正多边形和圆同步练习(含答案)
正多边形和圆练习题及答案
正多边形和圆练习一、课前预习 (5分钟训练)1.圆的半径扩大一倍,则它的相应的圆内接正n 边形的边长与半径之比( )A.扩大了一倍B.扩大了两倍C.扩大了四倍D.没有变化2.正三角形的高、外接圆半径、边心距之比为( )A.3∶2∶1B.4∶3∶2C.4∶2∶1D.6∶4∶33.正五边形共有__________条对称轴,正六边形共有__________条对称轴.4.中心角是45°的正多边形的边数是__________.5.已知△ABC 的周长为20,△ABC 的内切圆与边AB 相切于点D,AD=4,那么BC=__________.二、课中强化(10分钟训练)1.若正n 边形的一个外角是一个内角的32时,此时该正n 边形有_________条对称轴.2.同圆的内接正三角形与内接正方形的边长的比是( )A.26B.43C.36D.34 3.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是( )A.S 3>S 4>S 6B.S 6>S 4>S 3C.S 6>S 3>S 4D.S 4>S 6>S 34.已知⊙O 和⊙O 上的一点A(如图24-3-1).(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.图24-3-1三、课后巩固(30分钟训练) 1.正六边形的两条平行边之间的距离为1,则它的边长为( ) A.63 B.43 C.332 D.33 2.已知正多边形的边心距与边长的比为21,则此正多边形为( ) A.正三角形 B.正方形 C.正六边形 D.正十二边形3.已知正六边形的半径为3 cm ,则这个正六边形的周长为__________ cm.4.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于___________度.5.如图24-3-2,两相交圆的公共弦AB 为23,在⊙O 1中为内接正三角形的一边,在⊙O 2中为内接正六边形的一边,求这两圆的面积之比.图24-3-26.某正多边形的每个内角比其外角大100°,求这个正多边形的边数.7.如图24-3-3,在桌面上有半径为2 cm 的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?图24-3-38.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).图24-3-49.用等分圆周的方法画出下列图案:图24-3-510.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.图24-3-6(1)求图24-3-6(1)中∠MON的度数;(2)图24-3-6(2)中∠MON的度数是_________,图24-3-6(3)中∠MON的度数是_________;(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).参考答案一、课前预习 (5分钟训练)1思路解析:由题意知圆的半径扩大一倍,则相应的圆内接正n 边形的边长也扩大一倍,所以相应的圆内接正n 边形的边长与半径之比没有变化. 答案:D2.思路解析:如图,设正三角形的边长为a ,则高AD=23a ,外接圆半径OA=33a ,边心距OD=63a ,所以AD ∶OA ∶OD=3∶2∶1.答案:A 3.答案:5 64.思路解析:因为正n 边形的中心角为n ︒360,所以45°=n ︒360,所以n=8. 答案:85.思路解析:由切线长定理及三角形周长可得.答案:6二、课中强化(10分钟训练)1.思路解析:因为正n 边形的外角为n︒360,一个内角为n n ︒•-180)2(, 所以由题意得n︒360=32·n n ︒•-180)2(,解这个方程得n=5.答案:5 2. 思路解析:画图分析,分别求出正三角形、正方形的边长,知应选A.答案:A3.思路解析:周长相等的正多边形的面积是边数越多面积越大.答案:B4. 思路分析:求作⊙O 的内接正六边形和正方形,依据定理应将⊙O 的圆周六等分、四等分,而正六边形的边长等于半径;互相垂直的两条直径由垂径定理知把圆四等分.要证明DE 是⊙O 内接正十二边形的一边,由定理知,只需证明DE 所对圆心角等于360°÷12=30°.(1)作法:①作直径AC;②作直径BD ⊥AC;③依次连结A 、B 、C 、D 四点,四边形ABCD 即为⊙O 的内接正方形;④分别以A 、C 为圆心,OA 长为半径作弧,交⊙O 于E 、H 、F 、G; ⑤顺次连结A 、E 、F 、C 、G 、H 各点.六边形AEFCGH 即为⊙O 的内接正六边形.(2)证明:连结OE 、DE.∵∠AOD =4360︒=90°,∠AOE =6360︒=60°, ∴∠DOE =∠AOD -∠AOE =30°.∴DE 为⊙O 的内接正十二边形的一边.三、课后巩固(30分钟训练)1. 思路解析:正六边形的两条平行边之间的距离为1,所以边心距为0.5,则边长为33.答案:D 2.思路解析:将问题转化为直角三角形,由直角边的比知应选B.答案:B3.答案:184.答案:144.5思路分析:欲求两圆的面积之比,根据圆的面积计算公式,只需求出两圆的半径R 3与R 6的平方比即可.解:设正三角形外接圆⊙O 1的半径为R 3,正六边形外接圆⊙O 2的半径为R 6,由题意得R 3=33AB ,R 6=AB ,∴R 3∶R 6=3∶3.∴⊙O 1的面积∶⊙O 2的面积=1∶3.6.解:设此正多边形的边数为n ,则各内角为n n ︒•-180)2(,外角为n ︒360,依题意得n n ︒•-180)2(-n︒360=100°.解得n =9. 7.思路分析:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O 1O 2O 3,设大圆的圆心为O ,则点O 是正△O 1O 2O 3的中心,求出这个正△O 1O 2O 3外接圆的半径,再加上⊙O 1的半径即为所求.解:设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm的正△O1O2O3,则正△O1O2O3外接圆的半径为334cm,所以大圆的半径为334+2=3634(cm).8.如图24-3-4,请同学们观察这两个图形是怎么画出来的?并请同学们画出这个图形(小组之间参与交流、评价).图24-3-4答案:略.9.用等分圆周的方法画出下列图案:图24-3-5作法:(1)分别以圆的4等分点为圆心,以圆的半径为半径,画4个圆;(2)分别以圆的6等分点为圆心,以圆的半径画弧.10.如图24-3-6(1)、24-3-6(2)、24-3-6(3)、…、24-3-6(n),M、N分别是⊙O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE…的边AB、BC上的点,且BM=CN,连结OM、ON.图24-3-6(1)求图24-3-6(1)中∠MON的度数;(2)图24-3-6(2)中∠MON的度数是_________,图24-3-6(3)中∠MON的度数是_________;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).答案:(1)方法一:连结OB、OC.∵正△ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△OBM≌△OCN.∴∠BOM=∠CON.∴∠MON=∠BOC=120°.方法二:连结OA、OB.∵正△ABC内接于⊙O,∴AB=AC,∠OAM=∠OBN=30°,∠AOB=120°.又∵BM=CN,∴AM=BN. ∵OA=OB,∴△AOM≌△BON.∴∠AOM=∠BON.∴∠MON=∠AOB=120°.(2)90°72°(3)∠MON=n360.。
九年级数学 圆内接正多边形 专题练习(含解析)
C.连接 AD,则 AD 分别平分∠EAC 与∠EDC D.图中一共能画出 3 条对称轴
答案:B 解析:解答: A.∵多边形 ABCDEF 是正六边形, ∴△ACE 是等边三角形,故本选项正确; B.∵△ACE 是等边三角形,∴是轴对称图形,不是中心对称图形,故本选项错误; C.∵△ACE 是等边三角形,∴连接 AD,则 AD 分别平分∠EAC 与∠EDC,故本选项正确; D.∵△ACE 是等边三角形,∴图中一共能画 3 条对称轴,故本选项正确. 故选 B. 分析:根据正多边形的性质和轴对称图形与中心对称图形的定义解答.
C.18
D.36
答案:C
解析:解答:连接正六边形的中心与各个顶点,得到六个等边三角形,
等边三角形的边长是 2 ,高为 3,
因而等边三角形的面积是 3 ,
∴正六边形的面积=18 , 故选 C. 分析:解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.
12.已知某个正多边形的内切圆的半径是 ()
∴△OAB 是等边三角形, ∴OB=AB=24cm,
∴ 60 ´ 24 = 8 180
故选 B 分析:连接 OA、OB,得出等边三角形 AOB,求出 OB 长和∠AOB 度数,根据弧长公式求
出即可.
10.若一个正六边形的半径为 2,则它的边心距等于( )
A.2 B.1 C.
D.2
答案:C 解析:解答:已知正六边形的半径为 2,则正六边形 ABCDEF 的外接圆半径为 2, 如图:
连接 OA,作 OM⊥AB 于点 M, 得到∠AOM=30°,
则 OM=OA•cos30°= .
则正六边形的边心距是 .
故选 C. 分析:根据正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角 关系即可求出.
24.3+正多边形和圆同步练习2024-2025学年人教版数学九年级上学期
24.3 正多边形和圆同步练习2024-2025学年九年级上学期数学人教版基础题夯实知识点1正多边形的有关概念1.下列正多边形中,既是轴对称图形,又是中心对称图形的是( )A.正三角形B.正方形C.正五边形D.正七边形2.下列说法:①矩形是正多边形;②菱形是正多边形;③各角相等的圆内接多边形是正多边形;④各边相等的圆内接多边形是正多边形.其中结论正确的个数是( )A.0B.1C.2D.33.第29届自贡国际恐龙灯会“辉煌新时代”主题灯组上有一幅不完整的正多边形图案,小华量得图中一边与对角线的夹角∠ACB=15°,算出这个正多边形的边数是( )A.9B.10C.11D.12知识点2 正多边形的有关计算4.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD 的度数为 .5.⊙O是等边△ABC的外接圆,若AB=3,则⊙O的半径是 .6.如图,正八边形的边长为2,对角线AB,CD 相交于点E,则线段 BE 的长为 .7.半径为 R 的圆内接正十二边形的面积为( )A.R 24B.12R2 C.3R² D.6R²8.分别求半径为R 的圆内接正三角形、正方形、正六边形的边长、边心距、周长和面积.(直接写出结果)边长边心距周长面积圆内接正三角形圆内接正方形圆内接正六边形中档题运用̂上,Q是DF̂的中点,则∠CPQ的度数为 .9.如图,正六边形ABCDEF内接于⊙O,点P在AB10.如图,点P₁∼P₁是⊙O 的八等分点.若△P₁P₁P₁,四边形P₁P₁P₁P₁的周长分别为a,b,比较a,b的大小 .11.如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是 .12.如图,⊙O 的半径为R,六边形 ABCDEF 是圆内接正六边形,四边形 EFGH 是正方形.(1)求∠OGF 的度数;(2)求正六边形与正方形的面积比.综合题探究13.如图1,正五边形ABCDE 内接于⊙O,阅读以下作图过程,并解答下列问题,作法如图2.步骤如下:①作直径AF;②以F 为圆心,FO 为半径作圆弧,与⊙O 交于点 M,N;③连接AM,MN,NA.(1)求∠ABC的度数;(2)△AMN 是正三角形吗? 请说明理由;(3)从点 A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正n 边形,求n 的值.。
人教版九年级数学上册24.3 正多边形和圆同步练习含答案【2021年新编版】
第24章 24.3《正多边形和圆》同步练习及答案 (1) 1.边长为a的正六边形的边心距是__________,周长是____________,面积是___________。
2.如图1,正方形的边长为a,以顶点B、D为圆心,以边长a为半径分别画弧,在正方形内两弧所围成图形的面积是___________。
(1) (2) (3)3.圆内接正方形ABCD的边长为2,弦AE平分BC边,与BC交于F,则弦AE的长为__________。
4.正六边形的面积是183,则它的外接圆与内切圆所围成的圆环面积为_________。
5.圆内接正方形的一边截成的小弓形面积是2π-4,则正方形的边长等于__________。
6.正三角形的内切圆半径、外接圆半径和高的比为___________。
7.在半径为R的圆中,内接正方形与内接正六边形的边长之比为___________。
8.同圆的内接正n边形与外切正n边形边长之比是______________。
9.正三角形与它的内切圆及外接圆的三者面积之比为_____________。
10.正三角形的外接圆半径为4cm,以正三角形的一边为边作正方形,则此正方形的外接圆半径长为___________。
B卷1.正方形的内切圆半径为r,这个正方形将它的外接圆分割出四个弓形,其中一个弓形的面积为_________。
2.如果正三角形的边长为a,那么它的外接圆的周长是内切圆周长的_______倍。
3.如图2,正方形边长为2a,那么图中阴影部分的面积是__________。
4.正多边形的一个内角等于它的一个外角的8倍,那么这个正多边形的边数是________。
5.半径为R的圆的内接正n边形的面积等于__________。
6.如果圆的半径为a,它的内接正方形边长为b,该正方形的内切圆的内接正方形的边长为c,则a,b,c间满足的关系式为___________。
7.如图3,正△ABC内接于半径为1cm的圆,则阴影部分的面积为___________。
2021-2022学年北师大版九年级数学下册《3-8圆内接正多边形》同步测试题(附答案)
2021-2022学年北师大版九年级数学下册《3.8圆内接正多边形》同步测试题(附答案)一.选择题(共10小题,满分40分)1.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径作,,若AB =1,则阴影部分图形的周长是()A.π+1B.πC.π+1D.π2.如图,A、B、C、D、E是⊙O上的5等分点,连接AC、CE、EB、BD、DA,得到一个五角星图形和五边形MNFGH.有下列3个结论:①AO⊥BE,②∠CGD=∠COD+∠CAD,③BM=MN=NE.其中正确的结论是()A.①②B.①③C.②③D.①②③3.有一个正五边形和一个正方形边长相等,如图放置,则∠1的值是()A.15°B.18°C.20°D.9°4.如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°5.如图,正五边形ABCDE内接于⊙O,P为上的一点(点P不与点D重合),则∠CPD 的度数为()A.30°B.36°C.60°D.72°6.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是()A.45度B.60度C.72度D.90度7.一个正五边形和一个正六边形按如图方式摆放,它们都有一边在直线l上,且有一个公共顶点O,则∠AOB的度数是()A.83°B.84°C.85°D.94°8.如图,边长为3的正五边形ABCDE,顶点A、B在半径为3的圆上,其他各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为()A.12°B.16°C.20°D.24°9.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABO的度数为()A.24°B.48°C.60°D.72°10.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10B.9C.8D.7二.填空题(共10小题,满分40分)11.如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为.12.如图,正五边形形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为.(结果保留π)13.已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是.14.阅读下列材料:问题:如图1,正方形ABCD内有一点P,P A=,PB=,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连接PP′.请你参考小明同学的思路,解决下列问题:(1)图2中∠BPC的度数为;(2)如图3,若在正六边形ABCDEF内有一点P,且P A=2,PB=4,PC=2,则∠BPC的度数为,正六边形ABCDEF的边长为.15.如图,⊙O经过正五边形OABCD的顶点A,D,点E在优弧AD上,则∠E等于度.16.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.17.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是度.18.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=.19.如图,正五边形ABCDE内接于⊙O,连接对角线AC,AD,则下列结论:①BC∥AD;②∠BAE=3∠CAD;③△BAC≌△EAD;④AC=2CD.其中判断正确的是.(填序号)20.如图,正三角形AMN与正五边形ABCDE内接于⊙O,则∠BOM的度数是.三.解答题(共4小题,满分40分)21.O是边长为a的正多边形的中心,将一块半径足够长,圆心角为α的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:①如图1,正三角形ABC的边被扇形纸板覆盖部分的总长度为;②如图2,正三角形ABC的边被扇形纸板覆盖部分的总长度为;(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图3,正方形ABCD的边被扇形纸板覆盖部分的总长度为;②如图4,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;(3)若正多边形为正五边形,如图5,当扇形纸板的圆心角α为时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.22.如图,正五边形ABCDE中,点F、G分别是BC、CD的中点,AF与BG相交于H.(1)求证:△ABF≌△BCG;(2)求∠AHG的度数.23.比较正五边形与正六边形,可以发现它们的相同点和不同点.例如:它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点:相同点:①;②.不同点:①;②.24.如图,分别是正方形、正五边形和正六边形,(1)试分别计算这三种正多边形的相邻两条对角线的夹角的度数;(2)探究正n边形相邻两条对角线的夹角满足的规律.参考答案一.选择题(共10小题,满分40分)1.解:∵五边形ABCDE为正五边形,AB=1,∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴的长=的长==π,∴阴影部分图形的周长=的长+的长+BC=π+1.故选:A.2.解:∵A、B、C、D、E是⊙O上的5等分点,∴=,∴AO⊥BE,故①正确;∵A、B、C、D、E是⊙O上的5等分点,∴的度数==72°,∴∠COD=72°,∵∠COD=2∠CAD,∴∠CAD=36°;连接CD∵A、B、C、D、E是⊙O上的5等分点,∴===,∴∠BDC=∠DCE=∠CAD=36°,∴∠CGD=108°,∴∠CGD=∠COD+∠CAD,故②正确;连接AB,AE,∴∠MBA=∠MAB=36°,∴AM=BM,∵∠MAN=36°,∠ANM=∠DAE+∠AEB=72°,∴AM≠MN,∴BM≠MN③错误!则∠BAM=∠ABM=∠EAN=∠AEN=36°,∵AB=AE,∴△ABM≌△AEN(ASA),∴BM=EN=AM=AN,∵∠MAN=36°,∴AM≠MN,∴③错误.故选:A.3.解:正五边形的内角的度数是×(5﹣2)×180°=108°,正方形的内角是90°,则∠1=108°﹣90°=18°.故选:B.4.解:∵五边形ABCDE为正五边形,∴∠ABC=∠C==108°,∵CD=CB,∴∠CBD==36°,∴∠ABD=∠ABC﹣∠CBD=72°,故选:C.5.解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.6.解:连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,,∴△AOM≌△BON(SAS)∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故选:C.7.解:由题意:∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∴∠EOF=180°﹣72°﹣60°=48°,∴∠AOB=360°﹣108°﹣48°﹣120°=84°,故选:B.8.解:设点E第一次落在圆上时的对应点为E′,连接OA、OB、OE′,如图,∵五边形ABCDE为正五边形,∴∠EAB=108°,∵正五边形ABCDE绕点A逆时针旋转,点E第一次落在圆上E′点,∴AE=AE′=3,∵OA=AB=OB=OE′=3,∴△OAE′、△OAB都为等边三角形,∴∠OAB=∠OAE′=60°,∴∠E′AB=120°,∴∠EAE′=12°,∴当点E第一次落在圆上时,则点C转过的度数为12°.故选:A.9.解:由题意得:正六边形的每个内角都等于120°,正五边形的每个内角都等于108°,∴∠BOA=360°﹣120°﹣108°=132°,∵AO=BO,∴∠ABO=∠OAB==24°故选:A.10.解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:D.二.填空题(共10小题,满分40分)11.解:设圆心为O,连接OC,OD,BD,∵五边形ABCDE为正五边形,∴∠O==72°,∴∠CBD=O=36°,∵F是的中点,∴∠CBF=∠DBF=CBD=18°,故答案为:18°.12.解:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长==π,故答案为:π.13.解:∵五边形ABCDE为正五边形,∴∠ABC=∠C==108°,∵CD=CB,∴∠CBD==36°,∴∠ABD=∠ABC﹣∠CBD=72°,故答案为:72°.14.解:(1)如图2.∵△BPC绕点B逆时针旋转90°,得到了△BP′A,∴∠P′BP=90°,BP′=BP=,P′A=PC=1,∠BP′A=∠BPC,∴△BPP′为等腰直角三角形,∴PP′=PB=2,∠BP′P=45°,在△APP′中,AP=,PP′=2,AP′=1,∵()2=22+12,∴AP2=PP′2+AP′2,∴△APP′为直角三角形,且∠AP′P=90°∴∠BP′A=45°+90°=135°,∴∠BPC=∠BP′A=135°;(2)如图3.∵六边形ABCDEF为正六边形,∴∠ABC=120°,把△BPC绕点B逆时针旋转120°,得到了△BP′A,∴∠P′BP=120°,BP′=BP=4,P′A=PC=2,∠BP′A=∠BPC,∴∠BP′P=∠BPP′=30°,过B作BH⊥PP′于H,∵BP′=BP,∴P′H=PH,在Rt△BP′H中,∠BP′H=30°,BP′=4,∴BH=BP′=2,P′H=BH=2,∴P′P=2P′H=4,在△APP′中,AP=2,PP′=4,AP′=2,∵(2)2=(4)2+22,∴AP2=PP′2+AP′2,∴△APP′为直角三角形,且∠AP′P=90°,∴∠BP′A=30°+90°=120°,∴∠BPC=120°,过A作AG⊥BP′于G点,∴∠AP′G=60°,在Rt△AGP′中,AP′=2,∠GAP′=30°,∴GP′=AP′=1,AG=GP′=,在Rt△AGB中,GB=GP′+P′B=1+4=5,AB===2,即正六边形ABCDEF的边长为2.故答案为135°;120°,2.15.解:∵⊙O经过正五边形OABCD的顶点A,D,∴∠AOD=108°,∴∠E=AOD=54°,故答案为:54.16.解:∵AF是⊙O的直径,∴=,∵五边形ABCDE是⊙O的内接正五边形,∴=,∠BAE=108°,∴=,∴∠BAF=∠BAE=54°,∴∠BDF=∠BAF=54°,故答案为:54.17.解:连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,∴△AOM≌△BON,∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故答案为:72.18.解:连接OA,∵五边形ABCDE是正五边形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM﹣∠AOB=48°,故答案为:48°.19.解:①∵∠BCD=180°﹣72°=108°,∠E=108°,∴∠ADE=×(180°﹣108°)=36°,∴∠ADC=108°﹣36°=72°,∴∠BCD+∠ADC=108°+72°=180°,∴BC∥AD,故本选项正确;②∵∠BAE=108°,∠CAD=×=36°,∴∠BAE=3∠CAD,故本选项正确;③在△BAC和△EAD中,,∴△BAC≌△EAD(SSS),故本选项正确;④∵AB+BC>AC,∴2CD>AC,故本选项错误.故答案为:①②③.20.解;连接AO,∵正三角形AMN与正五边形ABCDE内接于⊙O,∴∠AOM=×360°=120°,∴∠AOB=×360°=72°,∵∠BOM=∠AOM﹣∠AOB,∴∠BOM=120°﹣72°=48°故答案为:48°三.解答题(共4小题,满分40分)21.解:(1)①a;(1分)②a;(2分)(2)①a;(3分)②正方形ABCD的边被扇形纸板覆盖部分的总长度为a.(4分)理由:证明:连接OA、OD∵四边形ABCD是正方形,点O为中心∴OA=OD,∠OAM=∠ODN=45°又∵∠AOD=∠POQ=90°∴∠AOM+∠AOQ=90°∠DON+∠AOQ=90°∴∠AOM=∠DON∴△AOM≌△DON∴AM=DN∴AM+AN=DN+AN=AD=a(8分)(3)∵正五边形的内角为(5﹣2)×180°÷5=108°∴当扇形纸板的圆心角α为72°时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.(10分)(4)∵正多边形的中心角为,∴当扇形纸板的圆心角为时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.(12分)22.(1)证明:∵五边形ABCDE是正五边形,∴AB=BC=CD,∠ABC=∠BCD,(2分)∵F、G分别是BC、CD的中点,∴BF=CG,(4分)在△ABF和BCG中,AB=BC,∠ABC=∠BCD,BF=CG,(5分)∴△ABF≌△BCG;(6分)(2)解:由(1)知∠GBC=∠F AB,∵∠AHG=∠F AB+∠ABH=∠GBC+∠ABH=∠ABC(,7分)∵正五边形的内角为108°,∴∠AHG=108°.(9分)(注:本小题直接正确写出∠AHG=108°不扣分)23.解:相同点不同点①都有相等的边.①边数不同;②都有相等的内角.②内角的度数不同;③都有外接圆和内切圆.③内角和不同;④都是轴对称图形.④对角线条数不同;⑤对称轴都交于一点.⑤对称轴条数不同.24.解:(1)解:由正方形ABCD,可得:AC⊥BD,∴α4=90°;由正五边形ABCDE,可得:AB=BC=CD,∠ABC=∠BCD=108°,∴∠DBC=∠ACB==36°,∴α5=180°﹣∠DBC﹣∠ACB=108°;同理:α6=120°;(2).。
人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案
人教版九年级数学上册《24.3正多边形和圆》同步测试题及答案1.若正多边形的一个外角为72︒,则这个正多边形的中心角的度数是( )A.18︒B.36︒C.72︒D.108︒2.如图,正六边形ABCDEF内接于圆O,点M在AF上( )A.60︒B.45︒ C.30︒ D.15︒3.若⊙O的内接正n边形的边长与⊙O的半径相等,则n的值为( )A.4B.5C.6D.74.如图,正五边形ABCDE内接于O,点P为DE上一点(点P与点D,点E不重合),连接PC,PD,⊥DG PC垂足为G,则∠PDG等于( )A.72°B.54°C.36°D.64°5.如图,正六边形ABCDEF内接于,正六边形的周长是12,则的半径是( )A.3B.2C.22D.236.如图是半径为4的O的内接正六边形ABCDEF,则圆心O到边AB的距离是( )O OA.23B.3C.2D.37.如图,正六边形ABCDEF 内接于O ,O 的半径为6,则这个正六边形的边心距OM 和弧BC 的长分别为( )A.32 πB.332 πC.332 2π3D.33 π8.如图,正三角形ABC 和正六边形ADBECF 都内接于,O 连接,OC 则∠+∠=ACO ABE ( )A.90︒B.100︒C.110︒D.120︒9.如图,正五边形ABCDE 内接于O ,P 为DE 上的一点(点P 不与点D 重合),则∠=CPD ________°.10.如图,正六边形ABCDEF内接于O,若O的周长等于6π,则正六边形的边长为______.11.早在1800多年前,魏晋时期的数学家刘徽首创“割圆术”,用圆内接正多边形的面积去无限逼近圆面积,如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为_________________.12.如图,圆内接正六边形ABCDEF的半径为2,则该正六边形的面积是_________________.13.有一个亭子,它的地基是半径为8m的正六边形,求地基的面积.(结果保留根号)14.如图,O的周长等于8πcm,正六边形ABCDEF内接于O.(1)求圆心O 到AF 的距离.(2)求正六边形ABCDEF 的面积.参考答案及解析1.答案:C 解析:正多边形的一个外角为72︒∴正多边形的边数为360725︒÷︒=∴这个正多边形的中心角的度数是360572︒÷=︒故选:C.2.答案:C解析:连接OC ,OD多边形ABCDEF 是正六边形60∴∠=︒COD1302∴∠=∠=︒CMD COD故选:C.3.答案:C解析:内接正n 边形的边长与⊙O 的半径相等∴正n 边形的中心角为60︒360606︒÷︒=∴n 的值为6故选:C.4.答案:B解析:正五边形ABCDE 内接于O∠CPD 与所对的弧相同1362∴∠=∠=︒CPD COD故选:B.5.答案:B解析:如图,连结OA ,OBABCDEF 为正六边形1360606∴∠=︒⨯︒=AOB∴AOB △是等边三角形正六边形的周长是1211226∴=⨯=AB2∴===AO BO AB故选B.6.答案:A解析:如图,做⊥OM AB 于点M360725COD ︒∴∠==︒COD ∠180903654PDG ∠=︒-︒-︒=∴︒正六边形ABCDEF 外接半径为4的O4∴==OA OB 360606︒∠==︒AOB 1302∴∠=∠=∠=︒AOM BOM AOB122∴===AM BM OA2223∴=-=OM OA AM ∴圆心O 到边AB 的距离为23故选:A.7.答案:D解析:连接OB 、OC六边形ABCDEF 为正六边形360606︒∴∠==︒BOC 。
人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案
人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点 正多边形与圆1.定义:正多边形的 圆的圆心叫做这个正多边形的中心 圆的半径叫做正多边形的半径 正多边形每一边所对的 角叫做正多边形的中心角 到正多边形的一边的距离 叫做正多边形的边心距。
2.公式:正多边形的有关概念:边长(a ) 中心(O ) 中心角(∠AOB ) 半径(R )) 边心距(r ) 如图所示①.边心距222a r R ⎛⎫=- ⎪⎝⎭中心角360n ︒=关键点:三角形的内切圆与外接圆 关系定义圆心 实质半径图示外接圆经过三角形各顶点的圆外心三角形各边垂直平分线的交点交点到三角形三个顶点的距离相等内切圆与三角形各边都相切的圆内心三角形各内角平分线的交点交点到三角形各边的距离相等名校提高练习:一选择题:本题共10小题每小题3分共30分。
在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·四川省泸州市·月考试卷)已知圆内接正三角形的面积为√ 3则该圆的内接正六边形的边心距是( )A. 2B. 1C. √ 3D. √ 322.同一个圆的内接正三角形正方形正六边形的边心距分别为r3r4r6则r3:r4:r6等于( )A. 1:√2:√3B. √3:√2:1C. 1:2:3D. 3:2:13.如图若干个全等的正五边形排成环状图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 10B. 9C. 8D. 74.(2024·贵州省黔东南苗族侗族自治州·月考试卷)正六边形ABCDEF内接于⊙O正六边形的周长是12则⊙O的半径是( )A. √ 3B. 2C. 2√ 2D. 2√ 35.(2024·山东省·单元测试)《几何原本》中记载了用尺规作某种六边形的方法其步骤是:①在⊙O上任取一点A连接AO并延长交⊙O于点B②以点B为圆心BO为半径作圆弧分别交⊙O于C D两点③连接CO DO并延长分别交⊙O于点E F④顺次连接BC CF FA AE ED DB得到六边形AFCBDE.再连接AD EF AD EF交于点G.则下列结论不正确的是( )A. GF=GDB. ∠FGA=60°C. EFAE=√ 2 D. AF⊥AD6.(2024·江苏省·同步练习)以半径为2的圆的内接正三角形正方形正六边形的边心距为三边作三角形则该三角形的面积是( )A. √ 22B. √ 32C. √ 2D. √ 37.(2024·江苏省·同步练习)如图正十二边形A1A2…A12连接A3A7A7A10则∠A3A7A10的度数为( )A. 60°B. 65°C. 70°D. 75°8.(2024·江苏省·同步练习)如图若干个全等的正五边形排成环状.图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 6B. 7C. 8D. 99.(2024·北京市市辖区·期末考试)如图正方形ABCD的边长为6且顶点A B C D都在⊙O上则⊙O 的半径为().A. 3B. 6C. 3√ 2D. 6√ 210.(2024·广东省广州市·月考试卷)如图已知⊙O的周长等于4πcm则圆内接正六边形的边长为()cm.A. √ 3B. 2C. 2√ 3D. 4二填空题:本题共6小题每小题3分共18分。
《圆内接正多边形》同步练习 (精品)2022年 附答案
3.8 圆内接正多边形1.以下边长为a的正多边形与边长为a的正方形组合起来,不能镶嵌成平面的是( )(1)正三角形(2)正五边形(3)正六边形(4)正八边形A.(1)(2) B.(2)(3) C.(1)(3) D.(1)(4)2.以下说法正确的选项是A.每个内角都是120°的六边形一定是正六边形.B.正n边形的对称轴不一定有n条.C.正n边形的每一个外角度数等于它的中心角度数.D.正多边形一定既是轴对称图形,又是中心对称图形.3.假设同一个圆的内角正三角形、正方形、正六边形的边心距分别为r3,r4,r6,那么r3:r4:r6等于( )A.B.C.D.4.如图,假设正方形A1B1C1D1内接于正方形ABCD的内接圆,那么的值为〔〕A.B.C.D.5.正六边形ABCDEF内接于⊙O,图中阴影局部的面积为,那么⊙O的半径为______________________.第5题图第6题图6.如图,正方形ABCD内接于⊙O,点E在上,那么∠BEC= .7.将一块正六边形硬纸片〔图1〕,做成一个底面仍为正六边形且高相等的无盖纸盒〔侧面均垂直于底面,见图2〕,需在每一个顶点处剪去一个四边形,例如图中的四边形AGA/H,那么∠GA/H 的大小是度.8.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,那么此正方形的边长为.9.如图五边形ABCDE 内接于⊙O,∠A=∠B=∠C=∠D=∠E .求证:五边形ABCDE 是正五边形10.如图,10-1、10-2、10-3、…、10-n 分别是⊙O 的内接正三角形ABC ,正四边形ABCD 、正五边形ABCDE 、…、正n 边形ABCD …,点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动。
(1)求图10-1中∠APN 的度数;(2)图10-2中,∠APN 的度数是_______,图10-3中∠APN 的度数是________。
(3)试探索∠APN 的度数与正多边形边数n 的关系〔直接写答案〕第17章 一元二次方程17.1 一元二次方程◆随堂检测1、判断以下方程,是一元二次方程的有____________.〔1〕; 〔2〕; 〔3〕;〔4〕;〔5〕;〔6〕.〔提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.〕2、以下方程中不含一次项的是〔 〕A .B .C .D .3、方程的二次项系数___________;一次项系数__________;常数项_________.4、1、以下各数是方程解的是〔 〕N 图10-1N 图10-2 A M 图10-3M 图10-4A、6B、2C、4D、05、根据以下问题,列出关于的方程,并将其化成一元二次方程的一般形式.〔1〕4个完全相同的正方形的面积之和是25,求正方形的边长.〔2〕一个矩形的长比宽多2,面积是100,求矩形的长.〔3〕一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长.分析:此题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解.解:〔1〕由题意得,时,即时,方程是一元一次方程.〔2〕由题意得,时,即时,方程、一次项系数是、常数项是.◆课下作业●拓展提高1、以下方程一定是一元二次方程的是〔〕A、 B、C、 D、2、是关于的一元二次方程,那么的值应为〔〕A、=2B、C、D、无法确定3.是一元二次方程的一个解,那么的值是〔〕A.-3 B.3 C.0 D.0或34.假设是关于的方程的根,那么的值为〔〕A.1 B.2 C.-1 D.-25.根据以下表格对应值:A、 B、3.24<C、5<D、<6.假设一元二次方程有一个根为1,那么_________;假设有一个根是-1,那么b与、c之间的关系为________;假设有一个根为0,那么c=_________.7.下面哪些数是方程的根?-3、-2、-1、0、1、2、3、0,求的值是多少?9.关于的方程.〔1〕为何值时,此方程是一元一次方程?〔2〕为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。
(完整)正多边形与圆-练习题含答案,推荐文档
正多边形与圆副标题题号一二总分得分一、选择题(本大题共5小题,共15.0分)1.有一边长为4的正n 边形,它的一个内角为,则其外接圆的半径为 120∘()A. B. 4 C. D. 24323【答案】B【解析】解:经过正n 边形的中心O 作边AB 的垂线OC ,则度,度,∠B =60∠O =30在直角中,根据三角函数得到.△OBC OB =4故选B .根据正n 边形的特点,构造直角三角形,利用三角函数解决.正多边形的计算一般要经过中心作边的垂线,并连接中心与一个端点构造直角三角形,把正多边形的计算转化为解直角三角形.2.如图,的外切正六边形ABCDEF 的边长为2,则图中⊙O 阴影部分的面积为 ()A.3−π2B.3−32πC. 2−π3D. 3−π3【答案】A【解析】解:六边形ABCDEF 是正六边形,∵,∴∠AOB =60∘是等边三角形,,∴△OAB OA =OB =AB =2设点G 为AB 与的切点,连接OG ,则,⊙O OG ⊥AB ,∴OG =OA ⋅sin 60∘=2×32=3∴S 阴影=S △OAB −S 扇形OMN =12×2×3−60π×(3)2360=3−π2.故选A .由于六边形ABCDEF 是正六边形,所以,故是等边三角形,∠AOB =60∘△OAB ,设点G 为AB 与的切点,连接OG ,则,OA =OB =AB =2⊙O OG ⊥AB ,再根据,进而可得出结论.OG =OA ⋅sin 60∘S 阴影=S △OAB −S 扇形OMN 本题考查的是正多边形和圆,根据正六边形的性质求出是等边三角形是解答此△OAB 题的关键.3.如图,是等边三角形ABC 的外接圆,的半径为2,则⊙O ⊙O 等边的边长为 △ABC ()A. 1B.C.D. 2323【答案】D【解析】解:作于D ,连接OB ,如图所示:OD ⊥BC 则,BD =CD =12BC 是等边三角形ABC 的外接圆,∵⊙O ,∴∠OBD =12∠ABC =30∘,∴OD =12OB =1,∴BD =3OD =3,∴BC =2BD =23即等边的边长为;△ABC 23故选:D .作于D ,连接OB ,由垂径定理得出,由等边三角形的性质和OD ⊥BC BD =CD =12BC 已知条件得出,求出OD ,再由三角函数求出BD ,即可得出∠OBD =12∠ABC =30∘BC 的长.本题考查了等边三角形的性质、垂径定理、含角的直角三角形的性质、三角函数;30∘熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.4.如图,正六边形ABCDEF 内接于,半径为4,则这⊙O 个正六边形的边心距OM 和的长分别为 BC⏜()A. 2,π3B. ,23πC. ,32π3D. ,234π3【答案】D【解析】解:连接OB ,,∵OB =4,∴BM =2,∴OM =23,BC ⏜=60π×4180=43π故选:D .正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM ,再利用弧长公式求解即可.本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.5.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是 ()A. B. C. D. 223223【答案】A【解析】解:如图1,,∵OC =2;∴OD =2×sin 30∘=1如图2,,∵OB =2;∴OE =2×sin 45∘=2如图3,,∵OA =2,∴OD =2×cos 30∘=3则该三角形的三边分别为:1,,,23,∵(1)2+(2)2=(3)2该三角形是直角三角形,∴该三角形的面积是:.∴12×1×2=22故选:A .由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.二、填空题(本大题共1小题,共3.0分)6.已知一个正六边形的边心距为,则它的半径为______ .3【答案】2【解析】解:如图,在中,,,Rt △AOG OG =3∠AOG =30∘ ;∴OA =OG ÷cos 30∘=3÷32=2故答案为:2.设正六边形的中心是O ,一边是AB ,过O 作与G ,在直OG ⊥AB 角中,根据三角函数即可求得OA .△OAG 本题主要考查正多边形的计算问题,常用的思路是转化为直角三角形中边和角的计算,属于常规题.。
2019-2020学年人教版九年级数学上学期同步测试专题24-3:正多边形和圆
专题24.3正多边形和圆(测试)一、单选题1.若正多边形的一个中心角是30°,则该正多边形的边数是( )A .6B .12C .16D .18【答案】B【解析】003603012÷=.故这个正多边形的边数为12.故选:B .2.正多边形的一边所对的中心角与它的一个外角的关系是( )A .相等B .互余C .互补D .互余或互补【答案】A【解析】设正多边形是正n 边形,则它的一边所对的中心角是360n ︒,正多边形的外角和是360°,则每个外角也是360n ︒,所以正多边形的一边所对的中心角与它的一个外角相等,故选A .3.在半径为R 的圆上依次截取等于R 的弦,顺次连接各分点得到的多边形是( )A .正三角形B .正四边形C .正五边形D .正六边形【答案】D【解析】解:由题意这个正n 边形的中心角=60°,∴n=36060︒︒=6∴这个多边形是正六边形,故选:D .4.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为2的正六边形.则原来的纸带宽为()A .1BCD .2【答案】C【解析】如图,作BG AC ⊥,依题可得:ABC ∆是边长为2的等边三角形,在Rt BGA ∆中,∵2AB =,1AG =,∴BG =故答案为:C.5 )A .πB .3πC .4πD .12π【答案】C【解析】解:如图,六边形ABCDEF 为正六边形,作OH ⊥AB 于H ,连接OA ,∴OA 为正六边形ABCDEF 的外接圆的半径,OH 为正六边形ABCDEF 的边心距,∴在Rt AOH 中,∠AOH=1806︒=30°,∴cos ∠AOH=OH OA == ∴OA=2, ∴它的外接圆的面积=2πOA ()=4π. 故选:C .6.如图,正八边形各边中点构成四边形,则正八边形边长与AB 的比是( )A.2B C D【答案】A【解析】过E作EF⊥AD于F,过G作GH⊥AD于H,则△AEF与△DGH是等腰直角三角形,四边形EFHG是矩形,∴AF=EF=DH=GH,EG=FH,设AF=EF=GH=DH=k,∴AE=DG k,∴EG=2AE=k,∴AB=AD=+2k,=∴正八边形边长与AB2故选A.7.如图,在半径为6的⊙O中,正方形AGDH与正六边形ABCDEF都内接于⊙O,则图中阴影部分的面积为()A .27﹣B .54﹣C .D .54【答案】B 【解析】解:设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示:根据题意得:△EFO 是等边三角形,△HMN 是等腰直角三角形,∴EF =OF =6,∴△EFO 的高为:OF•sin60°=MN =2(6﹣12﹣ ∴FM =12(6﹣12+3, ∴阴影部分的面积=4S △AFM =4×12(3)×54﹣ 故选:B .8.一个圆形餐桌直径为2米,高1米,铺在上面的一个正方形桌布的四个角恰好刚刚接触地面,则这块桌布的每边长度为( )米A .12x xB .4 C.D .4π【答案】A【解析】解:正方形桌布对角线长度为圆形桌面的直径加上两个高,即2+1+1=4(米),设正方形边长是x 米,则x 2+x 2=42,解得:,所以正方形桌布的边长是米.故选:A .9.下面给出五个命题(1)正多边形都有内切圆和外接圆,且这两个圆是同心圆(2)各边相等的圆外切多边形是正多边形(3)各角相等的圆内接多边形是正多边形(4)正多边形既是轴对称图形又是中心对称图形(5)正n 边形的中心角360n a n ︒=,且与每一个外角相等 其中真命题有( )A .2 个B .3 个C .4 个D .5 个 【答案】A【解析】解:(1)正多边形都有一个内切圆和一个外接圆,是同心圆,圆心是正多边形的中心,故正确;(2)各边相等的圆外切多边形的角不一定相等,故不一定是正多边形,如菱形,故错误;(3)圆内接矩形,各角相等,但不是正多边形,故错误;(4)边数是偶数的正多边形既是轴对称图形又是中心对称图形,而边数是奇数的多边形是轴对称图形,不是中心对称图形;(5)正n 边形的中心角360n a n︒=,且与每一个外角相等. 故正确的是(1)(5).共有2个.故选:A .10.一个圆的内接正三角形的边长为( )AB .4C .D .【答案】D【解析】根据题意画图如下:过点O 作OD ⊥BC 于D ,连接OB ,∴BD=CD=12, ∵△ABC 是等边三角形,∴∠ABC=60°,∴∠OBD=30°,∴OD=12OB , ∴OB 2-(12OB)2=BD 2, 解得:OB=2,即圆的半径为2,∴该圆的内接正方形的对角线长为4,设正方形的边长为x ,∴x 2+x 2=42,解得x=∴该圆的内接正方形的边长为故选D.11.如图,⊙O是正六边形ABCDEF的外接圆,P是弧EF上一点,则∠BPD的度数是()A.30°B.60°C.55°D.75°【答案】B【解析】连接OB,OD,∵六边形ABCDEF是正六边形,∴∠BOD==120°,∴∠BPD=∠BOD=60°,故选:B.12.距资料,我国古代数学家祖冲之和他的儿子发展了刘徽的“割圆术”(即圆的内接正多边形边数不断增加,它的周长就越接近圆周长),他们从圆内接正六边形算起,一直算到内接正24576边形,将圆周率精确到小数点后七位,使中国对圆周率的计算在世界上领先了一千多年,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( )A.B.3 C.D.【答案】B【解析】解:由题意n=6时,π≈ =3,故选:B .13.如图,用四根长为5cm 的铁丝,首尾相接围成一个正方形(接点不固定),要将它的四边按图中的方式向外等距离移动a cm ,同时添加另外四根长为5cm 的铁丝(虚线部分)得到一个新的正八边形,则a 的值为( )A .4cmB .5cmC . D【答案】D【解析】如图,由题意可知:△ABC 是等腰直角三角形,AB=5,AC=BC=a .则有:a 2+a 2=52,∴a=2或-2(舍弃)故选:D .14.如图,将边长为5的正六边形ABCDEF 沿直线MN 折叠,则图中阴影部分周长为()A .20B .24C .30D .35【答案】C【解析】由翻折不变性可知,阴影部分的周长等于正六边形ABCDEF 的周长=5×6=30,故选:C .15.如图,已知O 的周长等于6cm ,则它的内接正六边形ABCDEF 的面积是( )A .4B .4C .2D .【答案】C【解析】过点O 作OH ⊥AB 于点H ,连接OA ,OB ,设⊙O 的半径为r ,∵⊙O 的周长等于6πcm ,∴2πr=6π,解得:r=3,∴⊙O 的半径为3cm ,即OA=3cm ,∵六边形ABCDEF 是正六边形,∴∠AOB=16×360°=60°,OA=OB ,∴△OAB 是等边三角形,∴AB=OA=3cm ,∵OH ⊥AB ,∴AH=12AB ,∴AB=OA=3cm ,∴AH=32cm ,=2cm ,∴S 正六边形ABCDEF =6S △OAB =6×12×3×2=2(cm2).故选C.16.⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为() A .3 B .4 C .6 D .8【答案】C【解析】⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则这个正n边形的中心角是60°,÷︒=360606n的值为6,故选:C二、填空题17.若正多边形的一个外角为60°,则这个正多边形的中心角的度数是___________.【答案】60°【解析】∵正多边形的一个外角为60°,∴正多边形的边数为=6,即正多边形为六边形,∴这个正多边形的中心角的度数==60°.故答案为60°18.如图,六边形ABCDEF是正六边形,若l1∥l2,则∠1﹣∠2=_____.【答案】60°【解析】解:如图,过A作l∥l1,则∠4=∠2,∵六边形ABCDEF是正六边形,∴∠FAB=120°,即∠4+∠3=120°,∴∠2+∠3=120°,即∠3=120°﹣∠2,∵l1∥l2,∴l∥l2,∴∠1+∠3=180°,∴∠1+120°﹣∠2=180°,∴∠1﹣∠2=180°﹣120°=60°,故答案为:60°.19.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=_____.【答案】75°【解析】解:设该正十二边形的中心为O,如图,连接A10O和A3O,由题意知,37105 12A A A=⊙O的周长,∴∠A3OA10=536012︒⨯=150°,∴∠A3A7A10=75°,故答案为:75°.20.已知正方形MNKO和正六边形ABCDEF边长均为1,把正方形放在正六边形外边,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B顺时针旋转,使KN边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使NM边与CD边重合,完成第二次旋转;………在这样连续6次旋转的过程中,点M在图中直角坐标系中的纵坐标可能是()A .2B .﹣2.2C .2.3D .﹣2.3【答案】A【解析】如图,∵正方形MNKO 和正六边形ABCDEF 边长均为1∴第一次旋转后点M 1 纵坐标坐标为12 ,第二次、第三次旋转后点M 2(M 3,四次旋转后点M 4的纵坐标为﹣12﹣2,第五次旋转后点M 5的纵坐标为 12+2,第六次旋转后的点M 6的纵坐标为2. 故选:A .三、解答题21.如图,已知O .(1)用尺规作正六边形,使得O 是这个正六边形的外接圆,并保留作图痕迹; (2)用两种不同的方法把所做的正六边形分割成六个全等的三角形.【答案】(1)答案见解析;(2)答案见解析【解析】解:(1)如图所示:,(2)如图所示:22.如图是由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,求△ABC的面积.【答案】【解析】延长AB,再作出过点C与格点所在的直线,交于格点E.∵正六边形的边长为1,∴正六边形的半径是1,则CE=4,则△BCE 的边EC ,△ACE 边EC ,则S △ABC =S △AEC -S △BEC =12×4×)=23.回顾旧知:在探究有关正多边形的有关性质时,我们是从那几个方面展开的?探究的方法与过程又是怎样的?(不要求回答)温馨提示,如图1,是一个边长为a 的正六边形.我们知道它具有如下的性质:①正六边形的每条边长度相等;②正六边形的六个内角相等,都是120°;③正六边形的内角和为720°;④正六边形的外角和为360°.等.解答问题:(1)观察图2,请你在下面的横线上,再写出边长为a 的正六边形所具有不同于上述的性质(不少于5条): .(2)尺规作图:在图2中作出圆内接正六边形的内切圆(不要求写作法,只保留作图痕迹);(3)求出这个正六边形外接圆半径与内切圆半径的比值.【答案】(1)见解析;(2)作图见解析;(3). 【解析】(1)①正六边形既是轴对称图形,又是中心对称图形;②正六边形的面积为: a 2,周长为6a ;③正六边形有一个内切圆、外接圆,它们是同心圆;④圆内接正六边形的每条边在圆内所对的优弧长度相等;⑤圆内接正六边形的每条边在圆内所对的优弧的弧度相等;⑥圆内接正六边形的每条边(或说弦)在圆内所对的劣弧的长度相等;⑦圆内接正六边形的每条边(或说弦)在圆内所对的劣弧的弧度相等;⑧圆内接正六边形的每条边(或说弦)在圆内所对的圆心角(中心角)相等,都是60°;⑨圆内接正六边形的边长等于圆的半径;⑩圆内接正六边形的边心距为: a 等.(2)如图2所示:(3)如图2,连结EO,在Rt△ONE中,∵OE=DE=a,∠EON=DOE=30°,∴OE=a,∴边长为a正六边形外接圆半径与内切圆半径的比值为:.24.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:PA=PB+PC.下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP上截取AE=CP,连接BE∵△ABC是正三角形∴AB=CB∵∠1和∠2的同弧圆周角∴∠1=∠2∴△ABE≌△CBP(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧BC上一动点,求证:PA=PC+ PB.(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC三者之间有何数量关系,直接写出结论.【答案】(1)见解析;(2)见解析;(3)【解析】证明:(1)延长BP至E,使PE=PC,连接CE.∵∠1=∠2=60°,∠3=∠4=60°,∴∠CPE=60°,∴△PCE是等边三角形,∴CE=PC,∠E=∠3=60°;又∵∠EBC=∠P AC,∴△BEC≌△APC,∴P A=BE=PB+P C.(2)过点B作BE⊥PB交P A于E.∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,又∵∠APB=45°,∴BP=BE,∴;PE=又∵AB=BC,∴△ABE≌△CBP,∴PC=AE.∴PA AE PE PC=+=.=+;(3)答:PA PC证明:在AP上截取AQ=PC,连接BQ,∵∠BAP=∠BCP,AB=BC,∴△ABQ≌△CBP,∴BQ=BP.又∵∠APB=30°,∴PQ==+=∴PA PQ AQ25.如图①②③④,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…,正n边形ABCDEFG…的边AB,BC上的点,且BM=CN,连接OM,ON.(1)求图①中∠MON的度数;(2)图②中,∠MON的度数是________,图③中∠MON的度数是________;(3)试探究∠MON的度数与正n边形的边数n的关系(直接写出答案).【答案】90°72°【解析】(1)方法一:如图①,连接OB,OC.图①∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△OBM≌△OCN,∴∠BOM=∠CON,∴∠MON=∠BOC=120°.方法二:如图②,连接OA,OB.图②∵正三角形ABC内接于⊙O,∴AB=BC,∠OAM=∠OBN=30°,∠AOB=120°.∵BM=CN,∴AM=BN.又∵OA=OB,∴△AOM≌△BON,∴∠AOM=∠BON,∴∠MON=∠AOB=120°.(2)90°72°(3)∠MON=.26.如图,一个圆形街心花园,有三个出口A,B,C,每两个出口之间有一条60米长的道路,组成正三角形ABC,在中心点O处有一亭子,为使亭子与原有的道路相通,需再修三条小路OD,OE,OF,使另一出口D、E、F分别落在ΔABC分成三个全等的多边形,以备种植不同品种的花草.(1)请你按以上要求设计两种不同的方案,将你的设计方案分别画在图1,图2中,并附简单说明.(2)要使三条小路把ΔABC分成三个全等的等腰梯形,应怎样设计?请把方案画在图3中,并求此时三条小路的总长.(3)请你探究出一种一般方法,使得出口D不论在什么位置,都能准确地找到另外两个出口E、F的位置,请写明这个方法.(4)你在(3)中探究出的一般方法适用于正五边形吗?请结合图5予以说明,这种方法能推广到正n边形吗?【答案】(1)方案1:D,E,F与A,B,C重合,方案2:OD,OE,OF分别垂直于AB,BC,AC;(2)60;(3)如图(4)见解析;(4)可推广到正n边形.【解析】(1)方案1:D,E,F与A,B,C重合,连OD,OE,OF.方案2:OD,OE,OF分别垂直于AB,BC,AC.(2)OD//AC,OE//AB,OF//BC,如图(3),作OM⊥BC于M,连OB,∵ΔABC是等边Δ,∴BM=BC=30,且∠OBM=30°,∴OM=10,∵OE//AB,∴∠OEM=60°,OE==20,又OE=OF=OD,∴OE+OF+OD=3OE=60,答:略.(3)如图(4),方法1:在BC,CA,AB上分别截取BE=CF=AD,连结OD,OE,OF,方法2:在AB上任取一点D,连OD,逆时针旋转OD120°两次,得E,F.(4)设M1为A1A2上任一点,在各边上分别取A2M2=A3M3=A4M4=A5M5=A1M1,连OM1……OM5即可,∴可推广到正n边形.。
人教版九年级数学上册24.3---24.4同步复习题含答案
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯24.3 正多边形和圆一.选择题1.如图,⊙O是正八边形ABCDEFGH的外接圆,则下列结论:①弧DF的度数为90°;②AE=DF;③S正八边形ABCDEFGH=AE•DF.其中所有正确结论的序号是()A.①②B.①③C.②③D.①②③2.如图,正方形ABCD和正三角形AEF内接于⊙O,DC、BC交EF于G、H,若正方形ABCD的边长是4,则GH的长度为()A.2B.4﹣C.D.﹣3.如图,用若n个全等的正五边形按如下方式拼接可以拼成一个环状,使相邻的两个正五边形有公共顶点,所夹的锐角为24°,图中所示的是前3个正五边形的拼接情况,拼接一圈后,中间会形成一个正多边形,则n的值为()A.5B.6C.8D.104.下面说法正确的个数有()①若m>n,则ma2>nb2;②由三条线段首尾顺次相接所组成的图形叫做三角形;③有两个角互余的三角形一定是直角三角形;④各边都相等的多边形是正多边形;⑤如果一个三角形只有一条高在三角形的内部,那么这个三角形一定是钝角三角形.A.1 个B.2 个C.3 个D.4 个5.如图,五边形ABCDE是⊙O的内接正五边形,则正五边形中心角∠COD的度数是()A.60°B.36°C.76°D.72°6.正六边形的半径为,则该正六边形的边长是()A.B.2C.3D.7.如图,以正六边形ABCDEF的对角线CF为边,再作一个正六边形CFGHMN,若AB=,则EG的长为()A.2B.2C.3D.28.圆内接正十边形的外角和为()A.180°B.360°C.720°D.1440°9.10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O 均是正六边形的顶点.则点O是下列哪个三角形的外心()A.△AED B.△ABD C.△BCD D.△ACD10.如图,△ABD是⊙O的内接正三角形,四边形ACEF是⊙O的内接正四边形,若线段BC恰是⊙O的一个内接正n边形的一条边,则n=()A.16B.12C.10D.811.如图,⊙O与正六边形OABCDE的边OA,OE分别交于点F,G,点M为劣弧FG的中点.若FM=4.则点O到FM的距离是()A.4B.C.D.12.如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则∠a的度数是()A.42°B.40°C.36°D.32°13.如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A.6B.7C.8D.914.已知圆的内接正六边形的面积为18,则该圆的半径等于()A.3B.2C.D.15.如图,正五边形ABCDE内接于⊙O,点P是劣弧上一点(点P不与点C重合),则∠CPD=()A.45°B.36°C.35°D.30°二.填空题16.如图,正六边形ABCDEF内接于半径为5的圆,则B、E两点间的距离为.17.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是.18.若一个正方形的半径是3,则这个正方形的边长是.19.中心角为36°的正多边形边数为.20.一个半径为4cm的圆内接正六边形的面积等于cm2.21.如图,在平面直角坐标系中,正六边形OABCDE边长是6,则它的外接圆心P的坐标是.22.正六边形的边长为2,则边心距为.23.同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为.24.如图,将边长为20的正方形剪去四个角,得到一个正八边形ABCDEFGH,那么这个正八形的边长为.(≈1.41,结果保留一位小数)25.圆内接正五边形中,每个外角的度数=度.三.解答题26.中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.27.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.28.如图,实线部分是由正方形,正五边形和正六边形叠放在一起形成的,其中正方形和正六边形的边长相同,求图中∠MON的度数.29.七年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:(1)如图1,等边三角形ABC中,在AB、AC边上分别取点M、N,使BM=AN,连接BN、CM,发现BN=CM,且∠NOC=60°,试说明:∠NOC=60°(2)如图2,正方形ABCD中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、DM,那么∠DON=度,并说明理由.(3)如图3,正五边形ABCDE中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、EM,那么AN=,且∠EON=度.(正n边形内角和(n﹣2)×180°,正多边形各内角相等)30.如图,以△ABC的一边AC为直径的⊙O交AB边于点D,E是⊙O上一点,连接DE,∠E=∠B.(1)求证:BC是⊙O的切线;(2)若∠E=45°,AC=4,求⊙O的内接正四边形的边长.参考答案一.选择题1.D.2.A.3.B.4.A.5.D.6.A.7.C.8.B.9.D.10.B.11.C.12.A.13.B.14.B.15.B.二.填空题16.10.17.A.18.3.19.10.20.24.21.(3,3).22..23.::1.24.8.2.25.72.三.解答题26.(1)证明:∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=F A,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=6﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB为平行四边形.(2)解:连接BE、OA,则∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=6,BE=2OB=12,当t=0时,点P与A重合,Q与D重合,四边形PBQE即为四边形ABDE,如图1所示:则∠EAF=∠AEF=30°,∴∠BAE=120°﹣30°=90°,∴此时四边形ABDE是矩形,即四边形PBQE是矩形.当t=6时,点P与F重合,Q与C重合,四边形PBQE即为四边形FBCE,如图2所示:同法可知∠BFE=90°,此时四边形PBQE是矩形.综上所述,t=0s或6s时,四边形PBQE是矩形,∴AE==6,∴矩形PBQE的面积=矩形ABDE的面积=AB×AE=6×6=36;∵正六边形ABCDEF的面积=6△AOB的面积=6×矩形ABDE的面积=6××36=54,∴矩形PBQE的面积与正六边形ABCDEF的面积之比=.27.(1)证明:在⊙O中,∵∠BAC与∠CPB是对的圆周角,∠ABC与∠APC是所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.28.解:由正方形、正五边形和正六边形的性质得,∠AOM=108°,∠OBC=120°,∠NBC=90°,∴∠AOB=×120°=60°,∠MOB=108°﹣60°=48°,∴∠OBN=360°﹣120°﹣90°=150°,∴∠NOB=×(180°﹣150°)=15°,∴∠MON=33°.29.(1)证明:∵△ABC是正三角形,∴∠A=∠ABC=60°,AB=BC,在△ABN和△BCM中,,∴△ABN≌△BCM(SAS),∴∠ABN=∠BCM,又∵∠ABN+∠OBC=60°,∴∠BCM+∠OBC=60°,∴∠NOC=60°;(2)解:∵四边形ABCD是正方形,∴∠DAM=∠ABN=90°,AD=AB,又∵AM=BN,∴△ABN≌△DAM(SAS),∴AN=DM,∠ADM=∠BAN,又∵∠ADM+∠AMD=90°,∴∠BAN+∠AMD=90°∴∠AOM=90°;即∠DON=90°;(3)解:∵五边形ABCDE是正五边形,∴∠A=∠B,AB=AE,又∵AM=BN,∴△ABN≌△EAM(SAS),∴AN=ME,∴∠AEM=∠BAN,∴∠NOE=∠NAE+∠AEM=∠NAE+∠BAN=∠BAE=108°.故答案为:90°,EM,108°.30.解:(1)证明:连接CD,∵AC为直径,∴∠ADC=90°,∵∠E=∠ACD,∠E=∠B.∴∠ACD=∠B,∴∠ACD+∠CAD=∠B+∠CAD=90°,∴∠ACB=90°,∴BC是⊙O的切线;(2)如图,连接OD、CE,若∠E=45°,则∠AOD=90°,∵AC=4,∴OA=OD=2,∴AD =2.∴⊙O 的内接正四边形的边长为AD 的长为2.24.4 弧长和扇形面积一、选择题1. 2019·湖州已知圆锥的底面半径为5 cm ,母线长为13 cm ,则这个圆锥的侧面积是( )A .60π cm2B .65π cm2C .120π cm2D .130π cm22.如图,线段AB 经过⊙O 的圆心,AC ,BD 分别与⊙O 相切于点C ,D .若AC =BD =4,∠A =45°,则CD ︵的长度为( )A.π B.2π C.2 2π D.4π3. 在半径为6 cm 的圆中,长为2π cm 的弧所对的圆周角的度数为 ( )A .30°B .45°C .60°D .90°4. 用圆心角为120°,半径为6 cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A. 2 cm B .3 2 cm C .4 2 cm D .4 cm5. 如图,一段公路的转弯处是一段圆弧(AB ︵),则AB ︵的展直长度为( )A .3π mB .6π mC .9π mD .12π m6. 如图0,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,CD =23,则图中阴影部分的面积为( )A .4πB .2πC .π D.2π37. 如图,点I 为△ABC 的内心,AB =4,AC =3,BC =2,将∠ACB 平移使其顶点与点I 重合,则图中阴影部分的周长为( )A .4.5B .4C .3D .28. 如图,△ABC 是等腰直角三角形,且∠ACB=90°.曲线CDEF…叫做“等腰直角三角形的渐开线”,其中CD ︵,DE ︵,EF ︵,…的圆心依次按A ,B ,C ,…循环.如果AC =1,那么曲线CDEF 和线段CF 围成图的面积为( )图A .(12+72)4πB .(9+52)4πC .(12+72)π+24D .(9+52)π+249. 如图,在△AOC 中,OA =3 cm ,OC =1 cm ,将△AOC 绕点O 顺时针旋转90°后得到△BOD ,则AC 边在旋转过程中所扫过的图形的面积为( )A.π2cm2 B .2π cm2C.17π8 cm2D.19π8cm210. 2017·衢州运用图变化的方法研究下列问题:如图AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8,则图阴影部分的面积是( )图A.252πB.10πC.24+4πD.24+5π二、填空题11. 如图,已知⊙O 的半径为4,∠A =45°,若一个圆锥的侧面展开图与扇形OBC 能完全重合,则该圆锥底面圆的半径为________.12.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=123,OP=6,则劣弧AB ︵的长为________.(结果保留π)13. (2019•贺州)已知圆锥的底面半径是1,高是15,则该圆锥的侧面展开图的圆心角是__________度.14. 2018·烟台如图,点O 为正六边形ABCDEF 的中心,M 为AF 的中点,以点O 为圆心,OM 长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,DE 长为半径画弧得到扇形DEF .将扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1∶r 2=________.15. 如图,将四边形ABCD 绕顶点A 顺时针旋转45°至四边形AB′C′D′的位置.若AB =16 cm ,则图中阴影部分的面积为________.16.如图在边长为3的正方形ABCD中,以点A为圆心,2为半径作圆弧EF,以点D为圆心,3为半径作圆弧AC.若图阴影部分的面积分别为S 1,S 2,则S 1-S 2=________.17. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.18. 一个圆锥形漏斗,某同学用三角尺测得其高度的尺寸(单位:cm)如图所示,则该圆锥形漏斗的侧面积为________cm2.三、解答题19. 如图所示的粮囤可以看成是圆柱体与圆锥体的组合体,已知其底面圆的半径为6 m,高为4 m,下方圆柱的高为3 m.(1)求该粮囤的容积;(2)求上方圆锥的侧面积(计算结果保留根号).20. 已知扇形的圆心角为120°,面积为300π cm2.(1)求扇形的弧长;(2)若把此扇形卷成一个圆锥,则这个圆锥的体积是多少?21. 一个圆锥的高为3 3,侧面展开图半圆,求:(1)圆锥的母线长与底面圆半径的比;(2)圆锥的全面积.22. 如图,点A ,B ,C ,D 均在圆上,AD ∥BC ,BD 平分∠ABC ,∠BAD =120°,四边形ABCD的周长为15. (1)求此圆的半径; (2)求图中阴影部分的面积.人教版 九年级数学 24.4 弧长和扇形面积 课后训练-答案一、选择题1. 【答案】B [解析] ∵r =5 cm ,l =13 cm ,∴S 圆锥侧=πrl =π×5×13=65π(cm2).故选B.2. 【答案】B3. 【答案】A [解析] 设长为2π cm 的弧所对的圆心角的度数为n°,则nπR 180=2π,解得n=60.∴这条弧所对的圆心角是60°,即所对的圆周角是30°.故选A.4. 【答案】C [解析] 设纸帽底面圆的半径为r cm ,则2πr =120×π×6180,解得r =2.设圆锥的高为h cm ,由勾股定理得h2+r2=62,所以h2+22=62,解得h =42.5. 【答案】B [解析] AB ︵的展直长度=108π·10180=6π(m).故选B.6. 【答案】D [解析] 如图,连接OD.∵CD ⊥AB ,∴CE =DE =3,∠CEO =∠DEO =90°. 又∵OE =OE , ∴△COE ≌△DOE , 故S △COE =S △DOE ,即可得阴影部分的面积等于扇形OBD 的面积. ∵∠CDB =30°,∴∠COB =60°, ∴∠OCD =30°,∴OE =12OC.在Rt △COE 中,CE =3, 由勾股定理可得OC =2, ∴OD =2.∵△COE ≌△DOE ,∴∠DOE =∠COE =60°,∴S 扇形OBD =60π·22360=23π,即阴影部分的面积为2π3.故选D.7. 【答案】B [解析] 设CA ,CB 平移后分别交AB 于点M ,N ,连接AI ,BI.由平移可知AC∥MI ,∴∠CAI =∠AIM.∵∠CAI =∠BAI ,∴∠BAI =∠AIM ,∴AM =MI.同理BN =NI.∴△MNI 的周长=MI +NI +MN =AM +BN +MN =AB =4.故选B.8. 【答案】C [解析] 曲线CDEF 和线段CF 围成的图是由三个圆心不同,半径不同的扇形以及△ABC 组成的,所以根据面积公式可得135π×1+135π×(2+1)2+90π×(2+2)2360+12×1×1=(12+7 2)π+24.9. 【答案】B [解析] 如图,AC 边在旋转过程中所扫过的图形的面积即阴影部分的面积.S阴影=S △OCA +S 扇形OAB -S 扇形OCD -S △ODB.由旋转知△OCA ≌△ODB ,∴S △OCA =S △ODB ,∴S 阴影=S 扇形OAB -S 扇形OCD =90π×32360-90π×12360=2π(cm2).故选B.10. 【答案】A [解析] 如图作直径CG ,连接OD ,OE ,OF ,DG .∵CG 是⊙O 的直径,∴∠CDG =90°,则DG =CG 2-CD 2=8. 又∵EF =8,∴DG =EF , ∴DG ︵=EF ︵, ∴S 扇形ODG =S 扇形OEF .∵AB ∥CD ∥EF ,∴S △OCD =S △ACD ,S △OEF =S △AEF ,∴S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OCD +S 扇形ODG =S 半圆=12π×52=252π.二、填空题11. 【答案】1 [解析] ∵∠A =45°,∴∠BOC =2∠A =90.设该圆锥底面圆的半径为r ,则有2πr =90π×4180,解得r =1.12.【答案】8π 【解析】∵AB是小圆的切线,∴OP⊥AB,∴AP=12AB=63.如解图,连接OA,OB,∵OA=OB,∴∠AOB=2∠AOP.在Rt △AOP中,OA=OP 2+AP 2=12,tan ∠AOP=APOP =636=3,∴∠AOP=60°.∴∠AOB=120°,∴劣弧AB的长为120π·12180=8π.13. 【答案】90 【解析】设圆锥的母线为a ,根据勾股定理得,a=4,设圆锥的侧面展开图的圆心角度数为n ︒,根据题意得π42π1180n ⨯⨯=,解得90n =, 即圆锥的侧面展开图的圆心角度数为90︒.故答案为:90.14. 【答案】3∶2 [解析] 如图连接OA ,OB ,OF .∵六边形ABCDEF 为正六边形,∴OA =OF ,∠AOF =∠AOB =60°,∠E =120°.∵M 为AF 的中点,∴∠AOM =30°.由题意,得ON =OM .易证△BON ≌△AOM ,∴∠BON =∠AOM =30°,∴∠MON =120°.设AM =a ,则AB =OA =2a ,OM =3a ,∴扇形MON 的弧长为120×π×3a 180=2 33πa ,则r 1=33a . 同理可得,扇形DEF 的弧长为120×π×2a 180=43πa ,则r 2=23a ,∴r 1∶r 2=3∶2.15. 【答案】32π cm2 [解析] 由旋转的性质得∠BAB′=45°,四边形AB′C′D′≌四边形ABCD , 则图中阴影部分的面积=四边形ABCD 的面积+扇形ABB′的面积-四边形AB′C′D′的面积=扇形ABB′的面积=45π×162360=32π(cm2).16. 【答案】13π4-9 [解析] ∵S 正方形ABCD =3×3=9,S 扇形DAC =9π4,S 扇形AEF =π,∴S 1-S 2=S 扇形AEF -(S 正方形ABCD -S 扇形DAC )=π-⎝⎛⎭⎪⎫9-9π4=13π4-9.17. 【答案】2π-4 [解析] 如图所示,由题意,得阴影部分的面积=2(S 扇形OAB -S △OAB)=2(90π×22360-12×2×2)=2π-4. 故答案为2π-4.18. 【答案】15π三、解答题19. 【答案】解:(1)容积V =π×62×3+13×π×62×(4-3)=108π+12π=120π(m3). 答:该粮囤的容积为120π m3.(2)圆锥的母线长l =62+12=37(m),所以圆锥的侧面积S =π×6×37=637π(m2).20. 【答案】解:(1)设扇形的半径为r cm.由题意,得120π×r2360=300π,解得r =30, ∴扇形的弧长=120π×30180=20π(cm). (2)设圆锥的底面圆的半径为x cm ,则2π·x =20π,解得x =10, ∴圆锥的高=302-102=202(cm), ∴圆锥的体积=13·π·102·20 2= 2000 23π(cm3).21. 【答案】解:(1)设圆锥的母线长为l ,底面圆的半径为r ,根据题意得2πr =180πl 180,所以l =2r ,即圆锥的母线长与底面圆半径的比为2∶1.(2)因为r 2+(3 3)2=l 2,即r 2+(3 3)2=4r 2,解得r =3(负值已舍去),所以l =6,所以圆锥的全面积=π·32+12·2π·3·6=27π.22. 【答案】解:(1)∵AD ∥BC ,∠BAD =120°,∴∠ABC =60°,∠ADB =∠DBC.又∵BD 平分∠ABC ,∴∠ABD =∠DBC =∠ADB =30°,∴AB ︵=AD ︵=DC ︵,∠BCD =60°,∴AB =AD =DC ,∠BDC =90°,∴BC 是圆的直径,BC =2DC ,∴BC +32BC =15,解得BC =6,∴此圆的半径为3.(2)设BC 的中点为O ,由(1)可知点O 为圆心,连接OA ,OD. ∵∠ABD =30°,∴∠AOD =60°.根据“同底等高的三角形的面积相等”可得S △ABD =S △OAD , ∴S 阴影=S 扇形OAD =60×π×32360=32π.。
九年级数学正多边形和圆(基础)(含答案)
正多边形和圆(基础)一、单选题(共10道,每道10分)1.下列说法:①各边相等,各角相等的多边形是正多边形;②菱形是正多边形;③各角均为120°的六边形是正六边形;④正多边形既是轴对称图形又是中心对称图形;⑤正多边形的外角和是360°,其中正确的个数是( )A.1个B.2个C.3个D.4个答案:B解题思路:解题要点:各个角都相等,各条边都相等的多边形叫做正多边形.多边形的外角和为360°.解题过程:根据正多边形的定义,①正确菱形的各边相等,各角不一定相等,故②错误各角均为120°,各边不一定相等,故③错误边数是偶数的正多边形既是轴对称图形又是中心对称图形,而边数为奇数的正多边形是轴对称图形,不是中心对称图形,故④错误多边形的外角和为360°,故⑤正确综上,正确的是①⑤,共2个试题难度:三颗星知识点:略2.如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是( )A.60°B.70°C.72°D.144°答案:C解题思路:∵五边形ABCDE为正五边形∴∠ABC=∠C=∵CD=CB∴∠CBD=∴∠ABD=∠ABC-∠CBD=72°试题难度:三颗星知识点:略3.如果一个正多边形的中心角为30°,那么这个正多边形的边数是( )A.8B.10C.12D.36答案:C解题思路:解题要点:正多边形每一边所对的圆心角叫做正多边形的中心角解题过程:∵正多边形的中心角和为360°,正多边形的中心角是30°∴这个正多边形的边数=试题难度:三颗星知识点:略4.在半径为R的圆上依次截取等于R的弦,顺次连接各分点得到的多边形是( )A.正三角形B.正四边形C.正五边形D.正六边形答案:D解题思路:解题要点:正多边形每一边所对的圆心角叫做正多边形的中心角解题过程:∵由题意得,这个正n边形的中心角为60°∴∴这个多边形是正六边形试题难度:三颗星知识点:略5.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=( )A.30°B.35°C.45°D.60°答案:A解题思路:如图,连接OA,OB∵多边形ABCDEF为正六边形∴∠AOB=又OA=OB∴∠OAB=∠AOB=60°∵直线PA与⊙O相切于点A∴∠OAP=90°∴∠PAB=∠OAP-∠OAB=90°-60°=30°试题难度:三颗星知识点:略6.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是( )A. B.C. D.答案:A解题思路:如图,连接AC∵正六边形螺帽的边长是2cm∴AB=BC=2,∠ABC=120°∴AC=试题难度:三颗星知识点:略7.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为( )A. B.3C.6D.答案:D解题思路:如图,连接OB,OC,可得△OBC为等边三角形,且边长为6∵OM为边心距∴OM⊥BC∴试题难度:三颗星知识点:略8.已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是( )A.2B.1C. D.答案:B解题思路:如图,连接OC,过点O作ON⊥CE于点N,过点O作OM⊥BC于点M∵圆内接正三角形ACE的面积为∴S△ACE=∴CE=2∴OM=CN=∴圆的内接正六边形的边心距是1试题难度:三颗星知识点:略9.如图,已知⊙O的内接正六边形ABCDEF的边心距OM=2,则该圆的内接正三角形ACE的面积为( )A.2B.4C. D.答案:D解题思路:如图,连接OB,OC,过点O作ON⊥CE于点N∵多边形ABCDEF是正六边形∴∠COB=60°∵OB=OC∴△COB是等边三角形∴在Rt△CMO中,∠MOC=30°,OM=2∴OC=,ON=CM=∴在Rt△CNO中,CN=∴CE=2CN=4∴S△ACE=试题难度:三颗星知识点:略10.如图,正六边形ABCDEF的中心为坐标原点建立平面直角坐标系,顶点C,F在x轴上,顶点A的坐标为(1,),则顶点C的坐标为( )A. B.C.(-2,0)D.答案:C解题思路:如图,连接OA,设AB交y轴于点G由题意可知,OA=OF=OC∵A的坐标为∴AG=1,OG=∴∴OC=OA=2∴C的坐标为(-2,0)试题难度:三颗星知识点:略。
24.3正多边形和圆+同步练习+2024-2025学年人教版数学九年级上册
24.3正多边形和圆同步练习2024-2025学年人教版数学九年级上册一、单选题1.正十边形的每一个外角的度数都等于()A.135°B.45°C.36°D.144°2.如图,已知A,B、C,D、E是⊙O上的五个点,圆心O在AD上,⊙BCD=110°,则⊙AEB的度数为()A.70°B.35°C.40°D.20°3.如图,连接正五边形的两条对角线,得到的图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形不是中心对称图形C.是中心对称图形但不是轴对称图形D.既不是轴对称图形也不是中心对称图形4.如图,⊙O与正六边形OABCDE的边OA、OE分别交于点F、G,点M为劣弧FG的中点.若FM=2⊙O的半径为()A.2B6C.2D.265.用两种正多边形组合铺满地面,其中的一种是正八边形,则另一种是()A.正三角形B.正方形C.正五边形D.正六边形6.下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R的圆内接正方形的边长等于2RD.只有正方形的外角和等于360°7.正多边形的一个外角等于40°.则这个多边形的边数为()A.6B.9C.10D.128.如图,四边形ABCD内接于⊙O,D是AC的中点,若⊙B=70°,则⊙CAD的度数为()A.70°B.55°C.35°D.20°9.下列说法正确的是()A.各边相等的多边形是正多边形B.各角相等的多边形是正多边形C.各边相等的圆内接多边形是正多边形D.各角相等的圆内接多边形是正多边形10.已知矩形MNPQ的顶点M,N,P,Q分别在正六边形ABCDEF的边DE,FA,AB,CD上,且MN BC.在点M从E移向D(与D不重合)的过程中,下列的判断中,正确的是()A.矩形MNPQ的面积与周长保持不变B.矩形MNPQ的面积逐渐减小,周长逐渐增大C.矩形MNPQ的面积与周长均逐渐增大D.矩形MNPQ的面积与周长均逐渐减小二、填空题11.如图,正五边形ABCDE中,将半径OA绕点O逆时针旋转90︒得OF,连接OC,OF,CF,则∠的度数为.F12.半径为6 cm的圆内接正四边形的边长是cm.13.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的面积是米2.14.如图,点P从正八边形的顶点A出发,沿着正八边形的边顺时针方向走,第1次走1条边长到点H,第2次走2条边长到点F,3次走3条边长到点C……以此类推,第50次走到顶点.15.⊙ ABC中,⊙ ACB=120°,AC=BC=3,点D为平面内一点,满足⊙ ADB=60°,若CD的长度为整数,则所有满足题意的CD的长度的可能值为.三、解答题16.如图,四边形ABCD是⊙O的内接四边形,若⊙BOD=88°,求⊙BCD的度数.17.如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F.(1)若⊙E+⊙F=α,求⊙A 的度数(用含α的式子表示);(2)若⊙E+⊙F=60°,求⊙A 的度数.18.已知直线l 与⊙O 相切于点C ,AB 是⊙O 的直径,AD⊙l 于点D .(1)如图①,当直线l 与⊙O 相切于点C 时,若⊙DAC=30°,求⊙BAC 的大小; (2)如图②,当直线l 与⊙O 相交于点E 、F 时,若⊙DAE=18°,求⊙BAF 的大小. 19.一个多边形的内角和是外角和的2倍,则这个多边形是几边形?20.如图所示,四边形ABCD 内接于O AC ,为O 的直径,ADB CDB ∠=∠.(1)试判断ABC 的形状,并给出证明.(2)若21AB AD =,,求CD 的长度.21.如图,在正六边形ABCDEF 中,AB=2,P 是ED 的中点,连结AP .求AP 的长.22.如图,已知三角形ΔABC 中,AB=AC ,D 是ΔABC 的外接圆劣弧AC 上的点(不与点A ,C 重合),延长BD至E。
(完整)正多边形和圆同步练习(含答案),推荐文档
20.已知,如图,正六边形 ABCDEF 的边长为 6cm,求这个正六边形的外接圆半径 R、边心
距 r6、面积 S6.
第 20 题
21.如图,⊙O 的半径为 2 ,⊙O 的内接一个正多边形,边心距为 1,求它的中心角、边
长、面积.
3 /7
第 21 题
22.已知⊙O 和⊙O 上的一点 A. (1)作⊙O 的内接正方形 ABCD 和内接正六边形 AEFCGH; (2)在(1)题的作图中,如果点 E 在弧 AD 上,求证:DE 是⊙O 内接正十二边形的一 边.
17.一个正三角形和一个正六边形的周长相等,则它们的面积比为__________.
18.(2013•徐州)如图,在正八边形 ABCDEFGH 中,四
边形 BCFG 的面积为 20cm2,则正八边形的面积为
________cm2.
第 18 题
2 /7
三、解答题 19.比较正五边形与正六边形,可以发现它们的相同点与不同点.
一、选择题
北师大版九年级数学下《3.8圆内接正多边形》同步习题含答案.docx
北师大版九年级数学下《 3.8 圆内接正多边形》同步习题含答案北师大版九年级数学下册第三章圆 3.8 圆内接正多边形同步习题一、选择题 (9 分×3=27 分 )1.同圆的内接正三角形与内接正方形的边长的比是()6364A. 2B.4C. 3D.32.周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是()A.S3>S4>S6B.S6>S4>S3C.S6>S3>S4D.S4>S6>S33.如图,△PQR是⊙ O的内接正三角形,四边形ABCD是⊙ O的内接正方形, BC∥QR,则∠ AOQ的度数为()A.60° B.65°C.72° D.75°二、填空题 (9 分×2=18 分 )4.点 M 、N 分别是正八边形相邻的边 AB 、BC 上的点,且 AM =BN,点 O 是正八边形中心,则∠ MON =____________.,第 4 题图 ),第 5 题图 )5.如图,在正八边形ABCDEFGH 中,四边形 BCFG 的面积为 20cm2,则正八边形的面积为 _______cm2.三、解答 (17 分+ 18 分+ 20 分= 55 分)6.学完正多形和后,在生共同小与,下面有几位同学了自己的想法.以上三位同学的意,自己的想法.7.如,已知 l 是⊙ O 的切,切点 A,点 B 在⊙ O 上,BC 交⊙ O 于 E,交直 l 于 C,OC 交⊙ O 于 F,且 AB =AO=AC.一同学通量猜, EF ⊙ O 的内接正二十四形的一,你他的猜正确,你明;若你他的猜不正确,明理由.8.如 1,2,3,⋯,n,M 、N 分是⊙ O 的内接正三角形 ABC ,正方形 ABCD ,正五形 ABCDE ,⋯,正 n 形 ABCDE⋯的 AB 、BC 上的点,且BM =CN,接 OM 、ON.(1)求 1 中∠ MON 的度数;(2) 2 中∠MON 的度数是 _______; 3 中∠ MON 的度数是 ________;(3)探究∠ MON 的度数与正 n 形数 n 的关系 (直接写出答案 ).答案:1. A2. B3. D4.45°5.406.解:矩形不一定是正多边形,因为其各边不一定都相等,菱形不一定是正多边形,因为其各角不一定相等,正方形是正多边形;圆内接菱形是正方形,因为菱形各边相等,且各边所对的弧也相等,可推出其各内角也都相等;正多边形是轴对称图形,但不一定是中心对称图形.7.解:猜测正确.证明:连接 OE.∵AB =AO =AC ,又 OB=OA ,∴△ OAB 为等边三角形,∴∠ OAB =60°,由∴∠ ABC =∠ACB =15°,∴∠ AOE=30°,由l切⊙O 于 A 得 OA⊥l ,OA =CA,OA⊥AC 得∠A OC=45°,360°∴∠ EOF=15°,而=24,15°故EF 为⊙O 的内接正二十四边形的一边.8.解:(1)连接 OB、OC.∵正△ ABC 内接于⊙ O,∴∠ OBM =∠ OCN=30°,∠BOC=120°,又∵ BM =CN,OB =OC,∴△ OBM ≌△ OCN,∴∠ BOM=∠ CON,∴∠ MON =∠ BOC=120°(2)90 ° 72°360°(3)∠MON =n。
正多边形与圆同步培优题典(解析版)
专题4.9正多边形与圆姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•海陵区校级期中)正方形的外接圆半径等于2,则这个正方形边长为()A.2√2B.2C.√2D.4【分析】明确正方形外接圆直径为正方形的对角线长,求出对角线长即可.【解析】正方形外接圆直径为正方形的对角线长.∵正方形的外接圆半径为2,∴正方形的对角线长为4,正方形的边长为4×√22=2√2.故选:A.2.(2020•富顺县校级一模)正六边形的边长为4,则它的面积为()A.48√3B.24√3C.60D.12√3【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【解析】∵此多边形为正六边形,∴∠AOB=360°6=60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=2cm,∴OG=OA•cos30°=4×√32=2√3,∴S△OAB=12×AB×OG=12×4×2√3=4√3,∴S六边形=6S△OAB=6×4√3=24√3.故选:B.3.(2019秋•徐州期末)已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )A .4√33B .2√3C .3√34D .3√22【分析】根据题意画出图形,设出圆的半径,再由正多边形及直角三角形的性质求解即可.【解析】如图(二),∵圆内接正六边形边长为1,∴AB =1,可得△OAB 是等边三角形,圆的半径为1,∴如图(一),连接OB ,过O 作OD ⊥BC 于D ,则∠OBC =30°,BD =OB •cos30°=√32×1=√32,故BC =2BD =√3.OD =12OB =12,∴圆的内接正三角形的面积=12×√3×32=3√34,故选:C .4.(2020•浦东新区二模)如果一个正多边形的中心角等于72°,那么这个多边形的内角和为( )A .360°B .540°C .720°D .900°【分析】根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可求得边数,然后代入内角和公式求解即可.【解析】这个多边形的边数是360÷72=5,所以内角和为(5﹣2)×180°=540°故选:B .5.(2019秋•崇川区校级期中)若同一个圆的内接正三角形、正六边形的边长分别记作a3,a6,则a3:a6等于()A.1:√3B.1:3C.3:1D.√3:1【分析】从中心向边作垂线,构建直角三角形,通过解直角三角形可得.【解析】设圆的半径是r,则多边形的半径是r,如图1,则内接正三角形的边长a3=2r sin60°=√3r,如图2,正六边形的边长是a6=r,因而半径相等的圆的内接正三角形、正六边形的边长之比a3:a6=√3:1.故选:D.6.(2019秋•建湖县期中)如图,AB、AC分别为⊙O的内接正方形、内接正三边形的边,BC是圆内接正n 边形的一边,则n等于()A.8B.10C.12D.16【分析】根据正方形以及正三边形的性质得出∠AOB=360°4=90°,∠AOC=360°3=120°,进而得出∠BOC=30°,即可得出n的值.【解析】连接AO,BO,CO.∵AB、AC分别为⊙O的内接正方形、内接正三边形的一边,∴∠AOB=360°4=90°,∠AOC=360°3=120°,∴∠BOC=30°,∴n=360°30°=12,故选:C.7.(2019秋•铜山区期中)如图,点O是正五边形ABCDE的中心,则∠AOB的度数是()A.65°B.70°C.72°D.78°【分析】由正五边形的性质即可得出答案.【解析】∵点O是正五边形ABCDE的中心,∴∠AOB=360°÷5=72°.故选:C.8.(2019秋•宿豫区期末)如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6B.8C.10D.12【分析】根据中心角的度数=360°÷边数,列式计算分别求出∠AOB,∠BOC的度数,则∠AOC=30°,则边数n=360°÷中心角.【解析】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷6=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.9.(2020春•丰泽区校级期中)如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A.6B.7C.8D.9【分析】延长正五边形的相邻两边交于圆心,求得该圆心角的度数后,用360°除以该圆心角的度数即可得到正五边形的个数,减去3后即可得到本题答案.【解析】延长正五边形的相邻两边,交于圆心,∵正五边形的外角等于360°÷5=72°,∴延长正五边形的相邻两边围成的角的度数为:180°﹣72°﹣72°=36°,∴360°÷36°=10,∴排成圆环需要10个正五边形,故排成圆环还需7个五边形.故选:B.10.(2018秋•沭阳县期中)如图,P,Q分别是⊙O的内接正五边形的边AB,BC上的点,BP=CQ,则∠POQ=()A.75°B.54°C.72°D.60°【分析】连接OA、OB、OC,证明△OBP≌△OCQ,根据全等三角形的性质得到∠BOP=∠COQ,结合图形计算即可.【解析】连接OA、OB、OC,∵五边形ABCDE是⊙O的内接正五边形,∴∠AOB=∠BOC=72°,∵OA=OB,OB=OC,∴∠OBA=∠OCB=54°,在△OBP和△OCQ中,{OB=OC∠OBP=∠OCQ BP=CQ,∴△OBP≌△OCQ,(SAS),∴∠BOP=∠COQ,∵∠AOB=∠AOP+∠BOP,∠BOC=∠BOQ+∠QOC,∴∠BOP=∠QOC,∵∠POQ=∠BOP+∠BOQ,∠BOC=∠BOQ+∠QOC,∴∠POQ=∠BOC=72°.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•南岗区校级期中)已知正六边形的周长是30cm,则这个多边形的边长等于5cm.【分析】根据正六边形的周长,求出边长即可.【解析】正六边形的边长:30÷6=5cm,故答案为:5.12.(2019秋•东城区校级期中)如图,正六边形ABCDEF内接于⊙O且半径为3,则AB的长为3.【分析】连接OA、OB,由正六边形的性质得出∠AOB=60°,证出△AOB是等边三角形,得出AB=OA=OB=3即可.【解析】连接OA、OB,如图所示:∵正六边形ABCDEF内接于⊙O,∴∠AOB=360°6=60°,∵OA=OB=3,∴△AOB是等边三角形,∴AB=OA=OB=3,故答案为:3.13.(2019秋•惠民县期中)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为2,则△ADE的周长是6+2√3.【分析】首先确定三角形的三个角的度数,从而判断该三角形是特殊的直角三角形,然后根据半径求得斜边的长,从而求得另外两条直角边的长,进而求得周长.【解析】连接OE,∵多边形ABCDEF是正多边形,∴∠DOE=360°6=60°,∴∠DAE=12∠DOE=12×60°=30°,∠AED=90°,∵⊙O的半径为2,∴AD=2OD=4,∴DE=12AD=12×2=1,AE=√3DE=2√3,∴△ADE的周长为2+4+2√3=6+2√3,故答案为:6+2√3.14.(2019秋•滨海县期末)如图,边长为4的正六边形ABCDEF内接于⊙O,则⊙O的内接正三角形ACE 的边长为4√3.【分析】连接OB交AC于H.首先证明OB⊥AC,解直角三角形求出AH即可解决问题.【解析】连接OB交AC于H.在正六边形ABCDEF中,∵AB=BC,∠ABC=120°,∴AB̂=BĈ,∴OB⊥AC,∴∠ABH=∠CBH=60°,AH=CH,∴AH=AB•sin60°=2√3,∴AC=2AH=4√3,故答案为:4√3.15.(2020•章丘区模拟)如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为18°.【分析】设圆心为O,连接OC,OD,BD,根据已知条件得到∠O=360°5=72°,根据圆周角定理即可得到结论.【解析】设圆心为O,连接OC,OD,BD,∵五边形ABCDE为正五边形,∴∠O=360°5=72°,∴∠CBD=12∠O=36°,∵F是CD̂的中点,∴∠CBF=∠DBF=12∠CBD=18°,故答案为:18°.16.(2019•江川区模拟)如图,正六边形ABCDEF的顶点B,C分别在正方形AMNP的边AM,MN上.若AB=4,则CN=6−2√3.【分析】在Rt△BCM中,根据条件AB=BC=4,∠CBM=60°,∠M=90°,解直角三角形即可解决问题;【解析】在Rt△BCM中,∵AB=BC=4,∠CBM=60°,∠M=90°,∴∠BCM=30°,∴BM=12BC=2,CM=√3BM=2√3,∴AM=4+2=6,∵四边形AMNP是正方形,∴MN=MA=6,∴CN=MN﹣CM=6﹣2√3,故答案为6﹣2√3.17.(2019秋•鼓楼区期中)如图,AB是⊙O的内接正方形一边,点C在弧AB上,且AC是⊙O的内接正六边形的一边,若将BC看作是⊙O的内接正n边形的一边,则n的值是12.【分析】根据中心角的度数=360°÷边数,列式计算分别求出∠AOB,∠BOC的度数,则∠AOC=30°,则边数n=360°÷中心角.【解析】连接OC,∵AB是⊙O内接正方形的一边,∴∠AOB=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOC=∠AOB﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故答案为:12;̂上运动,连接BE,18.(2019秋•镇江期末)如图,⊙O半径为√2,正方形ABCD内接于⊙O,点E在ADC 作AF⊥BE,垂足为F,连接CF.则CF长的最小值为√5−1.【分析】如图,取AB的中点K,以AB为直径作⊙K,想办法求出FK,CK,根据CF≥CK﹣FK即可解决问题.【解析】如图,取AB的中点K,以AB为直径作⊙K,∵AF⊥BE,∴∠AFB=90°,∵AK=BK,∴KF=AK=BK,∵正方形ABCD的外接圆的半径为√2,∴AB=BC=√2⋅√2=2,∴KF=AK=KB=1,∵∠CBK=90°,∴CK=√BK2+BC2=√22+12=√5,∵CF≥CK﹣KF,∴CF≥√5−1,∴CF的最小值为√5−1.故答案为√5−1.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2018秋•镇江期末)如图,正方形ABCD内接于⊙O,P为BĈ上一点,连接DE,AE.(1)∠CPD=45°;(2)若DC=4,CP=2√2,求DP的长.【分析】(1)连接BD ,根据正方形ABCD 内接于⊙O ,可得∠CPD =∠DBC =45°;(2)作CH ⊥DP 于H ,因为CP =2√2,∠CPD =45°,可得CH =PH =2,因为DC =4,所以DH =√CD 2−CH 2,即DP =PH +DH =2+2√3.【解析】(1)如图,连接BD ,∵正方形ABCD 内接于⊙O ,P 为BĈ上一点, ∴∠DBC =45°,∵∠CPD =∠DBC ,∴∠CPD =45°.故答案为:45;(2)如图,作CH ⊥DP 于H ,∵CP =2√2,∠CPD =45°,∴CH =PH =2,∵DC =4,∴DH =√CD 2−CH 2=√42−22=2√3,∴DP =PH +DH =2+2√3.20.(2019秋•镇江期中)如图,正方形ABCD 内接于⊙O ,M 为CD̂的中点,连接AM ,BM . (1)求证:AM̂=BM ̂; (2)求AM̂的度数.【分析】(1)根据正方形的性质得到AD =BC ,求得AD̂=BC ̂,由M 为CD ̂的中点,得到DM ̂=CM ̂,于是得到结论;(2)连接OM ,OA ,OB ,求得∠AOB =90°,求得∠AOM =∠BOM =12(360°﹣90°)=135°,即可得到结论.【解答】(1)证明:∵四边形ABCD 是正方形,∴AD =BC ,∴AD̂=BC ̂, ∵M 为CD̂的中点, ∴DM̂=CM ̂, ∴AD̂+DM ̂=BC ̂+CM ̂, ∴AM̂=BM ̂; (2)解:连接OM ,OA ,OB ,∵正方形ABCD 内接于⊙O ,∴∠AOB =90°,∴∠AOM =∠BOM =12(360°﹣90°)=135°,∴AM ̂的度数时135°.21.(2019秋•东台市期中)如图,⊙O 的周长等于 8πcm ,正六边形ABCDEF 内接于⊙O .(1)求圆心O 到AF 的距离;(2)求正六边形ABCDEF 的面积.【分析】(1)连接OC 、OD ,作OH ⊥CD 于H ,根据圆的周长公式求出半径,根据余弦的定义计算即可;(2)根据正六边形的性质、三角形的面积公式计算.【解析】(1)连接OC、OD,作OH⊥CD于H,∵⊙O的周长等于8πcm,∴半径OC=4cm,∵六边形ABCDE是正六边形,∴∠COD=60°,∴∠COH=30°,∴圆心O到CD的距离=4×cos30°=2√3,∴圆心O到AF的距离为2√3cm;(2)正六边形ABCDEF的面积=12×4×2√3×6=24√3cm2.22.(2020•江岸区校级模拟)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)过O作OD⊥BC于D,连接OB,根据直角三角形的性质即可得到结论.【解答】(1)证明:在⊙O中,∵∠BAC与∠CPB是BĈ对的圆周角,∠ABC与∠APC是AĈ所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.23.(2018秋•下城区期中)(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为劣弧BC上一动点.求证:P A=PB+PC;(2)已知:如图2,四边形ABCD是⊙O的内接正方形,点P为劣弧BC上一动点.求证:P A=PC+√2PB.【分析】(1)延长BP至E,使PE=PC,连接CE,证明△PCE是等边三角形.利用CE=PC,∠E=∠3=60°,∠EBC=∠P AC,得到△BEC≌△APC,所以P A=BE=PB+PC;(2)过点B作BE⊥PB交P A于E,证明△ABE≌△CBP,所以PC=AE,可得P A=PC+√2PB;【解答】证明:(1)延长BP至E,使PE=PC,连接CE,如图1,∵A 、B 、P 、C 四点共圆,∴∠BAC +∠BPC =180°,∵∠BPC +∠EPC =180°,∴∠BAC =∠CPE =60°,∵PE =PC ,∴△PCE 是等边三角形,∴CE =PC ,∠E =60°;又∵∠BCE =60°+∠BCP ,∠ACP =60°+∠BCP ,∴∠BCE =∠ACP ,∵△ABC 、△ECP 为等边三角形,∴CE =PC ,AC =BC ,在△BEC 和△APC 中,{CE =PC ∠BCE =∠ACP BC =AC,∴△BEC ≌△APC (SAS ),∴P A =BE =PB +PC ;(2)过点B 作BE ⊥PB 交P A 于E ,连接OA ,OB .如图2,∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,∵∠APB =12∠AOB =45°,∴BP =BE ,∴PE =√2PB ,在△ABE 和△CBP 中,{BE =BP ∠1=∠3AB =BC,∴△ABE ≌△CBP (SAS ),∴PC =AE ,∴P A =AE +PE =PC +√2PB ;24.(2017秋•青山区期中)如图正方形ABCD 内接于⊙O ,E 为CD 任意一点,连接DE 、AE .(1)求∠AED 的度数.(2)如图2,过点B 作BF ∥DE 交⊙O 于点F ,连接AF ,AF =1,AE =4,求DE 的长度.【分析】(1)如图1中,连接OA 、OD .根据∠AED =12∠AOD ,只要证明∠AOD =90°即可解决问题;(2)如图2中,连接CF 、CE 、CA ,作DH ⊥AE 于H .首先证明CE =AF =1,求出AC 、AD ,设DH =EH =x ,在Rt △ADH 中,利用勾股定理即可解决问题;【解析】(1)如图1中,连接OA 、OD .∵四边形ABCD 是正方形,∴∠AOD =90°,∴∠AED =12∠AOD =45°.(2)如图2中,连接CF ,CE ,CA ,BD ,作DH ⊥AE 于H .∵BF ∥DE ,AB ∥CD ,∴∠BDE =∠DBF ,∠BDC =∠ABD ,∴∠ABF =∠CDE ,∵∠CF A =∠AEC =90°,∴∠DEC =∠AFB =135°,∵CD =AB ,∴△CDE ≌△ABF ,∴AF =CE =1,∴AC =√AE 2+CE 2=√17,∴AD =√22AC =√342,∵∠DHE =90°,∴∠HDE =∠HED =45°,∴DH =HE ,设DH =EH =x ,在Rt △ADH 中,∵AD 2=AH 2+DH 2,∴344=(4﹣x )2+x 2,解得x =32或52(舍弃), ∴DE =√2DH =3√22。
人教版九年级数学上册24.3 正多边形和圆同步练习 含答案
第24章 24.3《正多边形和圆》同步练习及答案 (2)1.下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面的是( )(1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形A .(1)(2)B .(2)(3)C .(1)(3)D .(1)(4)2.以下说法正确的是A .每个内角都是120°的六边形一定是正六边形.B .正n 边形的对称轴不一定有n 条.C .正n 边形的每一个外角度数等于它的中心角度数.D .正多边形一定既是轴对称图形,又是中心对称图形.(3)(2006年天津市)若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( )A .BC .1:2:3D . 3:2:14. 已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O 的半径为______________________.5.如图,正方形ABCD 内接于⊙O ,点E 在»AD 上,则∠BEC= . 6.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA /H ,那么∠GA /H 的大小是 度.7.(2006年威海市)如图,若正方形A 1B 1C 1D 1内接于正方形ABCD 的内接圆,则ABB A 11的值为( ) A .21 B .22 C .41 D .42 8.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为 .9.如图五边形ABCDE 内接于⊙O,∠A=∠B=∠C=∠D=∠E .求证:五边形ABCDE 是正五边形10.如图,10-1、10-2、10-3、…、10-n 分别是⊙O 的内接正三角形ABC ,正四边形ABCD 、正五边形ABCDE 、…、正n 边形ABCD …,点M 、N 分别从点B 、C 开始以相同的速度在⊙O 上逆时针运动。
2020年人教版九年级数学上册24.3《正多边形和圆》同步练习(含答案)
2020年人教版九年级数学上册24.3《正多边形和圆》同步练习一.选择题1.下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形 B.正方形C.正五边形 D.正六边形2.正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A.B.2 C.2 D.23.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM 边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.54.若正方形的外接圆半径为2,则其内切圆半径为()A.B.2 C.D.15.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.6.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等7.已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.28.正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为()A.正十二边形B.正六边形 C.正四边形 D.正三角形9.如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个10.若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.2 D.4二.填空题11.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.12.如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是△ABF,△CDE的内心,则O1O2= .13.同一个圆的内接正方形和正三角形的边心距的比为.14.小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为cm.15.如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而=45是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.(1)图2中的图案外轮廓周长是;(2)在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.16.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是度.17.我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6= .18.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,.若AB=1,则阴影部分图形的周长为(结果保留π).19.如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE=2,则EG的长是.20.如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是.21.正六边形的边长为8cm,则它的面积为cm2.22.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.23.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为.24.半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为.25.如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是.26.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.27.如图,正六边形ABCDEF内接于半径为4的圆,则B、E两点间的距离为.28.如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是.参考答案1.A.2.B.3.C.4.A.5.A.6.A.7.B.8.B.9.C.10.A.11.72°.12.12+4.13.:1.14.815.14,21.16.72.17..18.π+1.19.﹣1.20.≤a≤3﹣.21.96cm2.22..23.3.24.1::.25.8+8.26.2.27.8.28.3n﹣1•.。
苏科版九年级数学上册2-6《正多边形与圆》同步能力提升训练 【含答案】
苏科版九年级数学上册2.6《正多边形与圆》同步能力提升训练1.如图,⊙O是正六边形ABCDEF的外接圆,点P在⊙O上(P不与A,B重合),则∠APB的度数为()A.30°或150°B.60°或120°C.30°D.60°2.如图,点O为正六边形的中心,P、Q分别从点A(﹣1,0)同时出发,沿正六边形按图示方向运动,点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,则第2021次相遇地点的坐标为()A.B.(1,0)C.D.(﹣1,0)3.如图,正方形ABCD内接于⊙O.点E为上一点,连接BE、CE,若∠CBE=15°,BE=3,则BC的长为()A.B.C.D.4.如图,已知正六边形ABCDEF的边长为1,分别以其对角线AD、CE为边作正方形,则两个阴影部分的面积差a﹣b的值为()A.0B.2C.1D.5.如图,在正五边形ABCDE中,连接AC,BE,BD,AC与BE,BD分别交于点F,G,若AB =2,则FG的长为()A.3﹣B.﹣1C.D.2﹣36.已知圆内接正六边形的半径为2,则该内接正六边形的边心距为()A.2B.1C.D.7.已知⊙O的半径是2,一个正方形内接于⊙O,则这个正方形的边长是()A.2B.2C.D.48.如图,AB,BC和AC分别为⊙O内接正方形,正六边形和正n边形的一边,则n是()A.六B.八C.十D.十二9.如图,正六边形ABCDEF内接于⊙O,过点O作OM⊥边BC于点M,若⊙O的半径为4,则边心距OM的长为()A.B.C.2D.10.如图边长为2+的正方形,剪去四个角成为一个正八边形,则这个正八边形边长为()A.0.5B.C.1D.11.半径为3的正六边形的周长为()A.18B.C.D.12.如图,四边形ABCD为⊙O的内接正四边形,△AEF为⊙O的内接正三角形,若DF恰好是同圆的一个内接正n边形的一边,则n的值为()A.8B.10C.12D.1513.如图,⊙O与正六边形OABCDE的边OA、OE分别交于点F、G,点M为劣弧FG的中点.若FM=2,则⊙O的半径为()A.2B.C.2D.214.如图,已知正六边形ABCDEF的边长为2,G,H分别是AF和CD的中点,P是GH上的动点,连接AP,BP,则AP+BP的值最小时,BP与HG的夹角(锐角)度数为()A.30°B.45°C.60°D.75°15.正方形外接圆的半径为4,则其内切圆的半径为()A.2B.C.1D.16.如图,AD是正五边形ABCDE的一条对角线,以C为圆心,CB为半径画弧交AD于点F,连接CF,则∠CFD=°.17.如图,正八边形ABCDEFGH内接于⊙O,若AC=4,则点O到AC距离为.18.如图,在拧开一个边长为a的正六角形螺帽时,扳手张开的开口b=20mm,则边长a=mm.19.如图,以AB为边,在AB的同侧分别作正五边形ABCDE和矩形ABFG,则∠EAG=.20.如图,已知等边△ABC内接于⊙O,BD为内接正十二边形的一边,CD=5cm,求⊙O的半径R.21.在图中,试分别按要求画出圆O的内接正多边形.22.【阅读理解】[阅读与思考]如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN=CM,∠NOC =;如图②,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD =;如图③,在正五边形ABCDE中,点M,N是AB,BC上的点,且AM=BN,则AN=EM,∠NOE=;[理解与运用]在正六边形ABCDEF中,点M,N是AB,BC上的点,且AM=BN,则AN=FM,∠NOF=;在正十边形ABCDEFGHIJ中,点M,N是AB,BC上的点,且AM=BN,则AN=JM,∠NOJ =;[归纳与总结]根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N 是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是.答案1.解:连接OA,OB,如图所示:∵六边形ABCDEF是正六边形,∴∠AOB==60°,当点P不在上时,∠APB=∠AOB=30°,当点P在上时,∠APB=180°﹣∠AOB=180°﹣30°=150°,故选:A.2.解:连接OB,如图所示:∵A(1,0),O为正六边形的中心,∴OA=1,∠AOB==60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OA=1,过B作BG⊥OA于点G,则AG=OA=,BG=AG=,∴B,∴C,E(,﹣),∵正六边形的边长=1,∴正六边形的周长=6,∵点P的速度为每秒1个单位长度,点Q的速度为每秒2个单位长度,∴第1次相遇需要的时间为:6÷(1+2)=2(秒),此时点P的路程为1×2=2,点的Q路程为2×2=4,此时P,Q相遇地点的坐标在点C,以此类推:第二次相遇地点在点E(,﹣),第三次相遇地点在点A(﹣1,0),…如此下去,∵2021÷3=673…2,∴第2021次相遇地点在点E,E的坐标为(,﹣),故选:C.3.解:连接OA,OB,OE,∵正方形ABCD内接于⊙O,∴OA=OB=OE,∠AOB==90°,AB=BC,∠ABC=90°,∴∠OAB=∠OBA=(180°﹣∠AOB)=45°,∴∠OBC=∠ABC﹣∠OBA=45°,∵∠CBE=15°,∴∠OBE=∠OBC+∠CBE=60°,∴△OBE是等边三角形,∴OB=BE=3,∴OA=3,∴AB==3,∴BC=3,故选:D.4.解:∵正六边形ABCDEF的边长为1,∴AD=2,EC=,∴AD为边的正方形的面积为4,EC为边的正方形的面积为3,∴两个阴影部分的面积差a﹣b=4﹣3=1,故选:C.5.解:∵五边形ABCDE是正五边形,∴∠BAF=∠ABF=∠DBE=36°,∴F A=FB,∴∠ABG=∠AGB=∠BFG=72°,∴AB=AG=2,BG=BF,设AF=BF=BG=x,∵∠BGF=∠AGB,∠GBF=∠GAB,∴△BGF∽△AGB,∴BG2=GF•GA,∴x2=(2﹣x)×2,∴x2+2x﹣4=0,∴x=﹣1+或﹣1﹣(舍弃),∴FG=AG﹣AF=2﹣(﹣1+)=3﹣,故选:A.6.解:连接OA,作OM⊥AB,得到∠AOM=30°,AB=2,则AM=1,因而OM=,∴正六边形的边心距是.故选:C.7.解:如图所示:∵四边形ABCD是正方形,∴∠B=90°,AB=BC,∴AC是⊙O的直径,△ABC是等腰直角三角形,∴AC=4,AB=BC=AC=2,故选:A.8.解:连接OA,OB,OC.由题意,∠AOB==90°,∠BOC==60°,∴∠AOC=∠AOB﹣∠BOC=30°,∴n==12,故选:D.9.解:如图,连接OB、OC.∵六边形ABCDEF是正六边形,∴∠BOC=60°,OB=OC=4,∴△OBC是等边三角形,∴BC=OB=OC=4,∵OM⊥BC,∴BM=CM=2,在Rt△OBM中,OM===2,故选:A.10.解:设正八边形的边长为x,则剪掉的等腰直角三角形的直角边为x,∵正方形的边长为2+,∴x+x+x=2+,解得x==,∴正八边形的边长为,故选:D.11.解:∵正六边形的半径等于边长,∴正六边形的边长a=3,正六边形的周长l=6a=18,故选:A.12.解:连接OA、OD、OF,如图,∵AD,AF分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOD==90°,∠AOF==120°,∴∠DOF=∠AOF﹣∠AOD=30°,∴n==12,即DF恰好是同圆内接一个正十二边形的一边.故选:C.13.解:如图,连接OM,∵正六边形OABCDE,∴∠FOG=120°,∵点M为劣弧FG的中点,∴∠FOM=60°,OM=OF,∴△OFM是等边三角形,∴OM=OF=FM=2.则⊙O的半径为2.故选:C.14.解:如图,连接PF,BF,BF交GH于点P′,连接AP′.∵正六边形ABCDEF中,G,H分别是AF和CD的中点,∴GH是正六边形的对称轴,∴P A=PF,∴P A+PB=PB+PF,∵PB+PF≥BF,∴当点P与点P′重合时,P A+PB的值最小,∵∠BAF=120°,AB=AF,∴∠ABF=∠AFB=30°,∵∠FGP′=90°,∴∠FP′G=60°,故选:C.15.解:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴∠OAE=45°,∴△AOE是等腰直角三角形,AE=OE,∴OE=OA=×4=2,故选:A.16.解:∵五边形ABCDE是正五边形,∴∠CDE=∠E==108°,AE=DE,∴∠EDA=∠EAD=(180°﹣∠E)=54°,∴∠CDF=∠CDE﹣∠EDA=108°﹣36°=72°,∵CF=CD,∴∠CFD=∠CDF=72°,故72.17.解:连接OB交AC于M,∵正八边形ABCDEFGH内接于⊙O,∴∠AOB=∠BOC==45°,AB=BC,∴=,∠AOC=90°,∴AM=CM=AC=2,OM⊥AC,∵OA=OC,∠OAM=∠OCA=(180°﹣∠AOC)=45°,∴∠OAM=∠AOB,∴AM=OM,在Rt△AOC中,∵OA=OC,OA2+OC2=AC2,∴2OA2=AC2=42=16,∴OA=2,在Rt△AOM中,∵OM2+AM2=OA2,∴2OM2=(2)2,∴OM=2,∴点O到AC距离为2,故2.18.解:如图,连接OC、OD,过O作OH⊥CD于H.∵∠COD==60°,OC=OD,∴△COD是等边三角形,∴∠COH=90°﹣60°=30°,∵OH⊥CD,∴CH=DH=CD,OH=b=10(mm),∴CH=(mm),∴a=2CH=(mm),故.19.解:∵五边形ABCDE是正五边形,∴∠EAB=108°,∵四边形ABFG是矩形,∴∠BAG=90°,∴∠EAG=∠EAB﹣∠GAB=108°﹣90°=18°,故18°.20.解:连接OB,OC,OD,∵等边△ABC内接于⊙O,BD为内接正十二边形的一边,∴∠BOC=×360°=120°,∠BOD=×360°=30°,∴∠COD=∠BOC﹣∠BOD=90°,∵OC=OD,∴∠OCD=45°,∴OC=5(cm).即⊙O的半径R=5cm.21.解:如图所示:22.解:[阅读与思考]∵在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,∴∠B=∠CAM,AB=AC,∵在△ABN和△CAM中,∴△ABN≌△CAM(SAS),∴AN=CM,∠BAN=∠MCA,∴∠NOC=∠OAC+∠MCA=∠OAC+∠BAN=∠BAC=60°,故60°;∵在正方形ABCD中,点M,N是AB,BC上的点,且AN=DM,∴AD=AB,在△ABN和△DAM中,,∴△ABN≌△DAM(SAS),∴∠AMD=∠ANB,∠ADM=∠BAN,∴∠DON=∠DAN+∠ADM=90°,90°;∵在正五边形ABCDE中,点M,N是AB,BC上的点,且AM=BN,则AN=EM,∴AB=AE,∠EAM=∠ABN,∵在△AEM和△BAN中,,∴△ABN≌△EAM(SAS),∴AN=EM,∠AEM=∠BAN,∴∠EON=∠AEM+∠EAO=108°,故108°;[理解与运用]∵正三角形的内角度数为:60°,正方形的内角度数为:90°,正五边形的内角度数为:108°,所以同理可得:在正六边形ABCDEF中,点M,N是AB,BC上的点,且AM=BN,则AN=FM,∠NOF=120°;故120°;同理可得:在正十边形ABCDEFGHIJ中,点M,N是AB,BC上的点,且AM=BN,则AN=JM,∠NOJ =144°;故144°;[归纳与总结]根据以上所求的角恰好等于正n边形的内角,所以所求的角恰好等于正n边形的内角.故以上所求的角恰好等于正n边形的内角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正多边形和圆知识点相等,______________也相等的多边形叫做正多边形.2.把一个圆分成几等份,连接各点所得到的多边形是________________,它的中心角等于______________________________________________.3.一个正多边形的外接圆的____________叫做这个正多边形的中心,外接圆的__________叫做正多边形的半径,正多边形每一边所对的__________叫做正多边形的中心角,中心到正多边形的一边的____________叫做正多边形的边心距.4.正n边形的半径为R,边心距为r,边长为a,(1)中心角的度数为:______________.(2)每个内角的度数为:_______________________.(3)每个外角的度数为:____________.(4)周长为:_________,面积为:_________.5.正n边形都是轴对称图形,当边数为偶数时,它的对称轴有_______条,并且还是中心对称图形;当边数为奇数时,它只是_______________.(填“轴对称图形”或“中心对称图形”)一、选择题1.下列说法正确的是()A.各边相等的多边形是正多边形B.各角相等的多边形是正多边形C.各边相等的圆内接多边形是正多边形D.各角相等的圆内接多边形是正多边形2.(2013•天津)正六边形的边心距与边长之比为()A.:3 B.:2 C.1:2 D.:23.(2013山东滨州)若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )A.6,32B.32,3 C.6,3 D.62,324. 如图所示,正六边形ABCDEF内接于⊙O,则∠ADB的度数是().第4题A .60°B .45°C .30°D .22.5°5.半径相等的圆的内接正三角形,正方形,正六边形的边长的比为 ( ) A.1:2:3 B.3:2:1 :2:1 :2:36. 圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P ,则∠APB 的度数是( ).A .36°B .60°C .72°D .108°7.(2013•自贡)如图,点O 是正六边形的对称中心,如果用一副三角板的角,借助点O (使该角的顶点落在点O 处),把这个正六边形的面积n 等分,那么n 的所有可能取值的个数是( ).5 C D. 78.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O的内接正方形,BC ∥QR ,则∠AOQ 的度数是 ( )° ° ° °二、填空题9.一个正n 边形的边长为a ,面积为S ,则它的边心距为__________.10.正多边形的一个中心角为36度,那么这个正多边形的一个内角等于__________度.11.若正六边形的面积是243cm 2,则这个正六边形的边长是__________.12.已知正六边形的边心距为3,则它的周长是_______.13.点M 、N 分别是正八边形相邻的边AB 、BC 上的点,且AM=BN ,点O 是正八边形的中心,则∠MON =_____________.14.边长为a 的正三角形的边心距、半径(外接圆的半径)和高之比为_________________.15.要用圆形铁片截出边长为4cm 的正方形铁片,则选用的圆形铁片的直径最小要__________cm .16.若正多边形的边心距与边长的比为1:2,则这个正多边形的边数是__________. 第6题第7题 第8题 第13题17.一个正三角形和一个正六边形的周长相等,则它们的面积比为__________.18.(2013•徐州)如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为________cm2.三、解答题19.比较正五边形与正六边形,可以发现它们的相同点与不同点.正五边形正六边形例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)____________________________________________________________________;(2)___________________________________________________________________.不同点:(1)____________________________________________________________________;(2)____________________________________________________________________.20.已知,如图,正六边形ABCDEF的边长为6cm,求这个正六边形的外接圆半径R、边心距r6、面积S6.第18题第20题21.如图,⊙O 的半径为2,⊙O 的内接一个正多边形,边心距为1,求它的中心角、边长、面积.22.已知⊙O 和⊙O 上的一点A .(1)作⊙O 的内接正方形ABCD 和内接正六边形AEFCGH ;(2)在(1)题的作图中,如果点E 在弧AD 上,求证:DE 是⊙O 内接正十二边形的一边.23.如图1、图2、图3、…、图n ,M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE …的边AB 、BC 上的点,且BM =CN ,连结OM 、ON .(1)求图1中∠MON 的度数;(2)图2中∠MON 的度数是_________,图3中∠MON 的度数是_________;(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案). 第21题第22题参考答案知识点1.各边 各角2.正多边形 正多边形每一边所对的圆心角3.圆心 半径 圆心角 距离4.360(2)180360(1)(2)(3)(4)(5)2n nar na n n n ︒-︒︒g 轴对称图形一、选择题解:根据圆内接正多边形的性质可知,只要把此正六边形再化为正多边形即可,即让周角除以30的倍数就可以解决问题.360÷30=12;360÷60=6;360÷90=4;360÷120=3;360÷180=2.因此n 的所有可能的值共五种情况,故选B .二、填空题 9. 2Sna11.4cm ° :2:3 15. 16.四 :3三、解答题19.相同点:(1)每个内角都相等(或每个外角都相等或对角线都相等);(2)都是轴对称图形(或都有外接圆和内切圆).不同点:(1)正五边形的每个内角是108°,正六边形的每个内角是120°;(2)正五边形的对称轴是5条,正六边形的对称轴是6条. 20. 222266266.=606=6,11632263331663354326,33,543.OA,OB.O OG AB G AOB OA OBAOB OA OB R OA OB OG ABAG AB Rt AOG r OG OA AG S R cm r cm S cm ⊥∠︒=∴∆∴===⊥∴==⨯=∴∆==-=-==⨯⨯⨯=∴===Q Q 解:连接过点作于,是等边三角形即在中, 21.解:连结OB∵在Rt △AOC 中,AC =2221OA OC -=-=1 ∴AC =OC ∴∠AOC =∠OAC =45°∵OA =OB OC ⊥AB∴AB =2AC =2 ∠AOB =2∠OAC =2×45°=90°∴这个内接正多边形是正方形.∴面积为22=4∴中心角为90°,边长为2,面积为4.22. (1)作法:①作直径AC ;②作直径BD ⊥AC ;③依次连结A 、B 、C 、D 四点,四边形ABCD 即为⊙O 的内接正方形; ④分别以A 、C 为圆心,以OA 长为半径作弧,交⊙O 于E 、H 、F 、G ; ⑤顺次连结A 、E 、F 、C 、G 、H 各点.第22题六边形AEFCGH 即为⊙O 的内接正六边形.(2)证明:连结OE 、DE .∵∠AOD =4360︒=90°,∠AOE =6360︒=60°, ∴∠DOE =∠AOD -∠AOE =90°-60°=30°. ∴DE 为⊙O 的内接正十二边形的一边.23.(1)方法一:连结OB 、OC .∵正△ABC 内接于⊙O ,∴∠OBM =∠OCN =30°,∠BOC =120°.又∵BM =CN ,OB =OC ,∴△OBM ≌△OCN (SAS ).∴∠BOM =∠CON .∴∠MON =∠BOC =120°.方法二:连结OA 、OB .∵正△ABC 内接于⊙O ,∴AB =AC ,∠OAM =∠OBN =30°, ∠AOB =120°.又∵BM =CN ,∴AM =BN .又∵OA =OB ,∴△AOM ≌△BON (SAS ).∴∠AOM =∠BON .∴∠MON =∠AOB =120°.(2)90° 72°(3)∠MON =n ︒360.。