《二次函数的图像和性质》复习教案

合集下载

二次函数图像和性质教学设计【优秀3篇】

二次函数图像和性质教学设计【优秀3篇】

二次函数图像和性质教学设计【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数图像和性质教学设计【优秀3篇】二次函数的基本表示形式为y=aX²+bX+c(a≠0)。

二次函数的图像和性质复习课教学设计

二次函数的图像和性质复习课教学设计

课题:《二次函数的图像和性质复习课》教学设计设计者:温江区通平中学凌燕二零零九年十二月三十日《二次函数的图像和性质复习课》教学设计温江区通平中学凌燕一、设计理念:面向全体学生,让学生自主学习,通过课堂练习的检测来达到掌握知识、形成技能、发展智力的目的是数学课堂的主要特征。

所以课堂练习设计是否合理,课堂练习实施是否恰当,是制约数学课堂有效性的重要因素。

本节内容是学生在学完《二次函数》整章内容后的复习课,设计教学过程时,我以“梳理知识——典型例题——课堂检测”的模式来完成教学目标。

根据学生基础情况和本节内容特征,在学生自主回忆知识的基础上,直接给出正确答案让学生通过订正构建知识体系,在例题和课堂检测题的点评中重在指导解题方法和技巧。

在课堂检测和课外作业设计中,根据课标、中考要求和本节内容,我设计出A、B组练习,A组面向全体学生重在巩固双基,B组重在提高能力。

所有题目都来自近年的中考原题,有利于提高学生练习的兴趣和积极性,也有利于培养学生的中考意识。

二、教学目标:㈠、知识与技能目标:1、根据二次函数的图像复习二次函数的性质,并会解决相关问题。

2、会利用二次函数的图像判断a、b、c的取值情况。

3、会利用抛物线平移规律解决实际问题。

㈡、过程与方法目标:1、根据二次函数的图像复习二次函数的性质,在解决相关问题的过程中进一步体会数形结合的数学思想;2、通过课堂检测的反馈与点评,渗透解题的技巧和方法,并培养学生的中考意识。

三、教学重点:利用二次函数的图像复习二次函数的性质,并会解决相关问题。

四、教学难点:会利用二次函数的图像判断a、b、c的取值情况。

五、教学方法:讲练结合六、教学模式:复习旧知、构建知识——典例分析、应用知识——质疑反馈、巩固知识——反思小结、布置作业七、教学媒体:多媒体、实物投影仪八、教学过程:九、教学反思: 附录1:1、二次函数的解析式:⑴.二次函数解析式的一般式:。

顶点坐标为:(,);对称轴为:。

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。

误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。

二次函数的图象和性质课教案

二次函数的图象和性质课教案

二次函数的图象和性质优质课教案第一章:引言教学目标:1. 让学生了解二次函数的概念和重要性。

2. 引导学生通过实际问题情境,感受二次函数的应用。

教学内容:1. 引入二次函数的概念,给出一般形式的二次函数表达式:y = ax^2 + bx + c。

2. 通过实际问题情境,让学生观察二次函数的图象和性质。

教学活动:1. 引入二次函数的概念,引导学生理解二次函数的三个参数a、b、c的含义。

2. 通过实际问题情境,让学生观察二次函数的图象和性质,例如:抛物线的开口方向、顶点的坐标等。

教学评价:1. 检查学生对二次函数概念的理解程度。

2. 评估学生在实际问题情境中观察二次函数图象和性质的能力。

第二章:二次函数的图象教学目标:1. 让学生掌握二次函数图象的基本特征。

2. 培养学生通过图象分析二次函数性质的能力。

教学内容:1. 介绍二次函数图象的基本特征,包括开口方向、顶点、对称轴等。

2. 引导学生通过图象分析二次函数的增减性和最值问题。

教学活动:1. 利用多媒体展示不同a值的二次函数图象,引导学生观察开口方向的变化。

2. 让学生通过图象分析二次函数的增减性和最值问题,例如:找出函数的最大值或最小值。

教学评价:1. 检查学生对二次函数图象基本特征的掌握程度。

2. 评估学生在图象分析中解决问题的能力。

第三章:二次函数的性质教学目标:1. 让学生了解二次函数的顶点公式及其应用。

2. 培养学生通过二次函数性质解决实际问题的能力。

教学内容:1. 介绍二次函数的顶点公式:顶点坐标为(-b/2a, c b^2/4a)。

2. 引导学生通过二次函数的性质解决实际问题,例如:求函数的最值、对称轴等。

教学活动:1. 让学生通过实际问题情境,应用顶点公式求解二次函数的最值、对称轴等问题。

2. 引导学生利用二次函数的性质解决实际问题,例如:求解抛物线与直线的交点等。

教学评价:1. 检查学生对二次函数顶点公式的掌握程度。

2. 评估学生在实际问题中应用二次函数性质解决问题的能力。

二次函数的性质与图像教案

二次函数的性质与图像教案

二次函数的性质与图像教案一、教学目标1. 让学生了解二次函数的定义和标准形式;2. 理解二次函数的性质,包括顶点、开口、对称轴等;3. 掌握二次函数图像的特点,如开口方向、顶点位置等;4. 能够运用二次函数的性质和图像解决实际问题。

二、教学内容1. 二次函数的定义和标准形式;2. 二次函数的性质:顶点、开口、对称轴;3. 二次函数图像的特点:开口方向、顶点位置等;4. 实际问题举例。

三、教学重点与难点1. 重点:二次函数的性质和图像的特点;2. 难点:运用二次函数的性质和图像解决实际问题。

四、教学方法1. 采用讲解、演示、练习、讨论等教学方法;2. 使用多媒体课件辅助教学,直观展示二次函数的图像;3. 引导学生通过实际问题,探究二次函数的性质和图像特点。

五、教学过程1. 引入:通过生活中的实例,引导学生思考二次函数的存在;2. 讲解:讲解二次函数的定义和标准形式,阐述二次函数的性质,如顶点、开口、对称轴等;3. 演示:使用多媒体课件,展示二次函数的图像,让学生直观理解二次函数的性质和图像特点;4. 练习:布置练习题,让学生巩固二次函数的性质和图像知识;5. 讨论:组织学生分组讨论,分享解题心得和实际问题解决方法;6. 总结:总结二次函数的性质和图像特点,强调运用二次函数解决实际问题的重要性。

六、教学评估1. 课堂练习:设计一份包含不同难度的练习题,以评估学生对二次函数性质与图像的理解程度。

2. 小组讨论:观察学生在小组讨论中的参与情况和合作能力,评估他们对知识点的掌握和运用能力。

3. 课后作业:布置一道综合性的课后作业,要求学生应用二次函数的性质与图像解决实际问题,以评估他们的应用能力。

七、教学资源1. 多媒体课件:制作详细的课件,包括二次函数的图像、性质解释和实际问题示例。

2. 练习题库:准备一份涵盖各种类型题目的题库,用于课堂练习和课后作业。

3. 实际问题案例:收集一些与二次函数相关的实际问题案例,用于教学中的实例分析。

二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)二次函数的图像和性质3教学设计篇一22.1.3二次函数y=a(x-h)2+k的图象和性质教学设计知识与技能:会用描点法画出二次函数y=a(x-h)2+k的图象;过程与方法:结合图象确定抛物线y=a(x-h)2+k的开口方向、对称轴与顶点坐标及性质;情感态度与价值观:通过比较抛物线y=a(x-h)2+k与y=ax2的关系,培养学生的观察、分析、总结的能力。

学情分析学生在学习了前两课时的基础上,对于顶点式已经有了一定的认识,可以根据类比思想比较容易得出完整顶点式的图象性质,所以这一部分主要是学生独立探究,个别指导,然后归纳总结。

之后把侧重点放在对实际问题的探究上,重点研究实际问题的建模过程,鼓励一题多解,拓展学生思维。

重点难点教学重点:画出形如y=a(x-h)2+k的二次函数的图象,能指出开口方向,对称轴,顶点。

教学难点:理解函数y=a(x-h)2+k与y=ax2及其图象的相互关系。

4教学过程一、复习导入新课师:同学们,在学习新课之前,我们先来做这样一道题。

观察y=-x2、y=-x2-1、y=-(x+1)2这三条抛物线中,第一条抛物线可以经过怎样的平移得到第二条和第三条抛物线。

(指名学生回答)。

师:同学们可不可以在这个知识点的基础上进一步猜想一下第一条抛物线能否经过怎样的平移得到抛物线y=-(x+1)2-1 生:向左平移一个单位,再向下平移一个单位。

师:这个猜想是否正确呢?这节课我们一起来验证一下。

(板书课题)二、探究探究一(大屏幕出示)(自探问题部分)1.画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.x y=-(x+1)2-1 函数… …-4-3-2-10 1 2 ……开口方向顶点对称轴最值增减性y=-(x+1)2-1(学生口头展示以上问题)2.师:(结合课件)把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.所以抛物线y=-x2 与抛物线y=-(x+1)2-1 形状___________,位置________________.通过刚才的演示,可以证明我们前面的猜想是正确的。

二次函数的性质与图像教案

二次函数的性质与图像教案

二次函数的性质与图像教案一、教学目标:1. 理解二次函数的定义和标准形式;2. 掌握二次函数的性质,包括对称轴、顶点、开口方向等;3. 能够绘制和分析二次函数的图像;4. 能够应用二次函数解决实际问题。

二、教学内容:1. 二次函数的定义和标准形式;2. 二次函数的性质:对称轴、顶点、开口方向;3. 二次函数的图像:抛物线的基本形状;4. 实际问题中的应用。

三、教学方法:1. 讲授法:讲解二次函数的定义、性质和图像;2. 案例分析法:分析实际问题中的二次函数;3. 互动讨论法:引导学生参与课堂讨论,巩固知识点;4. 实践操作法:让学生动手绘制二次函数的图像,加深理解。

四、教学准备:1. 教学PPT:包含二次函数的定义、性质、图像及实际问题;2. 练习题:用于巩固所学知识;3. 绘图工具:如直尺、圆规等,用于绘制二次函数的图像。

五、教学过程:1. 导入:通过一个实际问题引入二次函数的概念;2. 讲解:讲解二次函数的定义、性质和图像,引导学生理解;3. 案例分析:分析实际问题中的二次函数,让学生学会应用;4. 互动讨论:引导学生参与课堂讨论,巩固知识点;5. 实践操作:让学生动手绘制二次函数的图像,加深理解;6. 总结:对本节课的内容进行总结,强调重点知识点;7. 布置作业:让学生通过练习题巩固所学知识。

六、教学评估:1. 课堂问答:通过提问方式检查学生对二次函数定义和性质的理解;2. 练习题:布置针对性的练习题,评估学生对二次函数图像分析的能力;3. 小组讨论:评估学生在团队合作中解决问题的能力;4. 作业反馈:收集学生作业,评估其对课堂所学知识的掌握程度。

七、教学拓展:1. 探讨二次函数在实际生活中的应用,如抛物线镜面、物理运动等;2. 介绍二次函数相关的数学历史故事,激发学生兴趣;3. 引导学生探究二次函数的其它性质,如最大值、最小值等;4. 组织数学竞赛,提高学生的学习积极性。

八、教学反思:1. 反思教学方法:根据学生反馈,调整教学方法,提高教学效果;2. 反思教学内容:确保教学内容符合学生认知水平,适当调整难度;3. 反思教学过程:关注学生在课堂上的参与度,优化教学过程;4. 及时与学生沟通:了解学生的学习需求,调整教学策略。

初中数学_二次函数图象与性质的复习(第1课时)教学设计学情分析教材分析课后反思

初中数学_二次函数图象与性质的复习(第1课时)教学设计学情分析教材分析课后反思

“二次函数图象与性质的复习”( 第1课时)教学设计一、教学目标1.通过本节教与学的活动,使学生掌握二次函数的定义、图象和性质,并达到灵活应用。

2.通过专题练习,达到知识的熟练运用,并在解决问题的过程中培养分类讨论、数形结合、划归与转化、函数与方程的思想.3.通过具体问题的解决,培养学生思维的深刻性。

二、教学重、难点重点:掌握二次函数的图象和性质,并熟练应用;学生掌握分类讨论、数形结合、划归与转化、函数与方程的思想。

难点:分类讨论、数形结合、划归与转化、函数与方程的思想的掌握。

三、支持条件分析教学中恰当利用PPT 的演示功能四、教学过程设计活动一:出示二次函数图象,引入课题。

引入:这是什么的图象?设计目的:以二次函数图象直接引入课题,让学生明确本节课的学习任务。

问题(1)二次函数的定义:例:下列函数是二次函数的有_________________(填序号)221)1(x y -=;22)2(xy =;c bx ax y ++=2)3(;122)4(23-+=x x y ;(5) y=2(x+3)2-2x 2.设计目的:一、让学生明确学习函数的顺序:定义、图象与性质、应用。

二、巩固了二次函数的定义知识。

活动方式:学生口答,引导学生归纳:1)等式右边是一个整式;(2)在辨析一个函数是不是二次函数时,若二次项系数含有字母,须注明它不等于0;(3)等式右边化到最简,须满足最高次项的次数是二次。

活动二:根据函数图象,回忆与二次函数有关的性质设计目的:学生通过独立思考与小组合作交流形式复习二次函数的基础知识,有助于学生整理零碎、杂乱的知识,做到知识的梳理、整化、强化,加深理解。

活动方式:学生口答,教师板书知识框架的方式。

主要研究开口方向、对称轴、顶点、最值情况、增减性、与坐标轴交点、平移这些性质,使学生意识到数形结合思想。

其中在解析式这一环节找一生板书,并采用口答形式说出另两种求解析式的方法。

教师总结:对于二次函数的图象与性质,我们一般就从开口方向、对称轴、顶点、最值情况、增减性、与坐标轴交点、平移等方面来进行分析,并指出顶点式中的三种特殊形式。

二次函数的图像和性质 复习课教案

二次函数的图像和性质 复习课教案

yxOyx O二次函数的图像和性质复习课(一)一、复习目标1.掌握并理解二次函数的性质。

2.会用二次函数的性质解决相关的问题。

二、复习重、难点重点:二次函数的性质及应用。

难点:综合应用二次函数的性质解题。

三、课前准备重点知识扫描1.二次函数的定义:形如 (a 、b 、c 为常数,a )的函数是二次函数。

2.二次函数的图像:它是一条 ,图像是 对称图形。

3.二次函数的图像和性质4.求二次函数的解析式的方法(1)若知道抛物线上任意三个点的坐标,则设为一般式: , (2)若知道抛物线的顶点坐标(h , k ),则设为顶点式: ,二次函数顶点式: )0()(2≠+-=a k h x a y一般式:)0(2≠++=a c bx ax y图 象a >0a <0 a >0a <0开 口对称轴 直线 x = 直线 x = 顶点坐标( , )( , )最 值当x = 时,=最小y当x = 时,=最大y当x = 时,=最小y当x = 时,=最大y增减性当x 时y 随x 的增大而减小;当x 时y 随x 的增大而增大。

当x 时y 随x 的增大而增大; 当x 时y 随x 的增大而减小。

当x 时y 随x 的增大而减小; 当x 时y 随x 的增大而增大。

当x 时y 随x 的增大而增大; 当x 时y 随x 的增大而减小。

(3)若知道抛物线与x 轴的两个交点的坐标(1x ,0),(2x ,0),则设为交点式:)0)()((21≠--=a x x x x a y5.抛物线的平移6.二次函数)0(2≠++=a c bx ax y 的图像特征与系数a 、b 、c 及ac b 42-的关系项目字母字母符号 图像特征 aa >0 开口向上 a <0开口向下 bb=0对称轴是y 轴a 、b 同号 对称轴在y 轴左侧 左同 右异a 、b 异号对称轴在y 轴右侧cc=0 经过原点 c >0 与y 轴的正半轴相交 c <0与y 轴的负半轴相交 ac b 42-ac b 42-=0与x 轴有唯一交点(顶点)ac b 42->0与x 轴有两个交点 ac b 42-<0与x 轴有没有交点四、考点剖析考点1:二次函数的定义例1.下列函数是二次函数的有( )12)5(;)4();3()3(;2)2(;1)1(222+=++=-==-=x y c bx ax y x x y xy x y A 、1个; B 、2个; C 、3个; D 、4个考点2:二次函数的图像和性质的应用例2.已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x -1)2+m 的图象上,若x 1>x 2>1,则y 1 y 2考点3:二次函数图像的平移例3.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )(A)23(1)2y x =-- (B)23(1)2y x =+- (C )23(1)2y x =++ (D )23(1)2y x =-+ 考点4:二次函数的图像与系数关系例4.如图为二次函数y=ax 2+bx+c (a≠0)的图象,则下列说法:①b c >0 ②2a+b=0 ③a+b+c>0 ④ac b 42-﹤0其中正确的个数为( )A .1B .2C .3D .4 考点5:求二次函数的解析式例5.一条抛物线经过(-2,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式.五、变式训练1.二次函数22(1)3y x =-+的图象的最低点的坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)2.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .3.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是 。

22.1.2二次函数的图像和性质(教案)

22.1.2二次函数的图像和性质(教案)
此外,课堂总结时,我询问了学生们对今天课程的感受,他们普遍反映喜欢这种结合实际案例的教学方式。这让我感到欣慰,同时也提醒我,作为教师,需要不断更新教学方法和手段,以保持学生们的学习兴趣。
最后,我意识到在课堂上,对于学生的疑问和困惑,我需要更加耐心和细致地进行解答。有时候,一个简单的解释就能帮助学生跨越理解的障碍。在今后的教学中,我会更加注重与学生的互动,鼓励他们提出问题,并及时给予反馈。
-重点三,利用图示和计算,说明二次函数与x轴的交点即为二次方程的实数根;
-重点四,通过图像和数学推导,让学生理解二次函数最值的含义及其计算方法。
2.教学难点
-理解二次函数图像的对称性,特别是对称轴的概念及其与顶点的关系;
-掌握顶点坐标计算公式的应用,尤其是对于含有绝对值、分式等复杂二次函数的顶点求解;
-学会求解二次函数与坐标轴的交点,理解这些交点与二次方程解的关系;
-掌握二次函数的最值问题,明确当a>0时,函数有最小值;当a<0时,函数有最大值。
举例解释:
-对于重点一,强调a的符号决定了图像的形状,并通过实例展示a的正负对图像的影响;
-重点二,通过具体函数示例,演示如何计算顶点坐标,并解释顶点即为对称轴上的点;
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“22.1.2二次函数的图像和性质”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体抛高后落地的情况?”(如抛球游戏)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数图像和性质的奥秘。
3.二次函数图像的顶点坐标计算,顶点公式为(-b/2a,4ac-b²/4a);
4.二次函数图像的对称轴,即x = -b/2a;

九年级下册《二次函数的图像与性质》数学教案

九年级下册《二次函数的图像与性质》数学教案

九年级下册《二次函数的图像与性质》数学教案标题:九年级下册《二次函数的图像与性质》数学教案
一、教学目标
1. 知识目标:理解并掌握二次函数的概念、图像及其性质。

2. 技能目标:能够通过描点法绘制二次函数图像,通过观察图像判断函数的性质。

3. 情感态度价值观目标:培养学生分析问题、解决问题的能力,提高他们对数学的兴趣。

二、教学重难点
1. 教学重点:理解和掌握二次函数的图像和性质。

2. 教学难点:通过图像理解和应用二次函数的性质。

三、教学方法
采用启发式教学法、讲授法和实践操作法相结合的方式进行教学。

四、教学过程
1. 导入新课:通过复习一次函数的知识,引导学生思考如何将一次函数推广到二次函数,激发学生的学习兴趣。

2. 新课讲解:
(1) 二次函数的概念和表达式;
(2) 二次函数的图像:a>0, a=0, a<0三种情况下的图像特征;
(3) 二次函数的性质:顶点坐标、对称轴、开口方向等。

3. 实践操作:让学生分组合作,通过描点法绘制不同类型的二次函数图像,并讨论其性质。

4. 总结反馈:教师总结本节课的主要内容,对学生的表现进行反馈。

五、作业布置
设计一些习题,包括画图题和计算题,以帮助学生巩固所学知识。

六、教学反思
在教学结束后,反思本节课的教学效果,找出存在的问题,以便改进。

二次函数的图像与性质教案

二次函数的图像与性质教案

二次函数的图像与性质教案教案标题:二次函数的图像与性质教案教案目标:1. 理解二次函数的基本概念和性质;2. 掌握二次函数图像的绘制方法;3. 能够分析二次函数的图像特征和性质。

教案步骤:步骤一:引入二次函数的概念和性质(10分钟)1. 引导学生回顾一次函数的概念和性质,然后引入二次函数的概念,解释二次函数与一次函数的区别。

2. 介绍二次函数的一般形式:f(x) = ax^2 + bx + c,并解释各项的含义。

3. 解释二次函数的性质:对称性、开口方向、顶点、轴等。

步骤二:绘制二次函数的图像(20分钟)1. 通过给定不同的a、b、c值,绘制不同形态的二次函数图像。

2. 详细解释如何确定二次函数的顶点、轴和开口方向。

3. 引导学生观察图像的变化规律,总结二次函数图像与a、b、c值的关系。

步骤三:分析二次函数的图像特征和性质(15分钟)1. 引导学生观察不同形态的二次函数图像,分析其对称性、最值、零点等特征。

2. 引导学生发现二次函数图像的对称轴与一次函数图像的x轴有何关系。

3. 引导学生讨论二次函数图像的开口方向与a值的关系,并总结规律。

步骤四:应用二次函数的图像与性质(15分钟)1. 给定实际问题,引导学生建立与之对应的二次函数模型。

2. 利用二次函数图像的性质,解决实际问题,如求最值、零点等。

3. 引导学生讨论二次函数图像在不同场景中的应用,如抛物线的运动轨迹、物体的抛射问题等。

步骤五:总结与拓展(10分钟)1. 让学生总结二次函数的图像特征和性质,包括对称性、开口方向、顶点、轴等。

2. 引导学生思考二次函数的应用领域,并拓展到其他数学知识的应用,如函数的复合、函数的逆运算等。

教学资源:1. 教材:包含二次函数相关知识的教材或教学参考书。

2. 白板、彩色笔等教学工具。

3. 实际问题的案例素材。

评估方式:1. 课堂练习:通过绘制二次函数图像、分析图像特征等练习,检查学生对二次函数的理解和应用能力。

《二次函数的图像和性质复习课》教学设计

《二次函数的图像和性质复习课》教学设计

《二次函数的图像和性质复习课》教学设计三星口九年一贯制学校王丽娟教学目标:1、通过复习,掌握各类形式的二次函数解析式的求解方法和思路,能够一题多解,发散学生的思维,提高学生的创造思维能力;2、能运用数学思想解决有关二次函数的综合问题,帮助学生提高解决综合题的能力。

3、提高学生对知识的整合能力和分析能力。

4、经历探索二次函数相关题目的过程,体会数形结合思想、化归思想在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活.重难点:二次函数图象及其性质,应用二次函数分析和解决实际问题。

教学方法:自主探究、合作交流。

教学过程:一、课前作业展示1、以思维导图的形式总结整理二次函数知识点。

2、实物投影学生做的思维导图,学生指出思维导图的优缺点,及改进方案。

二、自主探究(一)多媒体出示问题1、请你任意写出一个二次函数解析式。

学生写解析式,教师提示二次函数解析式的形式,师生共同总结二次函数解析式的三种形式。

2、你能给出尽可能少的条件让大家求出你所写的二次函数表达式吗?(1)学生根据自己所写表达式给出条件,其他同学求,求完订正与该同学所写二次函数表达式是否一致。

(2)学生总结求二次函数解析式需要条件有哪些,各种条件下所适用的解析式形式如何对应。

3、由你所写的二次函数解析式可以构建怎样的填空选择题?(1)学生根据自己的解析式提出问题其他同学求解;(2)学生讨论总结关于二次函数的问题类型有哪些,并对应各问题的解决要点作出总结。

三、合作交流抛物线y=ax²+bx+c的对称轴为直线x=-1,部分图像如图所示,下列判断中:①abc>0②b²-4ac>0③9a-3b+c=0④6a-2b+c<0⑤若点(-0.5,y1),(-2,y2)均在不抛物线上,则y1>y2,其中正确的是________.1、多媒体展示题目学生自主解答;2、针对不会的选项小组讨论交流。

3、订正答案,不懂的选项由会的同学进行讲解。

《二次函数的图像和性质》复习教案

《二次函数的图像和性质》复习教案

(3)二次函数 y=ax2+bx+c(a≠ 0)的图象是一条____________线。
当 a>0,开口向___,当 x_____时,函数有最___值为_______
当 a<0,开口向___,当 x____时,函数有最___值为_______
(4)抛物线 y=ax2+bx+c(a≠0)的位置由 a,b,c 决定:
① y x 2 8x 20
5、画出函数 y (x 2)2 1的图象,根据图像确定 x 取何值时:
①y=0
②y>0
③y<0
二.小组合作探究:
((11))数数与与形形结结合合 (1)若 a<0,b>0,则抛物 y=ax2+bx+c(a≠0)的图象大致是( )
若 a<0,b<0,则抛物 y=ax2+bx+c(a≠0)的图象则是( ) (2)形与数结合
正确的说法有_____________。(把正确的答案的序号都填在横线上)
4、.(2008 年泰安市)在同一直角坐标系中,函数 y mx m 和 y mx2 2x 2 ( m 是常
数,且 m 0 )的图象可.能.是( )
y
y
y
y
三、谈谈你的收获: 四、达标测试:
1、(2008 年巴中市))二次函数 y ax2 bx c(a 0) 的图象如图 4 所示,
时,y=____________
当 a≠ 0,b=0,c ≠ 0 时,y=___________
当仅有 c=0 时,y=_______ 这些函数都叫_______
(2)二次函数 y=ax2+bx+c(a≠ 0)通过配方写成 y=a(_____)2+_____,可得出对称轴为 ________

二次函数的图像和性质教案

二次函数的图像和性质教案

二次函数的图像和性质教案教案标题:二次函数的图像和性质教学目标:1. 理解二次函数的定义、图像和性质;2. 能够画出二次函数的图像,并根据图像分析其性质;3. 掌握二次函数的顶点、对称轴、零点以及开口方向的求解方法;4. 运用二次函数的性质解决实际问题。

教学重点:1. 二次函数的图像及其意义;2. 二次函数的性质及其应用。

教学难点:1. 二次函数性质的理解和应用;2. 实际问题转化为二次函数求解。

教学准备:1. 教师:计算机、投影仪;2. 学生:纸张、铅笔、计算器。

教学过程:一、导入(5分钟)1. 展示一个抛物线的图像,引发学生思考:这个图像与平面解析几何中的什么有关?2. 引导学生回顾解析几何中的抛物线,了解其定义和性质。

二、知识讲解(15分钟)1. 介绍二次函数的定义:二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c为实数且a≠0;2. 讲解二次函数图像的基本形状和性质,包括抛物线的开口方向、顶点、对称轴等概念;3. 指导学生如何利用顶点求解二次函数的最值和对称轴的方程。

三、图像绘制(20分钟)1. 学生利用计算器或手工绘制二次函数的图像,从中观察和分析抛物线的特征;2. 小组讨论并汇报图像的性质,如开口方向、顶点坐标、对称轴等。

四、性质探究(15分钟)1. 学生根据图像和定义,推导二次函数与其各特征之间的关系;2. 学生以小组为单位,解答提出的问题,并进行讨论。

五、解题实践(20分钟)1. 提供一组具体的问题,要求学生利用所学二次函数的性质解答;2. 学生独立或合作解答问题,并与小组成员讨论思路和解题方法;3. 学生汇报解答结果,并进行讨论。

六、拓展与总结(10分钟)1. 引导学生思考:二次函数的图像和性质在哪些实际问题中能够应用?2. 总结本节课所学内容,强调二次函数图像与性质的重要性。

教学延伸:1. 进一步讲解二次函数图像的平移、伸缩等变换;2. 利用软件工具进行二次函数的探索和应用。

(教案)二次函数图象和性质复习教案(共五篇)

(教案)二次函数图象和性质复习教案(共五篇)

(教案)二次函数图象和性质复习教案(共五篇)第一篇:(教案)二次函数图象和性质复习教案《二次函数的图象和性质》复习课教案海洲初级中学初三数学备课组内容来源:初中九年级《数学(上册)》教科书教学内容:二次函数图像与性质复习课时:两课时教学目标:1.根据二次函数的图象复习二次函数的性质,体会配方、平移的作用以及在解决相关问题的过程中进一步体会数形结合的数学思想。

2.会利用二次函数的图象判断a、b、c的取值情况。

3.在解决二次函数相关问题时,渗透解题的技巧和方法,培养学生的中考意识。

教材分析:二次函数是学生在中学阶段学习的第三种函数,是中考的重要考点之一,它与学生前面所学的一元二次方程有密切的联系,也是初中数学与高中数学的一个知识的交汇点。

本节课通过二次函数的图象和性质的复习,从特殊到一般,再由普遍的一般规律去指导具体的函数问题,加深学生对函数图象和性质之间的联系,构建知识网络体系,发展技能,归纳解题方法,让学生在练习中体会数形结合思想。

学情分析学生具有初步的、零散的关于二次函数的图象和性质的知识基础,但是还没有形成系统的知识体系,缺乏解决问题有效的、系统的方法,解决问题办法单一,较难想到运用函数的图象解决问题。

本节课针对班级学生特点采取小组合作进行教学,通过小组的交流、讨论和展示,提高学生学习的积极性和有效性。

通过本节课的学习使学生把函数的图象和性质紧密联系在一起,掌握解决一类问题的常用方法。

教学过程一、旧知回顾1、已知关于x的函数y=2、已知函数y=-2x-2,化为y=a+3x-4是二次函数,则a的取值范围是.+k的形式:此抛物线的开口向,对称轴为,顶点坐标;当x= 时,抛物线有最值,最值为;当x 时,y随x的增大而增大;当x 时,y随x的增大而减少。

3、二次函数y=-3的图象向右平移1个单位,再向上平移3个单位,所得到抛物线的解析式为4、若二次函数y=2x+m的图象与x轴有两个交点,则m的取值范围是5、抛物线的顶点在(-1,-2)且又过(-2,-1),求该抛物线的解析式。

九年级上册数学(二次函数的图像与性质)优秀教案

九年级上册数学(二次函数的图像与性质)优秀教案

九年级上册数学(二次函数的图像与性质)优秀教案九年级上册数学(二次函数的图像与性质)优秀教案一、考纲分析二次函数是一个重要的函数模型,每年高考必考,通常以选择填空形式为主,难度适中,主要考查二次函数的图像与性质,以及二次函数,一元二次不等式及一元二次方程之间的关系及应用,重点考查分类商量、数形结合,函数与方程,转化与划归等数学思想。

本节课分为两课时进行,第—课时主要复习二次函数的图像与性质,以及图像性质在研究函数最值和单调性方面的应用,进一步使学生体会数形结合,分类商量,函数与方程等数学思想解决问题的过程。

第二课时主要复习一元二次不等式恒成立问题及二次方程根的分布问题,再次尝试用数形结合、函数与方程、转化与划归等数学思想分析与解决问题。

二、学习目标:1、掌握二次函数的定义、图像和性质2、会用二次函数的图像性质在研究函数最值和单调性3、进一步体会数形结合,分类商量,函数与方程等数学思想在解题中的作用重点:二次函数最值和单调性难点:二次函数在闭区间上的最值和单调性的应用三、学情分析高三五班是理科重点班,学生根底知识相对较好,有肯定分析问题的能力,所以将根底知识的复习知识应用探究交给学生,放手让学生商量并展示。

但是通过前段时间的教学发觉学生运用数学言语表述问题的能力较差,所以我将例题书写过程进行板书,以标准学生会书写。

四、教法学法分析1、教法结合本节课的学习目标和学生情况,我采纳讲授法和自主探究相结合的教学方法。

讲授法的选取在于引导学生分析问题,使学生理清思路,援助学生总结提高,领悟问题的本质,自主探究法的目的调动学生学习的积极性,使学生参与课堂,积极思维,动手操作,亲自体验知识应用过程,从而猎取知识。

2、学法在教师的引导下梳理根底知识,通过自主探究小组合作交流、商量、展示、解决问题,体会知识的应用过程。

在这个过程中充分锻炼学生动手操作、动脑思考、动手表达的能力,掌握学习的主动权,学会分析问题和解决问题。

《二次函数的图像与性质复习》(第一课)教学设计

《二次函数的图像与性质复习》(第一课)教学设计

《二次函数的图像与性质复习》(第一课)教学设计【教材分析】二次函数是中考的重点内容之一,主要考查二次函数的图像与性质,求二次函数的解析式以及二次函数的实际应用。

近年中考在二次函数方面,难度有稍降的趋势,所以复习时必须重视基础知识,再通过一些应用性的题目提升学生的能力。

本节课重点复习二次函数的图像与性质,它是综合应用的基础。

这一节课中蕴含多种数学思想方法,如方程与函数思想,数形结合思想,划归与转化思想(如过关训练第6题中转化为两点之间线段最短的问题),分类讨论思想(练习第7题中分类讨论动点产生的等腰三角形问题),在复习时要多向学生渗透,强调。

二次函数在学习函数内容上起着承上启下的作用,与前面学习的二次三项式、一元二次方程有着密切联系,为今后学习高中的函数打下基础,积累经验,提供可以借鉴的方法。

【学情分析】二次函数内容比较抽象,学生较难理解。

另外二次函数题目与图形结合紧密,学生的读图能力不强,因此大部分学生掌握得不好。

但此前已复习了一次函数,对函数的认识有了一定程度的加深,学生熟悉建立函数模型过程,会用待定系数法求函数解析式,有利于复习的开展。

在复习时要针对学生的实际,注重基础知识的掌握,设置针对性练习达到熟练的程度,再通过一些应用性的题目提升学生的能力。

【教学目标】✧知识与技能(1)掌握二次函数的概念以及图像与性质;(2)会建立二次函数模型,并利用二次函数的图像与性质解决简单问题。

✧过程与方法经历探究、交流、归纳过程,体会数形结合、划归和转化以及方程与函数、分类讨论等思想,学会总结解题规律,提高分析和解决问题的能力。

✧情感态度与价值观(1)通过合作学习,提高竞争意识,提高数学学习兴趣;(2)通过讲解题目,培养学生严谨的数学思维和准确的语言组织能力。

【教学重点】:二次函数图象与性质,能熟练运用二次函数的性质解决问题。

【教学难点、关键】提高读图、识图的能力,建立函数模型并求解。

【教学方法】以题代纲,梳理知识;查漏补缺,讲练结合;归纳总结,提升能力【教学手段】计算机、PPT【教学过程设计】【教学过程】一、独立练习,知识梳理,(学生独立练习,互相批改)1、二次函数的概念(1)若y =(m +1)xm2-6m -5是二次函数,则m =(2)已知正方形的边长是x,面积是y,则y 与x 的函数关系式是 当x= 32 时,y 的值是2、画函数图像请用描点法画出函数y=x 2-4x+3的图像(在给定的平面直角坐标系中)3、二次函数的图像特征(1)开口方向、对称轴、顶点坐标(2)与x 轴、y 轴的交点坐标抛物线y=x 2+4x-5与y 轴的交点坐标是 ,与x 轴的交点坐标是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


( 2)形与数结合
( 2)已知 y=ax 2+bx+c(a ≠ 0)的图像如下图 ,则 (
)
A a<0,b>0,c>0
B a<0,b>0,c<0
C a<0,b<0,c>0
D a<0,b<0,c<0 (3)二次函数 y=ax 2+ bx+ c(a≠0) 的图象如图则下列不正确的是


A、 a<0,b>0,c<0 B、 b2-4ac<0
()
③ a+ b+ c> 0
④当 x> 1 时, y 随 x 的增大而增大。
(A)
(B)
(C)
(D)
转化:二次函数问题
转化 一元二次方程
( 6)已知二次函数 y=x2+( 2m+1)x + m2 的图象与 x 轴有两个交点。 ( 1)求 m 的范围; ( 2)当这两个交点横坐标的平方和等于 7,求 m 的值;
(1) 函数 y=
(a,b,c
是常数 ,a ≠ 0) 叫二次函数 . 当 a ≠ 0,b=c=0
时,y=____________
当 a≠ 0,b=0,c ≠ 0 时 ,y=___________
当仅有 c=0 时 ,y=_______ 这些函数都叫 _______ (2) 二次函数 y=ax 2+ bx+ c(a ≠ 0) 通过配方写成 y=a(_____) 2+_____, 可得出对称轴为 ________
正确的说法有 _____________ 。 (把正确的答案的序号都填在横线上 )
4、. ( 泰安市)在同一直角坐标系中,函数 y mx m 和 y mx2 2x 2 ( m 是常数,且
m 0 )的图象可.能.是(

y
y
y
y
三、谈谈你的收获: 四、达标测试:
1、( 巴中市)) 二次函数 y ax2 bx c(a 0) 的图象如图 4 所示,

的符号决定抛物线的开口方向。

的符号决定抛物线与 y 轴交点的位置。
③ ? =______决定抛物线与 ___轴是否相交。
当 ? >0 时,抛物线与 x 轴有 _______交点
当 ? =0 时,抛物线与 x 轴有 _______交点
当 ? <0 时,抛物线与 x 轴有 _______交点
2、作二次函数的图象的步骤:(
A. -1
B .1
C. - 3
D. -4
3、 ( 安徽省 ) 如图为二次函数 y=ax 2+ bx +c 的图象,在下列说法中:
① ac< 0;
②方程 ax2+ bx + c=0 的根是 x1 = -1, x2= 3
①y
2
x
8x
20
5、画出函数 y ( x 2) 2 1 的图象,根据图像确定 x 取何值时:
① y=0
② y>0
③ y<0
二.小组合作探究:
((11))数数与与形形结结合合
( 1)若 a<0,b>0,则抛物
y=ax
2
+bx+c(a

0)
的图象大致是(

若 a<0,b<0, 则抛物 y=ax 2+bx+c(a≠ 0)的图象则是(
则下列说法不正确的是(

A . b2 4ac 0
B. a 0
2、( 湖北省)如图,抛物线 y ax 2
C. c 0
D.
bx c(a 0) 的对称轴是直线
b 0
2a x 1,且经过点
P (3,
0),则 a b c 的值为
A. 0
B. -1
C. 1
D. 2
y
3
O
x
O
x
Ox
Ox
A.
B.
C.
D.
5、已知二次函数 y x 2 mx m 2
顶点坐标为 ___________ (3) 二次函数 y=ax 2+ bx+ c(a ≠ 0) 的图象是一条 ____________线。
当 a>0 ,开口向 ___,当 x_____时,函数有最 ___值为 _______
当 a<0 ,开口向 ___,当 x____时,函数有最 ___值为 _______ (4)抛物线 y=ax 2+bx+c(a ≠ 0) 的位置由 a,b,c 决定:
二次函数的图像和性质 学习目标 : 1.、进一步掌握二次函数的图像和性质
2、学会运用“数形结合”的思想方法来进行数量的分析与判断
3、能运用“转化”的思想方法,把二次函数问题
转化 一元二次方程的有关知识
来解决
学习重点 :数形结合,转化等思想方法的运用
学习过程 :
一.前置学习:回顾二次函数的知识点 1、二次函数 y=ax 2+bx+c 的性质
C、 a+b+c<0
D、 a-b+c>0
( 4)如图: A , B, C 是二次函数 y=ax 2+ bx+c(a≠ 0)的图象上的三点,根据图中给出的三点 位置情况可得 a,b,c, ?与 0 的大小关系
a____0
b____0
c____0
?____0
(填 >,<或 =)
C B
A
2
( 5).已知一次函数 y=ax+ c 与二次函数 y= ax +bx+ c,它们在同一坐标系内的大致图象是
(1)求证:不论 m 为何实数,此函数的图象与 x 轴都有两个交点。
(2)当二次函数的图象过(3,6)时,确定
m 的值,并求出图象与 x 轴的交点坐标。
五、拓展提高:( 义乌市) 已知:二次函数 y ax2 bx a2 b a 0 的图像为下列图像之一, 则 a 的值为
P –1 O 1 3 x
(第 6 题图)
)、(
)、自变量 x 的值,再求 y 的值,通常选 5 或 7 个点作图,连线注意图象平滑。
3、在抛物线 y x 2 4 x 4 上的一个点是


A (4,4)
B (3,-1)
C (-2,-8)


1,
7

24
4、通过配方,求下列抛物线的开口方向,对称轴和顶点坐标:
相关文档
最新文档