第一章-空间几何体的表面积和体积练习题

合集下载

高一数学空间几何体的表面积与体积试题答案及解析

高一数学空间几何体的表面积与体积试题答案及解析

高一数学空间几何体的表面积与体积试题答案及解析1. 已知正方体的棱长为1,且其顶点都在一个球面上,则该球的表面积为( ) A .π B .2π C .3π D .4π【答案】C.【解析】正方体的对角线长为外接球的直径,因此,,因此.【考点】球的表面积公式.2. 如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =2,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.【答案】S 表面=(60+4)π.V =π.【解析】该图形旋转后是一个圆台除去一个倒放的圆锥, 则S 表面=S 下底面+S 台侧面+S 锥侧面 , 设圆台上,下地面半径是r 1,r 2,则 S 表面=π×r 22+π×(r 2+r 1)×5+π×r 1×CDV =V 台-V 锥=π(+r 1r 2+)AE -πr 2DE ,将数据代入计算即可。

试题解析:如图,设圆台上,下地面半径是r 1,r 2,过C 点作CF ⊥AB ,由∠ADC =135°,CE ⊥AD, CD=2得∠EDC =45°,r 1=" CE=" 2,则CF=4,BF=3,CF ⊥AB ,得BC=5,r 2=" AB=" 5, ∴S 表面=S 下底面+S 台侧面+S 锥侧面 =π×r 22+π×(r 2+r 1)×5+π×r 1×CD =π×52+π×(2+5)×5+π×2×2 =(60+4)π. V =V 台-V 锥=π(+r 1r 2+)AE -πDE =π(+2×5+)4-π×2=π.【考点】圆台,圆锥的表面积和体积.3.如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.(1)求证:ED⊥平面EBC;(2)求三棱锥E-DBC的体积.【答案】(1)见解析;(2)【解析】(1)易得△DD1E为等腰直角三角形DE⊥EC,BC⊥平面 BC⊥DE,所以DE⊥平面EBC平面DEB⊥平面EBC.(2)需要做辅助线,取CD中点M,连接EM∥,DCB(这个证明很关键),然后根据公式.试题解析:(1)在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.∴△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.∴,即DE⊥EC.在长方体ABCD-中,BC⊥平面,又DE平面,∴BC⊥DE.又,∴DE⊥平面EBC.又∴平面DEB⊥平面EBC.(2)取CD中点M,连接EM,E为D1C1的中点,∥,且,又DCB.【考点】线面垂直,三棱锥的体积.4.设甲、乙两个圆柱的底面积分别为,体积分别为,若它们的侧面积相等,且,则的值是.【答案】【解析】设甲、乙两个圆柱的底面半径为,母线长,由于侧面积相等,,,,.【考点】圆柱的体积公式应用.5.如果两个球的体积之比为8:27,那么两个球的表面积之比为()A.8:27B.2:3C.4:9D.2:9【答案】C【解析】由题意,故选C【考点】球的体积和表面积6.棱长为4的正方体的八个顶点都在同一个球面上,则此球的表面积为_____________.【答案】48【解析】正方体的外接球的球心为正方体的中心,球的直径为正方体的对角线,所以球的表面积为【考点】正方体的外接球7.如图是从上下底面处在水平状态下的棱长为的正方体中分离出来的.有如下结论:①在图中的度数和它表示的角的真实度数都是;②;③与所成的角是;④若,则用图示中这样一个装置盛水,最多能盛的水.其中正确的结论是(请填上你所有认为正确结论的序号).【答案】①④【解析】①∵在正视图的等腰直角中,在图中的度数和它表示的角的真实度数都是,故①正确;②补全正方体如图所示:连接.∵,∴是正三角形,故.而==,故②错;③连接、,∵,∴是正三角形,所以与所成的角是,故③错;④用图示中这样一个装置来盛水,那么盛最多体积的水时应是三棱锥的体积.又===,故④正确,故填①④.【考点】1、正方体的性质;2、异面直线所成角;3、三棱锥的体积.8.已知一个正三棱锥的三条侧棱两两垂直且相等,底面边长为,则该三棱锥的外接球的表面积是()A.B.C.D.【答案】A【解析】设该正三棱锥为,依题意两两垂直且,所以,且该正三棱锥的外接球与以为邻边的正方体的外接球是相同的,正方体的边长为,体对角线长为,故球的半径为,所以球的表面积为,故选A.【考点】1.三棱锥的外接球;2.球的表面积公式.9.如图,已知直三棱柱中,,,,D为BC的中点.(1)求证:∥面;(2)求三棱锥的体积.【答案】(1)略(2)【解析】(1)连接交于点O,连接OD,在中可根据中位线证得∥,再根据线面平行的性质定理可证得∥面。

高二数学空间几何体的表面积与体积试题答案及解析

高二数学空间几何体的表面积与体积试题答案及解析

高二数学空间几何体的表面积与体积试题答案及解析1.正四棱锥的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为()A.B.C.D.【答案】B【解析】设球的半径为,正方形的ABCD的对角线的交点 M,则球心在直线PM上.,由勾股定理得,再由射影定理得即∴此球的表面积为.【考点】球的表面积.2.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是()平方米.A.B.C.D.【答案】D.【解析】所求几何体的体积为阴影部分的面积与高的乘积,在中,,则,,体积.【考点】组合体的体积.3.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是_________.【答案】【解析】由正视图可知四棱锥的底面边长为2,高为2,可求出斜高为,因此四棱锥的侧面积,答案为.【考点】1.几何体的三视图;2.锥体的侧面积计算4.已知球的直径SC=4,A.,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为_________【答案】【解析】设AB的中点为D,球心为O,连结SD,CD,OD,由SC=4为球的直径知,∠SBC=∠SAC=90o,因为∠ASC=∠BSC=45°,所以SA=BC=SB=AC=,所以SD⊥AB,DC⊥AB,所以AB⊥面SDC,因为AB=2,所以SD=DC==,所以DO= =,所以= ===.考点:球的性质,线面垂直判定,三棱锥的体积公式,转化思想5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞,且知,若仍用这个容器盛水,则最多可盛水的体积是原来的 .【答案】【解析】过作截面平行于平面,可得截面下体积为原体积的,若过点F,作截面平行于平面,可得截面上的体积为原体积的,若C为最低点,以平面为水平上面,则体积为原体积的,此时体积最大.【考点】体积相似计算.6.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是.【答案】【解析】如图甲,考虑小球挤在一个角时的情况,记小球半径为,作平面//平面,与小球相切于点,则小球球心为正四面体的中心,,垂足为的中心.因,故,从而.记此时小球与面的切点为,连接,则.考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如图乙.记正四面体的棱长为,过作于.因,有,故小三角形的边长.小球与面不能接触到的部分的面积为(如答图2中阴影部分).又,,所以.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.【考点】(1)三棱锥的体积公式;(2)分情况讨论及割补思想的应用。

高三高考数学复习练习82空间几何体的表面积与体积

高三高考数学复习练习82空间几何体的表面积与体积

821.一个球的表面积是16π,那么这个球的体积为( )A.163π B.323π C .16π D .24π【解析】 设球的半径为R ,因为表面积是16π,所以4πR 2=16π,解得R =2,所以体积为43πR 3=32π3. 【答案】 B2.某几何体的三视图如图所示,则其表面积为( )A .πB .2πC .3πD .4π【解析】 由三视图可知,该几何体为半径为r =1的半球体,表面积为底面圆面积加上半球面的面积,所以S =πr 2+12×4πr 2=π×12+12×4π×12=3π.故选C. 【答案】 C3.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3 D .2π【解析】 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 【答案】 C4.一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2 【解析】 由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B. 【答案】 B5.(2018·太原一模)某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1B.(24+2)π4+1C.(23+2)π4+12D.(23+2)π4+1 【解析】 由几何体的三视图知,该几何体为一个组合体,其中下部是底面直径为2,高为2的圆柱,上部是底面直径为2,高为1的圆锥的四分之一,所以该几何体的表面积为4π+π+3π4+2π4+1=(23+2)π4+1,故选D. 【答案】 D6.甲几何体(上)与乙几何体(下)的组合体的三视图如图所示,甲、乙几何体的体积分别为V 1,V 2,则V 1∶V 2等于( )A .1∶4B .1∶3C .2∶3D .1∶π【解析】 由三视图知,甲几何体是半径为1的球,乙几何体是底面半径为2,高为3的圆锥,所以球的体积V 1=43π,V 2=13π×22×3=4π,所以V 1∶V 2=1∶3.故选B. 【答案】 B7.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB.3π4C.π2D.π4【解析】 设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r = 12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4. 故选B.【答案】 B8.(2017·襄阳调研)如图是一个空间几何体的三视图,则该几何体的表面积为________.【解析】 由三视图可知,该几何体是一个正四棱柱挖掉一个半球所得的几何体,其中半球的底面就是正四棱柱上底面的内切圆,正四棱柱的底面边长为4,高为2,半球所在球的半径为2.所以该几何体的表面由正四棱柱的表面与半球的表面积之和减去半球的底面构成,故其表面积为(4×4×2+2×4×4)+12×(4π×22)-π×22=64+4π. 【答案】 64+4π9.(2018·乌鲁木齐二诊)已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是________.【解析】 (图略)在四面体ABCD 中,取线段CD 的中点为E ,连接AE ,BE .∵AC =AD =BC =BD =2,∴AE ⊥CD ,BE ⊥C D.在Rt △AED 中,CD =6,∴AE =102.同理BE =102.取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥A B.在Rt △EF A 中,∵AF =12AB =62,AE =102,∴EF =1.取EF 的中点为O ,连接OA ,则OF =12.在Rt △OF A 中,OA =72.∵OA =OB =OC =OD ,∴该四面体的外接球的半径是72,∴外接球的表面积是7π. 【答案】 7π10.(2018·贵州适应性考试)已知球O 的表面积是36π,A ,B 是球面上的两点,∠AOB =60°,C 是球面上的动点,则四面体OABC 体积V 的最大值为________.【解析】 设球的半径为R ,由4πR 2=36π,得R =3.显然在四面体OABC 中,△OAB 的面积为定值,S △OAB =12×R ×32R =34R 2=934.要使三棱锥的体积最大,只需球上的点到平面OAB 的距离最大,显然,到平面OAB 距离的最大值为球的半径,所以四面体OABC 的体积的最大值V =13×934×R =934. 【答案】 93411.(2016·全国丙卷)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ;(2)求四面体N -BCM 的体积.【解析】 (1)证明 由已知得AM =23AD =2. 如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2. 又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A. 取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5. 所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. 12.如图所示,在空间几何体ADE -BCF 中,四边形ABCD 是梯形,四边形CDEF 是矩形,且平面ABCD ⊥平面CDEF ,AD ⊥DC ,AB =AD =DE =2,EF =4,M 是线段AE 上的动点.(1)试确定点M 的位置,使AC ∥平面MDF ,并说明理由;(2)在(1)的条件下,平面MDF 将几何体ADE -BCF 分成两部分,求空间几何体M -DEF 与空间几何体ADM -BCF 的体积之比.【解析】(1)当M 是线段AE 的中点时,AC ∥平面MDF .理由如下:连接CE 交DF 于点N ,连接MN .因为M ,N 分别是AE ,CE 的中点,所以MN ∥AC .又因为MN ⊂平面MDF ,AC ⊄平面MDF ,所以AC ∥平面MDF .(2)将几何体ADE -BCF 补成三棱柱ADE -B ′CF ,如图所示,三棱柱ADE -B ′CF 的体积为V =S △ADE ·CD =12×2×2×4=8,则几何体ADE -BCF 的体积V ADE ­BCF =V ADE ­B ′CF -V F ­BB ′C=8-13×⎝⎛⎭⎫12×2×2×2=203. 因为三棱锥M -DEF 的体积V M ­DEF =13×⎝⎛⎭⎫12×2×4×1=43, 所以V ADM ­BCF =203-43=163, 所以两几何体的体积之比为43∶163=1∶4.。

空间几何体的表面积与体积习题附答案

空间几何体的表面积与体积习题附答案

空间几何体的表面积与体积习题附答案1.圆柱的侧面积可以通过展开图计算,展开图是一个正方形,边长为2πr,所以侧面积为4πr^2,即4πS,因此选项为A。

2.根据三视图可以看出该几何体由两个同底的半圆锥组成,底面半径为1,高为3,因此体积为2×(1/3)πr^2h=π,因此选项为D。

3.根据三视图可以看出该几何体是一个组合体,由一个底面为等腰直角三角形的直三棱柱和一个底面为等腰直角三角形的三棱锥组成。

直三棱柱的高为2,三棱锥的高为2,因此梯形的高为2,底边为2和4,面积为(2+4)×2/2=6,共有2个梯形,因此梯形的面积之和为12,因此选项为B。

4.根据三视图可以看出该几何体为一个圆柱挖去一个同底的圆锥,圆锥的高为圆柱高的一半,因此圆锥的高为2,圆柱的底面积为π,侧面积为4π,圆锥的侧面积为2π×5/2=5π,因此表面积为π+4π+5π=9π+5π,因此选项为A。

5.根据三视图可以看出该几何体为一个直三棱柱削去一个同底的三棱锥,三棱柱的高为5,三棱锥的高为3,三棱锥与三棱柱的底面均为两直角边分别为3和4的直角三角形,因此三棱柱的体积为底面积×高=3×4×5=60,三棱锥的体积为1/3×底面积×高=1/3×3×4×3=4,因此该几何体的体积为60-4=56,因此选项为C。

C1F=4,连接EF,交AD于点G,求三角形AEF和四边形ABCG的面积和长方体ABCD-A1B1C1D1的体积.解:首先可以求出AE=BF=6,EF=8,再根据三角形相似可以求出AG=12,GD=4,因此AD=16,AGD为等腰直角三角形,所以GD=DG=4,因此CG=10,BG=AB-AG =4,所以ABCG为梯形,其面积为(AB+CG)×4=56.三角形AEF的面积为1/2×AE×EF=24.长方体ABCD-A1B1C1D1的体积为16×10×8=1280.题目1:一长方体被平面α分成两个高为10的直棱柱,求平面α把该长方体分成的两部分体积的比值。

几何体的体积与表面积试题

几何体的体积与表面积试题

几何体的体积与表面积试题一、选择题1. 下面关于体积和表面积的说法,正确的是:A. 体积是指几何体的外部空间,表面积是指几何体的内部空间。

B. 箱子的体积和表面积一定是相等的。

C. 体积和表面积都是用立方单位来计量的。

D. 几何体的体积是几何体的表面积的两倍。

2. 一个长方体的长、宽、高分别为3cm、4cm、5cm,它的体积是:A. 60cm³B. 48cm³C. 40cm³D. 20cm³3. 一个正方体的表面积是96平方厘米,它的边长是:A. 8厘米B. 12厘米C. 16厘米D. 24厘米4. 一个圆柱体的底面半径为2cm,高为6cm,它的表面积是:A. 24π平方厘米B. 28π平方厘米C. 32π平方厘米D. 36π平方厘米5. 一个球体的表面积是100π平方厘米,它的半径是:A. 2厘米B. 4厘米C. 6厘米D. 8厘米二、解答题1. 计算一个直方体的体积和表面积,并给出结果的单位。

解答:设直方体的长、宽、高分别为a、b、c,则直方体的体积V为 V = a * b * c,表面积S为 S = 2(a * b + a * c + b * c)。

根据具体的数值,计算出V和S,并注明单位。

2. 已知一个圆柱体的表面积为48π平方厘米,底面半径为3厘米,求圆柱体的高。

解答:设圆柱体的底面半径为r,高为h。

根据题意,可列出方程:2πr^2 + 2πrh = 48π化简得 r^2 + rh = 24代入r=3,解方程得 h = 6厘米。

3. 一个球体的表面积是200π平方厘米,求它的体积。

解答:设球体的半径为r。

根据题意,可列出方程:4πr^2 = 200π化简得 r^2 = 50代入r=√50,计算得体积V = (4/3)πr^3。

三、应用题1. 小明家的水缸是一个圆柱体,底面半径为50厘米,高为120厘米。

他要知道这个水缸最多可以盛多少升水。

解答:水缸的体积为圆柱体的体积V = πr^2h。

(完整版)空间几何体的表面积与体积练习题.及答案

(完整版)空间几何体的表面积与体积练习题.及答案

For personal use only in study and research; not forcommercial use空间几何体的表面积与体积专题一、选择题1.棱长为2的正四面体的表面积是( C ).A. 3 B .4 C .4 3 D .16解析 每个面的面积为:12×2×2×32= 3.∴正四面体的表面积为:4 3.2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的 ( B ). A .2倍 B .22倍 C.2倍 D.32倍解析 由题意知球的半径扩大到原来的2倍,则体积V =43πR 3,知体积扩大到原来的22倍.3.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为( B ). A.1423 B.2843 C.2803D.1403解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积 V =V 长方体-V 正三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843. 4.某几何体的三视图如下,则它的体积是( A) A .8-2π3 B .8-π3C .8-2π D.2π3解析 由三视图可知该几何体是一个边长为2的正方体内部挖去一个底面半径为1,高为2的圆锥,所以V =23-13×π×2=8-2π3.5.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( A)A .24-32π B .24-π3 C .24-π D .24-π2据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V =2×3×4-12×π×12×3=24-3π2.6.某品牌香水瓶的三视图如图 (单位:cm),则该几何体的表面积为( C )A.⎝ ⎛⎭⎪⎫95-π2 cm 2B.⎝ ⎛⎭⎪⎫94-π2 cm 2C.⎝ ⎛⎭⎪⎫94+π2 cm 2D.⎝⎛⎭⎪⎫95+π2 cm 2解析 这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、下面是一个四棱柱.上面四棱柱的表面积为2×3×3+12×1-π4=30-π4;中间部分的表面积为2π×12×1=π,下面部分的表面积为2×4×4+16×2-π4=64-π4.故其表面积是94+π2.7.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S-ABC 的体积为( C).A .3 3B .2 3 C. 3 D .1解析 由题可知AB 一定在与直径SC 垂直的小圆面上,作过AB 的小圆交直径SC 于D ,设SD =x ,则DC =4-x ,此时所求棱锥即分割成两个棱锥S-ABD 和C-ABD ,在△SAD 和△SBD 中,由已知条件可得AD =BD =33x ,又因为SC 为直径,所以∠SBC =∠SAC =90°,所以∠DCB =∠DCA =60°,在△BDC 中 ,BD =3(4-x ),所以33x =3(4-x ),所以x =3,AD =BD =3,所以三角形ABD 为正三角形,所以V =13S △ABD ×4= 3.二、填空题8.三棱锥PABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥PABC 的体积等于__3______.解析 依题意有,三棱锥PABC 的体积V =13S △ABC ·|PA |=13×34×22×3= 3.9.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为_ 3∶2_______.解析 设圆柱的底面半径是r ,则该圆柱的母线长是2r ,圆柱的侧面积是2πr ·2r =4πr 2,设球的半径是R ,则球的表面积是4πR 2,根据已知4πR 2=4πr 2,所以R =r .所以圆柱的体积是πr 2·2r=2πr 3,球的体积是43πr 3,所以圆柱的体积和球的体积的比是2πr 343πr 3=3∶2.10.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是___26_____. 解析 由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 11.如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是____2πR 2____.解析 由球的半径为R ,可知球的表面积为4πR 2.设内接圆柱底面半径为r ,高为2h ,则h 2+r 2=R 2.而圆柱的侧面积为2πr ·2h =4πrh ≤4πr 2+h 22=2πR 2(当且仅当r =h 时等号成立),即内接圆柱的侧面积最大值为2πR 2,此时球的表面积与内接圆柱的侧面积之差为2πR 2.12.如图,已知正三棱柱ABCA 1B 1C 1的底面边长为2 cm ,高为5 cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点A 1的最短路线的长为___13_____cm. 解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 (cm). 三、解答题13.某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥PEFGH ,下半部分是长方体ABCDEFGH .图2、图3分别是该标识墩的正视图和俯视图. (1)请画出该安全标识墩的侧视图; (2)求该安全标识墩的体积.解析 (1)侧视图同正视图,如图所示:(2)该安全标识墩的体积为V =V PEFGH +V ABCDEFGH =13×402×60+402×20=64 000(cm 3).14 .一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V ;(2)求该几何体的表面积S.解析 (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为3,所以V =1×1×3= 3.(2)由三视图可知,该平行六面体中,A1D ⊥平面ABCD ,CD ⊥平面BCC1B1, 所以AA1=2,侧面ABB1A1,CDD1C1均为矩形, S =2×(1×1+1×3+1×2)=6+2 3.15.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .解析 由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h 1的等腰三角形,左、 右侧面均为底边长为6,高为h 2的等腰三角形,如右图所示. (1)几何体的体积为:V =13·S 矩形·h =13×6×8×4=64.(2)正侧面及相对侧面底边上的高为:h 1=42+32=5.左、右侧面的底边上的高为:h 2=42+42=4 2.故几何体的侧面面积为:S =2×⎝ ⎛⎭⎪⎫12×8×5+12×6×42=40+24 2. 1.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ). .解:设展开图的正方形边长为a ,圆柱的底面半径为r ,则2πr =a ,2ar π=,底面圆的面积是24a π,于是全面积与侧面积的比是2221222a a a πππ++=, 2.在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与8个顶点相关的8个三棱锥后 ,剩下的几何体的体积是( ).2.解:正方体的体积为1,过共顶点的三条棱中点的平面截该正方体截得的三棱锥的体积是111111()3222248⨯⨯⨯⨯=,于是8个三棱锥的体积是61,剩余部分的体积是65, 3.一个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是6cm 和8cm ,高是5cm ,则这个直棱柱的全面积是 。

几何体的表面积及体积习题及答案

几何体的表面积及体积习题及答案

空间几何体的表面积与体积(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1.正六棱柱的高为6,底面边长为4,则它的全面积为 ( )A.48(3+3)B.48(3+23)C.24(6+2)2.如图(1)所示,一只装了水的密封瓶子可以看成是由半径为1 cm 和半径为3 cm 的两个圆柱组成的几何体.当这个几何体如图(2)水平放置时,液面高度为20 cm ,当这个几何体如图(3)水平放置时,液面高度为28 cm ,则这个几何体的总高度为 ( )A.29 cmB.30 cmC.32 cmD.48 cm3.(2010·浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是 ( )A.3523 cm 3B.3203cm 3 C.2243 cm 3 D.1603cm 34.如图所示,已知三棱柱ABC —A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1—ABC 1的体积为 ( )A.312 B.34 C.612 D.645.(2010·辽宁)已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=2,则球O的表面积等于()二、填空题(每小题6分,共24分)6.(2010·天津)一个几何体的三视图如图所示,则这个几何体的体积为.7.(2011·湖州模拟)如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是.8.(2010·抚顺六校第二次模拟)把边长为1的正方形ABCD沿对角线BD折起形成三棱锥C—ABD,其正视图与俯视图如图所示,则其侧视图的面积为.9.(2011·南京第一次调研)如图,已知正三棱柱ABC—A1B1C1的底面边长为2 cm,高为5 cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为cm.三、解答题(共41分)10.(13分)已知正方体AC 1的棱长为a ,E ,F 分别为棱AA 1与CC 1的中点,求四棱锥A 1—EBFD 1的体积.11.(14分)如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.12.(14分)(2011·广州调研)如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D —ABC ,如图2所示.图1 图2(1)求证:BC ⊥平面ACD ;(2)求几何体D —ABC 的体积.答案7.26 8.1410. 解 因为EB =BF =FD 1=D 1E =a 2+⎝⎛⎭⎫a 22=52a , 所以四棱锥A 1—EBFD 1的底面是菱形,连接EF ,则△EFB ≌△EFD 1,由于三棱锥A 1—EFB 与三棱锥A 1—EFD 1等底同高,所以111122A EBFD A EFB F EBA V V V ---===2·13·1EBA S ∆·a =16a 3. 11. 解 (1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q —A 1D 1P 的组合体.由P A 1=PD 1=2,A 1D 1=AD =2,可得P A 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),体积V =23+12×(2)2×2=10 (cm 3).12. (1)证明 在图中,可得AC =BC =22,从而AC 2+BC 2=AB 2,故AC ⊥BC ,取AC 的中点O ,连接DO ,则DO ⊥AC ,又平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,DO ⊂平面ADC ,从而DO ⊥平面ABC ,∴DO ⊥BC ,又AC ⊥BC ,AC ∩DO =O ,∴BC ⊥平面ACD .(2)解 由(1)可知BC 为三棱锥B —ACD 的高,BC =22,S △ACD =2,∴V B —ACD =13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体D —ABC 的体积为423.几何作图(作业)1.如图,按要求作图:(1)连接CE ;(2)延长CE 到点D ,使ED =CE ;(3)作直线AD ,作射线DB .B2.如图,已知线段AB,按要求作图:(1)分别以点A和点B为圆心、以AB的长为半径作弧,两弧相交于点C和点D;(2)作直线CD,交线段AB于点E.A3.如图,一辆汽车在公路上由A向B行驶,M、N分别为位于AB两侧的学校.(1)汽车在公路上行驶时会对学校的教学造成影响,当汽车行驶到点P的位置时对学校M的影响最大,行驶到点Q的位置时对学校N的影响最大.请在图中分别作出点P,Q的位置.(2)当汽车从A向B行驶,哪一段上对两个学校的影响越来越大?哪一段上对学校M的影响逐渐减小,而对学校N的影响逐渐增大?NMB A4.(1)如图1,在一条笔直的公路两侧,分别有A ,B 两个村庄,现在要在公路l 上建一座火力发电厂,向A ,B 两个村庄供电,为使所用电线最短,请问发电厂P 应建在何处?简要说明理由.(2)如图2,若要向4个村庄A ,B ,C ,D 供电,发电厂Q 应该建在何处使发电厂到四个村庄的距离之和最小?l A BDC B A图1 图25.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A 地到B 地,架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有______(填序号).6.在直线l 上任取一点A ,截取AB =10cm ,再截取AC =6cm ,则线段BC 的长为__________.B A B A7.在直线l 上任取一点A ,截取AB =20cm ,再截取AC=50cm ,则AB 的中点D 与AC 的中点E 之间的距离为__________.B A B A8.已知线段AB =15cm ,C 点在直线AB 上,BC =2AB ,则AC 的长为__________.B A B A9.从O 点出发的三条射线OA ,OB ,OC ,若∠AOB =60°,∠AOC =40°,则∠BOC 的度数为__________.O B A 60° O B A60°10.已知∠AOB 为直角,∠BOC =40°,OM 平分∠AOB ,ON 平分∠BOC ,则∠MON 的度数为__________.B O A B OA【参考答案】1.(1)作图略;(2)作图略;(3)作图略;2.作图略;3.(1)作图略(提示:过点M作AB的垂线,垂足即为所求的点P,过点N作AB的垂线,垂足即为Q 点);(2)AP段,PQ段;4.(1)作图略(连接AB交直线l的交点即为P点);(2)作图略(提示:连接AD,BC,AD与BC的交点即为Q点)5.③④;6.4 cm或16 cm;7.15 cm或35 cm;8.15cm或45cm;9.20°或100°;10.20°或100°;11.25°或65°.。

2020高中数学 第一章 空间几何体 1..1 柱体、锥体、台体的表面积与体积(含解析)2

2020高中数学 第一章 空间几何体 1..1 柱体、锥体、台体的表面积与体积(含解析)2

1.3.1 柱体、锥体、台体的表面积与体积[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.如图所示,圆锥的底面半径为1,高为错误!,则该圆锥的表面积为( )A.πB.2πC.3π D.4π解析:设圆锥的母线长为l,则l=错误!=2,所以圆锥的表面积为S=π×1×(1+2)=3π.答案:C2.若棱台的上、下底面面积分别为4,16,高为3,则该棱台的体积为()A.26 B.28C.30 D.32解析:所求棱台的体积V=错误!×(4+16+错误!)×3=28.答案:B3.若圆柱的底面半径为1,其侧面展开图是一个正方形,则这个圆柱的侧面积是( )A.4π2B.3π2C.2π2D.π2解析:依题意,圆柱的母线长l=2πr,故S侧=2πrl=4π2r2=4π2。

答案:A4.正方体ABCD-A1B1C1D1中,以顶点A、C、B1、D1为顶点的正三棱锥的全面积为4错误!,则该正方体的棱长为( )A.错误!B.2C.4 D.2错误!解析:设正方体棱长为a,侧面的对角线长为错误!a,所以正三棱锥A-CB1D1的棱长为错误!a,其表面积为4×错误!×(错误!a)2=4错误!,可得a2=2,即a=错误!.答案:A5.在△ABC中,AB=2,BC=错误!,∠ABC=120°,将△ABC绕直线BC旋转一周,所形成的几何体的体积是( )A 。

92π B。

错误!π C.错误!π D.错误!π解析:如图,△ABC 绕直线BC 旋转一周,所形成的几何体是以△ACD 为轴截面的圆锥中挖去一个以△ABD 为轴截面的圆锥后剩余的部分.因为AB =2,BC =32,∠ABC =120°, 所以AE =AB sin60°=3,BE =AB ·cos60°=1,CE =错误!。

V 1=13π·AE 2·CE =错误!,V 2=错误!π·AE 2·BE =π, 所以V =V 1-V 2=错误!π.故选D 。

立体几何——表面积及体积专项训练

立体几何——表面积及体积专项训练

3 a2
A. 4
B. 8
6 a2
C. 8
6 a2
D. 16
8、利用斜二测画法可以得到:①三角形的直观图是三角形,②平行四边形的直观图是平行四边 形,③正方形的直观图是正方形,④菱形的直观图是菱形,以上结论正确的是( )。
学习资料
学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除
A.①②
B.①
(Ⅲ)求几何体 ADEBC 的体积 V。
F
G
B
A
C
学习资料
学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除
考点:
例 7、在边长为 6cm 的正方形 ABCD 中,E、F 分别为 BC、CD 的中点,M、N 分别为 AB、CF
的中点,现沿 AE、AF、EF 折叠,使 B、C、D 三点重合,构成一个三棱锥.
和 z 轴的线段.
(4)已知图形中平行于 x 轴和 z 轴的线段,在直观图中长度相等;平行于 y 轴的线段,长 度取一半.
(二)、小题训练:
1、(2008 广东)将正三棱柱截去三个角(如图 1 所示 A,B,C 分别是 △GHI 三边的中点)
得到几何体如图 2,则该几何体按图 2 所示方向的侧视图(或称左视图)为( )
则 侧 面 积 S侧 πrl , 那 么 圆 锥 的 表 面 积 是 由 其 侧 面 积 与 底 面 面 积 的 和 构 成 , 即 为
S S侧 S底 πrl πr2 πr(r l) .
(4)正棱锥的侧面展开图是 n 个全等的等腰三角形.如果正棱锥的周长为 c ,斜高为 h ,
则它的侧面积

.
12、 ABC是正△ABC 的斜二测画法的水平放置图形的直观图,若 ABC的面积为 3 , 那么△ABC 的面积为_____________。

立体几何计算练习题体积与表面积

立体几何计算练习题体积与表面积

立体几何计算练习题体积与表面积在几何学中,计算立体图形的体积和表面积是非常重要的。

掌握这些计算方法不仅可以帮助我们理解立体图形的特性,更能应用到实际生活和工作中。

本文将介绍几个常见的立体几何计算练习题,涵盖了体积和表面积的计算方法,希望能够对读者有所帮助。

以下是几个练习题。

练习题一:正方体的体积和表面积计算正方体是最简单的立体图形之一,它的六个面都是正方形。

我们先来计算一个边长为a的正方体的体积和表面积。

体积的计算公式为 V = a^3,其中a表示正方体的边长。

例如,如果正方体的边长为5cm,那么它的体积就是 V = 5^3 = 125 cm^3。

表面积的计算公式为 S = 6a^2,其中a表示正方体的边长。

以边长为5cm的正方体为例,它的表面积就是 S = 6(5^2) = 150 cm^2。

练习题二:圆柱体的体积和表面积计算圆柱体是常见的立体图形,它的底面是一个圆,高度为h。

我们来计算一个半径为r、高度为h的圆柱体的体积和表面积。

体积的计算公式为V = πr^2h,其中π取近似值3.14。

例如,如果圆柱体的半径为3cm,高度为8cm,那么它的体积就是V ≈ 3.14(3^2)(8) ≈ 226.08 cm^3。

表面积的计算公式为S = 2πr^2 + 2πrh,其中π取近似值3.14。

以半径为3cm、高度为8cm的圆柱体为例,它的表面积就是S ≈ 2(3.14)(3^2) + 2(3.14)(3)(8) ≈ 188.64 cm^2。

练习题三:球体的体积和表面积计算球体是没有棱和角的立体图形,它的表面都是由一个半径为r的圆所构成。

我们来计算一个半径为r的球体的体积和表面积。

体积的计算公式为 V = (4/3)πr^3,其中π取近似值3.14。

例如,如果球体的半径为6cm,那么它的体积就是V ≈ (4/3)(3.14)(6^3) ≈ 904.32 cm^3。

表面积的计算公式为S = 4πr^2,其中π取近似值3.14。

高三数学空间几何体的表面积与体积试题

高三数学空间几何体的表面积与体积试题

高三数学空间几何体的表面积与体积试题1.四面体ABCD的四个顶点都在球O的表面上,平面BCD,是边长为3的等边三角形.若,则球O的表面积为()A.B.C.D.【答案】C【解析】取的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,△BCD是边长为3的等边三角形.∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,,,四面体ABCD外接球的表面积为:,故选C.【考点】球的体积和表面积.2.已知ABC的三个顶点在以O为球心的球面上,且,BC=1,AC=3,三棱锥O- ABC的体积为,则球O的表面积为__________。

【答案】【解析】设球的半径为R,ABC的外接圆半径为r,球心O到截面ABC的距离为,由得,=,=,解得AB=,所以==,所以===,解得=,由正弦定理知,2r===3,所以r=,由球的截面性质知,=2,所以球O的表面积为=.【考点】球的截面性质,球的表面积公式,棱锥的体积公式,正弦定理,余弦定理,运算求解能力3.如图,多面体的直观图及三视图如图所示,分别为的中点.(1)求证:平面;(2)求多面体的体积.【答案】(1)证明:见解析;(2)多面体的体积.【解析】(1)由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,由三角形中位线定理得,得证.(2)利用平面,得到,再据⊥,得到⊥平面,从而可得:四边形是矩形,且侧面⊥平面. 取的中点得到,且平面.利用体积公式计算.所以多面体的体积. 12分试题解析:(1)证明:由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,在△中,,且平面,平面,∴∥平面. 6分(2)因为平面,平面,,又⊥,所以,⊥平面,∴四边形是矩形,且侧面⊥平面 8分取的中点,,且平面. 10分所以多面体的体积. 12分【考点】三视图,平行关系,垂直关系,几何体的体积.4.若将一个圆锥的侧面沿一条母线剪开,其展开图是半径为2 cm的半圆,则该圆锥的体积为 .【答案】【解析】由题意得:,所以圆锥的体积为【考点】圆锥的体积及展开图5.若长方体三个面的面积分别为,,,则此长方体的外接球的表面积是________.【答案】6π【解析】设长方体的过同一顶点的三条棱长分别为a、b、c,则解得长方体外接球半径为R==,外接球的表面积为S=4π=6π6.如图所示,正方体ABCD A1B1C1D1的棱长为2,动点E,F在棱A1B1上,点Q是棱CD的中点,动点P在棱AD上.若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P EFQ的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关【答案】C【解析】三棱锥P EFQ 的体积可以看作是以△PEF 为底面,而△PEF 的底EF=1,高A 1P=,与x 有关,三棱锥P EFQ 的高为点Q 到平面PEF 的距离.∵CD ∥EF,∴CD ∥平面PEF.∴点Q 到平面PEF 的距离等于点D 到平面PEF 的距离,与y 无关,故选C.7. 已知一个圆柱内接于球O 中,其底面直径和母线都是2,则球O 的体积是 . 【答案】π【解析】设球的半径为R,则2R==2,∴R=, ∴V=πR 3=π.8. 如图,AA 1,BB 1为圆柱OO 1的母线,BC 是底面圆O 的直径,D ,E 分别是AA 1,CB 1的中点,DE ⊥面CBB 1.(1)证明:DE ∥面ABC ; (2)求四棱锥C-ABB 1A 1与圆柱OO 1的体积比. 【答案】(1)见解析 (2)【解析】解:(1)证明:连接EO ,OA. ∵E ,O 分别为B 1C ,BC 的中点, ∴EO ∥BB 1.又DA ∥BB 1,且DA =BB 1=EO ,∴四边形AOED 是平行四边形,即DE ∥OA.又DE ⊄平面ABC ,AO ⊂平面ABC , ∴DE ∥平面ABC.(2)由题意知DE ⊥平面CBB 1,且由(1)知DE ∥AO , ∴AO ⊥平面CBB 1, ∴AO ⊥BC , ∴AC =AB.∵BC 是底面圆O 的直径, 得CA ⊥AB ,且AA 1⊥CA ,∴CA ⊥平面AA 1B 1B ,即CA 为四棱锥C-ABB 1A 1的高.设圆柱高为h ,底面半径为r , 则V OO 1=πr 2h ,V C-ABB 1A1=h(r)·(r)=hr 2.∴V C-ABB 1A1∶V OO 1=.9. 若长方体的顶点都在半径为3的球面上,则该长方体表面积的最大值为 . 【答案】【解析】设长方体的边长为,那么长方体的表面积为:,又由于:,而,所以该长方体表面积的最大值为.【考点】长方体的表面积;基本不等式的变形.10.已知Rt△ABC,其三边分别为a,b,c(a>b>c).分别以三角形的边a,b,c所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,其表面积和体积分别为S1,S2,S3和V1,V2,V3.则它们的大小关系为()A.S1>S2>S3,V1>V2>V3B.S1<S2<S3,V1<V2<V3C.S1>S2>S3,V1=V2=V3D.S1<S2<S3,V1=V2=V3【答案】B【解析】S1=π (b+c),V1=πa,S2=πac+πc2,V2=πbc2,S3=πab+πb2,V3=πb2c.由于a>b>c,可得S1<S2<S3,V1<V2<V3.11.在三棱锥中,,,,二面角的余弦值是,若都在同一球面上,则该球的表面积是 .【答案】【解析】取中点,连接,∵,∴,∵,∴,平面.∴为二面角.在中,,,∴.取等边的中心,作平面,过作平面,为外接球球心,∴,二面角的余弦值是,所以,,∴,∴点为四面体的外接球球心,其半径为,表面积为.【考点】三棱锥的外接球.12.已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E,F分别为棱BC,AD的中点.(1)求证:DE∥平面PFB;(2)已知二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积.【答案】(1)见解析(2)【解析】(1)因为E,F分别为正方形ABCD的两边BC,AD的中点,所以BE綉FD,即BEDF 为平行四边形,∴ED∥FB,∵FB⊂平面PFB,且ED⊄平面PFB,∴DE∥平面PFB.(2)以D为原点,直线DA,DC,DP分别为x,y,z轴建立空间直角坐标系.如图,设PD=a,可得如下点的坐标P(0,0,a),F(1,0,0),B(2,2,0).则有=(1,0,-a),=(1,2,0).因为PD⊥底面ABCD,所以平面ABCD的一个法向量为m=(0,0,1).设平面PFB的法向量为n=(x,y,z),则可得即.,令x=1, 得z=,y=-,所以n=.由已知二面角P-BF-C的余弦值为,所以得cos〈m,n〉==,∴a=2,∴V=×2×2×2=P-ABCD13.如图,四棱锥中,底面是菱形,,,是的中点,点在侧棱上.(1)求证:⊥平面;(2)若是的中点,求证://平面;(3)若,试求的值.【答案】(1)详见解析(2)详见解析(3)【解析】(1)由线面垂直判定定理,要证线面垂直,需证垂直平面内两条相交直线,由,是的中点,易得垂直于,再由底面是菱形,得三角形为正三角形,所以垂直于,(2)由线面平行判定定理,要证线面平行,需证平行于平面内一条直线,根据是的中点,联想到取AC中点O所以OQ为△PAC中位线.所以OQ // PA注意在写定理条件时,不能省,要全面.例如,线面垂直判定定理中有五个条件,线线垂直两个,相交一个,线在面内两个;线面平行判定定理中有三个条件,平行一个,线在面内一个,线在面外一个,(3)研究体积问题关键在于确定高,由于两个底面共面,所以求的值就转化为求对应高的长度比.试题解析:(1)因为E是AD的中点,PA=PD,所以AD⊥PE.因为底面ABCD是菱形,∠BAD=,所以AB=BD,又因为E是AD的中点,所以 AD⊥BE.因为PE∩BE=E,所以AD⊥平面PBE. 4分(2)连接AC交BD于点O,连结OQ.因为O是AC中点,Q是PC的中点,所以OQ为△PAC中位线.所以OQ//PA. 7分因为PA平面BDQ,OQ平面BDQ.所以PA//平面BDQ. 9分(3)设四棱锥P-BCDE,Q-ABCD的高分别为,,所以VP-BCDE =SBCDE,VQ-ABCD=SABCD. 10分因为VP-BCDE =2VQ-ABCD,且底面积SBCDE=SABCD. 12分所以,因为,所以. 14分【考点】线面垂直判定定理, 线面平行判定定理,锥的体积.14.如图1,一个密闭圆柱体容器的底部镶嵌了同底的圆锥实心装饰块,容器内盛有升水.平放在地面,则水面正好过圆锥的顶点,若将容器倒置如图2,水面也恰过点.以下命题正确的是( ).A.圆锥的高等于圆柱高的;B.圆锥的高等于圆柱高的;C.将容器一条母线贴地,水面也恰过点;D.将容器任意摆放,当水面静止时都过点.【答案】C【解析】本题考查体积公式与空间想象能力,设圆锥的高为,圆柱的高为,则利用倒置前后水的体积不变这个性质知,化简得,均错,现在水的容积正好是圆柱内部空间的一半,因此把圆柱的母线贴地,则水面过点,但过点的平面不可能总是平分圆柱内部除去圆锥的那部分,故错误.【考点】体积公式.15.如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动.(I)求三棱锥E—PAD的体积;(II)试问当点E在BC的何处时,有EF//平面PAC;(1lI)证明:无论点E在边BC的何处,都有PE AF.【答案】见解析【解析】(Ⅰ)注意到PA平面ABCD,得知的长即为三棱锥的高,而三棱锥的体积等于的体积,计算即得.(Ⅱ)当点为的中点时,与平面平行.利用三角形中位线定理,得到,进一步得出∥平面.(Ⅲ)证明:根据等腰三角形得出,根据平面,平面,得到,又因为且,⊂平面,得到平面,又平面,.再根据,平面,及平面,根据,作出结论.试题解析:(Ⅰ)由已知PA平面ABCD,所以的长即为三棱锥的高,三棱锥的体积等于的体积= = .(Ⅱ)当点为的中点时,与平面平行.∵在中,分别为的中点,连结,又平面,而平面,∴∥平面.(Ⅲ)证明:因为,所以等腰三角形中,∵平面,平面,∴又因为且,⊂平面,∴平面,又平面,∴.又∵,∴平面.PB,BE⊂平面PBE,∵平面,∴,即无论点E在边的何处,都有.【考点】几何体的体积,垂直关系,平行关系.16.已知D、E是边长为3的正三角形的BC边上的两点,且,现将、分别绕AD和AE折起,使AB和AC重合(其中B、C重合).则三棱锥的内切球的表面积是()A. B. C. D.【答案】B【解析】如下图所示,,,,.设内切球的半径为r,则,所以内切球的表面积为:.【考点】空间几何体的体积及表面积.17.如图,平面四边形中,,,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一球面上,则该球的体积为( )A.B.C.D.【答案】A【解析】由题意平面四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将其沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,若四面体A′-BCD顶点在同一个球面上,可知A′B⊥A′C,所以BC 是外接球的直径,所以BC=,球的半径为:,所以球的体积为:,选A.【考点】1.球内接多面体;2.球的体积和表面积18.在正三棱锥中,、分别是、的中点,且,若侧棱,则正三棱锥外接球的表面积是()A.B.C.D.【答案】C【解析】∵三棱锥是正棱锥,∴SB⊥AC(对棱互相垂直)∴,又∵而,∴平面,即平面,∴,将此三棱锥补成正方体,则它们有相同的外接球,∴,故选C.【考点】垂直关系,几何体的体积19.在三棱锥S−ABC中,,二面角S−AC−B的余弦值是,若S、A、B、C都在同一球面上,则该球的表面积是.【答案】【解析】如图,取AC的中点D,由已知易证二面角S−AC−B的平面角是∠SDB,,故由余弦定理可得,由勾股定理的逆定理可得,补体得正方体,∴三棱锥S−ABC的外接球的半径为,∴该球的表面积是.【考点】立体几何的二面角,球的表面积20.已知三棱锥的顶点都在球的球面上,且平面,则三棱锥的体积等于____.【答案】12【解析】由平面可得,又所以是平面,可以发现线段的中点为球心,取的中点,则,于是.【考点】立体几何中线线垂直、线面垂直的证明,以及椎体体积的求解等知识,考查学生的分析、知识迁移能力21.棱长为的正方体的个顶点都在球的表面上,分别是棱、的中点,则过两点的直线被球截得的线段长为____________【答案】【解析】设过两点的直线与球球交于均为等腰直角三角形,,点到的距离为棱长一半【考点】正方体与外接球点评:求解本题首先要把握住正方体的外接球的球心为正方体的中心,球心与弦中点的连线垂直于弦,从而解直角三角形求出弦长22.点在同一个球的球面,,,若四面体体积的最大值为,则这个球的表面积为()A.B.C.D.【答案】C【解析】∵,∴是直角三角形,∴的外接圆的圆心是边AC的中点O,如图所示,若使四面体ABCD体积的最大值只需使1点D到平面ABC的距离最大,又平面ABC,所以点D是直线与球的交点设球的半径为R,则由体积公式有:在中,,解得:,故选C。

高一数学空间几何体的表面积与体积试题

高一数学空间几何体的表面积与体积试题

高一数学空间几何体的表面积与体积试题1.设甲、乙两个圆柱的底面积分别为,体积分别为,若它们的侧面积相等,且,则的值是.【答案】【解析】设甲、乙两个圆柱的底面半径为,母线长,由于侧面积相等,,,,.【考点】圆柱的体积公式应用.2.如图所示,在四棱锥中,平面,,,是的中点,是上的点且,为△中边上的高.(1)证明:平面;(2)若,,,求三棱锥的体积;(3)证明:平面.【答案】(1)见解析;(2)体积(3)见解析【解析】试题分析:(1)利用线面垂直的判断定理证明线面垂直,条件齐全.(2)利用棱锥的体积公式求体积.(3)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.(4)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算.试题解析:(1)证明:因为平面,所以。

因为为△中边上的高,所以。

因为,所以平面。

4分(2)连结,取中点,连结。

因为是的中点,所以。

因为平面,所以平面。

则,。

8分(3)证明:取中点,连结,。

因为是的中点,所以。

因为,所以,所以四边形是平行四边形,所以。

因为,所以。

因为平面,所以。

因为,所以平面,所以平面。

13分【考点】(1)空间中线面垂直和平行的判定(2)几何体的体积.3.如果两个球的体积之比为8:27,那么两个球的表面积之比为()A.8:27B.2:3C.4:9D.2:9【答案】C【解析】由题意,故选C【考点】球的体积和表面积4.已知正方体的棱长为1,则该正方体外接球的体积为()A.B.C.D.【答案】A【解析】因为正方体的对角线长就是外接球的直径,而正方体的对角线长为,所以球的半径为,所以正方体的外接球的体积为,故选A.【考点】1、球与正方体的组合体;2、球的体积.5.棱长为1的正方体的8个顶点都在球的表面上,分别是棱的中点,点,分别是线段,(不包括端点)上的动点,且线段平行于平面,则(1)直线被球截得的线段长为(2)四面体的体积的最大值是【答案】(1);(2).【解析】(1)因为点在圆上,为中点,所以直线被球截得的线段长为正方形的外接圆直径,等于,(2)过做与点,连接∵,,平面∥平面,为平面与两平行平面的交线,,又,,平面,设正方体的棱长为1,,则,当时,最大值为.【考点】组合体6.已知直三棱柱中,,是中点,是中点.(1)求三棱柱的体积;(2)求证:;(3)求证:∥面.【答案】(1);(2)证明详见解析;(3)证明详见解析.【解析】(1)这是一个直三棱柱,直接由体积计算公式即可求解;(2)要证,只须证明面,注意到面与底面垂直且交线为,而依题意又有,由面面垂直的性质可得面,问题得证;(3)要证∥面,有两种思路:一是在平面内找一条直线与平行,这时只须取的中点,连接,证明四边形为平行四边形即可;二是先证经过直线的一个平面与面平行,这时可取中点,连结,,先证明面∥面,再由面面平行的性质即可证明∥面.试题解析:(1) 3分(2)∵,∴为等腰三角形∵为中点,∴ -4分∵为直棱柱,∴面面 5分∵面面,面∴面 6分∴ 7分(3)取中点,连结, 8分∵分别为的中点∴∥,∥, 9分∴面∥面 11分面∴∥面 12分.【考点】1.空间几何体的体积计算;2.空间中的平行关系;3.空间中的垂直关系.7.已知一个正三棱锥的三条侧棱两两垂直且相等,底面边长为,则该三棱锥的外接球的表面积是()A.B.C.D.【答案】A【解析】设该正三棱锥为,依题意两两垂直且,所以,且该正三棱锥的外接球与以为邻边的正方体的外接球是相同的,正方体的边长为,体对角线长为,故球的半径为,所以球的表面积为,故选A.【考点】1.三棱锥的外接球;2.球的表面积公式.8.已知正方体的外接球的体积是,则这个正方体的棱长是()A.B.C.D.【答案】D【解析】先求球的半径,直径就是正方体的对角线,然后求出正方体的棱长.正方体外接球的体积是,则外接球的半径正方体的对角线的长为2,棱长等于,故选D.【考点】球内接多面体;球的体积和表面积.9.正方体的体积是64,则其表面积是()A.64B.16C.96D.无法确定【答案】C【解析】由正方体的体积是64,能求出正方体的边长为4,由此能求出正方体的表面积.解:∵正方体的体积是64,∴正方体的边长为4,∴它的表面积S=6×42=96.故选C【考点】正方体的体积和表面积点评:本题考查正方体的体积和表面积的求法,是基础题,解题时要认真审题,注意等价转化思想的合理运用.10.一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48B.32+8C.48+8D.80【答案】C【解析】观察三视图可知,这是一个四棱柱,底面梯形两底分别为2,4,高为4,几何体的高为4,底面梯形的腰长为,所以,几何体表面积为,48+8,故选C。

高三数学空间几何体的表面积与体积试题答案及解析

高三数学空间几何体的表面积与体积试题答案及解析

高三数学空间几何体的表面积与体积试题答案及解析1.如图, 四棱柱的底面ABCD是正方形, O为底面中心, ⊥平面ABCD,.(1)证明: // 平面;(2)求三棱柱的体积.【答案】(1)证明详见解析;(2)体积为1.【解析】本题主要考查线线平行、面面平行、线面垂直、柱体的体积等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,由图象可得到,,,所以得到四边形为平行四边形,所以,利用面面平行的判定得证;第二问,由面ABCD,所以得到是三棱柱的高,利用体积转化法,得到三棱柱的体积.试题解析:(1)设线段的中点为,∵BD和是的对应棱,∴,同理,∵AO和是棱柱的对应线段,∴,且,且四边形为平行四边形且,面面.(2)∵面ABCD,∴是三棱柱的高,在正方形ABCD中,,在中,,,所以,.【考点】线线平行、面面平行、线面垂直、柱体的体积.2.(正四棱锥与球体积选做题)棱长为1的正方体的外接球的体积为________.【答案】.【解析】正方体的体对角线,就是正方体的外接球的直径,所以球的直径为:所以球的半径为:,∴正方体的外接球的体积V=.【考点】1.球的体积;2.球内接多面体.3.如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=BD.(1)求证:BF∥平面ACE;(2)求证:平面EAC⊥平面BDEF(3)求几何体ABCDEF的体积.【答案】(1)见解析;(2)见解析;(3)2【解析】(1)利用线线平行,推证线面平行;(2)利用一个面内一条直线与另一个平面垂直,则这两个平面垂直,证明面面垂直;(3)将不规则几何体转化为主题或椎体的体积求解.试题解析:(1)证明:记AC与BD的交点为O,则DO=BO=BD,连接EO,∵EF∥BD且EF=BD,∴EF∥BO且EF=BO,则四边形EFBO是平行四边形,∴BF∥EO,又∵面ACE,面ACE,∴BF∥平面ACE;(2)证明:∵ED⊥平面ABCD,平面ABCD,∴ED⊥AC.∵ABCD为正方形,∴BD⊥AC,又ED∩BD=D,∴AC⊥平面BDEF,又平面EAC,∴平面EAC⊥平面BDEF;(3)解:∵ED⊥平面ABCD,∴ED⊥BD,又∵EF∥BD且EF=BD,∴BDEF是直角梯形,又∵ABCD是边长为2的正方形,BD=2,EF=,∴题型BDEF的面积为,由(1)知AC⊥平面BDEF,∴几何体的体积VABCDEF =2VA-BDEF=2×S BDEF·AO=.【考点】空间直线与平面位置关系,几何体的体积4.如图,多面体的直观图及三视图如图所示,分别为的中点.(1)求证:平面;(2)求多面体的体积.【答案】(1)证明:见解析;(2)多面体的体积.【解析】(1)由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,由三角形中位线定理得,得证.(2)利用平面,得到,再据⊥,得到⊥平面,从而可得:四边形是矩形,且侧面⊥平面. 取的中点得到,且平面.利用体积公式计算.所以多面体的体积. 12分试题解析:(1)证明:由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,在△中,,且平面,平面,∴∥平面. 6分(2)因为平面,平面,,又⊥,所以,⊥平面,∴四边形是矩形,且侧面⊥平面 8分取的中点,,且平面. 10分所以多面体的体积. 12分【考点】三视图,平行关系,垂直关系,几何体的体积.5.正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为A.B.C.D.【答案】C【解析】如下图所示,连接,因为是正三角形,且为中点,则,又因为面,故,且,所以面,所以是三棱锥的高,所以.【考点】1、直线和平面垂直的判断和性质;2、三棱锥体积.6.棱长为的正四面体的外接球半径为.【答案】【解析】记正四面体棱长为,外接球半径为,在正四面体中,利用棱,与棱共顶点的高及这条棱在对面上的射影构成的直角三角形可解得,因此中本题中.【考点】正四面体(正棱锥的性质).7.如图,已知平面,,,且是的中点,.(1)求证:平面;(2)求证:平面平面;(3)求此多面体的体积.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)取的中点,连结、,利用中位线证明,利用题中条件得到,进而得到,于是说明四边形为平行四边形,得到,最后利用直线与平面平行的判定定理证明平面;(2)由平面得到,再利用等腰三角形三线合一得到,利用直线与平面垂直的判定定理证明平面,结合(1)中的结论证明平面,最后利用平面与平面垂直的判定定理证明平面平面;(3)利用已知条件得到平面平面,然后利用平面与平面垂直的性质定理求出椎体的高,最后利用椎体的体积公式计算该几何体的体积.(1)取中点,连结、,为的中点,,且,又,且,且,为平行四边形,,又平面,平面,平面;(2),,所以为正三角形,,平面,,平面,又平面,,又,,平面,又,平面,又平面,平面平面;(3)此多面体是一个以为定点,以四边形为底边的四棱锥,,平面平面,等边三角形边上的高就是四棱锥的高,.【考点】1.直线与平面平行;2.平面与平面垂直;3.椎体体积的计算8.如图,在三棱锥中,,,°,平面平面,,分别为,中点.(1)求证:∥平面;(2)求证:;(3)求三棱锥的体积.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力.第一问,由于D、E分别为AB、AC中点,所以利用三角形的中位线得出∥,再利用线面平行的判定直接得到结论;第二问,由,而∥得,而D为AB中点,PA=PB,得,所以利用线面垂直的判定得平面,再利用线面垂直的性质得;第三问,由于,利用面面垂直的性质得平面,所以PD是三棱锥的高,而,所以. (1)因为,分别为,中点,所以∥,又平面,平面,所以∥平面. 4分(2)连结,因为∥,又°,所以.又,为中点,所以.所以平面,所以. 9分(3)因为平面平面,有,所以平面,所以. 14分【考点】线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积.9.棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为 .【答案】【解析】 .【考点】几何体的表面积.10.已知等腰梯形PDCB中(如图),PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD(如图).(1)证明:平面PAD⊥平面PCD.(2)试在棱PB上确定一点M,使截面AMC把几何体分成的两部分VPDCMA ∶VMACB=2∶1.(3)在M满足(2)的情况下,判断直线PD是否平行平面AMC.【答案】(1)见解析(2)M为线段PB的中点时(3)不平行【解析】(1)因为PDCB为等腰梯形,PB=3,DC=1,PA=1,则PA⊥AD,CD⊥AD.又因为面PAD⊥面ABCD,面PAD∩面ABCD=AD,CD⊂面ABCD,故CD⊥面PAD. 又因为CD⊂面PCD,所以平面PAD⊥平面PCD.(2)所求的点M即为线段PB的中点.证明如下:设三棱锥M-ACB的高为h1,四棱锥P-ABCD的高为h2,当M为线段PB的中点时,==,所以===,所以截面AMC把几何体分成的两部分VPDCMA ∶VMACB=2∶1.(3)当M为线段PB的中点时,直线PD与面AMC不平行.证明如下:(反证法)假设PD∥面AMC,连接DB交AC于点O,连接MO.因为PD⊂面PBD,且面AMC∩面PBD=MO,所以PD∥MO.因为M为线段PB的中点时,则O为线段BD的中点,即=,而AB∥DC,故==,故矛盾.所以假设不成立,故当M为线段PB的中点时,直线PD与平面AMC不平行.11.棱长为2的三棱锥的外接球的表面积为()A.6πB.4πC.2πD.π【答案】A【解析】由题意知,此三棱锥为正四面体,以此正四面体的各棱为正方形的对角线拓展出一个正方体,则三棱锥外接球的半径为正方体外接球的半径.因三棱锥棱长为2,所以正方体棱长为,其外接球的直径为所以三棱锥的外接球的表面积为6π.12.如图,在三棱锥中,,,平面平面,为中点,点分别为线段上的动点(不含端点),且,则三棱锥体积的最大值为________.【答案】【解析】因为且为中点,所以,因为平面平面,由面面垂直的性质定理可得,即。

高三数学空间几何体的表面积与体积试题

高三数学空间几何体的表面积与体积试题

高三数学空间几何体的表面积与体积试题1.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r=;类比这个结论可知:四面体S -ABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为R,四面体S -ABC的体积为V,则R=.【答案】.【解析】设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为 V四面体A−BCD=∴.【考点】类比推理.2.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.【答案】(1)64 (2)40+24【解析】解:本题考查由三视图求几何体的侧面积和体积,由正视图和侧视图的三角形结合俯视图可知该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥,如图.(1)V=×(8×6)×4=64.(2)四棱锥的两个侧面VAD、VBC是全等的等腰三角形,取BC的中点E,连接OE,VE,则△VOE为直角三角形,VE为△VBC边上的高,VE==4.同理侧面VAB、VCD也是全等的等腰三角形,AB边上的高h==5.∴S侧=2×(×6×4+×8×5)=40+24.3.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是 .【答案】【解析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.【考点】圆锥的侧面展开图与体积.4. (2014·荆州模拟)湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下了一个直径为12cm,深2cm的空穴,则该球的半径是________cm,表面积是________cm2.【答案】10 400π【解析】设球的半径为r,如图:由勾股定理可知,r2=(r-2)2+36,解得r=10cm.所以表面积为4πr2=4π×100=400π(cm2).5.如图甲,在平面四边形ABCD中,已知,,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E,F分别为棱AC,AD的中点.(1)求证:DC平面ABC;(2)设,求三棱锥A-BFE的体积.【答案】(1)证明:见解析;(2).【解析】(1)注意分析折叠前后变化的关系及不变化的关系.在图甲中可得;在图乙中,可得AB⊥CD.根据DC⊥BC,即可得到DC⊥平面ABC.(2)首先根据E,F分别为AC,AD的中点,得到EF//CD,根据(1)知,DC⊥平面ABC,得到EF⊥平面ABC,从而得到在图甲中,根据给定角度及长度,计算“不变量”,得,BD=2,BC=,EF=CD=,利用体积公式计算即得所求.解答本题的关键是确定“垂直关系”,这也是难点所在,平时学习中,应特别注意转化意识的培养,等体积转化的方法,是立体几何中常用方法之一.(1)证明:在图甲中∵且∴,即 1分在图乙中,∵平面ABD⊥平面BDC ,且平面ABD∩平面BDC=BD4分又,,且,∴DC⊥平面ABC. 6分(2)解:, 7分又由(1)知,DC⊥平面ABC,∴EF⊥平面ABC, 8分所以, 9分在图甲中,由得,, 10分,11分12分【考点】平行关系,垂直关系,几何体的体积.6.某几何体的三视图如图所示,则该几何体的体积是.【答案】【解析】直观图是圆柱中抽出正四棱柱∴该几何体的体积是7.已知圆锥的母线长为,侧面积为,则此圆锥的体积为__________.(结果中保留)【答案】【解析】由圆锥的母线长为,侧面积为.则根据.即可求出圆锥的底面周长.从而解出底面半径.再求出圆锥的高.根据体积公式.【考点】1.圆锥曲线的侧面积.2.圆锥曲线的体积公式.3.图形的展开前后的变化.8.已知函数将的图像与轴围成的封闭图形绕轴旋转一周,所得旋转体的体积为___________.【答案】【解析】.【考点】旋转体的体积.9.正四棱锥的五个顶点在同一球面上,若该正四棱锥的底面边长为2,侧棱长为,则这个球的表面积为_________.【答案】【解析】如图是正四棱锥外接球的球心,是底面中心,,,设球半径为,在中,,解得,所以.【考点】正棱锥的外接球.10.若长方体三个面的面积分别为,,,则此长方体的外接球的表面积是________.【答案】6π【解析】设长方体的过同一顶点的三条棱长分别为a、b、c,则解得长方体外接球半径为R==,外接球的表面积为S=4π=6π11.四面体的六条棱中,有五条棱长都等于a.(1)求该四面体的体积的最大值;(2)当四面体的体积最大时,求其表面积.【答案】(1)a3(2)a2【解析】(1)如图,在四面体ABCD中,设AB=BC=CD=AC=BD=a,AD=x,取AD的中点为P,BC的中点为E,连结BP、EP、CP.得到AD⊥平面BPC,∴V-BCD=V A-BPC+V D-BPC=·S△BPC·AP+S△BPC·PD=·S△BPC·AD=··aA≤·=a3(当且仅当x=a时取等号).∴该四面体的体积的最大值为a3.(2)由(1)知,△ABC和△BCD都是边长为a的正三角形,△ABD和△ACD是全等的等腰三角形,其腰长为a,底边长为a,∴S=2×a2+2××a×=a2+a×=a2+=a2.表12.如图,四棱锥P ABCD中,PA⊥底面ABCD,PA=2,BC="CD=2," ∠ACB=∠ACD=.(1)求证:BD⊥平面PAC;(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P BDF的体积.【答案】(1)见解析 (2)【解析】(1)证明:因为BC=CD,所以△BCD为等腰三角形,又∠ACB=∠ACD,故BD⊥AC.因为PA⊥底面ABCD,所以PA⊥BD.从而BD与平面PAC内两条相交直线PA,AC都垂直,所以BD⊥平面PAC.=BC·CD·sin∠BCD=×2×2×sin =.(2)解:三棱锥P BCD的底面BCD的面积S△BCD由PA⊥底面ABCD,得=·S·PA=××2=2.△BCD由PF=7FC,得三棱锥F BCD的高为PA,故=·S△BCD·PA=×××2=,所以=-=2-=.13.一个与球心距离为1的平面截球体所得的圆面面积为π,则球的体积为() A.B.C.D.8π【答案】A【解析】由题意,球的半径为R=,故其体积V=π()3=,选A.14.如图所示,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为________.【答案】【解析】因为E点在线段AA1上,所以S△DED1=×1×1=,又因为F点在线段B1C上,所以点F到平面DED1的距离为1,即h=1,所以VD1-EDF=VF-DED1=·S△DED1·h=××1=.15.若长方体的顶点都在半径为3的球面上,则该长方体表面积的最大值为.【答案】【解析】设长方体的边长为,那么长方体的表面积为:,又由于:,而,所以该长方体表面积的最大值为.【考点】长方体的表面积;基本不等式的变形.16.若圆锥底面半径为1,高为2,则圆锥的侧面积为.【答案】【解析】根据圆锥底面半径、高、母线长构成一个直角三角形,所以母线长为再根据圆锥的侧面积公式圆锥的侧面积公式可结合圆锥展开图为扇形,由相应扇形面积公式理解记忆.【考点】圆锥的侧面积.17.已知四面体的四个顶点都在球的球面上,若平面,,且,,则球的表面积为( )A.B.C.D.【答案】C【解析】因为平面,,在四面体的基础上构造长方体如图,可知长方体的外接球与四面体的外接球相同,长方体的对角线就是外接球的直径,即,球的表面积,故选C.【考点】1、空间几何体的位置关系;2、球的表面积.18.如图,一只蚂蚁由棱长为1的正方体ABCD-A1B1C1D1的点出发沿正方体的表面到达点的最短路程为.【答案】【解析】采用侧面展开法,展开后,在矩形中,,.【考点】立体几何表面距离最短问题.19.如图,平面四边形中,,,,将其沿对角线折成四面体,使平面平面,若四面体顶点在同一球面上,则该球的体积为( )A.B.C.D.【答案】A【解析】由题意平面四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将其沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,若四面体A′-BCD顶点在同一个球面上,可知A′B⊥A′C,所以BC 是外接球的直径,所以BC=,球的半径为:,所以球的体积为:,选A.【考点】1.球内接多面体;2.球的体积和表面积20.如图,在底面为平行四边形的四棱柱中,底面,,,.(Ⅰ)求证:平面平面;(Ⅱ)若,求四棱锥的体积.【答案】(Ⅰ)详见解析;(Ⅱ).【解析】(Ⅰ)由,,,易得,从而平面,由此可得平面平面.(Ⅱ)思路一、由(Ⅰ)知,平面,所以,即是一个直角三角形,这样可得四边形的面积.又平面平面,所以过D作的垂线,该垂线即垂直于平面,由此可得该棱锥的高,从而求得其体积.思路二、将四棱锥分割为以下两部分:三棱锥和,这两个三棱锥的体积相等,我们可先求其中的一个. 而三棱锥即为三棱锥,这个三棱锥的体积就很易求了.试题解析:(Ⅰ)证明:在中,由余弦定理得:,所以,所以,即, 3分又四边形为平行四边形,所以,又底面,底面,所以,又,所以平面, 5分又平面,所以平面平面. 6分(Ⅱ)法一:连结,∵,∴∵平面,所以, 8分所以四边形的面积, 10分取的中点,连结,则,且,又平面平面,平面平面,所以平面,所以四棱锥的体积:. 12分法二: 四棱锥的体积, 8分而三棱锥与三棱锥底面积和高均相等, 10分所以. 12分【考点】1、空间两平面的垂直;2、空间几何体的体积.21.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O的球面上,则该圆锥的表面积与球O的表面积的比值为_____________.【答案】【解析】圆锥与球的截面如下图,设球的半径为,则圆锥底面圆的直径为,圆锥底面面积为,圆锥的侧面面积为,所以圆锥的表面积为,球的表面积为,所以其面积比为.【考点】1.圆锥与球的表面积;2.球与其内接几何体的关系.22.一个所有棱长均为1的正四棱锥的顶点与底面的四个顶点均在某个球的球面上,则此球的体积为()A.B.C.D.【答案】D【解析】设四棱锥是满足条件的,连结、交于,球心在上,令球的半径为,则,由正四棱锥所有棱长为1,易求得四棱锥的高,在中,,即,解得,故球的体积为. 选D.【考点】正四棱锥的性质,球的体积.23.如图,设是棱长为的正方体的一个顶点,过从顶点出发的三条棱的中点作截面,对正方体的所有顶点都如此操作,截去个三棱锥,所得的各截面与正方体各面共同围成一个多面体,则关于此多面体有以下结论:①有个顶点;②有条棱;③有个面;④表面积为;⑤体积为.其中正确的结论是(写出所有正确结论的编号).【答案】①②⑤【解析】根据几何体的特点可知,有12个顶点,24条棱,16个面,所以①、②都对,③错;表面积为故④错;其体积为故⑤成立.【考点】几何体的体积和表面积.24.如图,在三棱柱中,,,分别为,,的中点,设三棱锥体积为,三棱柱的体积为,则【答案】【解析】依题意,,三棱锥的高为三棱柱的高的. ∴.【考点】三棱柱与三棱锥的体积,三角形中位线定理,相似三角形的面积比等于相似比的平方.空间想象能力.中等题.25.如图是某几何体的三视图,则该几何体的体积为A.1B.C.D.【答案】B【解析】由三视图可知,该几何体是一个有一条侧棱垂直于底面的四棱锥,所以该几何体的体积为【考点】本小题主要考查三视图.点评:此类问题,主要考查学生的空间想象能力,解决此类问题的关键是根据三视图正确还原几何体.26.如果一个几何体的三视图如图所示,则该几何体的表面积为()A.B.C.96D.80【答案】A【解析】由三视图知:原几何体为正方体和一个四棱锥的组合体,正方体的棱长为4,正四棱锥的底面边长为4,高为2,所以正四棱锥的斜高为。

空间几何体的表面积和体积练习题集

空间几何体的表面积和体积练习题集

一、知识回顾(1)棱柱、棱锥、棱台的表面积= 侧面积+ ______________; (2)圆柱:r为底面半径,l为母线长侧面积为_______________;表面积为_______________。

圆锥:r为底面半径,l为母线长侧面积为_______________;表面积为_______________。

圆台:r’、r分别为上、下底面半径,l为母线长侧面积为_______________;表面积为_______________。

(3)柱体体积公式:________________________;(S为底面积,h为高)锥体体积公式:________________________;(S为底面积,h为高) 台体体积公式:________________________;(S'、S分别为上、下底面面积,h为高)二、例题讲解题1:如图(1)所示,直角梯形ABCD绕着它的底边AB所在的直线旋转一周所得的几何体的表面积是______________;体积是______________。

8图(1)题2:若一个正三棱柱的三视图如图(2)所示, 求这个正三棱柱的表面积与体积图(2)题3:如图(3)所示,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且ADE ∆,BCF ∆均为正三角形,EF//AB,EF=2,则该多面体的体积为( )A .32B .33C .34D .23EDF左视图俯视图主视图图(3)1、若圆柱的侧面积展开图是长为6cm ,宽为4cm 的矩形,则该圆柱的体积为2、如图(4),在正方体1111D C B A ABCD -中,棱长为2,E 为11B A 的中点,则三棱锥11D AB E -的体积是____________。

图(4)CBADC 1B 1EA 1D 13、已知某几何体的俯视图是如图(5)所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.图(5)(选做题)4、如图(6),一个圆锥的底面半径为2cm,高为6cm,在其中有一个高为xcm的内接圆柱。

空间几何体的表面积与体积计算综合练习题

空间几何体的表面积与体积计算综合练习题

空间几何体的表面积与体积计算综合练习题在几何学中,我们经常需要计算空间几何体的表面积与体积。

下面将给出一些综合练习题,以帮助读者更好地理解和应用这些概念。

1. 圆柱体假设有一个圆柱体,底面半径为r,高为h。

请计算其表面积和体积。

解答:圆柱体的表面积由两个圆的面积以及一个矩形的面积组成。

圆的面积为πr^2,矩形的面积为2πrh。

因此,圆柱体的表面积为2πr^2 + 2πrh。

圆柱体的体积为底面积乘以高,即πr^2h。

2. 球体给定一个球体,半径为r,请计算其表面积和体积。

解答:球体的表面积由整个球的表面积组成,即4πr^2。

球体的体积为4/3πr^3。

3. 锥体假设有一个锥体,底面半径为r,高为h。

请计算其表面积和体积。

解答:锥体的表面积由底圆的面积和锥侧面积组成。

底圆的面积为πr^2,锥侧面积为πrl,其中l为锥体的斜高。

根据勾股定理,可以得到l = √(r^2 + h^2)。

因此,锥体的表面积为πr^2 + πr√(r^2 + h^2)。

锥体的体积为1/3底面积乘以高,即1/3πr^2h。

4. 正方体给定一个正方体,边长为a,请计算其表面积和体积。

解答:正方体的表面积由六个正方形的面积组成,即6a^2。

正方体的体积为边长的立方,即a^3。

5. 长方体假设有一个长方体,长为l,宽为w,高为h。

请计算其表面积和体积。

解答:长方体的表面积由两个长方形的面积以及两个矩形的面积组成。

两个长方形的面积为2lw,两个矩形的面积为2lh和2wh。

因此,长方体的表面积为2lw + 2lh + 2wh。

长方体的体积为长乘以宽乘以高,即lwh。

通过以上练习题的解答,我们可以更好地理解和应用表面积与体积的计算方法。

这些概念在日常生活和工作中有着广泛的应用,例如建筑物的设计与施工、物体的包装和运输等。

在实际问题中,我们需要根据给定的几何体形状和尺寸,利用相应的公式进行计算。

掌握了这些计算方法,我们可以更加准确地评估和解决各种与空间几何体相关的问题。

高一数学空间几何体的表面积与体积试题

高一数学空间几何体的表面积与体积试题

高一数学空间几何体的表面积与体积试题1.已知正三角形的边长为2,沿着上的高将正三角形折起,使得平面平面,则三棱锥的体积是【答案】【解析】∵AD⊥BD,AD⊥CD,BD∩CD=D,∴AD⊥平面BCD,∵平面ABD⊥平面ACD,且∠BDC是二面角B-AD-C的平面角∴∠BDC=90°,∵AD是边长为2的正三角形的高,可得BD=CD=1,AD=∴△BCD的面积S=×1×1=△BCD因此三棱锥A-BCD的体积V=×S×AD=××=△BCD故答案为:【考点】正三角形的性质;线面垂直的判定与性质;锥体体积求法.2.已知正方体的棱长为1,则该正方体外接球的体积为()A.B.C.D.【答案】A【解析】因为正方体的对角线长就是外接球的直径,而正方体的对角线长为,所以球的半径为,所以正方体的外接球的体积为,故选A.【考点】1、球与正方体的组合体;2、球的体积.3.如图,在三棱柱中,侧棱底面, 为的中点,.(1)求证:平面;(2)若,求三棱锥的体积.【答案】(1)详见解析;(2)1.【解析】(1)通过证明线线平行,线面平行的判定定理,在面中找到平行于的线,连接,设与相交于点,连接,证即证;(2)通过等体积转化=试题解析:证明:(1)连接,设与相交于点,连接. 1分∵四边形是平行四边形,∴点为的中点.∵为的中点,∴为△的中位线,∴. 4分∵平面,平面,∴平面. 6分解:(2)∵三棱柱,∴侧棱,又∵底面,∴侧棱,故为三棱锥的高,, 8分10分12分【考点】1.线面平行的判定定理;2.几何题的体积.4.若两个球的表面积之比为1:4,则这两个球的体积之比为()A.1:2,B.1:4,C.1:8,D.1:16【答案】C【解析】球的表面积公式,两个球的表面积之比是,所以半径之比是,球的体积公式是,所以体积之比是.【考点】球的表面积和体积公式5.如图所示,圆锥的轴截面为等腰直角,为底面圆周上一点.(1)若的中点为,,求证平面;(2)如果,,求此圆锥的全面积.【答案】(1)详见解析;(2).【解析】(1)要证平面,即证垂直于平面内的两条相交直线,是已知,转化为证平面,利用母线相等,利用底面半径相等,为中点,证得平面,证得,,得证;(2),求出底面半径,以及母线长,根据全面积公式,,求出全面积.试题解析:解:①连接OC,∵OQ=OB,C为QB的中点,∴OC⊥QB 2分∵SO⊥平面ABQ,BQ平面ABQ∴SO⊥BQ,结合SO∩OC=0,可得BQ⊥平面SOC∵OH⊂平面SOC,∴BQ⊥OH, 5分∵OH⊥SC,SC、BQ是平面SBQ内的相交直线,∴OH⊥平面SBQ; 6分②∵∠AOQ=60°,QB=,∴直角△ABQ中,∠ABQ=30°,可得AB==4 8分∵圆锥的轴截面为等腰直角△SAB,∴圆锥的底面半径为2,高SO=2,可得母线SA=2,因此,圆锥的侧面积为S侧=π×2×2=4π 10分∴此圆锥的全面积为S侧+S底=4π+π×22=(4+4)π 12分【考点】1.线面垂直的判定;2.线面垂直的性质;3.几何体的表面积.6.在正三棱锥中,、分别是棱、的中点,且,若侧棱,则正三棱锥外接球的表面积是()A.B.C.D.【答案】C【解析】∵三棱锥为正棱锥,∴⊥,∴⊥.又∵⊥,,∴平面,即⊥平面,∴,将此三棱锥补成正方体,则它们有相同的外接球,∴,解得,∴.【考点】三棱锥的外接球表面积.7.已知直三棱柱中,,是中点,是中点.(1)求三棱柱的体积;(2)求证:;(3)求证:∥面.【答案】(1);(2)证明详见解析;(3)证明详见解析.【解析】(1)这是一个直三棱柱,直接由体积计算公式即可求解;(2)要证,只须证明面,注意到面与底面垂直且交线为,而依题意又有,由面面垂直的性质可得面,问题得证;(3)要证∥面,有两种思路:一是在平面内找一条直线与平行,这时只须取的中点,连接,证明四边形为平行四边形即可;二是先证经过直线的一个平面与面平行,这时可取中点,连结,,先证明面∥面,再由面面平行的性质即可证明∥面.试题解析:(1) 3分(2)∵,∴为等腰三角形∵为中点,∴ -4分∵为直棱柱,∴面面 5分∵面面,面∴面 6分∴ 7分(3)取中点,连结, 8分∵分别为的中点∴∥,∥, 9分∴面∥面 11分面∴∥面 12分.【考点】1.空间几何体的体积计算;2.空间中的平行关系;3.空间中的垂直关系.8.球的表面积与它的内接正方体的表面积之比是( )A.B.C.D.【答案】B【解析】因为球的直径2R就是球的内接正方体的体对角线的长.即.所以球的表面积为.因为内接正方体的表面积为.所以球的表面积与它的内接正方体的表面积之比是.故选B.【考点】1.球的与内接正方体的关系.2.球的表面积公式.3.正方体的表面积公式.9.如图,已知直三棱柱中,,,,D为BC的中点.(1)求证:∥面;(2)求三棱锥的体积.【答案】(1)略(2)【解析】(1)连接交于点O,连接OD,在中可根据中位线证得∥,再根据线面平行的性质定理可证得∥面。

空间几何体的表面积与体积综合练习题

空间几何体的表面积与体积综合练习题

空间几何体的表面积与体积综合练习题在几何学中,空间几何体的表面积与体积是非常重要的概念。

理解和计算空间几何体的表面积与体积对于解决很多实际问题是至关重要的。

本文将为读者提供一些综合练习题,帮助读者巩固对空间几何体的表面积与体积的理解。

一、长方体1. 一个长方体的长、宽和高分别为12 cm、8 cm和6 cm,求它的表面积和体积。

解析:长方体的表面积公式为S = 2(lw + lh + wh),其中l、w和h分别代表长方体的长、宽和高。

代入已知数据,可得表面积S = 2(12*8 + 12*6 + 8*6) = 2(96 + 72 + 48) = 2*216 = 432 cm²。

长方体的体积公式为V = lwh,代入已知数据可得体积V = 12 * 8 * 6 = 576 cm³。

2. 一个长方体的表面积为180 cm²,已知它的长和高的比为3:2,求它的长、宽和高。

解析:设长方体的长为3x,宽为x,高为2x。

根据表面积公式S =2(lw + lh + wh),代入已知数据得到180 = 2(3x*x + 3x*2x + 2x*x) =2(6x² + 6x² + 2x²) = 2*14x² = 28x²。

解得x² = 180/28 = 6.4286,即x≈2.54。

代入x的值可以得到长方体的长约为3*2.54≈7.62 cm,宽约为2.54 cm,高约为2*2.54≈5.08 cm。

二、正方体3. 一个正方体的棱长为10 cm,求它的表面积和体积。

解析:正方体的表面积公式为S = 6a²,其中a代表正方体的棱长。

代入已知数据可得表面积S = 6 * 10² = 600 cm²。

正方体的体积公式为V = a³,代入已知数据可得体积V = 10³ = 1000 cm³。

高三数学空间几何体的表面积与体积试题答案及解析

高三数学空间几何体的表面积与体积试题答案及解析

高三数学空间几何体的表面积与体积试题答案及解析1.(本题满分12分)底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.【答案】边长为4,体积为.【解析】由于展开图是,分别是所在边的中点,根据三角形的性质,是正三角形,其边长为4,原三棱锥的侧棱也是2,要求棱锥的体积需要求出棱锥的高,由于是正棱锥,顶点在底面上的射影是底面的中心,由相应的直角三角形可求得高,得到体积.试题解析:由题意中,,,所以是的中位线,因此是正三角形,且边长为4.即,三棱锥是边长为2的正四面体∴如右图所示作图,设顶点在底面内的投影为,连接,并延长交于∴为中点,为的重心,底面∴,,【考点】图象的翻折,几何体的体积.2.设甲,乙两个圆柱的底面面积分别为,体积为,若它们的侧面积相等且,则的值是 .【答案】【解析】设甲、乙两个圆柱的底面和高分别为,,则,,又,所以,则.【考点】圆柱的侧面积与体积.3.正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为A.B.C.D.【答案】C【解析】如下图所示,连接,因为是正三角形,且为中点,则,又因为面,故,且,所以面,所以是三棱锥的高,所以.【考点】1、直线和平面垂直的判断和性质;2、三棱锥体积.4.如图,在三棱锥中,,,°,平面平面,,分别为,中点.(1)求证:∥平面;(2)求证:;(3)求三棱锥的体积.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力.第一问,由于D、E分别为AB、AC中点,所以利用三角形的中位线得出∥,再利用线面平行的判定直接得到结论;第二问,由,而∥得,而D为AB中点,PA=PB,得,所以利用线面垂直的判定得平面,再利用线面垂直的性质得;第三问,由于,利用面面垂直的性质得平面,所以PD是三棱锥的高,而,所以.(1)因为,分别为,中点,所以∥,又平面,平面,所以∥平面. 4分(2)连结,因为∥,又°,所以.又,为中点,所以.所以平面,所以. 9分(3)因为平面平面,有,所以平面,所以. 14分【考点】线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积.5.如图,四棱锥P-ABCD中,底面ABCD为正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.(1)求证:平面PBC⊥面PDC(2)设E为PC上一点,若二面角B-EA-P的余弦值为-,求三棱锥E-PAB的体积.【答案】(1)见解析(2)【解析】(1)∵AB=1,PA=2,∠PAB=60°,∴在△PAB中,由余弦定理得PB2=PA2+AB2-2AB·PAcos600=4+1-2×1×2×=3∴PA2=PB2+AB2,即AB⊥PB∵DA⊥面ABP,CB∥DA∴CB⊥面ABP CB⊥AB ,∴AB⊥面PBC又DC∥AB,∴DC∥面PBC∵DC面PDC,∴平面PBC⊥面PDC(2)如图建立空间直角坐标系则A(0,1,0),P(,0,0),C(0,0,1)设E(x,y,z),= (0<<1)则(-,0,1)=(x-,y,z)x=(1-),y=0,z=设面ABE的法向量为n=(a,b,c),则令c=n=(,0,)同理可求平面PAE的法向量为m=(1,,)∵cos<n,m>====∴=或=1(舍去)∴E(,0,)为PC的中点,其竖坐标即为点E到底面PAB的距离∴V=××1××=E-PAB6.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是 .【答案】【解析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.【考点】圆锥的侧面展开图与体积.7.如图,在三棱锥中,,,平面平面,为中点,点分别为线段上的动点(不含端点),且,则三棱锥体积的最大值为________.【答案】【解析】因为且为中点,所以,因为平面平面,由面面垂直的性质定理可得,即。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间几何体的表面积和体积练习题
题1 一个圆锥与一个球的体积相等,圆锥的底面半径是球的半径的3倍,则圆锥的高与底面
半径之比为( ) A.49
B.94
C.427
D.274
题2 正四棱锥P —ABCD 的五个顶点在同一个球面上,若该正四棱锥的底面边长为2,侧棱长
为6,则此球的体积为________.
题3 一空间几何体的三视图如图所示,则该几何体的体积为( )
A .2π+2 3
B .4π+2 3
C .2π+23
3
D .4π+23
3
题4 如图,正方体ABCD -A 1B 1C 1D 1的棱长为2.动点E ,F 在棱A 1B 1上,点Q 是棱CD 的中
点,动点P 在棱AD 上.若EF =1,DP =x ,A 1E =y (x ,y 大于零),则三棱锥P -EFQ 的体积.( )
A .与x ,y 都有关
B .与x ,y 都无关
C .与x 有关,与y 无关
D .与y 有关,与x 无关
题5 直角梯形的一个底角为45°,下底长为上底长的3
2
,这个梯形绕下底所在直线旋转一周所
成的旋转体的表面积是(5+2)π,求这个旋转体的体积.
题6 设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面
积为( ) A .πa 2
B.7
3
πa 2
C.11
3
πa 2
D .5πa 2
题7 在球心同侧有相距9 cm 的两个平行截面,它们的面积分别为49π cm 2和400π cm 2,求
球的表面积.
题8 正四棱台的高为12cm ,两底面的边长分别为2cm 和12cm .(Ⅰ)求正四棱台的全面
积;(Ⅱ)求正四棱台的体积.
题9 如图,已知几何体的三视图(单位:cm).(1)画出这个几何体的直观图(不要求写画法);
(2)求这个几何体的表面积及体积.
题10 如图,在长方体ABCD A B C D ''''-中,用截面截下一个棱锥C A DD ''-,求棱锥
C A D
D ''-的体积与剩余部分的体积之比.
题11已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,求该几何体的体积.
题12如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1= 2,P是BC1上一动点,则CP+P A1的最小值是__________.
课后练习详解
题1 答案:C
详解:设圆锥底面半径为1R ,高为h ,球的半径为2R
,则圆锥体积为
2113R h π,球的体积为3243
R π.由题意知圆锥的底面半径是球的半径的3倍,即1R
=32R .由圆锥与球的体积相等有
2113R h π=3
243
R π,将2R =1
3
R
代入,有2
1R h =31
3
43
R ⨯
,故1
h
R =433=427
. 题2 答案:9
2
π
详解:如图所示,设底面中心为O ′,球心为O ,设球半径为R ,∵AB =2,则AO ′=2,PO ′=P A 2-AO ′2=2,OO ′=PO ′-PO =2-R .在Rt △AOO ′中,AO 2=AO ′2+OO ′2⇒R 2=(2)2+(2-R )2,∴R =32,∴V 球=4
3πR 3=
9
2
π.
题3 答案:C
详解:由几何体的三视图可知,该几何体是由一个底面直径和高都是2的圆柱和一个底面边长为2,侧棱长为2的正四棱锥叠放而成.故该几何体的体积为 V =π×12×2+13×(2)2×3=2π+2
33,故选C.
题4 答案:C
详解:设P 到平面EFQ 的距离为h ,则V P -EFQ =1
3×S △EFQ ·h ,由于Q 为CD 的中点,∴点Q 到直线EF 的距
离为定值2,又EF =1,∴S △EFQ 为定值,而P 点到平面EFQ 的距离,即P 点到平面A 1B 1CD 的距离,显然与x 有关、与y 无关,故选C. 题5 答案:7
3π.
详解:
如图所示,在梯形ABCD 中,AB ∥CD ,∠A =90°,∠B =45°,绕AB 边旋转一周后形成一圆柱和一圆锥的组合体.
设CD =x ,则AB =32x ,AD =AB -CD =x 2,BC =22
x .
S 表=S 柱底圆+S 柱圆侧+S 圆锥侧=π·AD 2+2π·AD ·CD +π·AD ·BC
=π·x 24+2π·x 2·x +π·x 2·22x =5+24πx 2
.
根据题设,5+24πx 2=(5+2)π,则x =2.
所以旋转体体积
V =π·AD 2·CD +π3AD 2·(AB -CD )=π×12×2+π3×12×(3-2)=7
3π.
题6 答案:B 详解:
如图,O 1,O 分别为上、下底面的中心,D 为O 1O 的中点,则DB 为球的半径,有 r =DB =
OD 2+OB 2=
a 24+a 23
=7a 2
12
, ∴S 表=4πr 2=4π×7a 212=7
3πa 2.
题7 答案:2500πcm 2
.
详解:如图为球的轴截面,由球的截面性质知,AO 1∥BO 2,且O 1、O 2分别为两截面圆的圆心,则
OO 1⊥AO 1,OO 2⊥BO 2
.设球的半径为R .
∵π·O 2B 2=49π,∴O 2B =7 cm ,同理π·O 1A 2=400π,∴O 1A =20 cm .
设OO 1=x cm ,则OO 2=(x +9) cm.在Rt △OO 1
A 中,R 2=x 2+202,
在Rt △OO 2B 中,R 2=(x +9)2+72,∴x 2+202=72+(x +9)2
,解得x =15.
∴R 2=x 2+202=252
,∴R =25 cm .∴S 球
=4πR 2=2500π cm 2.
∴球的表面积为2500π cm 2
. 题8 答案:512 cm 2; 688 cm 3
详解:(Ⅰ)斜高2
2
122'12132h -⎛⎫
=+= ⎪⎝⎭
cm
S 正四棱台=S 上+S 下+S 侧=22+122+ 12×(2+12)×13=512 cm 2 (Ⅱ)V= 13(S+
'SS +S′)h= 13(22+22
212++122)×12=688 cm 3
题9 答案:(1)见详解.
(2) 表面积22+4 2 cm 2,体积10 cm 3. 详解: (1)这个几何体的直观图如图所示.
(2)这个几何体可看成是由正方体AC 1及直三棱柱B 1C 1Q —A 1D 1P 的组合体. 由P A 1=PD 1=2,A 1D 1=AD =2,可得P A 1⊥PD 1. 故所求几何体的表面积为:
S =5×22+2×2×2+2×12×(2)2=22+4 2 cm 2,所求几何体的体积V =23+1
2×(2)2×2
=10 cm 3. 题10 答案:15∶
详解: 已知长方体可以看成直四棱柱
ADD A BCC B ''''-.
设它的底面ADD A ''面积为S ,高为h ,则它的体积为V Sh =.
而棱锥C A DD ''-的底面面积为1
2
S ,高是h ,
因此棱锥C A DD ''-的体积111326
C AD
D V Sh Sh -=⨯=''
. 余下的体积是15
66
Sh Sh Sh -=.
所以棱锥C A DD ''-的体积与剩余部分的体积之比为1:5.
题11 答案:17
3
详解:由三视图知,此几何体可以看作是一个边长为2的正方体被截去了一个棱台而得到,此棱台的
高为2,一底为直角边长为2的等腰直角三角形,一底为直角边长为1的等腰直角三角形,棱台的
两底面的面积分别为
111
222,11
222
⨯⨯=⨯⨯=
该几何体的体积是
111717 2222228
32233
⎛⎫
⨯⨯-⨯⨯++⨯=-=


⎝⎭
题12答案:52.
详解:
将△BCC1沿直线BC1折到面A1C1B上,如图,连接A1C,即为CP+P A1的最小值,过点C作CD⊥C1D于D 点,△BCC1为等腰直角三角形,
∴CD=1,C1D=1,A1D=A1C1+C1D=7,
22 1149152
AC A D CD
∴=+=+=。

相关文档
最新文档