方程,得x=5 检验:把x = 5 代入原方程中,发现x-5和x2-25的 值都为0,相应的分式无意义,因此x=5虽是方 程x+5=10的解,但不是原分式方程 1 = 10 x-5 x2-25 的解.实际上,这个分式方程无解.
4. 写出原方程的根.
布置作业 : 习题16.3第1题(单,双
号) 《课堂练习》P课时 A组 B组选做
盐场中学
赵建敏
温故知新

(1)方程? (2)一元一次方程? 解一元一次方 (3) 程的一般步骤
是什么?
解方程

() 1-3 8-x)=-2(15-2x) 1 (
x x 1 (2) 2 3
学过的方程
(1)2 x 5 7 1 (2)2( x 1) 3 x 2 2 y 1 y2 (3) 1 3 4 2x 1 x 1 (4) 3 2
【分式方程的解】
60 100 上面两个分式方程中,为什么 20+V = 20-V 去分母后得到的整式方程的解就是它的解,而 10 去分母后得到的整式方程的解却不 1 x-5 = x2-25 是原分式方程的解呢? 我们来观察去分母的过程 60 两边同乘(20+v)(20-v)100(20-v)=60(20+v) 100 = 20-V 当v=5时,(20+v)(20-v)≠0 20+V 分式两边同乘了不为0的式子,所得整式方程的解与 分式方程的解相同. 两边同乘(x+5)(x-5) 10 1 = x2-25 当x=5时, (x+5)(x-5)=0 x+5=10 x-5 分式两边同乘了等于0的式子,所得整式方程的解使 分母为0,这个整式方程的解就不是原分式方程的解

【单元一遍过】单元复习05 第十五章 分式数学八年级上册单元复习一遍过(人教版)

【单元一遍过】单元复习05 第十五章 分式数学八年级上册单元复习一遍过(人教版)

x 1 x 1
x 1 x 1
解析:两分式方程去分母转化为整式方程,求出整式方程的
解得到x的值,经检验即可确定出分式方程的解.
解:(1)去分母,得x+1+x﹣1=0,解得x=0,
经检验,x=0是分式方程的解;
(2)去分母,得x﹣4=2x+2﹣3,解得x=﹣3,
经检验,x=﹣3是分式方程的解.
归纳总结
A 90 90 3 . x x 1
90 C.
90
3
x x 1
B. 90 90 3 x 1 x
D.
90 x 1
90 x
3
8. 某商店第一次用600元购进2B铅笔若干支,第二次
又用600元购进该款铅笔,但这次每支的进价是第一 次进价的 5 倍,购进数量比第一次少了30支.求第
4
一次每支铅笔的进价是多少元?
解分式方程的基本思想是“转化思想”,把分 式方程转化为整式方程求解.解分式方程一定 注意要验根.
针对训练
6.解方程:x x
2 2
1
16 x2 4 .
解:最简公分母为(x+2)(x﹣2), 去分母,得(x﹣2)2﹣(x+2)(x﹣2)=16, 整理得﹣4x+8=16,解得x=﹣2, 经检验,x=﹣2是增根,故原分式方程无解.
解:(1)x ≠ 1 ,且 x ≠ 2.
2
(2)x ≠ ±2,且 x ≠ 3 .
2
6.填空:
(1)当x为____2____时,分式
3x 6 2x 1
的值为0;
(2)当x(x≠0)为_大_于____12_的__数_时,分式
2x x2
1
的值为正;
(3)当x(x≠0)为_小__于__2_的__数__时,分式 x 2 的值为负.

人教版八年级上册数学 第十五章分式同步复习题(含详细答案)

人教版八年级上册数学 第十五章分式同步复习题(含详细答案)

人教版八年级上册数学第十五章分式复习题一.选择题1.关于x的分式方程﹣=0的解为()A.﹣3 B.﹣2 C.2 D.32.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元3.使分式的值为0,这时x应为()A.x=±1 B.x=1C.x=1 且x≠﹣1 D.x的值不确定4.一个圆柱形容器的容积为Vm3,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t 分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A.+=t B.+=tC.•+•=t D.+=t5.春节期间,文具店的一种笔记本8折优惠出售.某同学发现,同样花12元钱购买这种笔记本,春节期间正好可比春节前多买一本.这种笔记本春节期间每本的售价是()A.2元B.3元C.2.4元D.1.6元6.已知关于x的方程的解是正整数,且k为整数,则k的值是()A.0 B.﹣2 C.0或6 D.﹣2或67.已知,则的值为()A.5 B.6 C.7 D.88.已知关于x的方程=3的解是负数,那么m的取值范围是()A.m>﹣6且m≠﹣2 B.m<﹣6 C.m>﹣6且m≠﹣4 D.m<﹣6且m≠﹣29.要使分式有意义,x的取值是()A.x≠1 B.x≠﹣1 C.x≠±1 D.x≠±1且x≠﹣2 10.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣711.下列各式中,正确的是()A.B.C.=b+1 D.=a+b12.如果分式方程无解,则a的值为()A.﹣4 B.C.2 D.﹣213.已知关于x的分式方程的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠1 14.某车间接了生产12000只口罩的订单,加工4800个口罩后,采用了的新的工艺,效率是原来的1.5倍,任务完成后发现比原计划少用了2个小时.设采用新工艺之前每小时可生产口罩x个,依据题意可得方程()A.=2B.=2C.=2D.=2二.填空题15.分式的值比分式的值大3,则x的值为.16.若关于x的分式方程,有负数解,则实数a的取值范围是.17.已知分式,当x=1时,分式无意义,则a=.18.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为米.19.对和进行通分,需确定的最简公分母是.20.已知关于x的分式方程+=.若方程有增根,则m的值为.三.解答题21.计算(1)﹣(2)+﹣(3)(+)÷22.化简求值:,其中x=.23.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B 种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?24.甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?25.新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?参考答案一.选择题1.解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.2.解:设A商家每张餐桌的售价为x元,则B商家每张餐桌的售价为(x+13),根据题意列方程得:=,解得:x=117,经检验:x=117是原方程的解.故选:A.3.解:∵分式的值为0,∴x2﹣1=0,且x+1≠0,解得:x=1.故选:B.4.解:设小水管的注水速度为x立方米/分钟,可得:,故选:C.5.解:设这种笔记本节日前每本的售价是x元,根据题意得:,解得:x=3,经检验,x=3是原方程的解,∴0.8x=0.8×3=2.4(元),答:这种笔记本节日期间每本的售价是2.4元,故选:C.6.解:方程去分母,得9﹣3x=kx,即kx+3x=9,∴x=因为原分式方程的解为正整数,且x≠3.所以x==1、2、4、5、6、7、8、9,又因为k为整数,所以k=﹣2或6.故选:D.7.解:∵,∴(a+)2=9,即a2+2+=9,则=7,故选:C.8.解:去分母,得2x﹣m=3x+6,∴x=﹣m﹣6.由于方程的解为负数,∴﹣m﹣6<0且﹣m﹣6≠﹣2,解得m>﹣6且m≠﹣4.故选:C.9.解:要使分式有意义,则x+1≠0,解得:x≠﹣1,故选:B.10.解:0.00000065=6.5×10﹣7.故选:D.11.解:与在a=0或a=b时才成立,故选项A不正确;==,故选项B正确;=b+,故选项C不正确;不能化简,故选项D不正确;故选:B.12.解:去分母得:x=2(x﹣4)﹣a解得:x=a+8根据题意得:a+8=4解得:a=﹣4.故选:A.13.解:去分母得:x﹣2(x﹣1)=k,去括号得:x﹣2x+2=k,解得:x=2﹣k,由分式方程的解为正数,得到2﹣k>0,且2﹣k≠1,解得:k<2且k≠1,故选:D.14.解:设采用新工艺之前每小时可生产口罩x个,则采用新工艺之后每小时可生产口罩1.5x个,依题意,得:﹣=2.故选:D.二.填空题(共6小题)15.解:根据题意得:﹣=3,去分母得:x﹣3﹣1=3x﹣6,移项合并得:﹣2x=﹣2,解得:x=1,经检验x=1是分式方程的解,故答案为:1.16.解:,分式方程去分母得:1﹣x﹣3=a,移项合并得:﹣x=a+2,解得:x=﹣a﹣2,∵分式方程的解为负数,∴﹣a﹣2<0且﹣a﹣2+3≠0,解得:a>﹣2且a≠1.故答案为:a>﹣2且a≠1.17.解:把x=1代入得:,此时分式无意义,∴a﹣3=0,解得a=3.故答案为:3.18.解:0.0000084=8.4×10﹣6,故答案为:8.4×10﹣6.19.解:分式和的分母分别是2(x+y)、(x+y)(x﹣y).则最简公分母是2(x+y)(x﹣y).故答案是:2(x+y)(x﹣y).20.解:若原分式方程有增根,则(x+2)(x﹣2)=0,所以x=﹣2 或x=2,当x=﹣2 时,﹣2m=﹣8.得m=4,当x=2 时,2m=﹣8.得m=﹣4,所以若原分式方程有增根,则m=±4;故答案为:±4.三.解答题(共5小题)21.解:(1)﹣=+=;(2)+﹣=+﹣===﹣;(3)(+)÷=•=x﹣1.22.解:原式=•==﹣x(x+1)=﹣x2﹣x当x=时,原式=﹣2﹣.23.解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.24.解:(1)设乙厂每天加工x套防护服,则甲厂每天加工1.5x套防护服,根据题意,得﹣=4.解得x=50.经检验:x=50是所列方程的解.则1.5x=75.答:甲厂每天加工75套防护服,乙厂每天加工50套防护服;(2)设甲厂要加工m天,根据题意,得150m+120×≤6360.解得m≥28.答:甲厂至少要加工28天.25.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.。

人教版八年级上册数学 期末专题复习---《分式方程实际问题》(含答案)

人教版八年级上册数学  期末专题复习---《分式方程实际问题》(含答案)

人教版八年级上册数学期末专题复习---《分式方程实际问题》1. 端午节前后,张阿姨两次到超市购买同一种粽子.节前,按标价购买,用了96元;节后,按标价的6折购买,用了72元,两次一共购买了27个.这种粽子的标价是多少?2. 在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?3. 甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?4.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.5. 从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.6. “母亲节”前夕,某商店根据市场调查,用3 000元购进第一批盒装花,上市后很快售完,接着又用5 000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花的盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价.7.现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务,已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装多少台空调?8.某商厦预测一种应季衬衫能畅销市场,于是用8000元购进了这种衬衫,衬衫面市后,果然供不应求,商厦又用17600元购进了第二批这种衬衫,第二批所购数量是第一批购进数量的2倍,但单价贵了4元.(1)求这两批衬衫的进价分别是多少元?(2)商厦销售这两批衬衫时都是统一售价,这两批衬衫全部售出后,商店获利不少22400元,求售价至少每件多少元?9. 元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?10. 某商家预测一种衬衫能畅销市场,就用12000元购进了一批这种衬衫,上市后果然供不应求,商家又用了26400元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但每件进价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫都按每件150元价格销售,则两批衬衫全部售完后的利润是多少元?11.列方程解应用题.豆腐文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲乙两队的投标书测算,应有三种施工方案:(1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.12.马拉松爱好者张老师作为业余组选手也参与了此次马拉松全程比赛.专业组选手上午8点准时出发,30分钟后张老师出发;在冠军选手到达终点一个半小时后,张老师抵达终点.已知马拉松全程约为42千米,张老师的平均速度是冠军选手的.(1)求冠军选手和张老师的平均速度分别为多少?(2)若明年张老师参加马拉松比赛的起跑时间不变,他计划不超过中午十一点抵达终点,则张老师今年必须加强跑步锻炼,使明年参加比赛时的平均速度至少比今年的平均速度提高百分之多少才能完成计划?。

人教版初中数学八年级上册 分式方程-优秀

人教版初中数学八年级上册   分式方程-优秀

中考复习专题 分式方程复习目标:1、了解分式方程的概念;2、掌握分式方程的解法;3、应用分式方程解决实际问题。

复习流程:一、学生展示分享知识点1、分式方程的概念___________________________的方程叫分式方程。

2、分式方程的一般方法(1)解分式方程的思想是将“分式方程”转化为_________。

(2)它的一般解法是:去分母化分式方程为整式方程;解整式方程;检验。

3、列分式方程解应用题的一般步骤二、展示分享完毕学生进行质疑、纠错和补充。

三、教师点评与强调。

四、例题解析例1、(2022广州第14题)方程的解是 例2、(2022贵州铜仁第13题)方程的解为 . 12=2xx -35302x x-=-例3、(2022青海第18题)穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480m ,乘坐高铁列车比乘坐普通快车能提前4h 到达,已知高铁列车的平均行驶速度比普通列车快160m/h ,设普通列车的平均行驶速度为m/h ,依题意,下面所列方程正确的是( )A B C D学生自主完成例题,教师通过展示检查进行补充强调。

五、课时作业1、(2022内蒙古呼伦贝尔兴安盟第19题)解方程:.2、(2022广西来宾第24题)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?学生完成后分组谈论,然后黑板展示。

教师点评。

六、总结反思。

4804804160x x -=+4804804160x x -=+4804804160x x -=-4804804160x x -=-233011x x x +-=--。

人教版八年级数学上册第十五章 分式知识点总结和题型归纳

人教版八年级数学上册第十五章 分式知识点总结和题型归纳

人教版八年级数学上册第十五章分式知识点总结和题型归纳分式知识点总结和题型归纳第一部分分式的运算一)分式的定义及有关题型考查分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B为分式。

例1:下列代数式中是分式的有:(x- y)/(2x+ y),π/(2x- y),(x+ y)/(a+ b)。

考查分式有意义的条件:分式有意义:分母不为0 (B≠0)分式无意义:分母为0 (B=0)例1:当x有何值时,下列分式有意义:1) (x-4)/(13x2-6x)2) 2/x3) 2/(x-4)4) (x+4|x|-3x+2)/(x-1)5) x/(x2-2x-3)考查分式的值为的条件:分式值为:分子为A且分母不为0 (A/B) 例1:当x取何值时,下列分式的值为0.1) (x-1)/(x+3)2) |x|-23) (x2-2x-3)/(x-5)(x+6)例2:当x为何值时,下列分式的值为零:1) 5-|x-1|/(x+4)2) (25-x2)/(x-6)(x+5)考查分式的值为正、负的条件:分式值为正或大于0:分子分母同号 (A/B>0) 分式值为负或小于0:分子分母异号 (A/B<0) 例1:(1) 当x为何值时,分式4/(8-x)为正;2) 当x为何值时,分式5-x/(5+x)为负;3) 当x为何值时,分式(x-2)/(x+3)为非负数.例2:解不等式|x|-2≤(x+1)/(x+5)考查分式的值为1,-1的条件:分式值为1:分子分母值相等 (A/B=1)分式值为-1:分子分母值互为相反数 (A+B=0)例1:若分式|x-2|/(x+2)的值为1,-1,则x的取值分别为3和-1.思维拓展练题:1、若a>b>0,a2+b2-6ab=0,则(a+b)/(a-b)=9/5.2、一组按规律排列的分式:-b/2.5/b。

-8/b。

11/b。

则第n 个分式为(3n-1)/b。

新人教版八年级数学上册《分式》知识点归纳

新人教版八年级数学上册《分式》知识点归纳

新人教版八年级数学上册《分式》知识点归纳规则进行运算。

通分的方法是将各个分式的分母化为相同的多项式,然后将分子进行相应的乘法运算,最后再按同分母分式的加减法规则进行运算。

最后的计算结果必须化为最简分式或整式。

分式是数学中的重要概念之一,它表示了两个整式的比值,其中分母中含有字母的被称为分式,而分母中没有字母的则被称为整式。

分式的约分是指将分子和分母的公因式约去,化为最简分式或整式。

化异分母分式为同分母分式的过程称为分式的通分。

分式方程是指分母中含有未知数的方程,将其变形为整式方程时需要注意增根的情况。

分式的乘除法规则和同分母分式加减法规则都需要注意化为最简分式或整式的要求。

2x+1与2x+1的分母相同,则最简公分母为__________。

2.分式3x+2x-1的倒数为__________。

3.分式2x+1x-3的平方为__________。

4.分式2x+3x-1与分式x-42x-1的和为__________。

5.若分式a+bc与分式a-bc互为倒数,则a²-b²的值为__________。

6.若分式2x-1x-2的值等于分式3x+2x+1的值,则x的值为__________。

7.分式2x+1x-3与分式x-12x+5的差为__________。

8.若分式ab+c的值等于分式ba+c的值,则a:b:c的比值为__________。

9.若分式a+b2的值等于分式a-b3的值,则a:b的比值为__________。

10.分式2x-1x+2的平方根为__________。

二、选择题(每小题3分,共15分)1.下列关于分式的说法中,正确的是()A。

分式的分子和分母都是整式B。

分式的分母不能为0C。

分式的分子和分母都是单项式D。

分式的分子和分母都是多项式2.若分式a2b的值等于分式c3d的值,则()A。

ad=3bcB。

ac=2bdC。

ab=3cdD。

ad=2bc3.若分式ab+c的值等于分式ba+c的值,则a:b:c的比值为()A。

人教版八年级数学上册《分式复习课》教学设计

人教版八年级数学上册《分式复习课》教学设计

人教版八年级上册第十五章分式方程复习课教学设计一、内容和内容解析1.内容分式的概念、分式的运算、分式方程及其应用。

2.内容解析分式蕴含着双重身份:既是除法的表达式又表示除法的结果。

从这个观点出发,《分式》这章是继整式乘除之后对代数式进一步的研究。

数学里的数与式,其生命力在于运算,只有与运算联系起来,才能深化对数与式的认识,分式的运算的基础是分数、整式的四则运算、正整数指数幂的运算、多项式的因式分解、。

同时它是今后进一步学习反比例函数、分式变形,也是在以后学习物理、化学中经常遇到的问题。

基于以上分析,确定本节课的教学重点为分式的运算、分式方程及其应用。

二、目标和目标解析1.教学目标(1)了解分式的概念、基本性质。

(2)熟练的进行简单的分式的运算。

(3)准确求出分式方程的解并运用分式方程解决实际问题。

2.目标解析通过“互学、独学、对学、合学、群学”等环节,“合作、交流、展示、点评、质疑”等方式促进学生对《分式》的知识梳理,通过对知识的梳理、典型例题的分析、综合解决问题。

体会“转化”、“方程”的数学思想解决问题。

(1)分式、分式方程概念的理解。

通过微视频展示,从分式到分式方程逐一展开,促进理解。

(2)计算。

利用希沃教学软件,展示学生的错因,达到举一反三。

三、教学问题诊断分析分式的四则混合运算是整式运算、因式分解和分式运算的综合运用;列分式方程解决实际问题——与列整式方程相比,尽管涉及的基本数量关系相同,但是由于含有未知数的式子可以是整式或分式,所以更具灵活性,学生会感到困难。

本节课的教学难点为:分式运算及应用。

四、教学过程设计1、视频导入,温故知新。

问题:分式这章的内容包括哪些?建立本章知识框架图,形成本章知识体系:(插入微视频)师生活动:老师提问学生,以框架图的形式梳理本节课知识点,并重点性的板书,提问主要针对成绩中等及偏下学生,让他们都积极参与课堂。

设计意图:使学生对本节课的知识有个整体的认识,形成清晰的思路,以便更好地完成学习目标。

初二上册分式方程

初二上册分式方程

初二上册分式方程
1、解方程:x+1x−2=3x+33x.
2、解方程:x−2x−1=x−2x−1.
3、解方程:x−12+1−x3=1.
4、解方程:x+12x−x+1x+3=1.
5、解方程:x−22+xx+4=1.
6、解方程:x−22−xx+3=1.
1、首先观察方程x+1x−2=3x+33x,我们可以发现最简公分母是x+1和3x+3,它们的最小公倍数是3(x+1)。

接着,两边乘以3(x+1),得到:
3x−6(x+1)=3x
展开并整理得:
−3x=−6
解得:
x=2
最后,检验:将x=2代入原方程,满足方程。

所以,原方程的解为:x=2。

2、首先观察方程x−2x−1=x−2x−1,最简公分母是x−2。

两边乘以x−2,得到:
x−(x−2)=x−1
展开并整理得:
x=x−1
这是一个恒等式,所以原方程无解。

3、首先观察方程x−12+1−x3=1,注意到分母有x−1和1−x,它们实际上是相同的,所以最简公分母是(x−1)2。

两边乘以(x−1)2,得到:
2(x−1)−3(x+1)=(x−1)2
展开并整理得:
−5=x−1
解得:
x=−4
最后,检验:将x=−4代入原方程,满足方程。

所以,原方程的解为:x=−4。

最新人教版初中八年级数学上册第十五章《分式》精品教案(小结复习)

最新人教版初中八年级数学上册第十五章《分式》精品教案(小结复习)

重点解析 1
解下列方程:
(1) x 3 - 2 x -1 2x - 2
(2)
x2
3
2x
-
x2
1 - 2x
0
解:(1)方程两边同时乘2(x-1),得2x=3-4(x-1),
整理得:6x=7,解得 x 7 . 6
检验:当 x 7 时,2(x-1)≠0, 6
所以原分式方程的解是 x 7 . 6
知识梳理
列分式方程解决实际问题的一般步骤 审:审清题意,找出题中的相等关系,分清题中的已知量、未知量; 设:设出恰当的未知数,注意单位和语言的完整性; 列:根据题中的相等关系,正确列出分式方程; 解:解所列分式方程; 验:既要检验所得的解是否为所列分式方程的解,又要检验所得的解是否符合 实际问题的要求; 答:写出答案.
本题源自《教材帮》
重点解析 3
班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有 90公里,队伍8:00从学校出发,苏老师因有事情,8:30从学校自驾小车以大巴1.5 倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地. 问: (1)大巴与小车的平均速度各是多少? (2)苏老师追上大巴的地点到基地的路程有多远?
根据题意,得:5 20 (1 20%) 2400 2400 2400 ,
y
10 - 2
解得:y=480.
经检验:y=480是原分式方程的解,且符合题意.
答:原计划安排的工人有480人.
课堂小结
1.同学们,今天你学到了什么呀? 和同桌说说有什么收获。
2.师生共同总结反思学习情况。
1.从课后习题中选取; 2.完成练习册本课时的习题.
重点解析 2
若分式方程: 3x - a x2 - 2x

人教版八年级数学上《分式方程》知识全解

人教版八年级数学上《分式方程》知识全解

《分式方程》知识全解课标要求1.会解一元一次分式方程(方程中的分式不超过两个)2.能根据具体问题中的数量关系,列出上述类型的方程,并进一步体会这类重要的刻画现实世界的数学模型的作用.知识结构1. 分式方程概念,和产生增根的原因.2. 分式方程的解法3.列出可化为一元一次方程的分式方程解决实际问题.内容解析(1)分式方程的概念:含分式,并且分母中含未知数的方程——分式方程(2)分式方程的解法: ①能化简的先化简.②方程两边同乘以最简公分母,化为整式方程③解整式方程;④)验根.(3)分式方程的应用: 以工程问题为例,能将此类问题中的相等关系用分式方程表示;建立数学模型,会解含字母系数的分式方程.重点难点本节的重点是:分式方程的概念,,解分式方程和列分式方程解应用题.教学重点的解决方法:分式方程是一种有效描述现实世界的模型,把分式方程转化为整式方程来解分式方程,把未知化已知,从而渗透数学转化思想.本节内容的难点是:分式方程产生增根的原因和列分式方程解应用题教学难点的解决方法:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验.教法导引(1)注重渗透化归思想,实际问题紧紧扣住等量关系解分式方程注意转化的思想,而实际问题由于背景的多变性,其数量关系也是动态多变,难以把握,只能以不变应万变,紧紧扣住“等量关系”这一主线,有意识的培养学生对例题、习题的阅读理解能力.教给学生一些避免产生增根的方法,例:解方程: 22+-x x - 4162-x = 1 解:移项,得22+-x x - )2)(2(16-+x x - 1 = 0整理,得 )2)(2()2(4-+-x x x = 0 ① 化简,得24+x = 0 ② 因为 24+x ≠ 0 所以 原方程无解.(2)注重启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法与应用,避免负迁移.....分式方程的解法理论中,我们一直采用了在分式方程两边同乘以最简公分母从而转化为整式方程的解法.这种方法充分体现了转化思想的理论精髓,而转化思想恰好是整个方程解法理论的核心思想,使各种方程(组)最终转化为一元一次方程,让人们看到一个和谐统一的体系,生动的数学展现于眼前.不过这种变形不属于方程的同解变形原理,它的恶果之一是产生增根的现象.增根并不是方程的根,它跟随非同解变形进来之后,还要用检验的方式把它清除出去,这是一种迂回的,有点费力的处理方法.是一个容易引发讨论和思考的知识点.分式方程两边同乘以最简公分母从而转化为整式方程的解法,在实践中经常对分式的四则运算产生强烈的负迁移...,如化简2222x y x y x y x y+-+++时经常有学生这样运算:22222x y x y x y x y x x y x y+-+=++-=++这肯定是受分式方程解法的影响所致,而且有时这种影响极其顽固,很难改正.分式的四则运算不能支持分式方程的解决,分式方程的解决又影响分式的四则运算,这种内耗和对抗大大削弱了分式理论的和谐性.学法建议分式方程的重点是解分式方程和列分式方程解应用题,难点是分式方程产生增根的原因和列分式方程解决实际问题.因而在学习中应注意:(1)分母中含有字母的方程不一定是分式方程,当且仅当字母中有未知数时,才是分式方程,如解关于x 的方程:13x a +=,22m n x m n n-=-等都是整式方程,究其原因在于限定未知数是x ,则字母a 、 m 、 n 是已知数,不满足分式方程定义. (通过观察,从中感知分式方程的特征)(2)严格遵循解分式方程的步骤:化、解、验.在解分式方程应用题时,切不可忘记检验.(3)认真审题,可借助表格、图表来分析题意,找出适合题意的相等关系,建立方程. 例:为改善居住环境,小康村拟在村后荒山上种植720棵树,由于共青团员的支持,实际每日比原计划多种20棵,结果提前4天完成任务,原计算每天种植多少棵?设原计划每天种植x 棵,根据题意得方程______ __.题目设原计划每天种植x 棵,那么可用来列方程的相等关系是实际比原计划提前4天完成任务.由题意,原计划植树720x 天,而实际每天植树(20)x +棵,实际植树天数为72020x +天,所以根据相等关系可列方程720720420x x -=+. (易错点是:已知量不会用未知数表示,找不到等量关系)(4)进行一题多解、一题多问及一题多变的训练,提高思维的敏捷性、解题方法的灵活性.(5)类比整式方程的解法和应用,使所学知识系统化,进而形成技能、技巧,巩固双基. 例 解方程:x 5 = 27-x 解:移项,得 x 5 -27-x = 0 通分,得)2(7)2(5---x x x x = 0 整理,得 )2()5(2-+x x x = 0 ① 分子取0,得 x + 5 = 0 ②即 x = -5说明:从①式到②式是此解法的关键.①式中,如分子与分母没有含未知数的公因式,那就能够做到分子取0时保证分母不得0;然后根据分式值为0的条件,把分式..等于0的式子改写为分子..等于0的式子,即完成了分式方程向整式方程的转化,而且符合方程的同解变形原理的精神,不会有增根或丢根的现象发生.。

人教版八年级上册数学《分式方程》分式研讨复习说课教学课件

人教版八年级上册数学《分式方程》分式研讨复习说课教学课件
D. x=2
x=5
解分式方程时,不要忘记检验哦.

1
5

3.解分式方程
.
x x+3
解:方程两边乘x(x+3),得x+3=5x,
3
4
解得x= ,
3
4
检验:将x= 代入原方程,左边=
4
3
3
因此x= 是原分式方程的解.
4
=右边,
课堂小结
概念
分母中含未知数的方程.
分式
方程
解分式方程
分式
方程
去分母
转化
整式
分式方程的解
解分式方程
1.怎么解分式方程?
2.为什么解分式方程一定要检验?
练习
解下列方程:
练习
解下列方程:
练习
解下列方程:
练习
解下列方程:
练习
解分式方程:
【答案】x=3是增根,原分式方程无解
练习
解方程:
【答案】x=0
易错点
解分式方程时容易犯的错误:
①去分母时,原方程的整式部分漏乘.
②约去分母后,分子是多项式时, 要注意添括号.
去分母
转化
整式方程
分式方程①中各分母的最简公分母是 (30+v)(30-v).把方
程①的两边乘最简公分母可化为整式方程,解这个整
式方程可得方程①的解.
解:方程①两边乘(30+v)(30-v),得90(30-v)= 60(30+v).
解得v=6.
5
2
检验:将v=6代入①中,左边= =右边,因此v= 6是分
k+3(x-2)=-(1-x)
解得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程 的复习
一、基础练习 1、解方程:(1) 2 x 1 1
x3 x3
解:方程两边都乘以x-3,得 2-x=(x-3)+1. 解这个方程,得x=2. 检验:当x=2时,x-3=-1. 所以x=2是原方程的解.
(2)
x2 x3
x2 x3
解:原方程可变为: (x+2)(x-3)=(x+2)(x+3) x2-x-6=x2+5x+6 6x=-12 ∴x=-2
(A)
240 5 x
240 x4

240 (B) x
5
240 x4
(C)
240 5 240 x x4
(D)24x0
5
240 x4
2、填一填 (5)、李明计划在一定日期内读完200页的一本 书,读了5天后改变了计划,每天多读5页,结果 提前一天读完,求他原计划平均每天读几页书.
解题方案:设李明原计划平均每天读书x页,用
四、课后作业
1、解方程:(1)
x x
2 2
16 x2
4
x x
2 2
(2)x 3 1 1 4x x4
(1)无解 (2)x=3
再 见
可列方程:
100 20+v

60 20-v
解方程得:v=5 检验:v=5为方程的解。 所以水流速度为5千米/时。 归纳:列分式方程解应用题的步骤:
(1)审题,理解题意; (2)设未知数; (3)找出相等关系; (4)解这个分式方程; (5)检验,看方程的解是否满足方程和符合 题意;
(6)写出答案.
评注:检验是解分式方程不可缺少的一步, 在检验时,只需把整式方程的解代入最简公 分母判定它是否为零.
归纳:一般地,解分式方程时,去分母后所 得整式方程有可能使原方程中分母为0,因 此应如下检验,将整式方程的解代入最简公 分母,如果最简公分母的值不为0,则整式 方程的解是原分式方程的解,否则,这个解 不是原分式方程的解.
检验:当x=-2时,公分母(x+3)(x-3)=-5≠0. ∴原方程的解为x=-2.
(3) x 5 1 0 2x 5 52x
解:原方程可变为: x 5 1 0 , 2x 5 2x 5
方程两边同乘以2x-5得: x-5-(2x-5)=0 解这个整式方程得:x=0 检验:把x=0代入最简公分母:2x-5=-5 ≠0. ∴x=0是原方程的根.
含x的代数式表示:
200
①李明原计划读完这本书需用 x 天;
②改变计划时,已读了 5 页,还剩 200-5x
③读了52天00后,5x每天多读x5页,读完剩余部分
还需 x 5 天;
④根据问题中的相等关系,列出相应方

200 5x 1 200
x5
x

3、做一做 (6)甲工人与乙工人生产同一种零件,甲每 小时比乙多生产8个,现在要求甲生产出168个 这种零件,要求乙生产出144个这种零件,他们两 人谁能先完成任务呢? (当乙每小时生产的零件多于48个,则乙先完成 任务,如果乙每小时恰好生产48个零件,则两人 同时完成任务;如果乙每小时生产的零件少于48 个,则甲先完成任务.)
二、课堂过关
1、选一选(请将唯一正确答案的代号填入题
后的括号内) (1)、要把分式方程
3 1 2x 4 x
化成整
式方程,方程两边需要同时乘以( D ). (A)2x-4 ( B ) x
( C )2(x-2) ( D )2x(x-2)
(2)、方程
1 x 1
1 x2 1
的解是(
D ).
(A)1 (B)-1 (C)±1 (D)0
2、方程的应用:
(1)一艘轮船在静水中的最大航速为20千 米/时,它沿江以最大航速顺流航行100千米 所用的时间,与以最大航速逆流航行60千米 所用时间相等,江水的流速为多少?
分析:设江水的流速为v千米/时,则轮船顺 流航行的速度为(20+v)千米/时,逆流航 行的速度为(20-v)千米/时,顺流航行 100千米所用的时间为小时,逆流航行60千 米所用的时间为小时。
(3)、把分式方程 1 1 x 1 的两边同时

x2 2x
以(x-2),约去分母得( D ).
(A)1-(1-x)=1
(B)1+(1-x)=1
(C)1-(1-x)=x-2
D)1+(1-x)=x-2
(4)、某林场原计划在一定期限内固沙造林 240公顷,实际每天固沙造林的面积比原计划 多4公顷,结果提前5天完成任务,设原计划每 天固沙造林x公顷,根据题意列方程正确的是 ( B ).
相关文档
最新文档