分式的乘除教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.2.1分式的乘除
主备人:
教学目标 理解分式乘除法的法则,会进行分式乘除运算 教学重难点
重点:掌握分式的乘除运算
难点:分子、分母为多项式的分式乘除法运算.
情感态度与价值观 通过教学使学生掌握类比的数学思想方法能较好地实现新知识的转
化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识。
教学过程 一 创景引入
问题1求容积的高
问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍 (得到的容积的高是
n m ab v ⋅,大拖拉机的工作效率是小拖拉机的工作效率的⎪⎭
⎫ ⎝⎛÷n b m a 倍.引出了分式的乘除法的实际存在的意义)
二 类比引新
观察下列运算:
,4
35245325432534
25432⨯⨯=⨯=÷⨯⨯=
⨯ (请学生回顾分数乘除法则) 经观察、类比不难发现
,bd ac d c b a =⨯ .bc
ad c d b a d c b a =⨯=÷ 引导学生自己归纳总结出分式乘除法法则:
两个分式相乘,用分子相乘的积作为积的分子,分母相乘的积作为积的分母。
用符号语言表达:
两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。 用符号语言表达:
三 学以致用
例1计算
评:分式运算的结果通常要化成最简分式或整式,注意系数也要约分
随堂练习1:P138/2 (1)—(4)
例2计算
bd ac d c b a =⨯bc
ad
c d b a d c b a =⨯=÷3x 2341y y x •
)(cd b a c b a 452)2(2
223-÷m
m m 71
491)
2(22-÷
-4
1
1244)1(22
2--•+-+-a a a a a a
分析:当分式的分子、分母为多项式时,先要进行因式分解,再约分.
随堂练习2:P138/3 (1) (2) 四 实际问题
例3: “丰收1号”小麦的试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a-1)米的正方形,两块试验田的小麦都收获了500千克.
(1)哪种小麦的单位面积产量高?
(2)高的单位面积产量是低的单位面积产量的多少倍?
[分析]这道题有两问,(1)是:哪一种小麦的单位面积产量最高?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是1
5002-a 、()2
1500-a ,还要判断出以上两个分式的值,哪一个值更大.关键比
较分母a 2-1与(a-1)2
的大小,比较方法① 借助课本图15.2-2可以直观得出(a-1)2 -1; 方法②根据问题的实际意义可知a>1,因此(a-1)2=a 2-2a+1 -1,可得出“丰收2号”单位面积产量高。 (2)即求()2 1500-a ÷1 5002-a 的值,转化为这节内容中的分式除法。 五 你在学习中有哪些收获? 六 作业P146/1 (2) (4)及 2 板书设计 反思 分式的乘除 分式乘法法则 分式除法法则 例1 例2 丰收1号 丰收2号