镁合金的强化处理方法研究

合集下载

铝合金镁合金热处理工艺的比较研究

铝合金镁合金热处理工艺的比较研究

铝合金镁合金热处理工艺的比较研究铝合金和镁合金是现代工业中常见的金属材料,在汽车、航空、航天以及电子等领域都有广泛应用。

然而,这两种材料在使用过程中会遇到很多问题,例如强度不足、耐腐蚀性差等。

因此,需要进行热处理处理来改变这些材料的组织结构和性能特点。

本文将对铝合金和镁合金的热处理工艺进行比较研究,以探究哪种材料的热处理效果更好。

一、铝合金的热处理工艺铝合金是由铝、铜、锰、镁、硅等元素组成的合金,具有轻weight、高强度、高耐腐蚀性和良好的可加工性等特点。

铝合金通过热处理可以改善其强度和硬度,提高其耐腐蚀性和可加工性。

铝合金的热处理工艺包括固溶退火、时效处理和淬火等步骤:1.固溶退火:在480℃左右的温度下进行加热处理,使铝合金的固溶体中溶解其他元素,形成均匀的单相固溶体。

该过程可以增加铝合金的可加工性和塑性。

2.时效处理:在固溶退火后,将铝合金加热至100-200℃,使合金中的固溶体分解,形成脆性和硬度较高的质体。

该过程可以提高铝合金的强度和硬度。

3.淬火处理:在铝合金表面形成一层较硬的表面层,以提高铝合金的磨损耐用度。

二、镁合金的热处理工艺镁合金是由镁、铝、锌、锶、锗等元素组成的合金,具有轻weight、高比强度、高耐腐蚀性和良好的可加工性等特点。

镁合金也需要进行热处理来改变其组织结构和性能特点。

镁合金的热处理工艺一般包括固溶退火、时效处理、淬火和强化等步骤:1.固溶退火:在400-500℃的温度下进行加热处理,使镁合金中的固溶体达到均匀的状态。

2.时效处理:在固溶退火后,在100-250℃的温度下对镁合金进行时效处理,使镁合金中的固溶体分解,形成脆性和硬度较高的质体。

3.淬火:该步骤可使镁合金表面形成一层较硬的表面层,以提高其耐磨性。

4.强化:将镁合金固溶体中的氢、氧、氮等元素去除,使镁合金的组织结构更加致密,且具有良好的塑性和可加工性。

三、铝合金与镁合金热处理的比较1.机械性能比较铝合金的热处理可以大大提高其强度和硬度,但会降低其可塑性和韧性。

镁合金的强化机制

镁合金的强化机制

镁合金的强化机制T业纯糕的力学性能很低.宜温理性徂差*不能宜按用作结构材料.適过合金化、变晤与热处理=晶純细化以及陶晝瘢轮作为增强押勾钱台需0合等方法的券合运用,俵合金的力学性能将会得到KAfiffi的捉高,檢合金的强化通常有以下几种邀径*L11園溶fit理固陪强化是利用点録陥对位错运动的IEPJ柞用便金属墓体获御01化的一种方曲】・当合金元素固溶于某金眞基体中,由于舎金元巔与基本元秦的原了半縊与弹性愼直的羌异’而便莖体产生站格筒5L由毗产生的应力场会阻碍悝惱的运动.从丽严般慟落强化*具协的方式是通过在金属堆体中融入一种或故种涪成元素冊成固辭体而惶侖屈的强度.陨度提髙.如朴用溶入Cu的荃体中,得到的固轉体的叢度就高于纯钢的强度•幣慣与溶剂廉「半径棚弧性鹽“差5#腿大.所产生的强化皴奧捶大.表1-3列出了部井合金元靠奁镁中固昭壓【叭A IT样分合介尢素虚4中拘H)況zt*元素用溶度相系转交3处悼尔分《L%頂逼分数/%Ag 3.815,0共晶471Al11.812.7共晶437Cd100100八析■Gd 4.5323.69共晶54«Li17.0 5.5共品588Mn 1.022包晶652Nd13共品552Y 3.7512.5共晶565Zn 2.4 6.2共崩347Zr 1.0 3.3包晶65313.2第二相粒于强化页二相粒于强化可分为沉淀强化和弥散强化:沉淀强化即町效彊化•因获得第二相粒子的工艺不同,第二相粒子强化有不同的名称:①酒过相变热处理获得的,林为析出硬化、沉淀強化或时效强化:②通过粉末烧结或内氧化敬御的.称为號散强化㈢.冇时也不加区別的混称为分做强化或粒子张比.合金产生时效强化亦須满兀一•定条件.即合令元素在基体中的迥溶度下降而彼少.时效可强化的合金在a单相区长时何保温,可以使铸态合金中分称在詁界或胡内的第二相分解,合金元素原子分布于基体抽格,如果此时以较大的冷却速愷(如水冷)使合金冷却到室温,即可御到过饱和固溶体.过饱和固陷体在a十"两相区适当温度下进行长时间时效处理,过诲和固溶体将会分解成为a基体和沉淀郴"弥敢分布的沉淀相粒子阴碍位错运动从而提髙合金强度。

MgZnZrY合金固溶强化和第二相强化的理论和实验研究

MgZnZrY合金固溶强化和第二相强化的理论和实验研究

MgZnZrY合金固溶强化和第二相强化的理论和实验研究一、本文概述本文旨在全面探讨MgZnZrY合金的固溶强化和第二相强化的理论与实验研究。

合金作为一种重要的工程材料,其性能优化和强化机制的研究一直是材料科学领域的重要课题。

MgZnZrY合金作为一种新型的轻质高强合金,具有优异的力学性能和良好的加工性能,因此在航空航天、汽车制造、电子封装等领域具有广泛的应用前景。

固溶强化和第二相强化是合金强化的两种主要机制。

固溶强化是指通过向基体中加入溶质原子,改变基体金属的晶格结构,从而提高合金的强度和硬度。

而第二相强化则是指在合金中形成具有特定形貌和分布的第二相粒子,通过粒子与基体之间的相互作用,增强合金的力学性能。

本文首先对MgZnZrY合金的固溶强化机制进行了深入的研究,分析了溶质原子在基体中的占位、扩散以及与基体原子的相互作用,探讨了其对合金力学性能的影响。

接着,本文重点研究了MgZnZrY合金中的第二相强化机制,包括第二相粒子的形成、长大、粗化过程及其对合金力学性能的影响。

为了验证理论分析的可靠性,本文设计并开展了一系列的实验研究。

通过熔炼、热处理、力学性能测试等手段,制备了不同成分和工艺参数的MgZnZrY合金样品,并对其进行了详细的组织和性能分析。

实验结果将为理论分析的验证提供有力的实验依据。

本文的研究成果将有助于深入理解MgZnZrY合金的强化机制,为合金的成分设计、工艺优化和性能提升提供理论指导和技术支持。

本文的研究方法和结果也可为其他轻质高强合金的研究提供有益的参考和借鉴。

二、MgZnZrY合金的固溶强化理论固溶强化是金属材料中一种重要的强化机制,主要通过溶质原子在基体中的溶解来实现。

在MgZnZrY合金中,固溶强化效应对于提高材料的力学性能和抗腐蚀性能具有显著作用。

MgZnZrY合金中,Zn、Zr和Y等元素作为溶质原子,可以在Mg 基体中形成固溶体。

这些溶质原子与Mg基体原子之间的尺寸差异和相互作用力,导致晶格畸变和位错运动受阻,从而增强了合金的强度和硬度。

镁合金表面处理方法的优化和改进

镁合金表面处理方法的优化和改进

镁合金表面处理方法的优化和改进镁合金是一种具有轻质、高强度、高比刚度和较高的热导率等优点的金属材料。

它广泛应用于航空、汽车、电子、医疗和军工等领域。

然而,镁合金在实际应用中,由于其表面容易氧化、腐蚀和磨损等问题,其应用范围受到一定的限制。

因此,为了提高镁合金的表面性能,人们研究并发展了各种表面处理方法。

本文将对镁合金表面处理方法的优化和改进进行探讨。

一、化学处理方法化学处理是目前使用最广泛的一种表面处理方法。

其中,单位面积处理成本低、处理厚度易控制、成型成本低、处理速度快等特点使其在实际生产中得到广泛应用。

1.1 酸蚀处理酸蚀处理是指将镁合金表面暴露在稀酸性溶液中,以形成一层具有一定厚度、均匀、致密并表面平整的氧化膜。

氧化膜的厚度和性质取决于酸性溶液的成分、浸泡时间和处理温度等因素。

酸蚀处理可以提高镁合金表面的耐腐蚀性和耐磨性,并可以提高其表面美观度。

然而,酸蚀处理也存在一些缺点。

首先,如果酸性溶液中的浓度、处理温度、时间等因素不恰当,会导致镁合金表面粗糙、不规则、氧化膜薄和不致密等缺陷。

其次,氧化膜虽然可以保护镁合金表面免于腐蚀和磨损,但其本身也具有一定的脆性,易于剥离和破裂。

为了克服这些缺点,人们进行了一系列的研究。

例如,可以通过改变酸性溶液的成分、添加复合添加剂、控制温度等因素来改善氧化膜的性质。

此外,还可以将酸蚀处理与其他表面处理方法结合起来使用,以提高表面成品质量。

1.2 电解沉积处理电解沉积处理是利用电化学原理,在特定条件下,将金属离子沉积在镁合金表面上的一种表面处理方法。

该方法可以形成高质量的金属涂层,具有厚度均匀、致密、耐腐蚀和较高的硬度等优点。

电解沉积处理可以用于制备镀铬、镀镍、镀锌、镀铜等多种涂层。

尽管电解沉积处理具有许多优点,但其存在一些缺点。

首先,处理过程的费用较高,因为需要使用大量的电能和金属离子等。

其次,在实际生产中,如果沉积条件不当,容易造成涂层的不均匀、太薄或太厚等缺陷。

镁合金形变强化

镁合金形变强化

镁合金塑性成形技术应用实例
1.汽车支架结构较为复杂,性能要求高,属非对称 组合零件。在分析该类复杂零件挤压金属流动特 点的基础上,研究开发了不等厚坯料、挤压坯料 偏置、挤压凹模侧向孔销等方法,以协调挤压时 金属的流动,实现该类零件挤压多向流动控制成 形。 2.针对带筋板复杂框架类零件的形状特点及金属流 动规律,在计算机模拟的基础上,优化成形工艺 及模具结构,提出分流成形和精度控制理论及相 应的模具结构,降低挤压力并提高产品精度,实 现了散热框架的成形。
AZ80合金(T5)试样抗拉强度与变形程度、变形温度 的关系,在试验条件及范围内,AZ80镁合金在不同 强化机制不同程度作用下,力学性能得到不同程度 的改善,抗拉强度最大可提高1倍以上(由铸态 140MPa左右达到280~320MPa)。镁合金力学性能 的改善,为其作为承载或受力结构件的应用提供了 可能。可见镁合金形变强化与成形相结合是有效提 高比强度和塑性的有效途径。
镁合金形变强化研究与及应用
镁合金形变强化-塑性变形对力学性能的影响
镁合金的热塑性变形会产生动态再结晶,从而产 生晶粒细化。这样给镁合金带来了更好的可塑性和 变形后更优良的力学性能. 在两相区(200-300℃)变形,动态再结晶不充分, 但第二相直接变形细化的强化效果明显,AZ80合金 (T5态)抗拉强度随变形量基本呈线性增大;在单相区 (350---400℃)内变形,变形量达到一定程度后,充分 发生了动态再结晶,但对时效(T5)第二相析出影响不 大,以细晶强化为主,变形量对抗拉强度的影响趋 于平缓。
ቤተ መጻሕፍቲ ባይዱ
塑性变形强韧化机制 1.塑性加工过程会产生相应的织构,如挤压织构或轧制 织构,低温下变形时还会保留部分形变强化效果。 2.塑性变形可消除镁合金铸锭组织中的缩松、缩孔等缺 陷,组织发生显著细化。AZ31合金变形前后组织, 通过AZ31合金多次等温压缩变形,可显著地细化晶 粒,可由原始铸态的约100 u m减少到约3u m。变形 条件下,镁合金内部易形成交错变形带,有利于组 织细化,形变诱导晶粒细化是主要的晶粒细化机制。 此外变形温度是保证合金性能的关键所在。随变形 温度的升高,强化效果减弱,成形构件的性能下降。

镁合金固溶强化和时效强化的意义

镁合金固溶强化和时效强化的意义

镁合金固溶强化和时效强化的意义镁合金是一种重要的结构材料,具有低密度、高比强度和良好的加工性能等优点。

然而,纯镁具有较低的强度和较差的耐腐蚀性,限制了其在实际应用中的推广和应用。

为了改善镁合金的性能,人们发展出了固溶强化和时效强化等方法。

固溶强化是通过将合金元素溶解在镁基体中,形成固溶体,从而提高合金的强度和硬度。

固溶强化的主要目的是通过增加固溶体中的合金元素的含量,形成固溶体溶解度限度内的固溶体,使合金中的固溶体相变得更加均匀。

固溶强化可以通过合金化元素的选择和添加方式来实现。

固溶强化的意义在于,通过增加固溶体中的合金元素含量,可以提高合金的强度和硬度,从而改善合金的力学性能。

此外,固溶强化还可以提高合金的耐腐蚀性和耐磨性,延长合金的使用寿命。

固溶强化可以广泛应用于航空航天、汽车制造、电子设备等领域。

时效强化是在固溶处理后,通过固溶体的再结晶和析出过程,使合金中形成弥散的析出相,从而提高合金的强度和硬度。

时效强化的主要目的是通过合金中的析出相的形成和分布来改善合金的力学性能。

时效强化可以通过合金的热处理和冷却过程来实现。

时效强化的意义在于,通过合金中的析出相的形成和分布,可以提高合金的强度和硬度,从而改善合金的力学性能。

此外,时效强化还可以提高合金的耐腐蚀性和耐磨性,延长合金的使用寿命。

时效强化可以广泛应用于航空航天、汽车制造、电子设备等领域。

固溶强化和时效强化是镁合金强化的两种常用方法,它们可以单独使用,也可以组合使用。

固溶强化和时效强化的组合使用可以进一步提高合金的强度和硬度,改善合金的力学性能。

固溶强化和时效强化还可以通过调整合金的成分和处理工艺来实现,进一步提高合金的性能。

固溶强化和时效强化是改善镁合金性能的重要方法。

通过固溶强化和时效强化,可以提高镁合金的强度、硬度、耐腐蚀性和耐磨性,延长合金的使用寿命。

固溶强化和时效强化可以单独应用,也可以组合使用,通过调整合金的成分和处理工艺,进一步提高合金的性能。

镁合金的强韧化研究新进展

镁合金的强韧化研究新进展
镁合金的强韧化研究新进展
I 行业发展 ndustry development
李士杰
(华北理工大学以升创新教育基地,河北 唐山 063210)
摘 要 :镁合金是商业金属工程材料中最轻的,也可作为现代理想的结构材料使用,在电子技术通信和航空航天等领域有着非
常广泛的应用前景。因此,为了更好地扩展镁合金的应用领域,有必要提高镁合金的综合性质。本文主要介绍了变形镁合金的
镁合金的晶体结构是密排六方,这也是影响镁合金性能的 重要因素。目前,镁合金根据合金化元素主要形成了添加 Zn 的 AZ 系列、添加 Mn 的 AM 系列、添加 RE 的 AE 系列、添加 Zn 和 Zr 的 ZK 系列等。以传统的三种强化方式(细晶强化、固溶强化 以及析出强化等)为基础,逐步形成添加合金元素、优化热处理 工艺、细化晶粒等手段来提高镁合金的综合力学性能。以下主要 对镁合金的强韧化方式进行阐述。
1 镁合金的细晶强化
镁合金和大部分结构金属材料类似,可以通过细化晶粒尺
寸来提高镁合金的力学性能。镁合金的屈服强度与晶粒尺寸的
关系可用著名的霍尔 - 公式表示 :σ=s
σ0
+
−1
Kd 2
,式中

代表单
晶屈服强度,d 代表平均晶粒尺寸,K 代表霍尔 - 佩奇系数,只
与材料种类有关。对于镁合金,K 的取值一般在 280 至 320 之间, 比铝合金的 K 值(68MPa·m 左右)大得多 [2]。由此可见细晶强
快速凝固镁合金产品通常是合金粉末,必须通过后续工艺 的加工才能得到大块的结构材料。想要更好的保留原有的组织 特征,需要进一步优化后续加工工艺。快速凝固技术还需要进一
Copyright©博看网 . All Rights Reserved.

镁合金力学性能强化的几种途径

镁合金力学性能强化的几种途径

镁合金力学性能强化的几种途径摘要对近几年镁合金力学性能强化的研究进行了总结,主要途径归纳为三个方面,一是热处理,二是合金化,三是加工工艺。

关键词:镁合金力学性能热处理合金化加工工艺镁及镁合金是目前最轻的金属结构材料,具有密度低、比强度和比刚度高的特点,而且还具有优良的阻尼性能、较好的尺寸稳定性和机械加工性能及较低的铸造成本。

广泛应用于航空航天、汽车和电子等行业。

但是,镁合金密排六方的晶体结构及较少的滑移系决定了其塑性变形能力较差,所以应该用一些方法来提高其力学性能,本文就近几年镁合金力学性能方面的研究进行总结,并提出建议。

1 镁及其合金的力学性能镁是一种二价的碱金属元素,属于密排六方晶系,这种密排六方结构使之在力学和物理性能方面表现出强烈的各向异性。

纯镁象其他纯金属一样,表现出相对低的强度。

其弹性模量E=45GPa,切变模量K=17GPa,比弹性模量E/ρ=25GPa。

因此必须用其他元素进行合金化以获得所需要的性能。

目前主合金元素是Al、Zn 和Re等,这些合金元素使镁合金得到不同程度的强化。

变形镁合金主要通过热变形和冷变形来提高强度。

热处理是提高镁合金力学性能的重要途径。

另外其他一些工艺或处理也能有效提高镁合金的力学性能,如颗粒增强复合材料、半固态铸造和熔体热速处理、表面处理等。

2强化途径2.1 热处理2.1.1铸造镁合金的热处理铸造镁合金的室温和高温力学性能强化途径有固溶处理和失效处理[1]。

对某高锌镁合金Mg-Zn-Al-RE进行热处理[2],固溶处理温度340℃,保护剂为硫铁矿石,保温时间20 h,热水淬火,淬火介质采用70~75℃热水;时效处理温度180℃,保温时间10 h,出炉空冷。

经固溶及时效处理后,合金的相成分主要为α-Mg,还有含微量稀土的其它固溶强化三元相。

其中比较典型的固溶强化相有Ф相Al2Mg5Zn2和τ相Mg32(Al,Zn)49。

这些强化相的弥散存在可以提高基体的力学性能[3]。

镁合金复合细晶强化研究进展

镁合金复合细晶强化研究进展

精 密 成 形 工 程第13卷 第6期 98 JOURNAL OF NETSHAPE FORMING ENGINEERING2021年11月收稿日期:2021-03-17基金项目:国家自然科学基金面上项目(52071042,51771038);重庆英才计划(CQYC202003047);重庆市自然科学基金(cstc2018jcyjAX0249,cstc2018jcyjAX0653) 作者简介:章欧(1997—),男,硕士生,主要研究方向为镁合金组织与性能的优化调控。

通讯作者:胡红军(1976—),男,博士,教授,主要研究方向为轻合金材料科学与工程。

镁合金复合细晶强化研究进展章欧1,胡红军1,胡刚1,张丁非2,戴庆伟3,欧忠文4(1. 重庆理工大学材料科学与工程学院,重庆 400050;2. 重庆大学 材料科学与工程学院,重庆 400044;3. 重庆科技学院 冶金与材料学院,重庆 401331;4. 陆军勤务学院 化学与材料学院,重庆 401311) 摘要:细化镁合金的晶粒可极大改善其综合力学性能,单一的细化方法包括在熔体中施加外力场作用、高压和激冷作用以及大塑性变形,单一细化方法下的材料性能难以满足实际需求,且生产效率低、成本高、质量难以保证。

2种及以上细化晶粒方法的结合可以实现镁合金性能的极大提升,通过评述镁合金复合加工方法,包括挤压铸造-固态挤压成形、挤压铸造-正挤压成形、FE-CCAE 复合变形工艺、电磁脉冲结合轧制工艺、超声振动-挤压加工等,详细阐述镁合金复合细晶强化工艺的研究进展,为进一步研究和开发更加高效绿色的镁合金晶粒细化复合成形技术提供参考。

关键词:镁合金;复合加工;外加场DOI :10.3969/j.issn.1674-6457.2021.06.013中图分类号:TG146.2+2 文献标识码:A 文章编号:1674-6457(2021)06-0098-08Research Progress on Composite Refinement Strengthening of Magnesium AlloyZHANG Ou 1, HU Hong-jun 1, HU Gang 1, ZHANG Ding-fei 2, DAI Qing-wei 3, OU Zhong-wen 4(1. School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400050, China;2. School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China;3. School of Metallurgy and Materials, Chongqing University of Science and Technology, Chongqing 401331, China;4. School of Chemistry and Materials, Army Service College, Chongqing 401311, China) ABSTRACT: The grain refinement of magnesium alloy can greatly improve the comprehensive mechanical properties. Single refinement method includes applying external force field, high pressure and chilling action, and large plastic deformation in melt. The properties of materials processed by single refinement method are difficult to meet the actual production needs, and the production efficiency is low, the cost is high, and the quality is difficult to guarantee. The combination of two or more grain re-finement methods can achieve greater improvement in the properties of magnesium alloys. Through the review on composite processing methods of magnesium alloy, including squeeze casting-solid extrusion forming, squeeze casting-positive extrusion, FE-CCAE composite deformation process, electromagnetic pulse combined rolling process, ultrasonic vibration-extrusion proc-essing, et al, the research progress on composite refinement strengthening process of magnesium alloy is expounded in detail, which provides a reference for further research and development of more efficient and green composite forming technology of refining magnesium alloy grains.KEY WORDS: magnesium alloy; composite processing; external field. All Rights Reserved.第13卷第6期章欧等:镁合金复合细晶强化研究进展99镁合金作为最轻的结构材料,具有比强度和比刚度高等特点,被誉为“21世纪绿色工程金属”。

镁合金表面硬化处理及其耐腐蚀性能研究

镁合金表面硬化处理及其耐腐蚀性能研究

镁合金表面硬化处理及其耐腐蚀性能研究引言:镁合金是一种具有优良性能的轻金属材料,具有比铝合金更低的密度,更高的强度和更好的刚性特点。

然而,镁合金也有其缺点,如低的耐腐蚀性能。

因此,镁合金表面硬化处理是一种有效的方式来提高其耐腐蚀性能。

本文将探讨镁合金表面硬化处理技术以及其对耐腐蚀性能的提升效果。

一、镁合金表面硬化处理技术镁合金表面硬化处理技术包括化学处理、物理处理和电化学处理等。

其中化学处理是比较常见的一种方式,它包括酸洗、电镀和磷化等方法。

1. 酸洗酸洗是一种常用的表面处理方法,它通过将镁合金表面浸泡在酸液中,去除表面的氧化皮和腐蚀产物,使其表面更加干净、平整。

酸洗前要对镁合金表面进行打磨和去油处理,以保证酸洗效果的均匀性和稳定性。

2. 电镀电镀是一种通过电解沉积金属或金属化合物的方法来形成一层保护层的表面处理技术。

常用的电镀方法包括电镀铬、锌、镍、铜等。

其中电镀镍是一种常用的方法,可以提高镁合金表面的硬度和耐蚀性。

3. 磷化磷化是一种将镁合金表面转化为磷酸盐的方法,可以形成一层致密的磷酸盐层,提高其耐蚀性能。

该方法具有成本低、环保等优点,是一种广泛应用的表面处理技术。

二、表面硬化处理对镁合金耐腐蚀性能的影响表面硬化处理可以有效提高镁合金的耐腐蚀性能,具体表现为:1. 提高表面硬度镁合金表面硬化处理可以形成一层坚硬的保护膜,提高其硬度和强度。

这可以有效防止镁合金表面被擦伤、刮花或刮擦,从而保持表面光洁度和整体美观度,同时提高其抗腐蚀性。

2. 提高复合耐腐蚀性表面硬化处理还可以提高镁合金的复合耐腐蚀性,即其在多种腐蚀环境下的抗腐蚀性能。

因为不同的腐蚀环境对镁合金表面的影响是不同的,有些环境下镁合金的耐腐蚀性能较好,而有些环境下则较差。

表面硬化处理可以使镁合金表面的复合耐腐蚀性提高,从而使其更加适合广泛的应用领域。

3. 提高耐针孔腐蚀性针孔腐蚀是一种在金属表面产生一个小孔,然后沿小孔向内腐蚀的一种特殊腐蚀现象。

Mg-Zn系合金的研究进展

Mg-Zn系合金的研究进展

Mg-Zn 系耐热铸造镁合金的最新研究进展镁合金作为一种绿色环保金属结构材料,具有比强度、比刚度高,减震性、导热性和可回收性好等优点,逐渐成为钢、铁、铝和塑料等结构材料的替代品[1~4]。

然而,商业化汽车用镁合金(AZ91D 、AM50A 、AM60B )由于高温抗蠕变性能不佳,在汽车动力构件中(服役温度一般在150~300℃之间)应用较少[5~6]。

研制和开发具有较高抗高温蠕变性能的耐热镁合金日趋迫切[7~8]。

镁铝合金在基体中形成Mg l7Al l2的共析相,由于它是一种低熔点相(熔点只有473℃),当温度升高时,Mg l7Al l2相会逐渐溶解到基体中,形成半连续性析出,使合金强度大大降低。

这些特点对合金的高温抗蠕变性能会产生很大的负面作用,降低合金的抗蠕变性能。

有研究表明[9]将Mg-Al 合金从室温加热到200℃时,Mg l7Al l2相的硬度减小到50%-60%,其最高使用温度只有150℃。

所以,要提高镁合金的使用温度,必须降低Al 的含量,并添加合金元素与Al 结合形成高熔点的合金相,或者更改合金系,直接采用Zn 代替Al 合金化,研究Mg-Zn 合金系[10]。

由于Zn 增加热裂倾向和显微疏松,因此Mg-Zn 系合金中第三组元元素的选用应首先考虑克服Mg-Zn 二元合金所固有的脆性以及热收缩性。

本文就Mg-Zn 系耐热铸造镁合金的开发现状及合金化作用进行了阐述,重点分析了Al 、Cu 、Zr 及稀土元素RE 和碱土元素(Ca 、Sr )对其作用的行为,为以后制备新型Mg-Zn 系耐热铸造镁合金提供理论依据。

1 耐热镁合金的高温蠕变机理镁合金的高温蠕变变形主要通过位错攀移和晶界滑动两种方式进行,因此提高镁合金的高温性能就要从强化基体与强化晶界两个方面入手,限制位错运动和阻止晶界滑动[11~12]。

由于镁合金是密排六方结构(hcp),其滑移面的基面为(0001),且只有三个滑移方向,故在室温拉伸条件下,其断裂方式以脆性断裂为主,析出相和晶界是位错运动的主要障碍。

镁合金材料的创新技术 轻量化和高性能的突破探索

镁合金材料的创新技术 轻量化和高性能的突破探索

镁合金材料的创新技术轻量化和高性能的突破探索近年来,随着全球对环境保护和能源危机的日益关注,轻量化和高性能材料在各个领域中扮演着愈发重要的角色。

镁合金作为一种优秀的轻质结构材料,因其优异的物理性能和广泛的应用领域备受瞩目。

然而,其在实际应用中仍面临着一些挑战。

为了克服这些挑战并推动镁合金的发展,科学家们不断探索创新技术,致力于实现轻量化和高性能的突破。

一、合金强化技术的应用合金强化技术是提高材料强度和硬度的关键方法之一。

在镁合金的应用中,合金强化技术可以有效改善其低强度和差韧性的缺点。

常见的合金强化技术包括固溶强化、析出强化和织构强化等。

固溶强化是通过合金化元素的溶解提高了镁合金的强度。

例如,铝、锌、锶等元素可与镁形成固溶体,增强了镁合金的机械性能。

在发展镁合金材料时,科学家们通过合理控制合金化元素的含量和合金化工艺,达到了显著提高材料强度和韧性的效果。

析出强化是利用细小的析出相均匀地分布在基体中,阻碍位错的滑动和移动,从而提高材料的强度。

常见的析出相包括硬质的Mg17Al12相和Mg2Si相等。

通过合理的热处理和时效处理,镁合金中形成的析出相能有效提高材料的硬度和强度。

织构强化是通过控制材料的晶粒取向和组织结构来提高材料的力学性能。

通过热轧、挤压等变形加工工艺,可以使镁合金的晶粒获得优化的取向,从而提高其强度和塑性。

此外,通过合适的热处理,还能生成织构结构,进一步提高材料的高温强度和韧性。

二、表面处理技术的创新镁合金的应用范围广泛,需要具备良好的耐腐蚀性和表面功能化。

然而,镁合金本身易受腐蚀,尤其在湿热环境下更为明显。

为了解决这一问题,科学家们提出了多种表面处理技术,如阳极氧化、电化学沉积、激光表面处理等。

阳极氧化是一种常用的表面处理方法,通过在镁合金表面形成致密的氧化层,提高材料的耐腐蚀性和表面硬度。

电化学沉积是将金属或合金沉积在镁合金表面,形成一层保护层,提高镁合金的耐腐蚀性和摩擦性能。

激光表面处理是利用激光在材料表面进行局部熔化和再凝固,形成微细晶粒和弥散相,从而提高镁合金的表面硬度和耐磨性。

镁合金固溶强化和时效强化的意义

镁合金固溶强化和时效强化的意义

镁合金固溶强化和时效强化的意义镁合金作为一种轻质高强度材料,广泛应用于航空、汽车、电子等领域。

然而,纯镁合金的力学性能并不理想,容易发生塑性变形和断裂。

为了提高镁合金的力学性能,常常采用固溶强化和时效强化的方法。

固溶强化是指通过将合金中的其他元素溶解在固溶体中,形成固溶体溶解度限制固溶体中间固溶体的形成,从而提高合金的硬度和强度。

合金中的元素可以是增加固溶体的基体元素,也可以是形成间隙固溶体的元素。

通过固溶强化,可以增加合金的固溶体溶解度,使合金的晶格形变增加,从而提高合金的力学性能。

时效强化是指在固溶处理后,通过在一定温度下保持一段时间,使合金中的溶质元素析出,形成细小的析出相,从而提高合金的强度。

时效强化可以分为自然时效和人工时效两种。

自然时效是指将固溶处理后的合金放置在室温下,通过自然时间来完成析出相的形成。

人工时效是指将固溶处理后的合金在一定温度下保持一段时间,加速析出相的形成。

固溶强化和时效强化的意义在于提高镁合金的力学性能和耐腐蚀性能。

固溶强化可以通过增加合金的固溶体溶解度,使合金的硬度和强度得到提高。

同时,固溶强化还可以改善合金的耐热性和抗疲劳性能。

时效强化则可以通过析出相的形成,进一步提高合金的强度和硬度。

时效强化还可以提高合金的抗应力腐蚀性能和耐磨性能。

在航空领域中,镁合金常用于制造飞机的机身、发动机壳体等部件。

固溶强化和时效强化可以提高镁合金的强度和刚度,使其能够承受高速飞行时的巨大载荷和振动。

此外,镁合金的轻质特性可以减轻飞机的重量,提高燃油效率。

在汽车领域中,镁合金常用于制造汽车的车身、底盘等部件。

固溶强化和时效强化可以提高镁合金的强度和硬度,使其能够承受汽车行驶过程中的冲击和振动。

镁合金的轻质特性可以减轻汽车的重量,提高燃油效率,降低碳排放。

在电子领域中,镁合金常用于制造电子产品的外壳和散热器等部件。

固溶强化和时效强化可以提高镁合金的耐腐蚀性能,防止电子产品在潮湿环境中发生氧化和腐蚀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年1月内蒙古科技与经济Januar y2012 第1期总第251期Inner M o ngo lia Science T echnolo gy&Economy N o.1T o tal N o.251镁合金的强化处理方法研究X
丁亚茹,韩建民
(北京交通大学,北京 100080)
摘 要:研究了镁合金的强化处理方法。

不同元素对镁的影响不同,通过加入不同的元素得到不同性能的镁合金;有些合金元素加入后形成固溶体,起到固溶强化。

有些元素可析出第二相,起到第二相强化作用。

关键词:镁合金;固溶强化;第二相强化
中图分类号:T G166.4 文献标识码:A 文章编号:1007—6921(2012)01—0101—02
工业纯镁强度很低,不能满足在结构材料使用时的性能要求,那么,就要通过一些方法来提高镁的性能。

其中,最常用的手段是可以通过合金元素的加入,起到固溶强化和析出强化来提高镁的性能。

1 合金元素的固溶强化
合金元素的固溶强化是指将镁基体中溶入合金化元素,所添加的合金元素原子替换晶格点阵上的镁原子,形成固溶体,引起晶格畸变使镁金属强化。

形成固溶体的基本条件:原子半径和镁相差小于15%,Li、Al、T i、Cr、Zn、Ge、Z r、Nb、Mo、P d、Ag、Cd、In、Sn、Sb、T e、Nd、W、Re、P t、Au、Hg、P b及Bi 等元素皆可与镁形成固溶体。

形成无限固溶体的条件:原子半径和镁相差小于15%、与镁具有相同的原子价、与镁的晶体结构相似,Cd和Z n可与镁元素形成无限固溶体[2]。

合金元素原子可以阻碍镁原子的自扩散,使镁合金的弹性模量增大,镁合金的熔点也随之增大,镁的抗蠕变性能升高。

2 合金元素的析出强化
位错和第二相交互作用形成第二相强化,一般情况下第二相强化比固溶强化效果更加显著。

第二相强化可分为析出强化和弥散强化。

析出强化是通过相变热处理获得的,也称沉淀强化;弥散强化是通过粉末烧结获得的。

2.1 析出强化[3]
析出强化是金属在过饱和固溶体中溶质原子产生偏聚,由之脱溶出微粒弥散分布于基体中而产生的一种强化。

析出相阻碍了位错的滑移与运动,滑移位错间也可相互作用,阻碍彼此相对运动,从而提高了屈服强度。

析出相还必须具有合适的尺寸、形状及物理性质,同时,与集基体间的界面性质也是关键因素。

镁合金加入合金元素后会析出第二相,阻碍位错的滑移与运动,滑移位错间也可相互作用,阻碍彼此相对运动,从而提高了屈服强度。

起到析出强化作用的合金元素需要满足的条件:¹高温下,合金化元素具有足够大的固溶度,且其固溶度随着温度的降低而减小。

这样,随着温度的降低,才可逐渐析出第二相;º在基体中的合金化元素扩散速度不宜太快,这样可以减少位错的攀移;»镁的含量在析出相中所占比例足够大。

在析出第二相时,镁元素析出的较多,合金用量降低。

2.2 弥散强化[4]
弥散强化的强化机制和析出强化相似,也是析出第二相,阻碍位错的滑移和攀升。

析出强化的第二相是在固相中析出的,而弥散强化的析出相颗粒是在合金凝固过程中产生的,即从液相中析出。

这些弥散强化相熔点高,且不溶于基体,具有优良的热力学稳定性。

在室温下,位错滑移受到弥散析出的颗粒相阻碍,将合金的性能提高;在高温下,析出相逐渐变得软化粗大,这就导致其失去了部分强化效果,却依然能阻止位错的移动,使合金依然具有较高的力学性能。

3 不同合金元素的强化作用[5]
3.1 铝元素
铝在固态镁合金中的溶解度较大,最大的固溶度可达到12.7%。

温度改变时,铝的固溶度会随之改变,温度越低,固溶度越小,达到室温后,其固溶度只有2.0%左右。

合金加入铝元素后,其可铸造性得以改善,进而铸件的强度得以提高。

但是,晶界上析出了Mg17Al12,使合金的抗蠕变性能降低。

特别是AZ91合金中Mg17A l12的析出量很高。

铸造镁合金中,铝含量达到7%~9%。

而变形镁合金中,铝含量一般可以控制在3%~5%。

铝含量越高,耐腐蚀性越好,但应力腐蚀敏感性而增大。

3.2 锌元素

101

X收稿日期:2011-11-28
作者简介:丁亚茹(1981-),女,内蒙古呼和浩特市,主要从事铝电解生产、氧化铝溶出等方面的研究。

 总第251期 内蒙古科技与经济
锌在镁合金的固溶度约为6.2%,随着温度的降低固溶度会显著减小。

锌元素的加入可以提高铸件的抗蠕变性,但锌含量大于2.5%时会使镁合金的防腐性能降低。

所以,一般控制锌含量在2%以下,能提高应力腐蚀的敏感性和疲劳极限。

3.3 锰元素
在镁合金中的极限溶解度为3.4%。

在镁合金中加入锰对合金的力学性能影响不大,但降低塑性,在镁合金中加入1%~2.5%锰的主要目的是提高合金的抗应力腐蚀倾向,从而提高耐腐蚀性能和改善合金的焊接性能,锰略微提高合金的熔点,在含铝的镁合金中可形成Mg FeM n化合物,可以提高镁合金的耐热性。

由于冶炼过程中通常带入较多的Fe,通常有意加入一定的合金元素M n来去除F e。

所以M n在合金中有两类作用:¹作为合金元素,可以提高镁合金的韧性,如AM60,在此类合金中M n含量较高;º形成中间相AlM n和AlM nF e,在此类合金中M n含量较低。

迄今为止,镁合金中含A lMn相的结构还不清楚。

M n与Al结合形成中间相:AlM n、Al3M n、Al4M n、Al6M n或Al8M n5。

3.4 硅
在晶界处可产生细小的、弥散的析出相M g2Si, M g2Si具有面心立方晶体结构,熔点和硬度较高,使压铸件的热稳定性能和抗蠕变性能提高。

但在铝含量较低时,共晶M g2Si相易呈汉字型,这时合金的强度和塑性降低很多。

3.5 钙
钙与镁可形成具有六方结构的高熔点Mg2Ca 相,可细化组织,提高抗蠕变性能且降低成本。

Ca含量不宜过高,一旦超过1%时,易产生热裂倾向。

3.6 锆
锆是种高熔点金属,具有较强的固溶强化作用。

Z r与Mg具有相同的晶体结构,其在镁中的溶解度为3.8%,在液态Mg-Zr合金凝固时,析出(-Z r,起到非自发形核核心,可细化晶粒。

在镁合金中锆的含量为0.5%~0.8%,其细化晶粒效果最好。

镁合金中的金属元素可以通过以上几种强化方法提高材料的力学性能,而不同的合金元素由于其与镁原子半径和结构的不同,其影响方式也不同。

[参考文献]
[1] ASM.Int er nat ional Mag nesiumand
M agnesium All oy[M].OH:M et al
P ark.1999.
[2] 余琨,黎文献,王日出.变形镁合金的开发及应
用[J].中国有色金属报,2003,(4):279~280.
[3] 黎文献.镁及镁合金[M].长沙:中南大学出版
社,2005.
[4] W H Rot hery,G V Rayno r.T he St ruct ure of
M et alsand Alloy s[M].L ondon:Instit ute of
M et als,1962.
[5] M M ichael,Av edesian.H Baken A S M
Specialit y M ag Deslumand
M agnesium alloys Hand book[M].OHIO
ASM Internat io nal Mat erials Park,1999. [6] L S Darken,R W Gurry.P hy sical Chemistr y
of M et alsr[M].New York:M cGraw Hill,
1953.

102・。

相关文档
最新文档