放大器 运放 测试
通用放大器测试
通用运算放大器主要参数测试方法说明运算放大器是模拟器件的核心,熟悉运放的特性也就掌握了模拟IC的基础,掌握了运放的测试,其余模拟IC的测试也就能够顺利清楚,所以运放在模拟IC中有着至关重要的地位,故劝各位熟悉并掌握它,现将其各项参数测试具体说明如下:1. 运算放大器测试方法基本原理采用由辅助放大器(A)与被测器件(DUT)构成闭合环路的方法进行测试,基本测试原理图如图1所示。
图 1辅助放大器应满足下列要求:(1) 开环增益大于60dB;(2) 输入失调电流和输入偏置电流应很小;(3) 动态范围足够大。
环路元件满足下列要求:(1) 满足下列表达式Ri·Ib<VosR<RidR·Ib >VosRos<Rf<RidR1=R2R1>RL式中:Ib:被测器件的输入偏置电流;Vos:被测器件的输入失调电压;Rid:被测器件的开环差模输入电阻;Ros:辅助放大器的开环输出电阻;(2) Rf/ Ri值决定了测试精度,但须保证辅助放大器在线性区工作。
2.运算放大器测试适配器SP-3160Ⅲ数/模混合集成电路测试系统提供的运算放大器测试适配器便是根据上述基本原理设计而成。
它由运放测试适配板及一系列测试适配卡组成,可以完成通用单运放、双运放、四运放及电压比较器的测试。
运算放大器适配器原理图如附图所示。
3.测试参数以OP-77G为例,通用运算放大器主要技术规范见下表。
3.1参数名称:输入失调电压Vos (Input Offset Voltage)。
3.1.1参数定义:使输出电压为零(或规定值)时,两输入端间所加的直流补偿电压。
3.1.2测试方法: 测试原理如图2 所示。
图2(1) 在规定的环境温度下,将被测器件接入测试系统中;(2) 电源端施加规定的电压;(3) 开关“K4”置地(或规定的参考电压);(4) 在辅助放大器A的输出端测得电压Vlo;(5) 计算公式:Vos=(Ri/(Ri+Rf))*VLo。
通用集成运算放大器测试方法
运算放大器电参数测试方法通用集成运算放大器电路测试方法作者:李雷一、器件介绍集成运算放大器(简称运放)是模拟集成电路中较大的一个系列,也是各种电子系统中不可缺少的基本功能电路,它广泛的应用于各种电子整机和组合电路之中。
本文主要介绍通用运算放大器的测试原理和实用测试方法。
1.运算放大器的分类从不同的角度,运算放大器可以分为多类:1.从单片集成规模上可分为:单运放(如:OP07A)、双运放(AD712)、四运放(LM124)。
2.从输出幅度及功率上可分为:普通运放、大功率运放(LM12)、高压运放(OPA445)。
3.从输入形式上可分为:普通运放、高输入阻抗运放(AD515、LF353)。
4.从电参数上可分为:普通运放、高精密运放(例如:OP37A)、高速运放(AD847)等。
5.从工作原理上可分为:电压反馈型运放、电流反馈型运放(AD811)、跨倒运放(CA3180)等。
6.从应用场合上可分为:通用运放、仪表运放(INA128)、音频运放(LM386)、视频运放(AD845)、隔离运放(BB3656)等。
2.通用运放的典型测试原理图(INTERSIL公司)李雷第 1 页2008-9-10运算放大器电参数测试方法二、电参数的测试方法以及注意事项一般来说集成运算放大器的电参数分为两类:直流参数和交流参数。
直流参数主要包括:失调电压、偏置电流、失调电流、失调电压调节范围、输出幅度、大信号电压增益、电源电压抑制比、共模抑制比、共模输入范围、电源电流十项。
交流参数主要包括:大信号压摆率、小信号过冲、单位增益带宽、建立时间、上升时间、下降时间六项。
而其中电源电流、偏置电流、失调电流、失调电压、输出幅度、开环增益、电源电压抑制比、共模抑制比、大信号压摆率、单位增益带宽这十项参数反映了运算放大器的精度、速度、放大能力等重要指标,故作为考核运放器件性能的关键参数。
通常运算放大器电参数的测试分为两种方法:一种是单管测试法,另一种是带辅助放大器的测试方法。
实验五---集成运算放大器的参数测试
实验五 集成运算放大器的参数测试一、实验目的1、学会集成运放失调电压U IO 的测试方法。
2、学会集成运放失调电流I IO 的测量方法。
3、掌握集成运放开环放大倍数Aod 的测量方法。
4、学会集成运放共模抑制比K CMR 的测试方法。
二、实验仪器及设备1、DZX-1B型电子学综合实验台 一台2、XJ4323 双踪示波器 一台3、集成运放 uA741 一片 三、实验电路1、测量失调电压U IO 。
2、测量失调电流I IO 。
I IO =RR R U U O O ⎪⎪⎭⎫ ⎝⎛+-12121式中的U O1为测失调电压U IO 时的U O1 ,U O 2 为下面电路中测得的U O 。
U IO =211R R R+U O1R2 5.1KR2 5.1K3、测量开环放大倍数Aod 。
4、共模抑制比K CMR 。
注意:Ui 必须小于最大共模输入电压U iCM =12V四、实验内容及步骤 1、测量失调电压U IO(1) 按图接好电路,检查电路无误后接通电源,用示波器观察输出Uo 有无振荡,若有振荡,应采用适当措施加以消除。
(2) 测量输出电压,记做U O1,并计算失调电压U IO 。
2、测失调电流I IO(1) 按图接好电路,检查电路无误后接通电源,用示波器观察输出Uo 有无振荡,若有振荡,应采用适当措施加以消除。
(2) 测量输出电压,记做U O2,并计算失调电流I IO 。
3、测量开环放大倍数Rf 5.1KA Od =UiR R R U O 323+URf 5.1KK CMR = OCO A A d=UoU R R F i1•(1) 按图接好电路,接通电源。
(2) 在输入端加入Us =1V ,f =20Hz 的交流信号,用毫伏表测量Uo 和Ui ,计算出Aod 。
4、测量共模抑制比(1) 按图接好电路,接通电源。
(2) 在输入端加入一定幅值的频率为20Hz 的交流信号,用毫伏表测量Uo 和Ui ,计算出K CMR 。
运算放大器性能测试
运算放大器的指标测试一、实验目的1.加深对集成运算放大器特性和参数的理解。
2.学习集成运算放大器主要性能指标的测试方法。
二、实验内容1.测量输入失调电压V IO 。
2.测量输入失调电流I IO 。
3.测量输入偏置电流I IB 。
4.测量开环差模电压增益A od 。
5.测量最大不失真输出电压幅度V o(max)。
6.测量共模抑制比K CMR 。
7.测量转换速率SR 。
三、实验准备1.了解集成运放μA741的管脚排列。
2.查阅有关资料,找出集成运放μA741主要性能指标的典型数据。
3.理解V IO 、I Io 、A od 、K CMR 、V om 等指标的测试电路的工作原理,选定实验所需仪器,拟定实验步骤。
四、实验原理与说明集成运算放大器是一种高增益的直接耦合放大电路,在理想情况下,集成运放的A od =∞、R i =∞、V IO =0、I IO =0、K CMR =∞。
但是实际上并不存在理想的集成运算放大器。
为了解实际运放与理想运放的差别,以便正确使用集成运放大器,有必要研究其实际特性,并对其主要指标进行测试。
下面介绍的是运放主要指标的简易测试方法。
1.输入失调电压V IO 的测量在常温下,当输入信号为零时,集成运放的输出电压不为零,该输出电压称为输出失调电压。
为了使输出电压回到零,需要在输入端加上反向补偿电压,该补偿电压称为输入失调电压V IO 。
V IO 可能为正,也可能为负。
高质量运放的V IO 一般在1mV 以下。
V IO 的大小主要反映了运放内部差分输入级中两个三极管V BE 的失配程度。
当运放的输入外接电阻(包括信号源内阻)比较小时,失调电压及其温漂往往是引起运放误差的主要原因。
输入失调电压的测试电路如图9.19所示。
电路中R 1和R 3、R 2和R 4的参数应严格对称。
测出输出电压V O1的大小(实测值可能为正,也可能为负),则输入失调电压为:O1211IO V R R R V +=图9.19 V IO 测试电路 2.输入失调电流I IO 的测量在常温下,当输入信号为零时,集成运算放大器两个输入端的输入电流之间的差值称为输入失调电流I IO ,设I BP 和I BN 分别是运放同相输入端和反相输入端的输入电流,则输入失调电流I IO =│I BP -I BN │。
运放交流增益测量方法
运放交流增益测量方法
测量运算放大器(简称运放)的交流增益通常涉及使用辅助运放环路法,这是因为该方法可以提供精确稳定的测试结果。
具体测量方法如下:
1. 使用辅助运放环路法:这种方法通过构建一个包含待测运放和辅助运放的测试电路来实现。
辅助运放不需要有比待测运放更好的性能,但其直流开环增益最好能达到106或更高。
2. 构建测试电路:测试电路应该能够将大部分测量误差降至最低,支持精确测量直流和交流参数。
电路中使用对称电源,即使对于“单电源”运放也是如此,因为系统的地以电源的中间电压为参考。
3. 进行仿真测试:除了实际搭建电路进行测量外,还可以通过运算放大器的仿真来进行交流小信号仿真,包括开环增益、带宽、相位裕度等参数的测试。
4. 选择测试方法:在测量运放的环路时,可以选择Rosenstark 方法或Middlebrook方法。
Rosenstark方法需要在受控源的位置断开测试环路,并确保测试源使环路工作在线性范围内。
综上所述,测量运放的交流增益需要精心设计测试电路并选择合适的测试方法,以确保测量结果的准确性和稳定性。
在实际操作中,可能还需要根据具体的运放型号和测试条件进行适当的调整和优化。
集成运算放大器的参数测量
集成运算放大器的参数测量技术集成运放是直接耦合的多级放大器集成制作在一小块芯片上。
其管脚一般有八脚、十四脚等,其封装形式有金属圆壳和双列直插塑封两种形式,双列直插塑封式更为多见。
集成运放不是一个元件,而是一个放大器,其性能优劣和应用范围,也是用相应参数来表示的,这是我们选择和使用集成运放时的主要依据。
集成运放参数的测量方法,主要有搭电路测试和用专的模拟IC测试仪测量。
这里主要介绍搭电路测运放电路参数的方法。
一、输入失调电压Uos的测量一个理想的运算放大器的输人端无信号输入时,输出端的输出电压为零。
但实际上由于制作工艺等方面的原因,运算放大器在输入端无信号输入时,输出端的电压不为零,这相当于在理想运放器的输入端串有一个电压Uos ,使Uo≠0,Uos称为算放大器的失调电压。
即Uos是运算放大器内部引起输出电压不为零的因素,折算到输入端的电压,如图1.4—l所示。
≠0图1.4—1失调电压图1.4一2Uos 的测量图1.4一3IOS的测量UOS的测试电路很多,这里只介绍其中之一。
电路如图1.4—2所示,运算放大器处于闭环状态,由于U+=U-,此电路可看成是同相放大器,因此kf =(R1+Rf)/R1(1.4-1)测试方法:运放不加调零电路,用万用表测出U。
则Uos =U/kf=R1/(R1+R2)⨯U(1.4-2)图中R1=100Ω,R2=10kΩ,则Vos=1/101⨯U0二、输人失调电流IOS的测量I OS 是指输人信号为零时,两个输入端静态基极电流I b1与 I b2之差。
即I OS =I b1-I b2 (1.4-3) 测量时可采取相应电路分别测出I b1和I b2 ,从而获得I OS 。
在这里只介绍一种直接测I OS 方法。
电路如图 1.4—3 所示。
即在前面测U OS 基础上,在同相、反相端分别串入 R=10kΩ电阻,用数字万用表(或万用表)测出此时输出电压U 0,则I OS =(U 02-U 01)/[]R R R )/1(12+ (1.4-4)其中U 01为上边测U OS 时的U 01。
运算放大器的相关参数及测法
运算放大器的相关参数及测法1.静态工作电流(Icc),主要表针运放的功率损耗情况。
测法一:如图一,将运放接成跟随器的形式。
VCC流出的电流就为Icc。
此测试方法比较稳定,能保证输出基本不会震荡。
图一测法二:如图二将运放接成放大的形式,此测试方法是目前我们最经常用,此方法有个缺陷,怕输出会震荡,因此有异常时我们要用示波器看输出是否震荡。
图二2. Output Voltage Swing最大输出摆幅(VOH,VOL)测法如图三,将运放接成放大的形式,根据SPEC要求带上负载RL。
图三3. Input Offset Voltage(输入失调电压Vos)︰为使输出为0,输入端应补偿的电压,基本都在mV级,uV级。
测法如图四:接成放大的形式,测量Vo, Vos=Vo/Rf/R1=Vo/1000,换算为mV,则Vos=Vo图四4. Input Offset Current(输入失调电流Ios)︰为使输出电压为0V时,输入端应补偿的电流,基本都在nA级。
5. Input Bias Current(输入偏置电流Ib) ︰两输入端输入电流的平均值,基本都在nA级。
Ios,Ib测法一:如图五,此测法简单,精度不高,忽略运放的Vos。
图五根据定义,Ib=((Ib+)+(Ib-))/2=(VO1/1M+VO2/1M)/2=(VO1+VO2)/2*1e3 nAIos=(Ib+)-(Ib-)=VO1/1M-VO2/1M=(VO1-VO2)*1e3 nAIos,Ib测法二(目前我们经常使用的):有将运放的V os考虑进去如图六为Ios。
图六图七为IB图七6.Max Com i nput(最大共模输入电压Vcm)如图八:看输出是否能正常转态图八7. Slew Rate(转换速率SR)︰当输入电压变化时,输出电压变化的比率。
如图九:Vin输入一个方波,量测输出上升或下降的速率,单位为V/uS。
图九8. Power Supply Rejection Ratio(电源抑制比PSRR)︰电源电压改变量与输出电压的改变量的比值,如图十:图十PSRR=20*log10(△VCC*1e3/△V o)9. Common Mode Rejection Ratio(共模抑制比CMRR)︰差动放大率与共模放大率的比值如图十一:图十一CMRR=20*log10((△Vin*100/△V o))10.Isink(陷电流),Isource(源电流)如图十二。
运放开环输出阻抗测试方法
运放开环输出阻抗测试方法在电子电路和系统中,了解和测试运放开环输出阻抗是一项重要的技术指标。
本文将详细介绍运放开环输出阻抗的测试方法,帮助读者更好地掌握这一技能。
一、运放开环输出阻抗概述运放(运算放大器)是一种具有高增益、差分输入和单端输出的放大器。
在实际应用中,了解运放的输出阻抗特性对于电路设计和性能分析具有重要意义。
开环输出阻抗是指在无反馈条件下,运放输出端的电压变化与输出端电流变化之比。
二、测试方法1.测试原理运放开环输出阻抗测试的核心原理是通过给运放输出端施加一定频率和幅值的交流信号,测量输出电压和电流的变化,从而计算出输出阻抗。
2.测试电路(1)差分输入端短路:将运放的差分输入端短接,使输入端不接收任何信号。
(2)输出端接负载:在运放输出端接上一个已知阻抗的负载,用于测量输出电压和电流。
(3)信号源:使用信号发生器产生一定频率和幅值的正弦波信号,输入到运放的输入端。
3.测试步骤(1)搭建测试电路:按照上述电路连接测试设备。
(2)设置信号源:调节信号发生器,输出所需的频率和幅值。
(3)测量输出电压和电流:使用示波器或电压表测量运放输出端的电压和流过负载的电流。
(4)计算输出阻抗:根据测得的输出电压和电流,计算输出阻抗。
输出阻抗Z = Vout / Iout,其中Vout 为输出电压,Iout 为输出电流。
(5)重复测试:改变信号源频率和幅值,重复步骤(3)和(4),以获得不同条件下的输出阻抗。
三、注意事项1.测试过程中,确保信号源、测试仪器和电路连接稳定可靠。
2.负载阻抗的选择应适当,以保证测试结果的准确性。
3.测试频率范围应覆盖运放的工作频率范围。
4.注意测量仪器的量程和精度,避免测量误差。
总结:运放开环输出阻抗测试是电子工程师在电路设计和性能分析中经常遇到的问题。
通过本文的介绍,相信读者已经掌握了测试方法,为今后的工作提供了有力支持。
放大器 运放 测试
实验五 集成运算放大器参数测试一、实验目的:1.通过对集成运算放大器μA741参数的测试,了解集成运算放大器组件主要参数的定义和表示方法。
2.掌握运算放大器主要参数的测试方法。
二、实验原理:集成运算放大器是一种使用广泛的线性集成电路器件,和其它电子器件一样,其特性是通过性能参数来表示的。
集成电路生产厂家为描述其生产的集成电路器件的特性,通过大量的测试,为各种型号的集成电路制定了性能指标。
符合指标的就是合格产品,否则就是不合格产品。
要能够正确使用集成电路器件,就必须了解集成电路各项参数的含义及数值范围。
集成电路的性能指标可以从产品说明书或器件手册查到,因此,我们必须学会看产品说明书和查阅器件手册。
由于集成电路是半导体器件,而半导体器件的性能参数常常有较大的离散性,因此,我们还必须掌握各项参数的测试方法,这样才能保证在电路中使用的器件是合格产品,满足电路设计的需要。
运算放大器的性能参数可以使用专用的测试仪器进行测试(“运算放大器性能参数测试仪”),也可以根据参数的定义,采用一些简易的方法进行测试。
本次实验是学习使用常规仪表,对运算放大器的一些重要参数进行简易测试的方法。
实验中采用的集成运算放大器型号为μA741(同类产品有LM741,CF741,F007等),是一种第二代通用运算放大器,其内部结构可参看教材P238 图3-26《F007的电路原理图》,其引脚排列如图4.1所示。
它是一种八脚双列直插式器件,其引脚定义如下:①、⑤ 调零端; ② 反相输入端; ③ 同相输入端; ④ 电源负极; ⑥ 输出端; ⑦ 电源正极; ⑧ 空脚。
以下为主要参数的测试方法: 1.输入失调电压:理想运算放大器,当输入信号为零时其输出也为零。
但在真实的集成电路器件中,由于图 4.1 μA741引脚-V+VUo12345678UA741(顶视)..输入级的差动放大电路总会存在一些不对称的现象(由晶体管组成的差动输入级,不对称的主要原因是两个差放管的U BE 不相等),使得输入为零时,输出不为零。
运算放大器的相关参数及测法
运算放大器的相关参数及测法一、运算放大器的相关参数:1.增益:运算放大器的增益是指输出信号和输入信号间的比例关系。
一般来说,增益被分为电压增益、电流增益和功率增益。
增益的计算要根据具体电路的需求和设计目标进行确定。
2.带宽:运算放大器的带宽是指其输出信号在频率上的可用范围。
在一般情况下,带宽要大于信号的最高频率才能保证较好的信号放大效果。
带宽的测量方法通常是通过输入一个特定频率的正弦波信号,对输出信号进行测量,观察输出信号的衰减情况,从而确定带宽。
3.输入偏置电流:运算放大器在正常工作情况下,输入信号为零时,输出信号应该为零。
但实际上,由于器件的不对称性和不完美性等因素,输入信号为零时,输出信号往往不为零,这就是输入偏置电流。
输入偏置电流的大小影响着运算放大器的工作稳定性和精度。
测量输入偏置电流可以通过将输入端直接接地,然后测量输出电压。
4.输入偏置电压:输入偏置电压是指运算放大器的输入端电位差,当输入信号为零时,输出信号为零需要的输入电压。
输入偏置电压的大小也会对运算放大器的工作稳定性和精度产生影响。
测量输入偏置电压可以通过将输入端短接,然后测量输出电压。
5.输入阻抗:输入阻抗是指运算放大器输入端的电阻特性,即输入端电流和电压间的比例关系。
输入阻抗的大小决定了运算放大器对输入信号的影响程度,输入阻抗越大,说明输入信号被放大器吸收的越少。
测量输入阻抗的方法可以通过接入一个标准电阻,然后测量输入端的电压和电流,计算得到。
二、运算放大器的测量方法:1.增益测量:增益可以通过输入一个特定幅值的正弦波信号,然后测量输出信号的幅值,通过两者的比值来计算增益。
可以通过示波器来观察输入和输出信号的波形,然后进行幅值测量。
2.带宽测量:带宽的测量可以通过输入不同频率的正弦波信号,然后测量输出信号的衰减程度,通过找到输出信号衰减到一半的频率,确定带宽的上限。
可以使用频谱分析仪或者示波器进行测量。
3.输入偏置电流和输入偏置电压测量:输入偏置电流的测量可以通过将输入端直接接地,然后测量输出电压来确定。
集成运算放大器参数的测试---最后更正
集成运算放大器参数的测试一、实验目的1、进一步加深对运算放大器主要参数的理解及实际运放与理想运放的差异。
2、掌握运算放大器主要参数的测试方法。
二、知识点及涉及内容本实验知识点为集成运放的基本构成、理想运放的性能参数;涉及参数的测试方法。
三、实验仪器示波器、信号源、模拟电路实验箱、万用表。
四、实验原理集成运算放大器是由多级基本放大电路组成的高增益放大器,具有开环增益高、输入电阻大、输出电阻小的特点。
用理想化的条件进行分析,可使得各种运放功能电路的分析变得非常简便和实用,但在实际的应用中,由于运放的非理想特性会对电路产生影响,因此在实际应用中需要掌握集成运放的特性参数,进行合理的选择。
以下是对集成运放的主要特性参数的描述。
1、输入失调特性参数(1)输入偏置电流当输入电压为零时,流入集成运算放大器两个输入端的静态电流的平均值称为输入偏置自流,即。
(2)输入失调电压若输入电压为零,输出电压不为零,则需要在输入端加补偿电压,以使输出为零,这个补偿电压称为输入失调电压。
(3)输入失调电流当输入电压为零时,两个输入电流之差,称为输入失调电流,即。
输入失调电流是一个差值,它的大小与输入偏流有关,输入偏流越小,输入失调电流也就越低。
2、差模特性参数(1)开环差模电压增益是集成运放在开环情况下对差模信号的电压增益。
(2)差模输入电阻和输出电阻是集成运放两个差分输入端间对差模信号的等效动态电阻,是运算放大器开环工作时输出端对地的动态电阻。
(3)最大差模输入电压是运放两输入端之间所能承受的最大差模电压。
若超过此规定值,器件特性将变坏,甚至损坏器件。
(4)频带宽度和单位增益带宽。
和是表征运算放大器小信号频率特性的参数。
当开环差模增益因频率升高而下降时的频率,即为频带宽度。
当开环增益下降到O dB时所对应的频率称为单位增益带宽。
3、共模特性参数(1)共模抑制比是集成运算放大器开环差模电压增益与其共模电压增益之比值的对数值,B。
运放关键参数的测量方法介绍
运放关键参数的测量方法介绍运算放大器是差分输入、单端输出的极高增益放大器,常用于高精度模拟电路,因此必须精确测量其性能。
但在开环测量中,其开环增益可能高达107或更高,而拾取、杂散电流或塞贝克(热电偶)效应可能会在放大器输入端产生非常小的电压,这样的话,误差将是难以避免的通过使用伺服环路,可以大大简化测量过程,强制放大器输入调零,使得待测放大器能够测量自身的误差。
图1显示了一个运用该原理的多功能电路,它利用一个辅助运放作为积分器,来建立一个具有极高直流开环增益的稳定环路。
开关为执行下面所述的各种测试提供了便利。
图1. 基本运算放大器测量电路图1所示电路能够将大部分测量误差降至最低,支持精确测量大量直流和少量交流参数。
附加的“辅助”运算放大器无需具有比待测运算放大器更好的性能,其直流开环增益最好能达到106或更高。
如果待测器件(DUT)的失调电压可能超过几mV,则辅助运放应采用±15 V电源供电(如果DUT的输入失调电压可能超过10 mV,则需要减小99.9 kΩ电阻R3的阻值。
)DUT的电源电压+V和–V幅度相等、极性相反。
总电源电压理所当然是2 ×V。
该电路使用对称电源,即使“单电源”运放也是如此,因为系统的地以电源的中间电压为参考。
作为积分器的辅助放大器在直流时配置为开环(最高增益),但其输入电阻和反馈电容将其带宽限制为几Hz。
这意味着,DUT输出端的直流电压被辅助放大器以最高增益放大,并通过一个1000:1衰减器施加于DUT的同相输入端。
负反馈将DUT输出驱动至地电位。
(事实上,实际电压是辅助放大器的失调电压,更精确地说是该失调电压加上辅助放大器的偏置电流在100 kΩ电阻上引起的压降,但它非常接近地电位,因此无关紧要,特别是考虑到测量期间此点的电压变化不大可能超过几mV)。
测试点TP1上的电压是施加于DUT输入端的校正电压(与误差在幅度上相等)的1000。
运放简易测量方法
运算放大器的简易测量运算放大器是差分输入、单端输出的极高增益放大器,常用于高精度模拟电路,因此必须精确测量其性能。
但在开环测量中,其开环增益可能高达107或更高,而拾取、杂散电流或塞贝克(热电偶)效应可能会在放大器输入端产生非常小的电压,这样误差将难以避免。
通过使用伺服环路,可以大大简化测量过程,强制放大器输入调零,使得待测放大器能够测量自身的误差。
图1显示了一个运用该原理的多功能电路,它利用一个辅助运放作为积分器,来建立一个具有极高直流开环增益的稳定环路。
开关为执行下面所述的各种测试提供了便利。
图1. 基本运算放大器测量电路图1所示电路能够将大部分测量误差降至最低,支持精确测量大量直流和少量交流参数。
附加的―辅助‖运算放大器无需具有比待测运算放大器更好的性能,其直流开环增益最好能达到106或更高。
如果待测器件(DUT)的失调电压可能超过几mV,则辅助运放应采用±15 V电源供电(如果DUT的输入失调电压可能超过10 mV,则需要减小99.9 kΩ电阻R3的阻值。
)DUT的电源电压+V和–V幅度相等、极性相反。
总电源电压理所当然是2 × V。
该电路使用对称电源,即使―单电源‖运放也是如此,因为系统的地以电源的中间电压为参考。
作为积分器的辅助放大器在直流时配置为开环(最高增益),但其输入电阻和反馈电容将其带宽限制为几Hz。
这意味着,DUT输出端的直流电压被辅助放大器以最高增益放大,并通过一个1000:1衰减器施加于DUT的同相输入端。
负反馈将DUT输出驱动至地电位。
(事实上,实际电压是辅助放大器的失调电压,更精确地说是该失调电压加上辅助放大器的偏置电流在100 kΩ电阻上引起的压降,但它非常接近地电位,因此无关紧要,特别是考虑到测量期间此点的电压变化不大可能超过几mV)。
测试点TP1上的电压是施加于DUT输入端的校正电压(与误差在幅度上相等)的1000倍,约为数十mV或更大,因此可以相当轻松地进行测量。
运放参数测试
1.集成运算放大器的传输特性及输出电压的动态范围的测试运算放大器输出电压的动态范围是指在不失真条件下所能达到的最大幅度。
为了测试方便,在一般情况下就用其输出电压的最大摆幅U op-p 当作运算放大器的最大动态范围。
输出电压动态范围的测试电路如图1(a)所示。
图中u i为100Hz正弦信号。
当接入负载R L后,逐渐加大输入信号u i的幅值,直至示波器上显示的输出电压波形为最大不失真波形为止,此时的输出电压的峰峰值U op-p就是运算放大器的最大摆幅。
若将u i输入到示波器的X轴,u o输入到示波器的Y轴,就可以利用示波器的X—Y显示,观察到运算放大器的传输特性,如图1 (b) 所示,并可测出U o p-p的大小。
R1R f u o+15V27U OP-PR2 µA741 6 u o0 u iu i34-15V(a)运算放大器输出电压动态范围的测试电路(b运算放大器的传输特性曲线图1(图中:R1 = R2 = 1.2k,R f= 20k)U op-p与负载电阻R L有关,对于不同的R L,U op-p也不同。
根据表1,改变负载电阻R L 的阻值,记下不同R L时的U op-p,并根据R L和U op-p,求出运算放大器输出电流的最大摆幅I op-p = U op-p /R L,填入表1中。
表1R L U op-p I op-p= U op-p / R LR L =R L = 1 kR L = 100运算放大器的U op-p除了与负载电阻R L有关外,还与电源电压以及输入信号的频率有关。
随着电源电压的降低和信号频率的升高,U op-p将降低。
如果示波器显示出运算放大器的传输特性,即表明该放大器是好的,可以进一步测试运算放大器的其它几项参数。
2.集成运算放大器的输入失调特性及其测试方法集成运算放大器的基本电路是差分放大器。
由于电路的不对称性必将产生输入误差信号。
这个误差信号限制了运算放大器所能放大的最小信号,即限制了运算放大器的灵敏度。
放大器的测量方法
放大器的测量方法
放大器的测量方法可以分为以下几个方面:
1. 输出功率测量:通过连接一个负载(如扬声器)来测量放大器的输出功率。
可以使用功率计或示波器进行测量。
通常会进行不同负载阻抗下的功率测量,以了解放大器的输出特性。
2. 频率响应测量:通过输入不同频率的信号,测量放大器在不同频率下的增益,以了解放大器的频率响应。
可以使用频谱分析仪或示波器进行测量。
3. 输入/输出阻抗测量:通过连接不同阻抗的信号源和负载,测量输入和输出端口的阻抗来了解放大器的匹配性能。
可以使用阻抗分析仪或示波器进行测量。
4. 噪声测量:通过测量放大器的输出信号中的噪声电平,以了解放大器的噪声性能。
可以使用噪声分析仪进行测量。
5. 谐波失真测量:通过输入一个正弦信号以及其谐波分量,测量放大器输出信号中的谐波分量,以了解放大器的谐波失真程度。
可以使用谐波分析仪进行测量。
6. 直流偏置测量:通过测量输入和输出端口的直流电压,了解放大器的直流偏置情况。
可以使用直流电压表进行测量。
以上是一些常见的放大器测量方法,具体的测量方法会根据放大器的类型和应用而有所差异。
在测量时应该注意选择合适的测量设备,并按照设备的操作说明进行操作。
7.运算放大器指标测试方法
2.7 运算放大器指标测试方法一、实验目的1.掌握运算放大器主要指标的测试方法。
2.通过测试,了解集成运算放大器组件的主要参数定义和表示方法。
二、实验原理集成运算放大器是一种线性集成电路,和其他半导体器件一样,是用一些性能指标来衡量其质量的优劣。
为了正确使用集成运放,就必须了解它的主要参数。
集成运放的各项指标通常是由专用仪器进行测试的,这里介绍的是一种简单测试方法。
本实验采用的集成运放型号为LM324,引脚排列如图2-7-1所示。
它是十六脚双列直插式组件,共有四个独立运算放大器,共有一个电源,4脚为电源正;11为电源负。
图2-7-1LM324管脚图图2-7-2 Uos、Ios测试电路1.输入失调电压Uos理想运放组件,当输入信号为零时其输出为零。
但是即便最优质的集成组件,由于运放内部差动输入及参数的不完全对称,输出电压往往不为零。
这种零输入时输出不为零的现象称为集成运放的失调。
输入失调电压Uos——是指输入信号为零时,输出端出现的电压折算到同向输入端的数值。
失调电压测试电路如图2-7-2所示。
闭合开关K1及K2,使电阻R B短接,测量此时的输出电压U01即为输出失调电压,则输入失调电压:实际测出的U01可能为正,也能为负,高质量的运放Uos一般在1mv以下。
测试中应注意:①将运放调零端开路。
②要求电阻R1和R2、R3和R F的参数严格对称。
2.输入失调电流Ios输入失调电流Ios——是指输入信号为零时,运放的两个输入端的基极偏置电流之差:输入失调电流的大小反映了运放内部差动输入级两个晶体管β的失配度,由于I B1、I B2本身的数值已很小(微安级),因此他们的差值通常不能直接测量的,测试电路如图2-7-2所示,测试分两步进行:①闭合开关K1及K2,在低输入电阻下,测出输出电压U01,如前所述,这是由输入失调电压Uos所引起的输出电压。
②断开K1及K2两个输入电阻R B注入,由于阻R B值较大,流经他们的输入电流的差异,将变成输入电压的差异,因此,也会影响输入电压的大小,可见测出两个电阻R B接入时的输出电压U02,若从中扣除输入失调电压U os的影响,输入失调电流Ios为:一般,Ios在100nA以下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五 集成运算放大器参数测试一、实验目的:1.通过对集成运算放大器μA741参数的测试,了解集成运算放大器组件主要参数的定义和表示方法。
2.掌握运算放大器主要参数的测试方法。
二、实验原理:集成运算放大器是一种使用广泛的线性集成电路器件,和其它电子器件一样,其特性是通过性能参数来表示的。
集成电路生产厂家为描述其生产的集成电路器件的特性,通过大量的测试,为各种型号的集成电路制定了性能指标。
符合指标的就是合格产品,否则就是不合格产品。
要能够正确使用集成电路器件,就必须了解集成电路各项参数的含义及数值范围。
集成电路的性能指标可以从产品说明书或器件手册查到,因此,我们必须学会看产品说明书和查阅器件手册。
由于集成电路是半导体器件,而半导体器件的性能参数常常有较大的离散性,因此,我们还必须掌握各项参数的测试方法,这样才能保证在电路中使用的器件是合格产品,满足电路设计的需要。
运算放大器的性能参数可以使用专用的测试仪器进行测试(“运算放大器性能参数测试仪”),也可以根据参数的定义,采用一些简易的方法进行测试。
本次实验是学习使用常规仪表,对运算放大器的一些重要参数进行简易测试的方法。
实验中采用的集成运算放大器型号为μA741(同类产品有LM741,CF741,F007等),是一种第二代通用运算放大器,其内部结构可参看教材P238 图3-26《F007的电路原理图》,其引脚排列如图4.1所示。
它是一种八脚双列直插式器件,其引脚定义如下:①、⑤ 调零端; ② 反相输入端; ③ 同相输入端; ④ 电源负极; ⑥ 输出端; ⑦ 电源正极; ⑧ 空脚。
以下为主要参数的测试方法: 1.输入失调电压:理想运算放大器,当输入信号为零时其输出也为零。
但在真实的集成电路器件中,由于图 4.1 μA741引脚-V+VUo12345678UA741(顶视)..输入级的差动放大电路总会存在一些不对称的现象(由晶体管组成的差动输入级,不对称的主要原因是两个差放管的U BE 不相等),使得输入为零时,输出不为零。
这种输入为零而输出不为零的现象称为“失调”。
为讨论方便,人们将由于器件内部的不对称所造成的失调现象,看成是由于外部存在一个误差电压而造成,这个外部的误差电压叫做“输入失调电压”,记作U IO 或V OS (在童诗白主编《模拟电子技术基础》一书中使用符号U IO ,而在《模拟电子技术基础简明教程》一书中使用符号V OS 。
下文中的类似情况不再说明)。
输入失调电压在数值上等于输入为零时的输出电压除以运算放大器的开环电压放大倍数:odOO IO A U U =式中:U IO — 输入失调电压 U OO — 输入为零时的输出电压值A OD — 运算放大器的开环电压放大倍数本次实验采用的失调电压测试电路如图4.2所示。
闭合开关K 1及K 2,使电阻R B 短接,测量此时的输出电压U O1即为输出失调电压,则输入失调电压1O F11IO U R R R U +=实际测出的U O1可能为正,也可能为负,高质量的运算放大器U IO 一般在1mV 以下。
测试中应注意:① 将运放调零端开路(即不接入调零电路); ② 要求电阻R 1和R 2,R 3和R F 的阻值精确配对。
2.输入失调电流I IO当输入信号为的零时,运放两个输入端的输入偏置电流之差称为输入失调电流,记为I IO (有的资料中使用符号I OS )。
2B 1B IO I I I -=式中:I B1,I B2分别是运算放大器两个输入端的输入偏置电流。
输入失调电流的大小反映了运放内部差动输入级的两个晶体管的失配度,由于I B1,I B2本身的数值已很小(μA 或nA 级),因此它们的差值通常不是直接测量的,测试电路如图4.2所示,测试分两步进行:1)闭合开关K 1及K 2,将两个R B 短路。
在低输入电阻下,测出输出电压U O1,如前所述,这是输入失调电压U IO 所引起的输出电压。
2)断开K 1及K 2,将输入电阻R B 接入两个输入端的输入电路中,由于R B 阻值较大,流经它们的输入电流的差异,将变成输入电压的差异,因此,也会影响输出电压的大小,因此,测出两个电阻R B 接入时的输出电压U O2,从中扣除输入失调电压U IO 的影响(即U O1),则输入失调电流I IO 为:BF112O 1O 2B 1B IO R 1R R R U U I I I ⋅+⋅-=-=一般,I IO 在100nA 以下。
测试中应注意:①将运放调零端开路。
②两端输入电阻R B 应精确配对。
3.开环差模放大倍数A od集成运放在没有外部反馈时的直流差模放大倍数称为开环差模电压放大倍数,用A od 表示。
它定义为开环输出电压U O 与两个差分输入端之间所加差模输入信号U id 之比:idO od U U A =或idO od U U lg20A = (dB )按定义A od 应是信号频率为零时的直流放大倍数,但为了测试方便,通常采用低频(几十赫兹以下)正弦交流信号进行测量。
由于集成运放的开环电压放大倍数很高,而且在开环情况下U O 的漂移量太大,难以直接进行测量,故一般采用闭环测量方法。
A od 的测试方法很多,现采用交、直流同时闭环的测试方法,如图4.3所示。
被测运放一方面通过R F 、R 1、R 2完成直流闭环,以抑制输出电压漂移;另一方面通过R F 和R S 实现交流闭环,外加信号U S 经R 1、R 2分压,使U id 足够小,以保证运放工作在线性区,同相输入端电阻R 3应与反相输入端电阻R 2相匹配,以减小输入偏置电流影响,电容C 为隔直电容。
被测运放的开环电压放大倍数为:io 21odU U R R 1A ⋅⎪⎪⎭⎫⎝⎛+=A od 一般约为105(100dB )左右。
测试中应注意:①测试前电路应首先消振及调零。
②被测运放要工作在线性状态。
③输入信号频率应较低,一般用50~100HZ ,输出信号幅度应较小,而且无明显失真。
4.共模抑制比K CMR集成运放的差模电压放大倍数A od 与共模电压放大倍数A oc 之比称为共模抑制比,记为K CMR (或CMRR )。
ocod CMR A A K =或()dB A A lg20K ocod CMR =式中:A od —差模电压放大倍数;A oc —共模电压放大倍数。
共模信号是指加在运算放大器两个输入端上幅值、相位都相等的输入信号,是一种无用的信号(常因电路结构、干扰和温漂造成)。
理想运算放大器的输入级是完全对称的,其共模电压放大倍数为零,所以当只输入共模信号时,理想运放的输出信号为零;当输入信号中包含差模信号与共模信号两种成份时,理想运放输出信号中的共模成份为零。
但在实际的集成运算放大器中,因为电路结构不可能完全对称,所以其共模电压放大倍数不可能为零,当输入信号中含有共模信号时,其输出信号中必然含有共模信号的成分。
输出端共模信号愈小,说明电路对称性愈好,也就是说运放对共模干扰信号的抑制能力愈强。
人们用共模抑制比K CMR 来衡量集成运算放大器对共模信号的抑制能力。
K CMR 愈大,对共模信号的抑制能力越强,抗共模干扰的能力越强。
K CMR 的测试电路如图4.4所示。
为了便于测试,采用闭环方式。
集成运放工作在闭环状态下的差模电压放大倍数,根据使用的电阻值,用下面公式计算:1F d R R A -=使用图4-4的电路可测得共模输入信号U ic 和共模输出信号U oc ,根据测得的U ic 、U oc值用下式计算出共模电压放大倍数:icoc c U U A =由A d 和A c 计算得共模抑制比:ocic Fcd CMRU U 1R RA A K∙==测试中应注意:图4.4 K CMR 测试电路① 消振与调零;② R 1与R 2、R 3与R F 之间阻值严格对称。
③输入信号U ic 幅度必须小于集成运放的最大共模输入电压范围U ICM5.共模输入电压范围U ICM集成运放所能承受的最大共模电压称为共模输入电压范围,超出这个范围,运放的K CMR 会大大下降,输出波形产生失真,有些运放还会出现“自锁”现象以及永久性的损坏。
U ICM 的测试电路如图4.5所示。
被测运放接成电压跟随器形式,输出端接示波器,观察最大不失真输出波形,从而确定U ICM 值。
6.最大输出电压U OPP集成运放的最大输出电压又称输出电压动态范围,记为U OPP ,该参数与电源电压、外接负载及信号源频率有关。
测试电路如图4.6所示。
改变U S 幅度,观察U O 削波顶失真开始时刻,从而确定U O 的不失真范围,这就是运放在某一定电源电压下可能输出的电压峰峰值U OPP 。
集成运算放大器在使用时应考虑的一些问题1)输入信号选用交、直流量均可,但在选取信号的频率和幅度时应考虑运放的频响特性和输出幅度的限制。
2)调零。
为提高运算精度,在运算前,应首先对直流输出电位进行调零,即保证输入为零时,输出也为零。
当运放有外接调零端子时(如μA741的①、⑤脚),可按组件要求接入调零电位器RW ,调零时,将运放输入端接地,用直流电压表测量输出电压U O ,细心调节RW ,使U O 为零(即失调电压为零)。
如运放没有调零端子,可图4.5 U ICM 测试电路+V图4-7 调零电路按图4.7所示电路设置调零电路。
一个运放如不能调零,大致有如下原因:①组件正常,接线有错误。
②组件正常,但负反馈不够强(R F / R1太大),为此可将R F短路,观察是否能调零。
③组件正常,但由于它所允许的共模输入电压太低,可能出现自锁现象,因而不能调零。
为此可将电源断开后,再重新接通,如能恢复正常,则属于这种情况。
④组件正常,但电路有自激现象,应进行消振。
⑤组件内部损坏,应更换的集成块。
3)消振。
一个集成运放自激时,表现为即使输入信号为零,亦会有输出,使各种运算功能无法实现,严重时还会损坏器件。
在实验中,可用示波器监视输出波形。
为的消除运放自激,常采用如下措施①若运放有相位补偿端子,可利用外接RC补偿电路,产品手册中有补偿电路及元件参数提供。
②电路布线,元、器件布局应尽量减少分布电容。
③在正、负电源进线与地之间接上几十μF 的电解电容和0.01~0.1 μF的陶瓷电容相并联,以减小电源引入的影响。
注:自激消除方法请参考《模拟电子技术基础》有关章节。
三、实验设备与元件1.模拟电路实验箱(型号:THM-1)2.信号发生器(型号:XD22)3.双踪示波器(型号:XJ4241)4.交流毫伏表(型号:GB-9)5.数字万用表(型号:DT890) 6.集成运算放大器μF741×17. 电阻器51Ω×2 ,51KΩ×2, 1KΩ×2 2KΩ×2, 10KΩ×2,100KΩ×28.电解电容器100μF×1四、实验内容本实验在THM-1型“模拟电路实验箱”上进行。