最新复数全国—高考真题
复数最新高考试题精选(一)

复数最新高考试题精选(一)一.选择题(共32小题)1.下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)2.=()A.1+2i B.1﹣2i C.2+i D.2﹣i3.(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i4.复平面内表示复数z=i(﹣2+i)的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.26.若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)7.已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.28.已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.9.已知z=(m+3)+(m﹣1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A.(﹣3,1)B.(﹣1,3)C.(1,+∞)D.(﹣∞,﹣3)10.设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()A.﹣3 B.﹣2 C.2 D.311.若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i12.若z=4+3i,则=()A.1 B.﹣1 C.+i D.﹣i13.若z=1+2i,则=()A.1 B.﹣1 C.i D.﹣i14.复数=()A.i B.1+i C.﹣i D.1﹣i15.设i为虚数单位,则复数(1+i)2=()A.0 B.2 C.2i D.2+2i16.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i17.设复数z满足z+i=3﹣i,则=()A.﹣1+2i B.1﹣2i C.3+2i D.3﹣2i18.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.219.若集合A={i,i2,i3,i4}(i是虚数单位),B={1,﹣1},则A∩B等于()A.{﹣1}B.{1}C.{1,﹣1}D.∅20.i为虚数单位,i607的共轭复数为()A.i B.﹣i C.1 D.﹣121.i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣122.若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.223.若为a实数,且=3+i,则a=()A.﹣4 B.﹣3 C.3 D.424.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2 B.3,2 C.3,﹣3 D.﹣1,425.设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限26.设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣27.已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i28.已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i29.设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i30.已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣231.设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i32.设复数z满足=i,则|z|=()A.1 B.C.D.2二.选择题(共6小题)33.已知a∈R,i为虚数单位,若为实数,则a的值为.34.已知复数z满足z+=0,则|z|=.35.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.36.已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=,ab=.37.i是虚数单位,复数z满足(1+i)z=2,则z的实部为.38.设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=.复数最新高考试题精选(一)参考答案与试题解析一.选择题(共32小题)1.下列各式的运算结果为纯虚数的是()A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)【解答】解:A.i(1+i)2=i•2i=﹣2,是实数.B.i2(1﹣i)=﹣1+i,不是纯虚数.C.(1+i)2=2i为纯虚数.D.i(1+i)=i﹣1不是纯虚数.故选:C.2.=()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:===2﹣i,故选D.3.(1+i)(2+i)=()A.1﹣i B.1+3i C.3+i D.3+3i【解答】解:原式=2﹣1+3i=1+3i.故选:B.4.复平面内表示复数z=i(﹣2+i)的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:z=i(﹣2+i)=﹣2i﹣1对应的点(﹣1,﹣2)位于第三象限.故选:C.5.设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.2【解答】解:∵(1+i)z=2i,∴(1﹣i)(1+i)z=2i(1﹣i),z=i+1.则|z|=.故选:C.6.若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,∴,解得a<﹣1.则实数a的取值范围是(﹣∞,﹣1).故选:B.7.已知i是虚数单位,若复数z满足zi=1+i,则z2=()A.﹣2i B.2i C.﹣2 D.2【解答】解:∵复数z满足zi=1+i,∴z==1﹣i,∴z2=﹣2i,故选:A.8.已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.【解答】解:由z=a+i,则z的共轭复数=a﹣i,由z•=(a+i)(a﹣i)=a2+3=4,则a2=1,解得:a=±1,∴a的值为1或﹣1,故选A.9.已知z=(m+3)+(m﹣1)i在复平面内对应的点在第四象限,则实数m的取值范围是()A.(﹣3,1)B.(﹣1,3)C.(1,+∞)D.(﹣∞,﹣3)【解答】解:z=(m+3)+(m﹣1)i在复平面内对应的点在第四象限,可得:,解得﹣3<m<1.故选:A.10.设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a=()A.﹣3 B.﹣2 C.2 D.3【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.11.若复数z=,其中i为虚数单位,则=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【解答】解:∵z===1+i,∴=1﹣i,故选:B12.若z=4+3i,则=()A.1 B.﹣1 C.+i D.﹣i【解答】解:z=4+3i,则===﹣i.故选:D.13.若z=1+2i,则=()A.1 B.﹣1 C.i D.﹣i【解答】解:z=1+2i,则===i.故选:C.14.复数=()A.i B.1+i C.﹣i D.1﹣i【解答】解:===i,故选:A15.设i为虚数单位,则复数(1+i)2=()A.0 B.2 C.2i D.2+2i【解答】解:(1+i)2=1+i2+2i=1﹣1+2i=2i,故选:C.16.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【解答】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.17.设复数z满足z+i=3﹣i,则=()A.﹣1+2i B.1﹣2i C.3+2i D.3﹣2i【解答】解:∵复数z满足z+i=3﹣i,∴z=3﹣2i,∴=3+2i,故选:C18.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1 B.C.D.2【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.19.若集合A={i,i2,i3,i4}(i是虚数单位),B={1,﹣1},则A∩B等于()A.{﹣1}B.{1}C.{1,﹣1}D.∅【解答】解:∵A={i,i2,i3,i4}={i,﹣1,﹣i,1},B={1,﹣1},∴A∩B={i,﹣1,﹣i,1}∩{1,﹣1}={1,﹣1}.故选:C.20.i为虚数单位,i607的共轭复数为()A.i B.﹣i C.1 D.﹣1【解答】解:i607=i604+3=i3=﹣i,它的共轭复数为:i.故选:A.21.i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣1【解答】解:i607=i606•i=(i2)303•i=(﹣1)303•i=﹣i.故选:A.22.若a为实数,且(2+ai)(a﹣2i)=﹣4i,则a=()A.﹣1 B.0 C.1 D.2【解答】解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,4a=0,并且a2﹣4=﹣4,所以a=0;故选:B.23.若为a实数,且=3+i,则a=()A.﹣4 B.﹣3 C.3 D.4【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.24.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2 B.3,2 C.3,﹣3 D.﹣1,4【解答】解:由(1+i)+(2﹣3i)=3﹣2i=a+bi,得a=3,b=﹣2.故选:A.25.设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.26.设复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率为()A.+B.+C.﹣D.﹣【解答】解:复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,它的几何意义是以(1,0)为圆心,1为半径的圆以及内部部分.y≥x的图形是图形中阴影部分,如图:复数z=(x﹣1)+yi(x,y∈R),若|z|≤1,则y≥x的概率:=.故选:C.27.已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C.2﹣i D.2+i【解答】解:由(z﹣1)i=1+i,得z﹣1=,∴z=2﹣i.故选:C.28.已知=1+i(i为虚数单位),则复数z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【解答】解:∵已知=1+i(i为虚数单位),∴z===﹣1﹣i,故选:D.29.设i是虚数单位,则复数(1﹣i)(1+2i)=()A.3+3i B.﹣1+3i C.3+i D.﹣1+i【解答】解:复数(1﹣i)(1+2i)=1+2﹣i+2i=3+i.故选:C.30.已知i是虚数单位,则复数(1+i)2=()A.2i B.﹣2i C.2 D.﹣2【解答】解:(1+i)2=12+2i+i2=1+2i﹣1=2i;故选:A.31.设i是虚数单位,则复数i3﹣=()A.﹣i B.﹣3i C.i D.3i【解答】解:∵i是虚数单位,则复数i3﹣,∴===i,故选;C32.设复数z满足=i,则|z|=()A.1 B.C.D.2【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.二.选择题(共6小题)33.已知a∈R,i为虚数单位,若为实数,则a的值为﹣2.【解答】解:a∈R,i为虚数单位,===﹣i由为实数,可得﹣=0,解得a=﹣2.故答案为:﹣2.34.已知复数z满足z+=0,则|z|=.【解答】解:由z+=0,得z2=﹣3,设z=a+bi(a,b∈R),由z2=﹣3,得(a+bi)2=a2﹣b2+2abi=﹣3,即,解得:.∴.则|z|=.故答案为:.35.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.36.已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=5,ab=2.【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),∴3+4i=a2﹣b2+2abi,∴3=a2﹣b2,2ab=4,解得ab=2,,.则a2+b2=5,故答案为:5,2.37.i是虚数单位,复数z满足(1+i)z=2,则z的实部为1.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.38.设a∈R,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=﹣1.【解答】解:(1+i)(a+i)=a﹣1+(a+1)i,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a+1=0,解得:a=﹣1,故答案为:﹣1。
(完整版)高考真题:复数

A. B. C. D.
18.(2017新课标全国卷II文科)
A. B.
C. D.
19.复平面内表示复数z=i(–2+i)的点位于
A.第一象限B.第二象限C.第三象限D.第四象限
20.设有下面四个命题
:若复数 满足 ,则 ;
:若复数 满足 ,则 ;
:若复数 满足 ,则 ;
:若复数 ,则 .
视频
8.C
【来源】2016年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)
【解析】试题分析:由 得 ,所以 ,故选C.
【考点】复数的运算,共轭复数
【名师点睛】复数 的共轭复数是 ,据此先化简再计算即可.
视频
9.A
【来源】2016年全国普通高等学校招生统一考试理科数学(新课标2卷精编版)
【解析】试题分析:
视频
10.A
【来源】2016年全国普通高等学校招生统一考试文科数学(新课标1卷精编版)
【解析】
试题分析: ,由已知,得 ,解得 ,选A.
【考点】复数的概念及复数的乘法运算
【名师点睛】复数题也是每年高考的必考内容,一般以客观题的形式出现,属得分题.高考中考查频率较高的内容有:复数相等、复数的几何意义、共轭复数、复数的模及复数的乘除运算.这类问题一般难度不大,但容易出现运算错误,特别是 中的负号易忽略,所以做复数题时要注意运算的准确性.
(A)-15x4(B)15x4(C)-20i x4(D)20i x4
5.复数
(A)i(B)1+i(C) (D)
6.若 ,则 =
(A)1(B) (C) (D)
7.若z=1+2i,则
A.1 B.−1 C.i D.−i
高考数学复习专题:复数

考法一 高考数学复习专题:复数复数的实部与虚部【例1-1】(2023·山西临汾·统考一模)复数()+=+z i 2i 54i 2)(的虚部为( )A .−3iB .−6iC .−3D .−6【答案】D【解析】+−+−+−−=====−−+−−−−z i(2i)12i (12i)(12i)536i 5(4i )1515(12i)1530i2,虚部为−6.故选:D. 【例1-2】(2023·河南·长葛市第一高级中学统考模拟预测)已知复数=−z 1i ,则+z z212的实部为( ) A .101 B .−101 C .51D .−51【答案】A【解析】:因为=−z 1i ,所以+=−+−=−z z 2(1i)2(1i)24i 22, 所以+−−+====+++z z 224i (24i)(24i)20105i 1124i 24i 112,所以+z z 212的实部为101.故选:A.【例1-3】(2023·重庆·统考一模)设复数z 满足+⋅=z z i i 1,则z 的虚部为( )A .−21B .21C .−1D .1【答案】B【解析】设=+∈z a b a b i(,R),则=−z a b i ,所以+−+a b a b i(i)i=1i, −−+=a b a b (i )i+1,得=b 21,解得=b 21,所以复数z 的虚部为21.故选:B. 考法二 共轭复数【例2-1】(2023·黑龙江·黑龙江实验中学校考一模)复数z 满足+=−z (1i)24i 2,则复数z 的共轭复数=z ( ) A .−12i B .−−2i C .−+2i D .+2i【答案】C【解析】将式子+=−z (1i)24i 2化简可得,()+===−−−−z 1i 2i2i 24i24i2,根据共轭复数定义可知=−+z 2i ,故选:C【例2-2】(2023·陕西西安·统考一模)复数−=z 1i ()2i 2的共轭复数为( ) A .−2i B .−4iC .2iD .4i【答案】C 【解析】=−+−+==−+z ((1i)(1i))2i 1[]i 2i(1i)22,则=z 2i ,所以复数−=z 1i()2i 2的共轭复数为2i .故选:C【例2-3】(2023·全国·唐山市第十一中学校考模拟预测)已知复数z 满足−−+=z z 2i 3i 0,则z 的共轭复数=z ( ) A .+1i B .−1i C .+5i 1D .−5i 1【答案】B【解析】由−−+=z z 2i 3i 0,得−=−z 12i 3i −+=−+(12i)(12i)(3i)(12i)==++51i 55i ,所以=−z 1i .故选:B考法三 复数的模长【例3-1】(2022·北京·统考高考真题)若复数z 满足⋅=−z i 34i ,则=z ( ) A .1 B .5C .7D .25【答案】B【解析】由题意有()⋅−===−−−−−z i i i 43i 34i 34i i )()(,故==z ||5.故选:B .【例3-2】(2023秋·山西太原·高三太原五中校考期末)已知+=−zz 12i 3,则=z ( )AB .3C .2D 【答案】D 【解析】由+=−zz 12i 3,得−=+z z 3i 2i ,−=+z 12i 3i )(,所以()()−−+===++++z 12i 12i 12i 55i 3i 173i 12i )()(,所以=z D .【例3-3】(2023·全国·模拟预测)若复数z 满足⋅⋅+⋅−=z z z z 1112)()(,则+=z i ( )AB C .3D .5【答案】B【解析】设=+z x y i ,∈x y ,R .所以+⋅−⋅++⋅−+=x y x y x y x y (i)(i)1i 1i 12)()(, 所以+−−+x y x y xy ()(12i)=122222,所以−−−−++=x y x y xy x y 122()i 0442222,所以⎩+=⎨−−−−=⎧xy x y x y x y 2()0120224422,所以⎩+=⎨+−−−=⎧xy x y x y x y 2()0()(1)120222222, 当+=x y 022时,方程组无解;当=≠x y 0,0时,++=y y 12042没有实数解; 当x 0,y=0≠时,−−=∴=∴=±x x x x 120,4,2422,所以=z 2或−2.所以当=z 2时,+=+z i |2;当=−z 2时,+=−+z i |2所以+=z i 故选:B考法四 复数对应的象限【例4-1】(2021·全国·统考高考真题)复数−−13i2i在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】−===−++−+13i 101022i 55i 1i2i 13i )()(,所以该复数对应的点为⎝⎭ ⎪⎛⎫22,11,该点在第一象限, 故选:A.【例4-2】(2023·全国·模拟预测)若复数=−+z a 2i 1i )()(在复平面内对应的点位于第四象限,则实数a 的取值范围为( ) A .+∞2,)( B .−∞−,2)( C .−2,2)( D .0,2)(【答案】A【解析】由于=−+=+−−=++−z a a a a a 2i 1i 22i i i 22i 2)()()(,所以复数z 在复平面内对应的点的坐标为+−a a 2,2)(,则⎩−<⎨⎧+>a a 2020,解得>a 2,所以实数a 的取值范围为+∞2,)(,故选:A .【例4-3】(2023·湖南·模拟预测)已知i 是虚数单位,复数R =−=+∈z z a a 12i,2i 12)(在复平面内对应的点为P ,Q ,若OP OQ ⊥(O 为坐标原点),则实数a =( ) A .−2 B .−1 C .0 D .1【答案】D【解析】复数=−=+z z a 12i,2i 12,则−P 1,2)(,Q a 2,1)(,则(1,2OP =−),(2,1OQ a =), OP OQ ⊥,∴−=a 220,解得=a 1,故选:D.考法五 复数的分类【例5-1】(2023·全国·高三专题练习)已知i 为虚数单位,复数++=z a 2i 1i 3)()(为纯虚数,则=z ( ) A .0 B .21C .2D .5【答案】D【解析】由题意,在++=z a 2i 1i 3)()(中,=−+=+−+=++−z a a a a a 2i 1i 22i i 221i)()()(∵z 为纯虚数,∴,+=−≠a a 20210,∴=−a 2,∴=−z 5i ∴=z 5,故选:D . 【例5-2】(湖北省武汉市2023届高三下学期二月调研数学试题)若虚数z 使得z 2+z 是实数,则z 满足( ) A .实部是−21B .实部是21C .虚部是0D .虚部是21【答案】A【解析】设=+z a b i (∈a b ,R 且≠b 0)+=+++=+−++=+−++z z a b a b a ab b a b a a b ab b (i)(i)2i i (2)i 222222, +z z 2是实数,因此+=ab b 20,=b 0(舍去),或=−a 21.故选:A . 【例5-3】(2022秋·江苏南京·高三校考期末)设a 为实数,若存在实数t ,使得+−−t a 2i(1)i 12为实数(i 为虚数单位),则a 的取值范围是( )A .≥−a 2B .0a<C .≥−a 1D .−≤≤−a 21【答案】C 【解析】由题知,⎝⎭⎪+−=+−=−−⎛⎫−−−t t t a a a 2i 2i 2(1)i (1)i 1i 111i 2222)(, 因为存在实数t ,使得+−−t a 2i (1)i 12为实数,所以关于t 的方程−−=−t a 21012有实数根, 所以,=+t a 212有实数根,所以=≥+t a 2012,即≥−a 1所以,a 的取值范围是≥−a 1故选:C考法六 相等复数【例6-1】(2022·全国·统考高考真题)设++=a b (12i)2i ,其中a b ,为实数,则( ) A .==−a b 1,1 B .==a b 1,1 C .=−=a b 1,1 D .=−=−a b 1,1【答案】A【解析】因为a b ,R ,++=a b a 2i 2i )(,所以+==a b a 0,22,解得:==−a b 1,1.故选:A.【例6-2】(2023·云南红河· )A .⎝⎭⎝⎭ ⎪ ⎪−+−⎛⎫⎛⎫33cos isin ππB 2i 1C .−1iD .3i π【答案】A⎝⎭⎝⎭==211,由⎝⎭ ⎪−==⎛⎫332cos cos 1ππ,⎝⎭⎪−=−=−⎛⎫332sin sin ππ,A 正确,B 、C 、D 错误.故选:A .考法七 在复数范围内解方程【例7-1】(2022·高一课时练习)复数2i 的平方根是( ) A .+1i 或−−1i B .2iC .+1iD .−−1i【答案】A【解析】设2i 的平方根为+∈x y x y i(,R),则+=x y (i)2i 2,即−+=x y xy 2i 2i 22,从而⎩=⎨−=⎧xy x y 22,0,22解得⎩=⎨⎧=y x 11,或⎩=−⎨⎧=−y x 1.1,所以复数2i 的平方根是+1i 或−−1i ,故选:A【例7-2】(2021·湖南衡阳·衡阳市八中校考模拟预测)已知复数−i 2是关于x 的方程++=∈x px q p q R 0,2)(的一个根,则+=pi q ( )A.25 B .5C D .41【答案】C【解析】因为复数−i 2是关于x 的方程++=x px q 02的一个根,所以−+−+=i p i q 2202)()(,所以+=+−pi q i p 423,所以==−p q p 4,23,所以==p q 4,5,则+=+=pi q i 45 C.【例7-3】(2021·江苏·一模)已知+i 2是关于x 的方程++=x ax 502的根,则实数a =( ) A .−i 2 B .−4 C .2 D .4【答案】B【解析】因为+i 2是关于x 的方程++=x ax 502的根,则另一根为−i 2 由韦达定理得++−=−i i a 22)()(,所以=−a 4 故选:B考法八 复数的综合运用【例8-1】(2023春·浙江·高三校联考开学考试)复数=−−z 2211,复数z 2满足⋅=z z 112,则下列关于z 2的说法错误的是( )A .=−z 212B .=z 12C .z 2D .z 2在复平面内对应的点在第二象限【答案】C【解析】对于A ,由已知可得,==z z 112==21=−421)(=−21,故A 正确.对于B ,因为=−z 212,所以==z 12,故B 正确;对于C ,根据复数的概念可知z 2,故C 错误;对于D ,根据复数的概念可知z 2在复平面内对应的点为⎝⎭⎪ ⎪−⎛⎫221,故D 正确.故选:C.【例8-2】(2023·高一课时练习)已知z 1、∈z C 2,且=z 11,若+=z z 2i 12,则−z z 12的最大值是( ). A .6 B .5 C .4 D .3【答案】C【解析】设=+∈z a b a b i,,R 1)(,=z 11,故+=a b 122,+=z z 2i 12,则=−+−z a b 2i 2)(,−=+−===z z a b 222i 12)(∈−b 1,1][,当1b时,−z z 12有最大值为4.故选:C【例8-3】(2023江苏镇江)(多选)已知复数=+z a b i 111,=+z a b i 222(a 1,b 1,a 2,b 2均为实数),下列说法正确的是( ) A .若=z z 212,则>z z 12B .z 1的虚部为b 1C .若z z =12,则=z z 1222D .=z z 1122【答案】BD【解析】对于A ,复数不等比较大小,A 项错误;对于B ,复数=+z a b i 111,a 1是实部,b 1是虚部,B 项正确;对于C ,z z =12==−+z a b a b 2i 11111222,=−+z a b a b 2i 22222222,不能得到=z z 1222,所以C 项错误;对于D ,=+z a b 111222,=−+z a b a b 2i 11111222,==+z a b 111222,所以=z z 1122,D 项正确;故选:BD.强化训练1.(2022·全国·统考高考真题)若=−z 1,则−=zz z1( )A .−1 B .−1C .−31D .−31【答案】C【解析】=−=−−=+=z zz 1(1113 4.−==−zz z 131故选 :C2.(2023秋·湖北·高三湖北省云梦县第一中学校联考期末)若复数z 满足+⋅=+z (12i)34i (其中i 是虚数单位),复数z 的共轭复数为z ,则( ) A .z 的实部是115 B .z 的虚部是52C .复数z 在复平面内对应的点在第一象限D .=z 5 【答案】C【解析】由题设++−===−++−z 12i (12i)(12i)55i 34i (34i)(12i)112,==z ||=+z 55i 112, A 选项,z 的实部是511,故A 错误;B 选项,z 的虚部是−52,故B 错误; C 选项,复数z 对应的坐标为⎝⎭⎪⎛⎫55,112,在复平面内对应的点在第一象限,故C 正确;D 选项,z D 错误.故选:C3.(2023秋·江苏·高三统考期末)若复数z 满足≤−z 12,则复数z 在复平面内对应点组成图形的面积为( ) A .π B .π2 C .π3 D .π4【答案】D【解析】z 在复平面对应的点是半径为2的圆及圆内所有点,=S π4,故选:D.4.(2023·内蒙古赤峰·统考模拟预测)已知R ∈a ,+=+a (5i)i 15i (i 为虚数单位),则a =( ) A .−1 B .1 C .−3 D .3【答案】A【解析】由题意知,+=−+=+a a (5i)i 5i 15i ,则=−a 1.故选:A.5.(2023春·湖南·高三校联考阶段练习)若复数z 满足−=z z 2i ,则++=z 32i ( )A B C .D 【答案】B【解析】+==−z 1i1i 2,则++=+=z 32i 4i B. 6.(2023·辽宁·校联考模拟预测)已知复数=−z 2i ,且−+=z az b i ,,其中a ,b 为实数,则−=a b ( ) A .-2 B .0C .2D .3【答案】C【解析】由题意得=+z 2i ,则代入原式得:+−−+=a b 2i 2i i )(,即−+++=a b a i 221i )()(,所以⎩+=⎨⎧−+=a a b 11220,解得⎩=−⎨⎧=b a 20,所以−=a b 2.故选:C .7.(2023·四川凉山·统考一模)已知复数z 满足=+−z1i 13i,z 是z 的共轭复数,则+z z 等于( ) A .−2i B .−2C .−4iD .−1【答案】B【解析】由题意在=+−z 1i 13i 中,()()++−−====−=−−−−++−−z 1i 1i 1i 1i 212i 13i 3i 4i 14i 213i 1i 22)()( ∴=−+z 12i ∴+=−−−+=−z z 12i 12i 2故选:B.8.(2023·浙江·永嘉中学校联考模拟预测)若+=z 12i i (i 为虚数单位),则=z ( )A.5 B CD 【答案】B【解析】由+=z 12i i 得==−+z i2i 12i,所以==z ,故选:B 9.(2023·江苏南通·统考一模)在复平面内,复数z z ,12对应的点关于直线−=x y 0对称,若=−z 1i 1,则−=z z 12( )A B .2C .D .4【答案】C【解析】=−z 1i 1对应的点为1,1,其中1,1关于−=x y 0的对称点为−1,1)(,故=−+z 1i 2,故−=−−=−==z z 1i+1i 22i 12故选:C10.(2023·陕西西安·校考模拟预测)已知复数z 满足=+z i21,其中i 为虚数单位,则z 的共轭复数在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A【解析】=+z i2=2-i 1,所以z 的共轭复数为=+z 2i ,对应在复平面内的点为(2,1),在第一象限, 故选:A11(2023·陕西榆林·统考一模)已知+−−=−z z z z 282i )()(,则+=z i ( )A.B .CD 【答案】A【解析】设R =+∈z a b a b i ,)(,则+−−=+=−=−z z z z z z a b 2342i 82i )()(,则==a b 2,1,故+=+=z i 22i 故选:A12.(2023·贵州毕节·统考一模)已知复数=+++z a a a 1i 2)(为纯虚数,则实数a 的值为( ) A .0 B .0或−1C .1D .−1【答案】A【解析】因为复数=+++z a a a 1i 2)(为纯虚数,则⎩+≠⎨+=⎧a a a 1002,解得=a 0.故选:A.13.(2023·全国·模拟预测)已知复数z 满足−=+z z 2537i )(,则z 的虚部为( ) A .−1311B .511 C .1329 D .−529 【答案】C【解析】对−=+z z 2537i )(移项并整理,得−=+z 23i 57i )(, ∴()()−−+===−++++z 23i 23i 23i 1313i 57i 112957i 23i )()(,∴z 的虚部为1329.故选:C. 14.(2022·全国·统考高考真题)若=+z 1i .则+=z z |i 3|( )A .B .C .D .【答案】D【解析】因为=+z 1i ,所以+=++−=−z z i 3i 1i 31i 22i )()(,所以+==z z i 3 故选:D.15.(2023春·江苏常州·高三校联考开学考试)若复数R +=∈+z a a 3i3i)(是纯虚数,则=z ( ) A .−1 B .−iC .−a iD .3i【答案】B 【解析】==+−++−z a a a 10103i 3i 339i )()()(为纯虚数,=−=a z 1,i ,=−z i ,故选:B .16.(2023春·安徽阜阳·高三阜阳市第二中学校考阶段练习)i 是虚数单位,设复数z 满足−=+z i 113i )(,则z 的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】因为+==13i 2,所以−−+−====−+++−+z i 1(i 1)(i 1)222i 23i (23i)(i 1)15i 15, 所以=+z 22i 15,所以z 的共轭复数对应的点位于第一象限,故选:A 17.(2023秋·浙江·高三期末)已知复数=+∈=z b b z i2i(R),212(其中i 为虚数单位),若−z z 12=b ( ) A .1 B .−5 C .1或−5 D .−1或5【答案】C【解析】由题意得==−z i2i 22,则−=++z z b 2(2)i 12,所以−==z z 12−b =5或=b 1,故选:C18.(2023广东深圳)设复数z 满足⋅+=−+z 12i 34i )(,则z 的虚部为( ) A .−2i B .2iC .−2D .2【答案】D【解析】由⋅+=−+z 12i 34i )(可得++====−−−+z 12i 12i 512i 55(12i)34i ,故=+z 12i ,则z 的虚部为2,故选:D19.(2022·山东济南·山东省实验中学校考模拟预测)虚数单位i 的平方根是( ) A .−1B.−−i 22C+22D.+22或 【答案】D【解析】设i 的平方根为+∈a bi a b R (,),则+=−+=a bi a b abi i ()2222,所以⎩=⎨−=⎧ab a b 21022,解得⎩⎪=⎪⎨⎪⎪=⎧b a 22或⎩⎪=⎪⎨⎪⎪=−⎧b a 2. 所以i的平方根为+i 22或−22. 故选:D .20.(2023·山西大同·大同市实验中学校考模拟预测)若复数z 满足+−=+z z z z 2+323i )()(,则z =( ) A .+22i 11B .−22i 11C .+22iD .−22i【答案】A【解析】设=+∈z a b a b i ,R )(,则=−z a b i ,所以+=++−=z z a b a b a i i 2)()(,−=+−−=z z a b a b b i i 2i )()(,所以+−=++z z z z a b 2+346i=23i )()(,所以===+a b z 2222,,i 1111.故选:A 21.(2023·广东佛山·统考一模)设复数z 满足+=−z 1i 52i 2)(,则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵+=−z 1i 52i 2)(,则()+===−−−−z 1i 2i 21i 52i52i 52,∴z 在复平面内对应的点为⎝⎭ ⎪−−⎛⎫21,5,位于第三象限.故选:C.22.(2023·辽宁·辽宁实验中学校考模拟预测)已知复数+z1i 为纯虚数,且+=z 1i1 ,则z =( ) A .−1i B .+1i C .−+1i 或−1i D .−−1i 或+1i【答案】C【解析】设=+z a b i (a ,b ∈R ),则++===+++−+−z a b a b b aa b 1i 1i 222i i i 1i )()( , 因为复数+z 1i 为纯虚数,所以⎩⎪≠⎪−⎨⎪⎪=⎧+b a a b 20,20,解得⎩≠⎨⎧=−a b a b ,, 又+=z 1i 1,所以=−b a 21或=−−b a21,解得=b 1或1b ,所以=−+z 1i 或=−z 1i .故选:C23.(2023·安徽马鞍山·统考一模)若复数z 满足−=−zz z i 3i ,则z 的虚部为( ) A .−1 B .2C .1或2D .−1或2【答案】D【解析】设复数=+∈z a b a b i(,R),因为−=−zz z i 3i ,即+−−=−a b a b i 3i 22,所以⎩=⎨+−=⎧a a b b 1322,解得:1b或=b 2,所以z 的虚部为−1或2,故选:D .24.(2023·云南昆明·昆明一中校考模拟预测)已知复数z 满足−=z (12i)i 2023,则=z ( ) A .−55i 21 B .+55i 21C .−55i 12D .+55i 12【答案】A【解析】因为=⨯=−ii ii 202321011)(,所以()()−−−+====−−−+z 12i 12i 12i 12i 55i i i 21i 12i 2023)(,故选:A. 25.(2023·河南郑州·统考一模)已知i 是虚数单位,若复数z 的实部为1,⋅=z z 4,则复数z 的虚部为( )A.B .C .−1或1D .【答案】A【解析】由题意,设=+z b 1i ,则=−z b 1i ,所以⋅=+−=z z b b 1i 1i 4)()(,即+=b 142,所以=b =−z 1或z =+1,所以复数z 的虚部为故选:A.26.(2023·陕西宝鸡·校联考模拟预测)已知复数=++z 1i i 3)(,则复数z 的模为( )AB .CD 【答案】C【解析】因为=++=−+z 2i(1i)i 23i ,所以=z C.27.(2023·陕西咸阳·武功县普集高级中学统考一模)已知复数=−z i 12的共轭复数为z ,则−=z i2( ) A .−1i B .+2iC .+1iD .−+1i【答案】A【解析】由题知=+z 12i ,所以−+==−z i1i 1i 22故选:A 28.(2023·浙江·校联考模拟预测)已知复数=−z 12i 1,=+z 1i 2,则复数z z 12的模z z 12等于( )A B C .D .【答案】B【解析】复数=−z 12i 1,=+z 1i 2,则=−+=−z z (12i)(1i)3i 12,所以==z z 12故选:B29.(2023·广东梅州·统考一模)已知复数z 满足z +=−1i 2i )(,i 是虚数单位,则z 在复平面内的对应点落在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【解析】由z +=−1i 2i )(可得+===−−−−−z 1i 21i 2i (2i)(1i), 则z 在复平面内的对应点为−−(1,1),落在第三象限,故选:C 30.(2023秋·辽宁·高三校联考期末)已知z 是纯虚数,−+z 1i2是实数,那么=z ( ) A .2i B .iC .−iD .−2i【答案】A【解析】因为z 是纯虚数,故可设)=≠z b b i(0,所以()()−−−+=+−−+z b b 1i 1i 1i 1i =22i 2i 1i )()(=++−b b 222i)(,因为−+z 1i 2是实数,所以−=b 20,即=b 2,所以=z 2i .故选:A31.(2023秋·江苏南京·高三南京师范大学附属中学江宁分校校联考期末)设a 为实数,若存在实数t ,使+−−t a 2i(1)i i2为实数(i 为虚数单位),则a 的取值范围是( ) A .≥−a 2 B .0a< C .≤−a 1 D .≤−a 2【答案】A 【解析】⎝⎭⎪+−+−−−+−−+−−⎛⎫−−−t t t t a a a a 2i 222221i=1i=i 1i=1i i11i i 2222)()()()()(, 因为存在实数t ,使+−−t a 2i (1)i i 2为实数,a 为实数,所以存在实数t ,−−=t a2102,故存在实数t ,−=t a 222, 所以≥−a 2,故选:A.32.(2023·吉林·长春十一高校联考模拟预测)设复数z 满足+=z i 2,z 在复平面内对应的点为x y ,)(,则( ) A .−+=x y 1422)( B .++=x y 1422)( C .+−=x y 1422)( D .++=x y 1422)(【答案】D【解析】z 在复平面内对应的点为,x y (),则复数=∈z x y x y +i,,R ,则+=++=z x y i (1)i 2,由复数的模长公式可得++=x y (1)422,故选:D .33.(2023秋·广东广州·高二广东实验中学校考期末)设复数z 满足−=−z z z 1,则z 在复平面上对应的图形是( ) A .两条直线 B .椭圆 C .圆 D .双曲线【答案】A【解析】设=+z x y i ,则=−z x y i ,−=−z z z 1可得:−+=x y y 12222)()(,化简得:−=x y 1322)(,即−=x y 13或−=−x y 13,则z 在复平面上对应的图形是两条直线.故选:A34.(2022春·上海黄浦·高三上海市敬业中学校考开学考试)满足条件−=+z i 34i (i 是虚数单位)的复数z 在复平面上对应的点的轨迹是( ) A .直线 B .圆 C .椭圆 D .双曲线【答案】B【解析】因为+==34i 5,设=+z x y i ∈x y ,R )(,所以−=+−z x y i 1i )(,所以i −==z 5,两边平方得+−=x y 12522)(,满足条件的复数在复平面上对应的点的轨迹是圆, 故选:B35(2023春·湖南株洲·高二株洲二中校考开学考试)已知复数z 满足+=+ααz 1i sin i cos )((i 是虚数单位),则=z ( )A .21B C .2D .1【答案】B【解析】因为+=+ααz 1i sin i cos )(, 所以()()++−===+++−++−ααααααααz 1i 1i 1i 22i sin i cos sin cos sin cos sin i cos 1i )()(,解得==z 故选:B36.(2022秋·安徽阜阳·高三安徽省临泉第一中学校考期末)已知复数+1i 是关于x 的方程++=∈x px q p q 0(,R)2的一个根,则+=p q i ( )A.4 B .C .8D .【答案】D【解析】因为复数+1i 是关于x 的方程++=x px q 02的一个根,所以⎩+=⎨++++=⇒+++=⇒⎧+=p p q p q p p q 201i 1i 02i 002)()()(,解得=−=p q 2,2,所以+==p qi另解:因为复数+1i 是关于x 的方程++=∈x px q p q 0(,R)2的一个根, 所以复数−1i 也是关于x 的方程++=∈x px q p q 0(,R)2的一个根, 所以有++−==−+−==p q 1i 1i 2,1i 1i 2)()(解得=−=p q 2,2,所以+=p qi 故选:D37.(2023·全国·模拟预测)若复数=+++⋅⋅⋅+z n i i i i 23,∈n N *则z 的最大值为( )A.1 B C D .2【答案】B【解析】因为=i i 1,=−i 12,=−i i 3,=i 14,,=+k i i 41,=−+k i 142,=−+k i i 43,=k i 14,∈k N ,且+++=i i i i 0234,所以当=n k 4,∈k N *)(时=z 0,则=z 0,当=+n k 41,∈k N )(时=z i ,则=z 1,当=+n k 42,∈k N )(时=−+z 1i ,则==z当=+n k 43,∈k N )(时=−z 1,则=z 1,所以z 故选:B38.(2021秋·上海浦东新·高三上海南汇中学校考阶段练习)已知函数+=−−x f x x 1()log (1)212的定义域为A ,复数−=−−z a 12ii 3i,若∈a A ,则z ||的取值范围是( )A .<z 1B .≤<z 1C .≤≤z 1D .<≤z 1【答案】B 【解析】由+−>−x x 11021,得+>−+x x 102,即−<<x 12,所以=−A (1,2) 因为复数−=−=−+−=+−−z a a a 12i 5i (3i)(12i)i 1(1)i 3i 1所以z ||因为∈−a (1,2),所以z || 故选:B39.(2023春·上海浦东新·高三上海市实验学校校考开学考试)设z 1,z 2为复数,下列命题一定成立的是( )A .如果=z a 1,a 是正实数,那么=z z a 112B .如果z z =12,那z z =±12C .如果≤z a 1,a 是正实数,那么−≤≤a z a 1D .如果+=z z 01122,那么==z z 012 【答案】A【解析】设)(,=+=+∈z x y z x y x y x y i,i ,,,R 1112221122,对A :∵==z a 1,则+=x y a 11222,∴=+−=+=z z x y x y x y a i i 11111111222)()(,A 正确;对B :∵z z =12=+=+x y x y 11222222,不能得到=±=±x x y y ,1212,更不能得到z z =±12,例如==z z 1,i 12,则==z z 112,但≠±z z 12,B 错误;对C :∵=z a 1,则+≤x y a 11222,但只有实数才能比较大小,对于虚数无法比较大小,C 错误;对D :∵+=z z 01122,则+++=−++−+=+−−++x y x y x y x y x y x y x x y y x y x y i i 2i 2i 2i=0112211112222121211222222222222)()()()()()(,可得⎩+=⎨+−−=⎧x y x y x x y y 00112212122222,不能得到====x y x y 01122,例如==z z 1,i 12,则+=−=z z 1101122,但显然≠≠z z 0,012,D 错误.故选:A.40.(2022秋·山西阳泉·高三统考期末)已知复数1232023i i i i 1i +++++=z ,则复数z 的虚部是( ) A .21B .−21C .2i 1D .−2i 1【答案】A 【解析】1232023i i i i 1i 1i 1i++++===+++−−+−−+++++++z i 1i 505i 1i 1i i i 505i i i i 1231234)()()()(+===−−+−−1i 2211i1i )(,故虚部为21 ,故选:A 41.(2022春·广西)下列关于复数的命题中(其中i 为虚数单位),说法正确的是( )A .若关于x 的方程+++−=∈i x ax i a R 11402)()(有实根,则=−a 25B .复数z 满足+=z i i12020)(,则z 在复平面对应的点位于第二象限C .=−+++z a a a i 412312)(,=++i z a a a 222)((i 为虚数单位,∈a R ),若>−a 21,则>z z 12D .+i 12是关于x 的方程++=x px q 02的一个根,其中p 、q 为实数,则=q 5 【答案】D【解析】对于A 中,设方程的实数根为t ,代入方程可得+++−=i i t at 11402)(,所以⎩−=⎨++=⎧t t at 401022,解得=±a 25,所以A 不正确;对于B 中,复数+=z i i 12020)(,可得==−++=i i i i z 12112112020,则复数z 在复平面内对应的点为−22(,)11,位于第四象限,所以B 不正确;对于C 中,复数=−+++z a a a i 412312)(,=++i z a a a 222)(,当>−a 21时,可知当+≠a a 02时 ,因为虚数不能比较大小,所以C 不正确;对于D 中,+i 12是关于x 的方程++=x px q 02的一个根, 根据复数方程的性质,可得−i 12也是方程的根,可得⎩+−=⎨⎧++−=−i i q i i p (12)(12)1212,解得=−=p q 2,5,所以D 正确.故选:D.42.(2023秋·河北唐山·高三统考期末)(多选)已知i 为虚数单位,复数,,=−=+∈z a z a a 2i 2i R 12)(,下列结论正确的有( )A .z z =12B .=z z 12C .若+=⋅z z z z 21212)(,则=a 2D .若=−z i 2,则=a 0 【答案】AC【解析】A 选项,==z z 12,A 选项正确. B 选项,=+≠z a z 2i 12,B 选项错误. C 选项,+=++−z z a a 22424i 12)()(, ⋅=+−z z a a 44i 122)(,若+=⋅z z z z 21212)(,则⎩−=−⎨⎧+=a a a a 2442442,解得=a 2,所以C 选项正确. D 选项,当=a 0时,=≠−z 2i 2,所以D 选项错误. 故选:AC43.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)(多选)设i 为虚数单位,下列关于复数的命题正确的有( ) A .=⋅z z z z 1212B .若z z ,12互为共轭复数,则z z =12C .若z z =12,则=z z 1222D .若复数=++−z m m 11i )(为纯虚数,则=−m 1【答案】ABD 【解析】由题意得:对于选项A :令=+=+z a b z c d i,i 12则⋅=++=−++z z a b c d ac bd ad bc i i i 12)()()( =−++ac bd ad bc 22)()(=⋅z z 12所以=⋅z z z z 1212,故A 正确;对于选项B :令=+=−z a b z a b i,i 12,z z 12z z =12,故B 正确;对于选项C :令=+=−z a b z a b i,i 12,==z z 12,根据复数的乘法运算可知:=+=−+z a b a b ab i 2i 12222)(,=−=−−z a b a b ab i 2i 22222)( ,≠z z 1222,所以C 错误;对于选项D :若复数=++−z m m 11i )(为纯虚数,则+=m 10,即=−m 1,故D 正确. 故选:ABD44.(2023春·安徽·高三校联考开学考试)(多选)若复数=+z i 121,=−z 73i 2,则下列说法正确的是( ).A .=z 1B .在复平面内,复数z 2所对应的点位于第四象限C .⋅z z 12的实部为13D .⋅z z 12的虚部为−11 【答案】ABC【解析】由题意得,==z 1A 正确;在复平面内,复数z 2所对应的点为−7,3)(,位于第四象限,故B 正确; ∵⋅=+−=−++=+z z 12i 73i 73i 14i 61311i 12)()(, ∴⋅z z 12的实部为13,虚部为11,故C 正确,D 错误. 故选:ABC .45.(2023秋·浙江宁波·高三期末)(多选)已知∈z z C ,12,且=+=z z z 10112,则( )A .当R =−=+∈z z x y x y 1i,i(,)12时,必有++−=x y (1)(1)1022B .复平面内复数z 1C .−=z i 1min 1D .=+z z 1max12【答案】BD【解析】A 项:+=⇒++−=z z x y 10111001222)()(,故错误;B 项:因为=z 1,故正确;C 项:−≥−=z i z i ||||111,当z 1与i 对应向量同向时取等,故错误;D 项:==≤==+z z 112+z z 12与z 1对应向量反向时取等,故正确. 故选:BD.46.(2023秋·湖北·高三校联考阶段练习)(多选)设z 1,z 2为复数,则下列四个结论中正确的是( )A .−=+−z z z z z z 412121222)(B .−z z 11是纯虚数或零C .+≤+z z z z 1212恒成立D .存在复数z 1,z 2,使得<z z z z 1212【答案】BC【解析】对于A :+−=−z z z z z z 412121222)()(,令−=+z z x y i 12, 则−=+=−+z z x y x y xy i 2i 122222)()(,−==+z z x y 12222,+xy 22与−+x y xy 2i 22不一定相等,故A 错误;对于B :=+z a b i 1,则=−z a b i 1,−=z z b 2i 11,当=b 0时为零,当≠b 0时为纯虚数,故B 正确;对于C :=+=+==z x y z a b z z i,i,1212则+=z z 12+=z z ||||12,(ay bx −≥02),则+−≥a y b x abxy 202222,∴+++≥++a x b x a y b y a x b y abxy 442222222222222)()(∴++≥+x y a b ax by 42222222)()()(∴+ax by 22∴++++≥+++++x y a b x y a b ax by 2222222222,∴≥22,∴+−+≥z z z z ||||0121222)()(故C 正确;对于D :设=+=+==z x y z a b z z i,i,1212则z z ||||12=+++=−++z z ax xb ay by ax by xb ay i i i i 122)()(==z z 12z z ||||12,故D 错误.故选:BD.47.(2022秋·甘肃甘南)(多选)已知=+∈z a b a b i ,R )(为复数,z 是z 的共轭复数,则下列命题一定正确的是( )A .若z 2为纯虚数,则=≠a b 0B .若∈z R 1,则∈z RC .若−=z i 1,则z 的最大值为2D .⋅=z z z ||2【答案】BCD【解析】对于A ,=+=−+z a b a b ab (i)2i 2222)(为纯虚数,所以⎩≠⎨−=⎧ab a b 20022,即=±≠a b 0,所以A 错误;对于B ,()()++−++===−−z a b a b a b a b a ba b a bi i i i 11i 2222, 因为∈zR 1,所以=b 0,从而∈z R ,所以B 正确;对于C , 由复数模的三角不等式可得=−+≤−+=z z z i i i i 2)(,所以C 正确;对于D ,⋅=+−=+=z z a b a b a b z i i ||222)()(,所以D 正确.故选:BCD .48.(2023秋·吉林长春·高三长春市第二中学校考期末)(多选)已知复数z 1,z 2,则下列结论中一定正确的是( ) A .若=z z 012,则=z 01或=z 02B .若+=z z 01222,则==z z 012 C .若=z z 1222,则z z =12D .若z z =12,则=z z 1222【答案】AC【解析】对于A , 设=+=+∈z x y z a b x y a b i,i,,,,R 12)(, 若=z z 012,则=++=−=z z x y a b xa yb xb ya i i ++i 012)()()(,所以⎩=⎨⎧−=xb ya xa yb +00,即⎩=−⎨⎧=xb ya xa yb,所以=−x y ab ab 22,若0a b ,则=−x y ab ab 22成立,此时=z 02;若,=≠a b 00,由=xa yb 得=y 0,由=−xb ya 得=x 0,此时=z 01; 若,≠≠a b 00,由=−x y ab ab 22得=−x y 22,所以==x y 0,此进=z 01, 所以若=z z 012,则=z 01或=z 02,故A 正确;对于B ,设=+=−z z 1i,1i,12则+=+−=z z 1i +1i 0122222)()(,故B 不正确; 对于C ,设=+=+∈z x y z a b x y a b i,i,,,,R 12)(,所以=+−=−∈z x y x y xy z a b ab x y a b i =+2i,+2i ,,,R 12222222)()(,若=z z 1222,则⎩⎩==⎨⎨⇒⎧−=−⎧=xy ab y b x y a b x a 222222或⎩=−⎨⎧=−y b x a , 所以z z =12,故C 正确;对于D , 由z z =12,取=+z 1i 1,=−z 1i 2满足条件,而=≠=−z z 2i 2i 1222,故D 不正确. 故选:AC.49.(2023·高一课时练习)在复平面上的单位圆上有三个点Z 1,Z 2,Z 3,其对应的复数为z 1,z 2,z 3.若−=+=z z z 1213△Z Z Z 123的面积S =______.【解析】由题意知,===z z z 1123, 由复数的加减法法则的几何意义及余弦定理,得⋅∠==−+−−z z Z OZ z z z z 22cos 112121212222,即∠=︒Z OZ 12012,⋅∠=−=+−+z z Z OZ z z z z 22cos 113131313222,即∠=︒Z OZ 6013,当OZ 2与OZ 3反向,=⨯⨯=S 22221;当线段OZ3在∠Z OZ12的内部时,==S2211所以△Z Z Z123..50(2023·高三课时练习)已知复数=−θz cos i1,=+θz sin i2,则⋅z z12的最大值为______.【答案】23【解析】⋅=⋅== z z z z1212===∵∈θsin20,12][,∴当=θsin212时,⋅z z12=23.故答案为:23.51.(2023·=______.====21)52.(2023·高一课时练习)设z 1,z 2,∈z C 3,下列命题中,假命题的个数为______. ①z z −=11;②若=z z 1222,则⋅=⋅z z z z 1122;③⋅=z z z z z z 3333121222; ④若−+−=z z z z 0122322)()(,则==z z z 123;⑤+≤z z z z 2121222.【答案】2【解析】令+z a b =i 1,+z c d =i 2,则−z a b =i 1,−z c d =i 2.则①−==z z 11,判断正确;②若=z z 1222,则=z z 1222,则=z z 1222又⋅=z z z 1112,⋅=z z z 2222,则⋅=⋅z z z z 1122.判断正确;③==⋅z z z z z z z z z 333333121212222.判断正确; ④若令z =2i 1,z =i 2,+z =1i 3,则−+−=−+=z z z z 110122322)()(, 但此时≠≠z z z 123.判断错误; ⑤当+z =23i 1,+z =2i 2时,=<+−=−=−z z z z z z 22i 402212121222)()(,即+>z z z z 2121222.判断错误.故答案为:253.(2023·上海·统考模拟预测)设∈z z ,C 12且=⋅z z i 12,满足−=z 111,则−z z 12的取值范围为_____.【答案】⎣⎡0,2【解析】设=+=+∈z a b z c d a b c d i,i,,,,R 12,=−z c d i 2,则+=⋅−=+a b c d d c i i i i )(,所以⎩=⎨⎧=b c a d ,−=−+==z a b 11i 11)(,所以−+=a b 1122)(,即z 1对应点a b ,)(在以1,0)(为圆心,半径为1的圆−+=x y 1122)(上.=+=+z c d b a i i 2,z 2对应点为b a ,)(,a b ,)(与b a ,)(关于=y x 对称,所以点b a ,)(在以0,1)(为圆心,半径为1的圆+−=x y 1122)(上,−z z 12表示a b ,)(与b a ,)(两点间的距离,圆−+=x y 1122)(与圆+−=x y 1122)(,如图所示,所以−z z 12的最小值为0+=112所以−z z 12的取值范围为⎣⎡0,2.故答案为:⎣⎡0,254.(2023·高三课时练习)复数z 1与z 2在复平面上对应的向量分别为OZ 1与OZ 2,已知=z i 1,OZ OZ ⊥12,且=OZ OZ 12,则复数=z 2______.【答案】1或−1【解析】依题意,(3,1)OZ =1,设(,)OZ x y =2,由OZ OZ ⊥12得:30OZ OZ ⋅=+=x y 12,由=OZ OZ 12得:+=x y 422,联立解得⎩⎪=⎨⎪⎧=y x 1⎩⎪⎨⎪⎧=−y x 1(1,3)OZ =−2或(1,3)OZ =−2,所以=z 12或=−z 12.故答案为:1或−155(2023·高三课时练习)已知复数z 满足−−≤−−+z z 12log 11121,则z 在复平面上对应的点Z所围成区域的面积为______. 【答案】π21 【解析】12log 1,2,215z z z z −+−+−−−−≤−∴≥<−≤z 12121111,∴=−=s π(52)21π22. 故答案为: π2156(2022春·上海闵行·高三上海市七宝中学校考阶段练习)已知=+z x y i ,x 、∈y R ,i 是虚数单位.若复数++z1ii 是实数,则z ||的最小值为______.【【解析】复数++−+=+=+=++−++−+−+z x y x y y x x y y x 1i (1i)(1i)222i i i i (i)(1i)()i 2是实数, 所以=−+y x 202,得=+x y 2.所以===≥z ||当且仅当=−y 1,=x 1取等号,所以z ||.。
复数(2012-2021)高考数学真题

复数【2021年】1.(2021年全国高考乙卷数学(文)试题)设i 43i z =+,则z =( ) A .–34i -B .34i -+C .34i -D .34i +2.(2021年全国高考乙卷数学(理)试题)设()()2346z z z z i ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -3.(2021年全国高考甲卷数学(理)试题)已知2(1)32i z i -=+,则z =( ) A .312i --B .312i -+C .32i -+D .32i --4.(2021年全国新高考Ⅰ卷数学试题)已知2i z =-,则()i z z +=( ) A .62i - B .42i - C .62i + D .42i +【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))若312i i z =++,则||=z ( ) A .0 B .1 CD .22.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))若z=1+i ,则|z 2–2z |=( ) A .0B .1CD .23.(2020年全国统一高考数学试卷(文科)(新课标Ⅱ))(1–i )4=( ) A .–4 B .4 C .–4iD .4i .4.(2020年全国统一高考数学试卷(文科)(新课标Ⅲ))若()11+=-z i i ,则z =( ) A .1–iB .1+iC .–iD .i5.(2020年全国统一高考数学试卷(理科)(新课标Ⅲ))复数113i -的虚部是( ) A .310-B .110-C .110D .3106.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))设3i12iz -=+,则z =A .2BC D .17.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=8.(2019年全国统一高考数学试卷(文科)(新课标Ⅱ))设z =i(2+i),则z = A .1+2i B .–1+2i C .1–2iD .–1–2i9.(2019年全国统一高考数学试卷(理科)(新课标Ⅱ))设z =-3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限10.(2019年全国统一高考数学试卷(文科)(新课标Ⅲ))若(1i)2i z +=,则z = A .1i --B .1+i -C .1i -D .1+i11.(2018年全国普通高等学校招生统一考试理科数学(新课标I 卷))设1i2i 1iz -=++,则||z = A .B .12C .1 D12.(2018年全国普通高等学校招生统一考试文数(全国卷II ))()i 23i +=A .32i -B .32i +C .32i --D .32i -+13.(2018年全国普通高等学校招生统一考试理数(全国卷II ))12i12i +=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+14.(2018年全国卷Ⅲ文数高考试题)(1)(2)i i +-= A .3i --B .3i -+C .3i -D .3i +15.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))下列各式的运算结果为纯虚数的是 A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i)16.(2017年全国普通高等学校招生统一考试理科数学(新课标1卷))设有下面四个命题1p :若复数z 满足1R z∈,则z R ∈;2p :若复数z 满足2z ∈R ,则z R ∈; 3p :若复数12,z z 满足12z z R ∈,则12z z =; 4p :若复数z R ∈,则z R ∈.其中的真命题为 A .13,p p B .14,p p C .23,p pD .24,p p17.(2017年全国普通高等学校招生统一考试文科数学(新课标2卷))(1i)(2i)++= A .1i - B .13i + C .3i +D .33i +18.(2017年全国普通高等学校招生统一考试理科数学)31ii++=( )A .1+2iB .1-2iC .2+iD .2-i19.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))复平面内表示复数z=i(–2+i)的点位于 A .第一象限B .第二象限C .第三象限D .第四象限20.(2017年全国普通高等学校招生统一考试理科数学(新课标3卷))设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B CD .221.(2016年全国普通高等学校招生统一考试文科数学(新课标1卷))设()()12i a i ++的实部与虚部相等,其中a 为实数,则a =A .−3B .−2C .2D .322.(2016年全国普通高等学校招生统一考试理科数学(新课标1卷))设,其中x ,y 是实数,则i =x y +A .1BC D .223.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷))设复数z 满足3z i i +=-,则z = A .12i -+B .12i -C .32i +D .32i -24.(2016年全国普通高等学校招生统一考试理科数学(新课标2卷))已知(3)(1)z m m i =++-在复平面内对应的点在第四象限,则实数m 的取值范围是 A .(31)-, B .(13)-, C .(1,)+∞ D .(3)-∞-,25.(2016年全国普通高等学校招生统一考试理科数学)若43z i =+,则z z =A .1B .1-C .4355i +D .4355i -26.(2016年全国普通高等学校招生统一考试理科数学(全国3卷))若12z i =+,则41izz =- A .1 B .-1 C .i D .-i27.(2015年全国普通高等学校招生统一考试理科数学)已知复数z 满足(1)1z i i -=+,则z =A .2i --B .2i -+C .2i -D .2i +28.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))设复数z 满足1+z1z-=i ,则|z|=A .1BCD .229.(2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ))若a 为实数,且2i3i 1ia +=++,则a = A .4- B .3- C .3 D .430.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ))若a 为实数且(2)(2)4ai a i i +-=-,则a = A .1-B .0C .1D .231.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))设,则A .B .C .D .2.32.(2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))A .B .C .D .33.(2014年全国普通高等学校招生统一考试理科数学)计算131ii+=- A .12i +B .12i -+C .12i -D .12i --34.(2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷))设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =A .- 5B .5C .- 4+ iD .- 4 - i35.(2013年全国普通高等学校招生统一考试文科数学(新课标1卷))212(1)i i +=- A .112i -- B .112i -+ C .112i + D .112i - 36.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷)已知复数z 满足(3443i z i -=+),则z 的虚部为 A .-4 B .45- C .4D .4537.(2013年全国普通高等学校招生统一考试文科数学(新课标2卷))21i +=A .B .2CD .138.(2013年全国普通高等学校招生统一考试理科数学(新课标2卷))设复数z 满足()12i z i -=,则z= ( ) A .-1+iB .-1-iC .1+iD .1-i39.(2012年全国普通高等学校招生统一考试文科数学(课标卷))复数32iz i-+=+的共轭复数是 A .2i +B .2i -C .1i -+D .1i --40.(2012年全国普通高等学校招生统一考试理科数学(课标卷))下面是关于复数21z i=-+的四个命题:其中的真命题为1:2p z =22:2p z i =3:p z 的共轭复数为1i +4:p z 的虚部为1-A .23,p pB .12,p pC .24,p pD .34,p p。
高考复数专题及答案百度文库

一、复数选择题1.已知复数2z i =-,若i 为虚数单位,则1iz+=( ) A .3155i + B .1355i + C .113i +D .13i + 2.若20212zi i =+,则z =( )A .12i -+B .12i --C .12i -D .12i +3.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( )A .5B C .D .5i4.已知i 是虚数单位,则复数41ii+在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.已知复数5i5i 2iz =+-,则z =( )A B .C .D .6.已知i 为虚数单位,复数12i1iz +=-,则复数z 在复平面上的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 7.若复数1z i =-,则1zz=-( )A B .2C .D .48.若复数z 满足()322iz i i -+=+,则复数z 的虚部为( ) A .35B .35i -C .35D .35i9.复数z 的共轭复数记为z ,则下列运算:①z z +;②z z -;③z z ⋅④zz,其结果一定是实数的是( ) A .①②B .②④C .②③D .①③10.若复数()41i 34iz +=+,则z =( )A .45B .35C .25D .511.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )A B .2C .10D12.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( ) A .22z +=B .22z i +=C .24z +=D .24z i +=13.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( ) A .6π B .3πC .23π D .43π 14.已知i 是虚数单位,设11iz i,则复数2z +对应的点位于复平面( ) A .第一象限B .第二象限C .第三象限D .第四象限15.题目文件丢失!二、多选题16.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 17.已知复数z 满足220z z +=,则z 可能为( ) A .0B .2-C .2iD .2i -18.已知复数12z =-,则下列结论正确的有( )A .1z z ⋅=B .2z z =C .31z =-D .2020122z =-+ 19.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点20.下面是关于复数21iz =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z =B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 21.已知复数z 满足2724z i =--,在复平面内,复数z 对应的点可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限22.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =23.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限24.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=25.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )A.若0m =,则共轭复数1z =- B .若复数2z =,则m C .若复数z 为纯虚数,则1m =± D .若0m =,则2420z z ++= 26.以下为真命题的是( ) A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数27.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =28.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y == B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于129.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数 B .若z 的共轭复数为z ,且z z =,则z 是实数C .若||z z =,则z 是实数D .||z 可以等于12【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.B 【分析】利用复数的除法法则可化简,即可得解. 【详解】 ,. 故选:B. 解析:B 【分析】利用复数的除法法则可化简1iz+,即可得解. 【详解】2z i =-,()()()()12111313222555i i i i i i z i i i +++++∴====+--+. 故选:B.2.C 【分析】根据复数单位的幂的周期性和复数除法的运算法则进行求解即可. 【详解】由已知可得,所以. 故选:C解析:C 【分析】根据复数单位i 的幂的周期性和复数除法的运算法则进行求解即可. 【详解】 由已知可得202150541222(2)21121i i i i i i z i i i i i i ⨯+++++⋅-======-⋅-,所以12z i =-. 故选:C3.B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】 ,所以, 故选:B解析:B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】(2)21z i i i =+=-,所以|z |=故选:B4.A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】,所以复数对应的坐标为在第一象限, 故选:A解析:A 【分析】利用复数的乘除运算化简复数的代数形式,得到其对应坐标即知所在象限. 【详解】44(1)2(1)12i i i i i -==++,所以复数对应的坐标为(2,2)在第一象限, 故选:A 5.B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】 由题,得,所以. 故选:B.解析:B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】由题,得()()()5i 2+i 5i5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z == 故选:B.6.C 【分析】利用复数的除法法则化简,再求的共轭复数,即可得出结果. 【详解】 因为, 所以,所以复数在复平面上的对应点位于第三象限, 故选:C.解析:C 【分析】利用复数的除法法则化简z ,再求z 的共轭复数,即可得出结果. 【详解】 因为212(12)(1)11i i i z i i +++==-- 1322i =-+,所以1322z i =--, 所以复数z 在复平面上的对应点13(,)22--位于第三象限, 故选:C.7.A 【分析】将代入,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】 由,得, 则, 故选:A.解析:A 【分析】 将1z i =-代入1zz-,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】由1z i =-,得2111z i i ii z i i---===---,则11zi z=--==-,故选:A.8.A 【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论. 【详解】由题意,得, 其虚部为, 故选:A.解析:A 【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论. 【详解】 由题意,得()()()()()23343313343434552i i ii z ii i i i ----====-++-+, 其虚部为35, 故选:A.9.D 【分析】设,则,利用复数的运算判断. 【详解】 设,则, 故,, ,. 故选:D.解析:D 【分析】设(),z a bi a b R =+∈,则z a bi =-,利用复数的运算判断. 【详解】设(),z a bi a b R =+∈,则z a bi =-, 故2z z a R +=∈,2z z bi -=,22222z a bi a b abi z a bi a b +-+==-+,22z z a b ⋅=+∈R . 故选:D.10.A 【分析】首先化简复数,再计算求模. 【详解】 , .解析:A 【分析】首先化简复数z ,再计算求模. 【详解】()()()2242112434343434i i i z i i i i⎡⎤++⎣⎦====-++++ ()()()()43443412163434252525i i i i i --=-=-=-++-,45z ∴==.故选:A11.D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为, 所以,, 所以, 故选:D.解析:D 【分析】求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案. 【详解】 因为1z i =+,所以1z i =-,12z i +=+,所以()()()1123z z i i i ⋅+=-⋅+=-== 故选:D.12.B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数对应的点为,所以 ,满足则 故选:B解析:B利用复数模的计算公式即可判断出结论. 【详解】因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B13.C 【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解. 【详解】 ,,所以复数在第二象限,设幅角为, 故选:C 【点睛】在复平面内运用复数的三解析:C 【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解. 【详解】11z =,1cos 0sin 0z i ∴=+,121(cos sin )332Z i O OZ ππ=+=2111()2222z z i --∴=+所以复数在第二象限,设幅角为θ,tan θ=23πθ∴=故选:C 【点睛】在复平面内运用复数的三角形式是求得幅角的关键.【分析】由复数的除法求出,然后得出,由复数的几何意义得结果. 【详解】 由已知,,对应点为,在第一象限, 故选:A.解析:A 【分析】由复数的除法求出z i =-,然后得出2z +,由复数的几何意义得结果. 【详解】 由已知(1)(1)(1)(1)i i z i i i --==-+-,222z i i +=-+=+,对应点为(2,1),在第一象限,故选:A.15.无二、多选题 16.BC 【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC 【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z,利用复数的概念可判断D 选项的正误. 【详解】 对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC. 17.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.18.ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为,所以A 正确;因为,,所以,所以B 错误;因为,所以C 正确;因为,所以,所以D 正确解析:ACD【分析】分别计算各选项的值,然后判断是否正确,计算D 选项的时候注意利用复数乘方的性质.【详解】因为111312244z z ⎛⎫⎛⎫=+= ⎪⎪ ⎪⎪⎝⎭⎭=⎝⋅,所以A 正确;因为22112222z ⎛⎫-=-- ⎪ ⎪⎝⎭=,12z =,所以2z z ≠,所以B 错误;因为321112222z z z i ⎛⎫⎛⎫=⋅=---=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,所以C 正确;因为6331z z z =⋅=,所以()202063364431112222z z z z z ⨯+⎛⎫===⋅=-⋅-=-+ ⎪ ⎪⎝⎭,所以D 正确,故选:ACD.【点睛】本题考查复数乘法与乘方的计算,其中还涉及到了共轭复数的计算,难度较易.19.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.20.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A错误;,B正确;z的共轭复数为,C错误;z的虚部为,D正确.故选:BD.【点解析:BD【分析】把21iz=-+分子分母同时乘以1i--,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:22(1)11(1)(1)iz ii i i--===---+-+--,||z∴=A错误;22iz=,B正确;z的共轭复数为1i-+,C错误;z的虚部为1-,D正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.21.BD【分析】先设复数,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出,即可确定对应的点所在的象限.【详解】设复数,则,所以,则,解得或,因此或,所以对应的点为或,因此复解析:BD【分析】先设复数(),z a bi a b R =+∈,根据题中条件,由复数的乘法运算,以及复数相等的充要条件求出z ,即可确定对应的点所在的象限.【详解】设复数(),z a bi a b R =+∈,则2222724z a abi b i =+-=--,所以2222724z a abi b i =+-=--,则227224a b ab ⎧-=-⎨=-⎩,解得34a b =⎧⎨=-⎩或34a b =-⎧⎨=⎩, 因此34z i =-或34z i =-+,所以对应的点为()3,4-或()3,4-,因此复数z 对应的点可能在第二或第四象限.故选:BD.【点睛】本题主要考查判定复数对应的点所在的象限,熟记复数的运算法则,以及复数相等的条件即可,属于基础题型.22.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确.故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.23.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项. 【详解】依题意1ω==,所以A 选项正确;2211312242422ω⎛⎫=-+=--=-- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222222ωωω⎛⎫⎛⎫⎛⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;221111222212ω---====--⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛- ⎝⎭,在第三象限,故D 选项错误. 故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.24.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 25.BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,时,,则,故A 错误;对于B ,若复数,则满足,解得,故B 正确;对于C ,若复数z 为纯虚数,则满足,解得,解析:BD【分析】根据每个选项里的条件,求出相应的结果,即可判断选项的正误.【详解】对于A ,0m=时,1z =-,则1z =-,故A 错误;对于B ,若复数2z=,则满足(()21210m m m ⎧-=⎪⎨-=⎪⎩,解得m ,故B 正确; 对于C ,若复数z 为纯虚数,则满足(()21010m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =,则1z =-+,()()221420412z z ++=+--+=+,故D 正确.【点睛】本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.26.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 27.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.28.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确;对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 29.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.30.BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由解析:BC【分析】根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.【详解】当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则a bi a bi +=-,因此0b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1||2z =得2214a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于12,D 错误.故选:BC【点睛】本小题主要考查复数的有关知识,属于基础题.。
2023年高考全国乙卷数学(理)真题(解析版)

2023年普通高等学校招生全国统一考试理科数学一、选择题1.设z =2+i1+i 2+i5,则z =()A.1-2iB.1+2iC.2-iD.2+i【答案】B 【解析】【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得z =2+i 1+i 2+i 5=2+i 1-1+i =i 2+i i2=2i -1-1=1-2i ,则z=1+2i.故选:B .2.设集合U =R ,集合M =x x <1 ,N =x -1<x <2 ,则x x ≥2 =()A.∁U M ∪NB.N ∪∁U MC.∁U M ∩ND.M ∪∁U N【答案】A 【解析】【分析】由题意逐一考查所给的选项运算结果是否为x |x ≥2 即可.【详解】由题意可得M ∪N =x |x <2 ,则∁U M ∪N =x |x ≥2 ,选项A 正确;∁U M =x |x ≥1 ,则N ∪∁U M =x |x >-1 ,选项B 错误;M ∩N =x |-1<x <1 ,则∁U M ∩N =x |x ≤-1 或x ≥1 ,选项C 错误;∁U N =x |x ≤-1 或x ≥2 ,则M ∪∁U N =x |x <1 或x ≥2 ,选项D 错误;故选:A .3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=3,点H ,I ,J ,K 为所在棱上靠近点B 1,C 1,D 1,A 1的三等分点,O ,L ,M ,N 为所在棱的中点,则三视图所对应的几何体为长方体ABCD -A 1B 1C 1D 1去掉长方体ONIC 1-LMHB 1之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:2×2×2 +4×2×3 -2×1×1 =30.故选:D .4.已知f (x )=xe xe ax -1是偶函数,则a =()A.-2B.-1C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为f x =xe x e ax-1为偶函数,则f x -f -x =xexe ax -1--x e-xe -ax -1=x e x -e a -1xe ax -1=0,又因为x 不恒为0,可得e x -e a -1 x=0,即e x =e a -1x,则x =a -1 x ,即1=a -1,解得a =2.故选:D .5.设O 为平面坐标系的坐标原点,在区域x ,y 1≤x 2+y 2≤4 内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.12【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域x ,y |1≤x 2+y 2≤4 表示以O 0,0 圆心,外圆半径R =2,内圆半径r =1的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角∠MON =π4,结合对称性可得所求概率P =2×π42π=14.故选:C .6.已知函数f (x )=sin (ωx +φ)在区间π6,2π3 单调递增,直线x =π6和x =2π3为函数y =f x 的图像的两条对称轴,则f -5π12 =()A.-32B.-12C.12D.32【答案】D 【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入x =-5π12即可得到答案.【详解】因为f (x )=sin (ωx +φ)在区间π6,2π3单调递增,所以T 2=2π3-π6=π2,且ω>0,则T =π,w =2πT =2,当x =π6时,f x 取得最小值,则2⋅π6+φ=2k π-π2,k ∈Z ,则φ=2k π-5π6,k ∈Z ,不妨取k =0,则f x =sin 2x -5π6 ,则f -5π12 =sin -5π3 =32,7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C 【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有C 16种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有A 25种,根据分步乘法公式则共有C 16⋅A 25=120种,故选:C .8.已知圆锥PO 的底面半径为3,O 为底面圆心,PA ,PB 为圆锥的母线,∠AOB =120°,若△PAB 的面积等于934,则该圆锥的体积为()A.πB.6πC.3πD.36π【答案】B 【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在△AOB 中,∠AOB =120°,而OA =OB =3,取AC 中点C ,连接OC ,PC ,有OC ⊥AB ,PC ⊥AB ,如图,∠ABO =30°,OC =32,AB =2BC =3,由△PAB 的面积为934,得12×3×PC =934,解得PC =332,于是PO =PC 2-OC 2=332 2-32 2=6,所以圆锥的体积V =13π×OA 2×PO =13π×(3)2×6=6π.9.已知△ABC 为等腰直角三角形,AB 为斜边,△ABD 为等边三角形,若二面角C -AB -D 为150°,则直线CD 与平面ABC 所成角的正切值为()A.15B.25C.35D.25【答案】C 【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接CE ,DE ,因为△ABC 是等腰直角三角形,且AB 为斜边,则有CE ⊥AB ,又△ABD 是等边三角形,则DE ⊥AB ,从而∠CED 为二面角C -AB -D 的平面角,即∠CED =150°,显然CE ∩DE =E ,CE ,DE ⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ∩平面ABC =CE ,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而∠DCE 为直线CD 与平面ABC 所成的角,令AB =2,则CE =1,DE =3,在△CDE 中,由余弦定理得:CD =CE 2+DE 2-2CE ⋅DE cos ∠CED =1+3-2×1×3×-32=7,由正弦定理得DE sin ∠DCE =CDsin ∠CED,即sin ∠DCE =3sin150°7=327,显然∠DCE 是锐角,cos ∠DCE =1-sin 2∠DCE =1-3272=527,所以直线CD 与平面ABC 所成的角的正切为35.故选:C10.已知等差数列a n 的公差为2π3,集合S =cos a n n ∈N * ,若S =a ,b ,则ab =()A.-1B.-12C.0D.12【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列{a n }中,a n =a 1+(n -1)⋅2π3=2π3n +a 1-2π3,显然函数y =cos 2π3n +a 1-2π3的周期为3,而n ∈N ∗,即cos a n 最多3个不同取值,又{cos a n |n ∈N ∗}={a ,b },则在cos a 1,cos a 2,cos a 3中,cos a 1=cos a 2≠cos a 3或cos a 1≠cos a 2=cos a 3,于是有cos θ=cos θ+2π3 ,即有θ+θ+2π3 =2k π,k ∈Z ,解得θ=k π-π3,k ∈Z ,所以k ∈Z ,ab =cos k π-π3 cos k π-π3 +4π3 =-cos k π-π3 cos k π=-cos 2k πcos π3=-12.故选:B11.设A ,B 为双曲线x 2-y 29=1上两点,下列四个点中,可为线段AB 中点的是()A.1,1B.-1,2C.1,3D.-1,-4【答案】D 【解析】【分析】根据点差法分析可得k AB ⋅k =9,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设A x 1,y 1 ,B x 2,y 2 ,则AB 的中点M x 1+x 22,y 1+y 22,可得k AB =y 1-y 2x 1-x 2,k =y 1+y 22x 1+x 22=y 1+y 2x 1+x 2,因为A ,B 在双曲线上,则x 21-y 219=1x 22-y 229=1,两式相减得x 21-x 22-y 21-y 229=0,所以k AB ⋅k =y 21-y 22x 21-x 22=9.对于选项A :可得k =1,k AB =9,则AB :y =9x -8,联立方程y =9x -8x 2-y 29=1 ,消去y 得72x 2-2×72x +73=0,此时Δ=-2×72 2-4×72×73=-288<0,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得k =-2,k AB =-92,则AB :y =-92x -52,联立方程y =-92x -52x 2-y 29=1,消去y 得45x 2+2×45x +61=0,此时Δ=2×45 2-4×45×61=-4×45×16<0,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得k =3,k AB =3,则AB :y =3x由双曲线方程可得a =1,b =3,则AB :y =3x 为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :k =4,k AB =94,则AB :y =94x -74,联立方程y =94x -74x 2-y 29=1,消去y 得63x 2+126x -193=0,此时Δ=1262+4×63×193>0,故直线AB 与双曲线有交两个交点,故D 正确;故选:D .12.已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若PO =2,则PA ⋅PD的最大值为()A.1+22B.1+222C.1+2D.2+2【答案】A 【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得PA ⋅PD =12-22sin 2α-π4 ,或PA ⋅PD =12+22sin 2α+π4 然后结合三角函数的性质即可确定PA ⋅PD的最大值.【详解】如图所示,OA =1,OP =2,则由题意可知:∠APO =45°,由勾股定理可得PA =OP 2-OA 2=1当点A ,D 位于直线PO 异侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α+π4=1×2cos αcos α+π4=2cos α22cos α-22sin α =cos 2α-sin αcos α=1+cos2α2-12sin2α=12-22sin 2α-π4 0≤α≤π4,则-π4≤2α-π4≤π4∴当2α-π4=-π4时,PA ⋅PD 有最大值1.当点A ,D 位于直线PO 同侧时,设∠OPC =α,0≤α≤π4,则:PA ⋅PD =|PA |⋅|PD |cos α-π4=1×2cos αcos α-π4=2cos α22cos α+22sin α =cos 2α+sin αcos α=1+cos2α2+12sin2α=12+22sin 2α+π40≤α≤π4,则π4≤2α+π4≤π2∴当2α+π4=π2时,PA ⋅PD 有最大值1+22.综上可得,PA ⋅PD 的最大值为1+22.【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题13.已知点A 1,5 在抛物线C :y 2=2px 上,则A 到C 的准线的距离为.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为x =-54,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:5 2=2p ×1,则2p =5,抛物线的方程为y 2=5x ,准线方程为x =-54,点A 到C 的准线的距离为1--54 =94.故答案为:94.14.若x ,y 满足约束条件x -3y ≤-1x +2y ≤93x +y ≥7,则z =2x -y 的最大值为.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.详解】作出可行域如下图所示:z =2x -y ,移项得y =2x -z ,联立有x -3y =-1x +2y =9,解得x =5y =2,设A 5,2 ,显然平移直线y =2x 使其经过点A ,此时截距-z 最小,则z 最大,代入得z =8,故答案为:8.15.已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【解析】【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【详解】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.16.设a ∈0,1 ,若函数f x =a x +1+a x 在0,+∞ 上单调递增,则a 的取值范围是.【答案】5-12,1 【解析】【分析】原问题等价于f x =a x ln a +1+a x ln 1+a ≥0恒成立,据此将所得的不等式进行恒等变形,可得1+a a x ≥-ln aln 1+a ,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【详解】由函数的解析式可得f x =a x ln a +1+a x ln 1+a ≥0在区间0,+∞ 上恒成立,则1+a x ln 1+a ≥-a x ln a ,即1+a a x ≥-ln aln 1+a在区间0,+∞ 上恒成立,故1+a a 0=1≥-ln aln 1+a,而a +1∈1,2 ,故ln 1+a >0,故ln a +1 ≥-ln a 0<a <1即a a +1 ≥10<a <1 ,故5-12≤a <1,结合题意可得实数a 的取值范围是5-12,1.故答案为:5-12,1.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为x i ,y i (i =1,2,⋅⋅⋅10),试验结果如下试验序号i 12345678910伸缩率x i545355525754545659545312541868伸缩率y i536527543530560533522550576536记z i =x i -y i (i =1,2,⋯,10),记z 1,z 2,⋯,z 10的样本平均数为z,样本方差为s 2,(1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥2s 210,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).【答案】(1)z =11,s 2=61;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出x ,y ,再得到所有的z i 值,最后计算出方差即可;(2)根据公式计算出2s 210的值,和z 比较大小即可.【小问1详解】x =545+533+551+522+575+544+541+568+596+54810=552.3,y =536+527+543+530+560+533+522+550+576+53610=541.3,z =x -y=552.3-541.3=11,z i =x i -y i 的值分别为:9,6,8,-8,15,11,19,18,20,12,故s 2=(9-11)2+(6-11)2+(8-11)2+(-8-11)2+(15-11)2+0+(19-11)2+(18-11)2+(20-11)2+(12-110=61【小问2详解】由(1)知:z=11,2s 210=2 6.1=24.4,故有z ≥2s 210,所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.在△ABC 中,已知∠BAC =120°,AB =2,AC =1.(1)求sin ∠ABC ;(2)若D 为BC 上一点,且∠BAD =90°,求△ADC 的面积.【答案】(1)21 14;(2)310.【解析】【分析】(1)首先由余弦定理求得边长BC的值为BC=7,然后由余弦定理可得cos B=5714,最后由同角三角函数基本关系可得sin B=21 14;(2)由题意可得S△ABDS△ACD=4,则S△ACD=15S△ABC,据此即可求得△ADC的面积.【小问1详解】由余弦定理可得:BC2=a2=b2+c2-2bc cos A=4+1-2×2×1×cos120°=7,则BC=7,cos B=a2+c2-b22ac=7+4-12×2×7=5714,sin B=1-cos2B=1-2528=2114.【小问2详解】由三角形面积公式可得S△ABDS△ACD=12×AB×AD×sin90°12×AC×AD×sin30°=4,则S△ACD=15S△ABC=15×12×2×1×sin120°=310.19.如图,在三棱锥P-ABC中,AB⊥BC,AB=2,BC=22,PB=PC=6,BP,AP,BC的中点分别为D,E,O,AD=5DO,点F在AC上,BF⊥AO.(1)证明:EF⎳平面ADO;(2)证明:平面ADO⊥平面BEF;(3)求二面角D-AO-C的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)22.【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行判定推理作答.(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接DE ,OF ,设AF =tAC ,则BF =BA +AF =(1-t )BA +tBC ,AO =-BA +12BC ,BF ⊥AO ,则BF ⋅AO =[(1-t )BA +tBC ]⋅-BA +12BC =(t -1)BA 2+12tBC 2=4(t -1)+4t =0,解得t =12,则F 为AC 的中点,由D ,E ,O ,F 分别为PB ,PA ,BC ,AC 的中点,于是DE ⎳AB ,DE =12AB ,OF ⎳AB ,OF =12AB ,即DE ⎳OF ,DE =OF ,则四边形ODEF 为平行四边形,EF ⎳DO ,EF =DO ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ⎳平面ADO .ABCDEO P【小问2详解】由(1)可知EF ⎳OD ,则AO =6,DO =62,得AD =5DO =302,因此OD 2+AO 2=AD 2=152,则OD ⊥AO ,有EF ⊥AO ,又AO ⊥BF ,BF ∩EF =F ,BF ,EF ⊂平面BEF ,则有AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .【小问3详解】过点O 作OH ⎳BF 交AC 于点H ,设AD ∩BE =G ,由AO ⊥BF ,得HO ⊥AO ,且FH =13AH ,又由(2)知,OD ⊥AO ,则∠DOH 为二面角D -AO -C 的平面角,因为D ,E 分别为PB ,PA 的中点,因此G 为△PAB 的重心,即有DG =13AD ,GE =13BE ,又FH =13 AH ,即有DH =32GF ,cos ∠ABD =4+32-1522×2×62=4+6-PA 22×2×6,解得PA =14,同理得BE =62,于是BE 2+EF 2=BF 2=3,即有BE ⊥EF ,则GF 2=13×622+622=53,从而GF =153,DH =32×153=152,在△DOH 中,OH =12BF =32,OD =62,DH =152,于是cos ∠DOH =64+34-1542×62×32=-22,sin ∠DOH =1--222=22,所以二面角D -AO -C 的正弦值为22.ABCD EFGH OP20.已知椭圆C :y 2a 2+x 2b 2=1a >b >0 的离心率为53,点A -2,0 在C 上.(1)求C 的方程;(2)过点-2,3 的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解【解析】【分析】(1)根据题意列式求解a ,b ,c ,进而可得结果;(2)设直线PQ 的方程,进而可求点M ,N 的坐标,结合韦达定理验证y M +y N2为定值即可.【小问1详解】由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.【小问2详解】由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3 x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y 2x 2+22=k x 1+2 +3x 1+2+k x 2+2 +3x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2 x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +316k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段PQ 的中点是定点0,3 .【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.已知函数f(x)=1x +aln(1+x).(1)当a=-1时,求曲线y=f x 在点1,f1处的切线方程;(2)是否存在a,b,使得曲线y=f1x关于直线x=b对称,若存在,求a,b的值,若不存在,说明理由.(3)若f x 在0,+∞存在极值,求a的取值范围.【答案】(1)ln2x+y-ln2=0;(2)存在a=12,b=-12满足题意,理由见解析.(3)0,12.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数b的值,进一步结合函数的对称性利用特殊值法可得关于实数a的方程,解方程可得实数a的值,最后检验所得的a,b是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数g x =ax2+x-x+1ln x+1,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论a≤0,a≥12和0<a<12三中情况即可求得实数a的取值范围.【小问1详解】当a=-1时,f x =1x-1ln x+1,则f x =-1x2×ln x+1+1x-1×1x+1,据此可得f1 =0,f 1 =-ln2,函数在1,f1处的切线方程为y-0=-ln2x-1,即ln2x+y-ln2=0.【小问2详解】由函数的解析式可得f1x=x+aln1x+1,函数的定义域满足1x+1=x+1x>0,即函数的定义域为-∞,-1∪0,+∞,定义域关于直线x=-12对称,由题意可得b=-12,由对称性可知f-12+m=f-12-mm>12,取m=32可得f1 =f-2,即a+1ln2=a-2ln 12,则a+1=2-a,解得a=12,经检验a=12,b=-12满足题意,故a=12,b=-12.即存在a=12,b=-12满足题意.【小问3详解】由函数的解析式可得f x =-1 x2ln x+1+1x+a1x+1,由f x 在区间0,+∞存在极值点,则f x 在区间0,+∞上存在变号零点;令-1 x2ln x+1+1x+a1x+1=0,则-x+1ln x+1+x+ax2=0,令g x =ax2+x-x+1ln x+1,f x 在区间0,+∞存在极值点,等价于g x 在区间0,+∞上存在变号零点,g x =2ax-ln x+1,g x =2a-1 x+1当a≤0时,g x <0,g x 在区间0,+∞上单调递减,此时g x <g0 =0,g x 在区间0,+∞上无零点,不合题意;当a≥12,2a≥1时,由于1x+1<1,所以g x >0,g x 在区间0,+∞上单调递增,所以g x >g 0 =0,g x 在区间0,+∞上单调递增,g x >g0 =0,所以g x 在区间0,+∞上无零点,不符合题意;当0<a<12时,由gx =2a-1x+1=0可得x=12a-1,当x∈0,12a-1时,g x <0,g x 单调递减,当x∈12a-1,+∞时,g x >0,g x 单调递增,故g x 的最小值为g12a-1=1-2a+ln2a,令m x =1-x+ln x0<x<1,则m x =-x+1x>0,函数m x 在定义域内单调递增,m x <m1 =0,据此可得1-x+ln x<0恒成立,则g 12a-1=1-2a +ln2a <0,令h x =ln x -x 2+x x >0 ,则hx =-2x 2+x +1x ,当x ∈0,1 时,h x >0,h x 单调递增,当x ∈1,+∞ 时,h x <0,h x 单调递减,故h x ≤h 1 =0,即ln x ≤x 2-x (取等条件为x =1),所以g x =2ax -ln x +1 >2ax -x +1 2-x +1 =2ax -x 2+x ,g 2a -1 >2a 2a -1 -2a -1 2+2a -1 =0,且注意到g 0 =0,根据零点存在性定理可知:g x 在区间0,+∞ 上存在唯一零点x 0.当x ∈0,x 0 时,g x <0,g x 单调减,当x ∈x 0,+∞ 时,g x >0,g x 单调递增,所以g x 0 <g 0 =0.令n x =ln x -12x -1x ,则n x =1x -121+1x 2=-x -1 22x2≤0,则n x 单调递减,注意到n 1 =0,故当x ∈1,+∞ 时,ln x -12x -1x <0,从而有ln x <12x -1x,所以g x =ax 2+x -x +1 ln x +1 >ax 2+x -x +1 ×12x +1 -1x +1=a -12 x 2+12,令a -12 x 2+12=0得x 2=11-2a,所以g 11-2a>0,所以函数g x区间0,+∞ 上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是0,12.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρ=2sin θπ4≤θ≤π2,曲线C 2:x =2cos αy =2sin α (α为参数,π2<α<π).(1)写出C 1的直角坐标方程;(2)若直线y =x +m 既与C 1没有公共点,也与C 2没有公共点,求m 的取值范围.【答案】(1)x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 (2)-∞,0 ∪22,+∞ 【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意x ,y 的取值范围;(2)根据曲线C 1,C 2的方程,结合图形通过平移直线y =x +m 分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为ρ=2sin θ,即ρ2=2ρsin θ,可得x 2+y 2=2y ,整理得x 2+y -1 2=1,表示以0,1 为圆心,半径为1的圆,又因为x =ρcos θ=2sin θcos θ=sin2θ,y =ρsin θ=2sin 2θ=1-cos2θ,且π4≤θ≤π2,则π2≤2θ≤π,则x =sin2θ∈0,1 ,y =1-cos2θ∈1,2 ,故C 1:x 2+y -1 2=1,x ∈0,1 ,y ∈1,2 .【小问2详解】因为C 2:x =2cos αy =2sin α(α为参数,π2<α<π),整理得x 2+y 2=4,表示圆心为O 0,0 ,半径为2,且位于第二象限的圆弧,如图所示,若直线y =x +m 过1,1 ,则1=1+m ,解得m =0;若直线y =x +m ,即x -y +m =0与C 2相切,则m2=2m >0 ,解得m =22,若直线y=x +m 与C 1,C 2均没有公共点,则m >22或m <0,即实数m 的取值范围-∞,0 ∪22,+∞ .【选修4-5】(10分)23.已知f x =2x +x -2 .(1)求不等式f x ≤6-x 的解集;(2)在直角坐标系xOy 中,求不等式组f (x )≤yx +y -6≤0所确定的平面区域的面积.【答案】(1)[-2,2];(2)6.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,f (x )=3x -2,x >2x +2,0≤x ≤2-3x +2,x <0,不等式f (x )≤6-x 化为:x >23x -2≤6-x或0≤x ≤2x +2≤6-x 或x <0-3x +2≤6-x ,解x >23x -2≤6-x,得无解;解0≤x ≤2x +2≤6-x ,得0≤x ≤2,解x <0-3x +2≤6-x ,得-2≤x <0,因此-2≤x ≤2,所以原不等式的解集为:[-2,2]小问2详解】作出不等式组f (x )≤yx +y -6≤0表示的平面区域,如图中阴影△ABC,由y =-3x +2x +y =6,解得A (-2,8),由y =x +2x +y =6 , 解得C (2,4),又B (0,2),D (0,6),所以△ABC 的面积S △ABC =12|BD |×x C -x A =12|6-2|×|2-(-2)|=8.。
高中数学《复数》高考真题汇总(详解)——精品文档

高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。
复数最新高考试题精选 百度文库

一、复数选择题1.复数21i=+( ) A .1i --B .1i -+C .1i -D .1i + 2.若()211z i =-,21z i =+,则12z z 等于( ) A .1i + B .1i -+ C .1i - D .1i --3.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( )A .5 BC.D .5i4.若复数()()24z i i =--,则z =( )A .76i --B .76-+iC .76i -D .76i + 5.复数z 满足12i z i ⋅=-,z 是z 的共轭复数,则z z ⋅=( ) ABC .3D .5 6.设()2211z i i =+++,则||z =( ) AB .1C .2 D7.已知复数512z i =+,则z =( ) A .1BCD .5 8.若复数1211i z i +=--,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 9.若复数()41i 34i z +=+,则z =( ) A .45B .35C .25 D.5 10.若1ii z,则2z z i ⋅-=( )A .B .4 C .D .811.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( )A .6πB .3πC .23πD .43π12.复数112z i =+,21z i =+(i 为虚数单位),则12z z ⋅虚部等于( ). A .1- B .3 C .3i D .i -13.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( )A .4B .2C .0D .1-14.已知i 为虚数单位,则43i i =-( ) A .2655i + B .2655i - C .2655i -+ D .2655i -- 15.设复数z 满足(1)2i z -=,则z =( )A .1BCD .2二、多选题16.已知复数cos sin 22z i ππθθθ⎛⎫=+-<< ⎪⎝⎭(其中i 为虚数单位)下列说法正确的是( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .1z =D .1z的虚部为sin θ 17.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z =18.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )A .0P 点的坐标为(1,2)B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称C .复数z 对应的点Z 在一条直线上D .0P 与z 对应的点Z 间的距离的最小值为219.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 20.下列说法正确的是( )A .若2z =,则4z z ⋅=B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等D .“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件 21.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2 22.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根23.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i 5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限 24.对于复数(,)z a bi a b R =+∈,下列结论错误..的是( ). A .若0a =,则a bi +为纯虚数B .若32a bi i -=+,则3,2a b ==C .若0b =,则a bi +为实数D .纯虚数z 的共轭复数是z - 25.已知i 为虚数单位,下列说法正确的是( )A .若,x y R ∈,且1x yi i +=+,则1x y ==B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于126.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '= 27.给出下列命题,其中是真命题的是( )A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数28.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模29.已知复数z ,下列结论正确的是( )A .“0z z +=”是“z 为纯虚数”的充分不必要条件B .“0z z +=”是“z 为纯虚数”的必要不充分条件C .“z z =”是“z 为实数”的充要条件D .“z z ⋅∈R ”是“z 为实数”的充分不必要条件30.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上【参考答案】***试卷处理标记,请不要删除一、复数选择题1.C【分析】根据复数的除法运算法则可得结果.【详解】.故选:C解析:C【分析】根据复数的除法运算法则可得结果.【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-. 故选:C2.D【分析】由复数的运算法则计算即可.【详解】解:,.故选:D.解析:D【分析】由复数的运算法则计算即可.【详解】解:()2211122z i i i i =-=-+=-, ()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.3.B【分析】由已知等式,利用复数的运算法则化简复数,即可求其模.【详解】,所以,故选:B解析:B【分析】由已知等式,利用复数的运算法则化简复数,即可求其模.【详解】(2)21z i i i =+=-,所以|z |=故选:B4.D【分析】由复数乘法运算求得,根据共轭复数定义可求得结果.【详解】,.故选:.解析:D【分析】由复数乘法运算求得z ,根据共轭复数定义可求得结果.【详解】()()2248676z i i i i i =--=-+=-,76z i ∴=+.故选:D .【分析】求出复数,然后由乘法法则计算.【详解】由题意,.故选:D .解析:D【分析】求出复数z ,然后由乘法法则计算z z ⋅.【详解】 由题意12122i z i i i-==-+=--, 22(2)(2)(2)5z z i i i ⋅=---+=--=.故选:D .6.D【分析】利用复数的乘除法运算法则将化简,然后求解.【详解】因为,所以,则.故选:D .【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,解析:D【分析】利用复数的乘除法运算法则将z 化简,然后求解||z .【详解】 因为()()()()2221211211211111i z i i i i i i i i i -=++=+++=-++-=+++-,所以1z i =-,则z =故选:D .【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,需要给分子分母同乘以分母的共轭复数然后化简.【分析】根据模的运算可得选项.【详解】.故选:C.解析:C【分析】根据模的运算可得选项.【详解】512z i ====+ 故选:C.8.B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】,所以,在复平面内的对应点为,则对应点位于第二象限故选:B解析:B【分析】利用复数的运算法则和复数的几何意义求解即可【详解】()()12i 1i 12i 33i 33i 111i 2222z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫-⎪⎝⎭,则对应点位于第二象限 故选:B9.A【分析】首先化简复数,再计算求模.【详解】,.故选:A解析:A【分析】首先化简复数z ,再计算求模.【详解】()()()2242112434343434i i i z i i i i ⎡⎤++⎣⎦====-++++ ()()()()43443412163434252525i i i i i --=-=-=-++-,45z ∴==. 故选:A10.A【分析】化简复数,求共轭复数,利用复数的模的定义得.【详解】因为,所以,所以故选:A解析:A【分析】化简复数z ,求共轭复数z ,利用复数的模的定义得2i z z --.【详解】 因为1111i z i i i+==+=-,所以1z i =+, 所以()()211222z z i i i i i ⋅-=-+-=-=故选:A11.C【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解.【详解】,,所以复数在第二象限,设幅角为,故选:C【点睛】在复平面内运用复数的三解析:C【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解. 【详解】 11z =,1cos 0sin 0z i ∴=+,121(cos sin )332Z i O OZ ππ=+=2111()2222z z i --∴=+所以复数在第二象限,设幅角为θ,tan θ=23πθ∴= 故选:C【点睛】在复平面内运用复数的三角形式是求得幅角的关键.12.B【分析】化简,利用定义可得的虚部.【详解】则的虚部等于故选:B解析:B【分析】化简12z z ⋅,利用定义可得12z z ⋅的虚部.【详解】()()1212113z z i i i ⋅=+⋅+=-+则12z z ⋅的虚部等于3故选:B13.A【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b .【详解】,故选:A解析:A【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+3,1a b ==,4a b +=故选:A14.C【分析】对的分子分母同乘以,再化简整理即可求解.【详解】,故选:C解析:C【分析】 对43i i-的分子分母同乘以3i +,再化简整理即可求解. 【详解】 ()()()434412263331055i i i i i i i i +-+===-+--+, 故选:C15.B【分析】由复数除法求得,再由模的运算求得模.【详解】由题意,∴.故选:B .解析:B【分析】由复数除法求得z ,再由模的运算求得模.【详解】由题意22(1)11(1)(1)i z i i i i +===+--+,∴z == 故选:B .二、多选题16.BC【分析】分、、三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数,利用复数的概念可判断D 选项的正误.【详解】对于AB 选项,当时,,,此时复数在复平面内的点解析:BC【分析】 分02θπ-<<、0θ=、02πθ<<三种情况讨论,可判断AB 选项的正误;利用复数的模长公式可判断C 选项的正误;化简复数1z ,利用复数的概念可判断D 选项的正误. 【详解】对于AB 选项,当02θπ-<<时,cos 0θ>,sin 0θ<,此时复数z 在复平面内的点在第四象限;当0θ=时,1z R =-∈; 当02πθ<<时,cos 0θ>,sin 0θ>,此时复数z 在复平面内的点在第一象限.A 选项错误,B 选项正确;对于C 选项,1z ==,C 选项正确;对于D 选项,()()11cos sin cos sin cos sin cos sin cos sin i i z i i i θθθθθθθθθθ-===-++⋅-, 所以,复数1z的虚部为sin θ-,D 选项错误. 故选:BC.17.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.18.ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确解析:ACD【分析】根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.【详解】复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距2=,故D 正确. 故选:ACD【点睛】本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 19.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确.故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.20.AD【分析】由求得判断A ;设出,,证明在满足时,不一定有判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】若,则,故A 正确;设,由,可得则,而不一定为0,故B 错误;当时解析:AD【分析】 由z 求得z z ⋅判断A ;设出1z ,2z ,证明在满足1212z z z z +=-时,不一定有120z z =判断B ;举例说明C 错误;由充分必要条件的判定说明D 正确.【详解】 若2z =,则24z z z ⋅==,故A 正确;设()11111,z a bi a b R =+∈,()22222,z a b i a b R =+∈ 由1212z z z z +=-,可得()()()()222222121212121212z z a a b b z z a a b b +=+++=-=-+-则12120a a b b +=,而()()121122121212121212122z z a bi a b i a a bb a b i b a i a a a b i b a i =++=-++=++不一定为0,故B 错误;当1z i =-时22z i =-为纯虚数,其实部和虚部不相等,故C 错误;若复数()()()211z a a i a R =-+-∈是虚数,则210a -≠,即1a ≠± 所以“1a ≠”是“复数()()()211z a a i a R =-+-∈是虚数”的必要不充分条件,故D 正确; 故选:AD【点睛】本题考查的是复数的相关知识,考查了学生对基础知识的掌握情况,属于中档题.21.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围22.ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题.23.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以5z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确.【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.24.AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为当且时复数为纯虚数,此时,故A 错误,D 正确;当时,复数为实数,故C 正确;对于B :,则即,故B 错误;故错误的有AB解析:AB【分析】由复数的代数形式的运算,逐个选项验证可得.【详解】解:因为(,)z a bi a b R =+∈当0a =且0b ≠时复数为纯虚数,此时z bi z =-=-,故A 错误,D 正确;当0b =时,复数为实数,故C 正确;对于B :32a bi i -=+,则32a b =⎧⎨-=⎩即32a b =⎧⎨=-⎩,故B 错误; 故错误的有AB ;故选:AB【点睛】本题考查复数的代数形式及几何意义,属于基础题. 25.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 26.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥, 此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题.27.AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D.根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 28.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模29.BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设(),z a bi a b R =+∈,可得出z a bi =-,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设(),z a bi a b R =+∈,则z a bi =-, 则2z z a +=,若0z z +=,则0a =,b R ∈,若0b =,则z 不为纯虚数, 所以,“0z z +=”是“z 为纯虚数”必要不充分条件; 若z z =,即a bi a bi +=-,可得0b =,则z 为实数,“z z =”是“z 为实数”的充要条件;22z z a b ⋅=+∈R ,z ∴为虚数或实数,“z z ⋅∈R ”是“z 为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.30.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.。
复数—(2018-2022)高考真题汇编

复数—(2018-2022)高考真题汇编一、单选题(共35题;共70分)1.(2分)(2022·浙江)已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则()A.a=1,b=−3B.a=−1,b=3C.a=−1,b=−3D.a=1,b=3【答案】B【解析】【解答】由题意得a+3i=bi−1,由复数相等定义,知a=−1,b=3.故答案为:B【分析】利用复数的乘法运算化简,再利用复数的相等求解.2.(2分)(2022·新高考Ⅱ卷)(2+2i)(1−2i)=()A.−2+4i B.−2−4i C.6+2i D.6−2i【答案】D【解析】【解答】(2+2i)(1−2i)=2+4−4i+2i=6−2i,故答案为:D【分析】根据复数代数形式的乘法法则即可求解.3.(2分)(2022·全国乙卷)设(1+2i)a+b=2i,其中a,b为实数,则()A.a=1,b=−1B.a=1,b=1C.a=−1,b=1D.a=−1,b=−1【答案】A【解析】【解答】易得(a+b)+2ai=2i,根据复数相等的充要条件可得a+b=0,2a=2,解得:a=1,b=−1.故选:A【分析】根据复数代数形式的乘法运算法则以及复数相等的充要条件即可求解.4.(2分)(2022·全国甲卷)若z=−1+√3i,则zzz̅−1=()A.−1+√3i B.−1−√3i C.−13+√33iD.−13−√33i【答案】C【解析】【解答】解:由题意得, z =−1−√3i ,则zz =(−1+√3i)(−1−√3i)=4 则z zz−1=−1+√3i 3=−13+√33i .故选:C【分析】由共轭复数的概念及复数的运算即可得解.5.(2分)(2022·全国甲卷)若 z =1+i .则 |iz +3z̅|= ( )A .4√5B .4√2C .2√5D .2√2【答案】D【解析】【解答】解:因为z=1+i ,所以iz +3z =i (1+i )+3(1−i )=2−2i ,所以 |iz +3z|=√4+4=2√2 . 故选:D【分析】根据复数代数形式的运算法则,共轭复数的概念先求得iz +3z =2−2i ,再由复数的求模公式即可求出.6.(2分)(2022·全国乙卷)已知 z =1−2i ,且 z +az̅+b =0 ,其中a ,b 为实数,则( )A .a =1,b =−2B .a =−1,b =2C .a =1,b =2D .a =−1,b =−2【答案】A【解析】【解答】易知 z̅=1+2i 所以 z +az̅+b =1−2i +a(1+2i)+b =(1+a +b)+(2a −2)i 由 z +az̅+b =0 ,得 {1+a +b =02a −2=0,即 {a =1b =−2 . 故选:A【分析】先求得 z̅ ,再代入计算,由实部与虚部都为零解方程组即可. 7.(2分)(2022·北京)若复数 z 满足 i ⋅z =3−4i ,则 |z|= ( )A .1B .5C .7D .25【答案】B【解析】【解答】由已知条件可知 z =3−4ii=−4−3i ,所以 |z|=√(−4)2+(−3)2=5 . 故答案为:B【分析】根据复数的代数运算以及模长公式,进行计算即可.8.(2分)(2022·新高考Ⅱ卷)若i(1−z)=1,则z+z̅=()A.-2B.-1C.1D.2【答案】D【解析】【解答】解:由题意得,z=1−1i=1−ii2=1+i,则z̅=1−i,则z+z̅=2,故选:D【分析】先由复数的四则运算,求得z,z̅,再求z+z̅即可.9.(2分)(2021·新高考Ⅱ卷)复数2−i1−3i在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【解答】解:2−i1−3i=(2−i)(1+3i)(1−3i)(1+3i)=5+5i10=12+12i,表示的点为(12,12),位于第一象限.故答案为:A【分析】根据复数的运算法则,及复数的几何意义求解即可10.(2分)(2021·北京)在复平面内,复数z满足(1−i)z=2,则z=()A.2+i B.2−i C.1−i D.1+i 【答案】D【解析】【解答】解:z=21−i=2(1+i)(1−i)(1+i)=1+i,故答案为:D【分析】根据复数的运算法则直接求解即可.11.(2分)(2021·浙江)已知a∈R,(1+ai)i=3+i,(i为虚数单位),则a=()A.-1B.1C.-3D.3【答案】C【解析】【解答】因为(1+ai)i=3+i,所以1+ai=3+ii=3i−1i·i=1−3i利用复数相等的充分必要条件可得:a=−3.故答案为:C.【分析】根据复数相等的条件,即可求得a的值。
高考数学真题题型分类解析专题专题02 复数

一、复数的概念
( ) 叫虚数单位,满足 ,当 时, . 1 i
i2 = −1 k ∈ Z
i 4k = 1, i 4 k +1 = i, i 4k + 2 = −1, i 4k +3 = −i
(2)形如 a + bi(a, b∈ R) 的数叫复数,记作 a +bi∈C .
高考数学真题题型分类解析 专题 02 复数
命题解读
考向
高考对复数的考查,重点是复数的运 共轭复数、复数的除法运算
算、概念、复数的模、复数的几何意义 等,难度较低.
复数的乘法运算 复数的几何意义
复数的模
考查统计 2022·新高考Ⅰ卷,2 2023·新高考Ⅰ卷,2 2024 新高考Ⅰ卷,2 2022·新高考Ⅱ卷,2 2023 新高考Ⅱ卷,1 2024·新高考Ⅱ卷,1
综上所述,无论方程的判别式b2 −4ac 的符号如何,韦达定理都成立,于是韦达定理能被推广到复数根的
情况,即实系数一元二次方程ax2 +bx + c = 0( a 、b 、c∈ R 且a ≠ 0 )的两个根与系数满足关系
, x1
+
x2
=
−
b a
x1 x2
=
c a
4 / 11
一、单选题
1.(2024·安徽芜湖·三模)已知复数
=
(1− i)2
−2i
=
= −1− i .
−2i
故选:D
5.(2024·山东德州·三模)已知复数 z 满足: z − i(2 + z) = 0 ,则 z = ( )
. . . . A −1− i B −1+ i C 1+ i D 1− i 【答案】B
(完整word版)高考真题:复数

高考真题:复数一、单选题1i (A )1+i (B )1−i (C )−1+i (D )−1−i2.若复数z 满足232i,z z +=- 其中i 为虚数单位,则z=(A )1+2i (B )1-2i (C )12i -+ (D )12i --3.设i 为虚数单位,则复数(1+i )2=(A )0 (B )2 (C )2i (D )2+2i4.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为 (A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 45 (A )i (B )1+i (C )i - (D )1i -6.若43i z =+,则(A )1 (B )1- (C (D 7.若z=1+2i ,则41i zz =- A . 1 B . −1 C . i D . −i8.设复数z 满足3z i i +=-,则z =A . 12i -+B . 12i -C . 32i +D . 32i -9.已知()()31z m m i =++-在复平面内对应的点在第四象限,则实数m 的取值范围是A . ()31-,B . ()13-, C . ()1,+∞ D . ()3-∞-, 10.设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( )A . −3B . −2C . 2D . 311.设(1i)1i x y +=+,其中x ,y(A )1 (B (C (D )212.(2017高考新课标III,理3)设复数z 满足(1+i)z =2i ,则∣z ∣=A . 12B . √22C . √2D . 213.若复数(1−i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是A . (−∞,1)B . (−∞,−1)C . (1,+∞)D . (−1,+∞)14.已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =A . -2iB . 2iC . -2D . 215.若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是A . (–∞,1)B . (–∞,–1)C . (1,+∞)D . (–1,+∞)16.已知R a ∈, i 是虚数单位,若z a =, 4z z ⋅=,则a =()A . 1或1-B . 或C .D . 17.3+i 1+i =( )A . 1+2iB . 1−2iC . 2+iD . 2−i18.,2017新课标全国卷II 文科)(1+i )(2+i )=A . 1−iB . 1+3iC . 3+iD . 3+3i19.复平面内表示复数z=i(–2+i)的点位于A . 第一象限B . 第二象限C . 第三象限D . 第四象限20.设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ,p 2:若复数z 满足z 2∈R ,则z ∈R ,p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2,p 4:若复数z ∈R ,则z̅∈R .其中的真命题为A . p 1,p 3B . p 1,p 4C . p 2,p 3D . p 2,p 421.下列各式的运算结果为纯虚数的是A . i(1+i)2B . i 2(1−i)C . (1+i)2D . i(1+i)二、填空题22,其中i 为虚数单位,则z 的虚部等于______________________.23.已知,a b ∈R ,i 是虚数单位,若(1+i )(1-bi )=a _______. 24.设a ∈R ,若复数(1i)(i)a ++在复平面内对应的点位于实轴上,则a =_______________.25.已知a R ∈,i 为虚数单位,若2a ii -+为实数,则a 的值为__________.参考答案1.B【来源】2016年全国普通高等学校招生统一考试文科数学(山东卷精编版)【解析】B. 2.B【来源】2016年全国普通高等学校招生统一考试理科数学(山东卷精编版)【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故2,1-==b a ,则12i z =-,选B.3.C【来源】2016年全国普通高等学校招生统一考试文科数学(四川卷精编版)试题分析:22(1i)12i i 2i +=++=,故选C.【答案】A【来源】2016年全国普通高等学校招生统一考试理科数学(四川卷精编版)【解析】 试题分析:二项式6(i)x +的展开式的通项为616C i r r r r T x -+=,令64r -=,则2r =,故展开式中含4x 的项为24246C i 15x x =-,故选A.5.A【来源】2016年全国普通高等学校招生统一考试文科数学(北京卷精编版)【解析】A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.6.D【来源】2016年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【解析】D . 【考点】复数的运算、共轭复数、复数的模 【名师点睛】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成−1.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解.7.C【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析: ()()44112121i i i zz i i ==-+--,故选C . 【考点】复数的运算、共轭复数.【举一反三】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成−1.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依照平面向量的加、减法的几何意义进行理解. 视频 8.C【来源】2016年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【解析】试题分析:由i 3i z +=-得32i z =-,所以32i z =+,故选C.【考点】 复数的运算,共轭复数【名师点睛】复数(),a bi a b R +∈的共轭复数是(),a bi a b R -∈,据此先化简再计算即可.视频9.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标2卷精编版)【解析】试题分析:要使复数z 对应的点在第四象限,应满足30{10m m +>-<,解得31m -<<,故选A.【考点】 复数的几何意义 【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数z =a +bi 复平面内的点Z (a ,b )(a ,b∈R ).复数z =a +bi (a ,b ∈R )平面向量OZ uuu r . 视频 10.A 【来源】2016年全国普通高等学校招生统一考试文科数学(新课标1卷精编版)【解析】试题分析:(1+2i)(a +i)=a −2+(1+2a)i ,由已知,得,解得,选A.【考点】复数的概念及复数的乘法运算【名师点睛】复数题也是每年高考的必考内容,一般以客观题的形式出现,属得分题.高考中考查频率较高的内容有:复数相等、复数的几何意义、共轭复数、复数的模及复数的乘除运算.这类问题一般难度不大,但容易出现运算错误,特别是i 2=−1中的负号易忽略,所以做复数题时要注意运算的准确性.11.B【来源】2016年全国普通高等学校招生统一考试理科数学(新课标1卷精编版)【解析】试题分析:因为(1i)=1+i,x y +所以故选B.【考点】复数运算【名师点睛】复数题也是每年高考的必考内容,一般以客观题的形式出现,属得分题.高考中考查频率较高的内容有:复数相等、复数的几何意义、共轭复数、复数的模及复数的乘除运算.这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题时要注意运算的准确性.12.C【来源】2017年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】由题意可得z =2i 1+i ,由复数求模的法则可得|z 1z 2|=|z 1||z 1|,则|z |=|2i ||1+i |=√2=√2.故选C.【名师点睛】共轭与模是复数的重要性质,运算性质有:(1)z 1±z 2=z 1±z 2,(2)z 1×z 2=z 1×z 2;(3)z ⋅z̅=|z |2=|z̅|2,(4)||z 1|−|z 2||≤|z 1±z 2|≤|z 1|+|z 2|,(5)|z 1z 2|=|z 1|×|z 2|,(6)|z 1z 2|=|z 1||z 1|. 13.B【来源】2017年全国普通高等学校招生统一考试文科数学(北京卷精编版)【解析】试题分析:设z =(1−i )(a +i )=(a +1)+(1−a )i ,因为复数对应的点在第二象限,所以{a +1<01−a >0,解得:a <−1,故选B. 14.A【来源】2017年全国普通高等学校招生统一考试文科数学(山东卷精编版)【解析】由i 1i z =+得()()22i 1i z =+,即22i z -=,所以22i z =-,故选A. 【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2∈±2i∈(2)∈i,∈∈i.15.B 【来源】2017年全国普通高等学校招生统一考试理科数学(北京卷精编版)【解析】试题分析:设()()()()1i i 11i z a a a =-+=++-,因为复数对应的点在第二象限,所以10{ 10a a +<->,解得: 1a <-,故选B.【考点】复数的运算【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z =a +b i 复平面内的点Z (a ,b )(a ,b ∈R).复数z =a +b i(a ,b ∈R) 平面向量OZ uuu v .16.A【来源】【全国百强校】河北省曲周县第一中学2016-2017学年高二下学期期末考试数学(理)试题【解析】由,4z a z z =⋅=得234a +=,所以1a =±,故选A.【名师点睛】复数(),a bi a b R +∈的共轭复数是(),a bi a b R -∈,据此结合已知条件,求得a 的方程即可.17.D【来源】江西省赣州厚德外国语学校2018届高三上学期第一次阶段测试数学(理)试题【解析】3+i 1+i =(3+i)(1−i)(1+i)(1−i)=3−3i+i+11+1=4−2i 2=2−i故选D18.B【来源】2017年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【解析】由题意(1+i )(2+i )=2+3i +i 2=1+3i ,故选B. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(a +b i )(c +d i )=(ac −bd)+ (ad +bc)i (a,b,c,d ∈R). 其次要熟悉复数相关基本概念,如复数a +b i (a,b ∈R)的实部为a 、虚部为b 、模为√a 2+b 2、对应点为(a,b)、共轭复数为a −b i .19.C【来源】2017年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【解析】()i 2i 12i z =-+=--,则表示复数()i 2i z =-+的点位于第三象限. 所以选C.【名师点睛】对于复数的四则运算,首先要切实掌握其运算技巧和常规思路,如()()()()()i i i ,,,a b c d ac bd ad bc a b c d R ++=-++∈.其次要熟悉复数的相关基本概念,如复数()i ,a b a b R +∈的实部为a 、虚部为b 、对应的点为(),a b 、共轭复数为i.a b -20.B【来源】2017年全国普通高等学校招生统一考试理科数学(新课标1卷精编版)【解析】令z =a +b i (a,b ∈R),则由1z =1a+b i =a−b ia 2+b 2∈R 得b =0,所以z ∈R ,故p 1正确;当z =i 时,因为z 2=i 2=−1∈R ,而z =i ∉R 知,故p 2不正确;当z 1=z 2=i 时,满足z 1⋅z 2=−1∈R ,但z 1≠z 2,故p 3不正确;对于p 4,因为实数的共轭复数是它本身,也属于实数,故p 4正确,故选B. 点睛:分式形式的复数,分子、分母同乘以分母的共轭复数,化简成z =a +b i (a,b ∈R)的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.21.C【来源】2017年全国普通高等学校招生统一考试文科数学(新课标1卷精编版)【解析】2i 1+i)i 2i=-2,=⋅( ()2i 1i 1i -=-+ , 2(1i)2i += , ()i 1i 1i +=-+ ,所以选C.22.-3【来源】2016年全国普通高等学校招生统一考试文科数学(上海卷精编版)【解析】z 的虚部等于−3. 【考点】复数的运算、复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目来看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一.23.2【来源】2016年全国普通高等学校招生统一考试理科数学(天津卷精编版)【解析】试题分析:由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩故答案为2.【考点】复数相等【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如答案第7页,总7页 i i i()(a+b )(c+d )=(ac bd)+(ad +bc)a,b,c,d -∈R ,其次要熟悉复数的相关基本概念,如复数i(,)a+b a b ∈R 的实部为a 、虚部为b 、模为、共轭复数为i a b -.24.1-【来源】2016年全国普通高等学校招生统一考试理科数学(北京卷精编版)【解析】 试题分析:由题意得(1i)(i)1(1)i 1a a a a ++=-++∈⇒=-R .【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.25.-2【来源】2017年全国普通高等学校招生统一考试理科数学(天津卷精编版) 【解析】()()()()()()2212212222555a i i a a i a i a a i i i i ----+--+===-++-为实数, 则20,25a a +==-. 【考点】 复数的分类【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数(),z a bi a b R =+∈,当0b ≠时, z 为虚数,当0b =时, z 为实数,当0,0a b =≠时, z 为纯虚数.。
高考数学专题《复数》练习

专题10.2 复数1.(2020·全国高考真题(理))复数113i -的虚部是( ) A .310- B .110- C .110 D .3102.(2020·全国高考真题(文))(1–i )4=( )A .–4B .4C .–4iD .4i3.(2021·北京·高考真题)在复平面内,复数z 满足(1)2i z -=,则z =( ) A .1i -- B .1i -+ C .1i - D .1i + 4.(2021·全国·高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i + 5.(2021·全国·高考真题(文))已知2(1)32i z i -=+,则z =( )A .312i --B .312i -+C .32i -+D .32i -- 6.(2021·全国·高考真题(理))设()()2346z z z z i ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i - 7.(2021·全国·高考真题(文))设i 43i z =+,则z =( )A .–34i -B .34i -+C .34i -D .34i + 8.(2021·浙江·高考真题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a =( ) A .1- B .1 C .3- D .39.(2019·北京高考真题(文))已知复数z =2+i ,则( )A B C .3 D .510.(2019·全国高考真题(文))设,则=( ) A .2 B C D .11.(2010·山东高考真题(文))已知,,其中 为虚数单位,则=( )A .-1B .1C .2D .3z z ⋅=3i 12i z -=+z 2a i b i i +=+,a b ∈R i +a b 练提升练基础2.(全国高考真题(理))复数的共轭复数是( ) A . B .i C . D . 3.(2018·全国高考真题(理))设,则( ) A . B . C . D4.(2009·重庆高考真题(理))已知复数的实部为,虚部为2,则的共轭复数是( ) A . B . C . D.5.(2017·山东高考真题(理))已知,是虚数单位,若,,则( )A .1或 B或 C .D6.(2021·广东龙岗·高三期中)已知复数z 满足()2i 34i z +=+(其中i 为虚数单位),则复数z =( )A .2i -B .2i -+C .2i +D .2i --7.(2021·安徽·合肥一六八中学高一期中)欧拉公式i s co in s i x e x x +=(i 是虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,i 3e π表示的复数位于复平面中的( )A .第一象限B .第二象限C .第三象限D .第四象限 8.【多选题】(2021·全国·模拟预测)已知复数z =i 为虚数单位),则下列说法正确的是( )A .复数z 在复平面内对应的点坐标为()sin3cos3,sin3cos3+-B .z 的虚部为C .2z z ⋅=D .z ⋅为纯虚数 9.【多选题】(2021·河北武强中学高三月考)已知复数cos isin z θθ=+(其中i 为虚数单位),下列说法正确的是( )A .1z z ⋅=212i i+-i -35i -35i 1i 2i 1iz -=++||z =0121z 1-5i z 2i -2i +2i --2i -+R a ∈i z a =+4z z ⋅=a =1-B .1z z+为实数 C .若83πθ=,则复数z 在复平面上对应的点落在第一象限 D .若(0,)θπ∈,复数z 是纯虚数,则2πθ=10.(2021·福建·厦门一中模拟预测)在复平面内,复数(,)z a bi a b R =+∈对应向量OZ (O 为坐标原点),设||OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则(cos sin )z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:1111(cos sin )z r i θθ=+,2222(cos sin )z r i θθ=+,则12121212[cos()sin()]z z rr i θθθθ=+++,由棣莫弗定理可以推导出复数乘方公式:[(cos sin )](cos sin )n n r i r n i n θθθθ+=+,已知4)z i =,则||z =______;若复数ω满足()*10n n ω-=∈N ,则称复数ω为n 次单位根,若复数ω是6次单位根,且ω∉R ,请写出一个满足条件的ω=______.1.(2021·江苏·高考真题)若复数z 满足()1i 3i z +=-,则z 的虚部等于( ) A .4 B .2 C .-2 D .-4 2.(2021·全国·高考真题)复数2i 13i --在复平面内对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |=( )A .0B .1CD .24.(2020·全国高考真题(文))若312i i z =++,则||=z ( )A .0B .1CD .25.(2019·全国高考真题(理))设z =-3+2i ,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.z z i 12i z ⋅=+z 练真题。
高考数学复数习题及答案 百度文库

一、复数选择题1.已知复数1z i =+,则21z +=( )A .2B C .4 D .5 2.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55⎛⎫- ⎪⎝⎭D .43,55⎛⎫- ⎪⎝⎭ 3.若复数(1)()(i a i i -+是虚数单位)为纯虚数,则实数a 的值为( ) A .2 B .1C .0D .1- 4.复数()1z i i =⋅+在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 5.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( )A .2a >或1a <-B .1a >或2a <-C .12a -<<D .21a -<< 6.已知复数21i z i =-,则复数z 在复平面内对应点所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限7.))5511--+=( )A .1B .-1C .2D .-2 8.已知复数()211i z i-=+,则z =( ) A .1i -- B .1i -+C .1i +D .1i - 9.已知复数202111i z i-=+,则z 的虚部是( ) A .1- B .i - C .1 D .i10.已知复数z 满足202122z i i i+=+-+,则复数z 在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 11.若()()324z ii =+-,则在复平面内,复数z 所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .813.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( )A .1-B .12-C .13D .1 14.若复数11i z i ,i 是虚数单位,则z =( ) A .0B .12C .1D .215.题目文件丢失!二、多选题16.i 是虚数单位,下列说法中正确的有( )A .若复数z 满足0z z ⋅=,则0z =B .若复数1z ,2z 满足1212z z z z +=-,则120z z =C .若复数()z a ai a R =+∈,则z 可能是纯虚数D .若复数z 满足234z i =+,则z 对应的点在第一象限或第三象限17.已知复数z 满足220z z +=,则z 可能为( ).A .0B .2-C .2iD .2i+1- 18.已知复数z 满足220z z +=,则z 可能为( )A .0B .2-C .2iD .2i -19.已知复数(),z x yi x y R =+∈,则( )A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =20.下面关于复数的四个命题中,结论正确的是( )A .若复数z R ∈,则z R ∈B .若复数z 满足2z ∈R ,则z R ∈C .若复数z 满足1R z∈,则z R ∈ D .若复数1z ,2z 满足12z z R ∈,则12z z = 21.下面是关于复数21i z =-+(i 为虚数单位)的命题,其中真命题为( ) A .||2z = B .22z i =C .z 的共轭复数为1i +D .z 的虚部为1- 22.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限 B .z 可能为实数 C .2cos z θ=D .1z 的实部为12-23.若复数z 满足()1z i i +=,则( ) A .1z i =-+B .z 的实部为1C .1z i =+D .22z i =24.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( ) A .20z B .2z z = C .31z = D .1z =25.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z =B .12i 5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限 26.下面四个命题,其中错误的命题是( ) A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数 27.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i --28.以下命题正确的是( ) A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '= 29.给出下列命题,其中是真命题的是( )A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数30.(多选)()()321i i +-+表示( )A .点()3,2与点()1,1之间的距离B .点()3,2与点()1,1--之间的距离C .点()2,1到原点的距离D .坐标为()2,1--的向量的模【参考答案】***试卷处理标记,请不要删除一、复数选择题1.B【分析】先求出,再计算出模.【详解】,,.故选:B.解析:B【分析】 先求出21z+,再计算出模. 【详解】 1z i =+,()()()21221112111i i z i i i -∴+=+=+=-++-,21z∴+==. 故选:B.2.D【分析】运用复数除法的运算法则化简复数的表示,最后选出答案即可.【详解】因为,所以在复平面内,复数(为虚数单位)对应的点的坐标为.故选:D解析:D【分析】 运用复数除法的运算法则化简复数534i i-的表示,最后选出答案即可. 【详解】 因为55(34)15204334(34)(34)2555i i i i i i i i ⋅+-===-+--+, 所以在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为43,55⎛⎫- ⎪⎝⎭. 故选:D 3.D【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解.【详解】,它为纯虚数,则,解得.故选:D .解析:D【分析】由复数乘法化复数为代数形式,然后根据复数的分类求解.【详解】2(1)()1(1)i a i a i ai i a a i -+=+--=++-,它为纯虚数,则1010a a +=⎧⎨-≠⎩,解得1a =-. 故选:D .4.B【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解.【详解】因为复数,所以在复数z 复平面上对应的点位于第二象限故选:B解析:B【分析】先利用复数的乘法化简复数z ,再利用复数的几何意义求解.【详解】因为复数()11z i i i =⋅+=-+,所以在复数z 复平面上对应的点位于第二象限故选:B5.A【分析】根据虚数不能比较大小可得,再解一元二次不等式可得结果.【详解】因为,,所以,,所以或.故选:A【点睛】关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.解析:A【分析】根据虚数不能比较大小可得a b =,再解一元二次不等式可得结果.【详解】因为,a b ∈R ,2()2a b a b i -+->,所以a b =,220a a -->,所以2a >或1a <-.故选:A【点睛】关键点点睛:根据虚数不能比较大小得a b =是解题关键,属于基础题. 6.B【分析】对复数进行化简,再得到在复平面内对应点所在的象限.【详解】,在复平面内对应点为,在第二象限.故选:B.解析:B【分析】对复数z 进行化简,再得到z 在复平面内对应点所在的象限.【详解】21i z i=-()()()2111i i i i +=+-()1+1+i i i ==-,z 在复平面内对应点为()1,1-,在第二象限. 故选:B.7.D【分析】先求和的平方,再求4次方,最后求5次方,即可得结果.【详解】∵,,∴,,∴,,∴,故选:D.解析:D【分析】先求)1-和)1+的平方,再求4次方,最后求5次方,即可得结果. 【详解】∵)211-=--,)2+1=-,∴)()42117-=--=-+,)()42+17=-=--,∴)()51711-=-+-=--,)()51711+=--+=-,∴))55121-+=--, 故选:D.8.B【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解.【详解】由题意可得,则.故答案为:B解析:B【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解.【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+. 故答案为:B 9.C【分析】求出,即可得出,求出虚部.【详解】,,其虚部是1.故选:C.解析:C【分析】求出z ,即可得出z ,求出虚部.【详解】()()()220211i 1i i 1i 1i 1i z --===-++-,i z ∴=,其虚部是1. 故选:C. 10.C【分析】由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果.【详解】由题可得,,所以复数在复平面内对应的点为,在第三象限,故选:C .解析:C【分析】由已知得到2021(2)(2)i i i z -++-=,然后利用复数的乘法运算法则计算(2)(2)i i -++,利用复数n i 的周期性算出2021i 的值,最后利用复数的几何意义可得结果.【详解】由题可得,2021(2)(2)5i z i i i -+=+-=--,所以复数z 在复平面内对应的点为(5,1)--,在第三象限,故选:C .11.D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】,则复数对应的点的坐标为,位于第四象限.故选:D .解析:D【分析】根据复数的运算,先化简复数,再由复数的几何意义确定对应点的坐标,进而可得出结果.【详解】()()324(2)(4)76z i i i i i =+-=--=-,则复数z 对应的点的坐标为()7,6-,位于第四象限.故选:D . 12.D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】,故 则故选:D解析:D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=故选:D13.B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解.【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =- 故选:B14.C【分析】由复数除法求出,再由模计算.【详解】由已知,所以.故选:C .解析:C【分析】由复数除法求出z ,再由模计算.【详解】 由已知21(1)21(1)(1)2i i i z i i i i ---====-++-, 所以1z i =-=.故选:C .15.无二、多选题16.AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题解析:AD【分析】A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.【详解】A 选项,设(),z a bi a b R =+∈,则其共轭复数为(),z a bi a b R =-∈, 则220z z a b ⋅=+=,所以0a b ,即0z =;A 正确;B 选项,若11z =,2z i =,满足1212z z z z +=-,但12z z i =不为0;B 错;C 选项,若复数()z a ai a R =+∈表示纯虚数,需要实部为0,即0a =,但此时复数0z =表示实数,故C 错;D 选项,设(),z a bi a b R =+∈,则()2222234z a bi a abi b i =+=+-=+, 所以22324a b ab ⎧-=⎨=⎩,解得21a b =⎧⎨=⎩或21a b =-⎧⎨=-⎩,则2z i =+或2z i =--, 所以其对应的点分别为()2,1或()2,1--,所以对应点的在第一象限或第三象限;D 正确. 故选:AD.17.AC【分析】令,代入原式,解出的值,结合选项得出答案.【详解】令,代入,得,解得,或,或,所以,或,或.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.解析:AC【分析】令()i ,z a b a b R =+∈,代入原式,解出,a b 的值,结合选项得出答案.【详解】令()i ,z a b a b R =+∈,代入220z z +=,得222i 0a b ab -+=,解得00a b =⎧⎨=⎩,或02a b =⎧⎨=⎩,或02a b =⎧⎨=-⎩, 所以0z =,或2i z =,或2i z =-.故选:AC【点睛】本题考查复数的运算,考查学生计算能力,属于基础题.18.ACD【分析】令代入已知等式,列方程组求解即可知的可能值.【详解】令代入,得:,∴,解得或或∴或或.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.解析:ACD【分析】令z a bi =+代入已知等式,列方程组求解即可知z 的可能值.【详解】令z a bi =+代入22||0z z +=,得:2220a b abi -+=,∴22020a b ab ⎧⎪-+=⎨=⎪⎩,解得0,0a b =⎧⎨=⎩或0,2a b =⎧⎨=⎩或0,2,a b =⎧⎨=-⎩ ∴0z =或2z i =或2z i =-.故选:ACD【点睛】本题考查了已知等量关系求复数,属于简单题.19.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.故选:CD.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 20.AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数,则,因为,所以,因此,即A 正确;B 选项,设复数,则,因为,所,若,则;故B 错;C 选项,设解析:AC【分析】根据复数的运算法则,以及复数的类型,逐项判断,即可得出结果.【详解】A 选项,设复数(,)z a bi a b R =+∈,则(i ,)z a b a b =-∈R ,因为z R ∈,所以0b =,因此z a R =∈,即A 正确;B 选项,设复数(,)z a bi a b R =+∈,则()22222z a bi a b abi =+=-+,因为2z ∈R ,所0ab =,若0,0a b =≠,则z R ∉;故B 错;C 选项,设复数(,)z a bi a b R =+∈,则22222211a bi a b i z a bi a b a b a b -===-++++, 因为1R z∈,所以220b a b =+,即0b =,所以z a R =∈;故C 正确; D 选项,设复数1(,)z a bi a b R =+∈,2(,)z c di c d R =+∈,则()()()()12z z a bi c di ac bd ad bc i =++=-++,因为12z z R ∈,所以0ad bc +=,若11a b =⎧⎨=⎩,22c d =⎧⎨=-⎩能满足0ad bc +=,但12z z ≠,故D 错误.故选:AC.【点睛】本题主要考查复数相关命题的判断,熟记复数的运算法则即可,属于常考题型.21.BD【分析】把分子分母同时乘以,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】解:,,A 错误;,B 正确;z 的共轭复数为,C 错误;z 的虚部为,D 正确.故选:BD.【点解析:BD【分析】 把21iz =-+分子分母同时乘以1i --,整理为复数的一般形式,由复数的基本知识进行判断即可.【详解】 解:22(1)11(1)(1)i z i i i i --===---+-+--,||z ∴=A 错误;22i z =,B 正确;z 的共轭复数为1i -+,C 错误;z 的虚部为1-,D 正确.故选:BD.【点睛】本题主要考查复数除法的基本运算、复数的基本概念,属于基础题.22.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.23.BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由,得,所以z 的实部为1,,,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭 解析:BC【分析】先利用复数的运算求出复数z ,然后逐个分析判断即可【详解】解:由()1z i i +=,得2(1)2(1)11(1)(1)2i i z i i i i --====-++-, 所以z 的实部为1,1z i =+,22z i =-,故选:BC【点睛】此题考查复数的运算,考查复数的模,考查复数的有关概念,考查共轭复数,属于基础题24.BCD【分析】利用复数的运算法则直接求解.【详解】解:复数(其中为虚数单位),,故错误;,故正确;,故正确;.故正确.故选:.【点睛】本题考查命题真假的判断,考查复数的运算法则解析:BCD【分析】利用复数的运算法则直接求解.【详解】解:复数12z =-(其中i 为虚数单位),2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;31113()()12244z =--+=+=,故C 正确;||1z ==.故D 正确. 故选:BCD .【点睛】本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.25.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以5z ==,故A 错误; 1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.26.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.27.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-,对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.28.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥,此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题.29.AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D.根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题.故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题. 30.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确, 故选:ACD【点睛】本题考查复数的几何意义,考查复数的模。
专题02 复数(学生卷)- 十年(2015-2024)高考真题数学分项汇编(全国通用)

专题02复数考点十年考情(2015-2024)命题趋势考点1求复数的实部与虚部(10年4考)2020·全国卷、2020·江苏卷、2018·江苏卷、2016·天津卷、2016·江苏卷、2016·全国卷、2015·重庆卷、2015·北京卷1.理解、掌握复数的代数形式,能够掌握数集分类及复数分类,需要关注复数的实部、虚部、及纯虚数2.能正确计算复数的四则运算及模长等问题,理解并掌握共轭复数3.熟练掌握复数的几何意义即复数与复平面上点的对应关系本节内容是新高考卷的必考内容,一般考查复数的四则运算、共轭复数、模长运算、几何意义,题型较为简单。
考点2复数相等(10年7考)2023·全国甲卷、2022·浙江卷、2022·全国乙卷、2022·全国乙卷、2021·全国乙卷、2017·浙江卷、2016·天津卷、2015·全国卷、2015·全国卷、2015·上海卷考点3复数的分类(10年2考)2017·全国卷、2017·全国卷、2017·天津卷、2015·天津卷考点4共轭复数(10年10考)2024·全国甲卷、2024·全国甲卷、2023·北京卷、2023·全国乙卷、2023·全国新Ⅰ卷、2022·全国甲卷、2022·全国甲卷、2022·全国新Ⅰ卷、2021·全国乙卷、2021·新Ⅰ卷全国考点5复数的模(10年9考)2024·全国新Ⅱ卷、2023·全国乙卷、2022·全国甲卷、2022·北京卷、2020·全国卷、2020·全国卷、2020·全国卷、2019·全国卷、2019·天津卷、2019·浙江卷考点6复数的几何意义(10年8考)2023·全国新Ⅱ卷、2023·北京卷、2021·全国新Ⅱ卷、2020·北京卷、2019·全国卷、2019·全国卷、2018·北京卷、2017·全国卷、2017·北京卷、2016·全国卷考点01求复数的实部与虚部1.(2020·全国·高考真题)复数113i-的虚部是()A .310-B .110-C .110D .3102.(2020·江苏·高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是.3.(2018·江苏·高考真题)若复数z 满足12i z i ⋅=+,其中i 是虚数单位,则z 的实部为.4.(2016·天津·高考真题)i 是虚数单位,复数z 满足(1)2i z +=,则z 的实部为.5.(2016·江苏·高考真题)复数(12)(3),z i i =+-其中i 为虚数单位,则z 的实部是.6.(2016·全国·高考真题)设()()12i a i ++的实部与虚部相等,其中a 为实数,则a =A .−3B .−2C .2D .37.(2015·重庆·高考真题)复数()12i i +的实部为.8.(2015·北京·高考真题)复数()1i i +的实部为.考点02复数相等1.(2023·全国甲卷·高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ()A .-1B .0·C .1D .22.(2022·浙江·高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则()A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.(2022·全国乙卷·高考真题)设(12i)2i a b ++=,其中,a b 为实数,则()A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-4.(2022·全国乙卷·高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则()A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-5.(2021·全国乙卷·高考真题)设()()2346i z z z z ++-=+,则z =()A .12i-B .12i+C .1i+D .1i-6.(2017·浙江·高考真题)已知a ,b ∈R ,2i 34i a b +=+()(i 是虚数单位)则22a b +=,ab =.7.(2016·天津·高考真题)已知,a b R ∈,i 是虚数单位,若(1+i )(1-bi )=a ,则ab的值为.8.(2015·全国·高考真题)若a 为实数,且2i3i 1ia +=++,则=a A .4-B .3-C .3D .49.(2015·全国·高考真题)若a 为实数且()()2i 2i 4i a a +-=-,则=a A .1-B .0C .1D .210.(2015·上海·高考真题)若复数满足,其中是虚数单位,则.考点03复数的分类1.(2017·全国·高考真题)下列各式的运算结果为纯虚数的是A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i)2.(2017·全国·高考真题)设有下面四个命题1p :若复数z 满足1R z∈,则R z ∈;2p :若复数z 满足2R z ∈,则R z ∈;3p :若复数12,z z 满足12R z z ∈,则12z z =;4p :若复数z R ∈,则R z ∈.其中的真命题为A .13,p p B .14,p p C .23,p p D .24,p p 3.(2017·天津·高考真题)已知a R ∈,i 为虚数单位,若2a ii-+为实数,则a 的值为.4.(2015·天津·高考真题)i 是虚数单位,若复数()()12i i a -+是纯虚数,则实数a 的值为.考点04共轭复数1.(2024·全国甲卷·高考真题)设z,则z z ⋅=()A .2-B C .D .22.(2024·全国甲卷·高考真题)若5i z =+,则()i z z +=()A .10iB .2iC .10D .23.(2023·北京·高考真题)在复平面内,复数z对应的点的坐标是(-,则z 的共轭复数z =()A .1B .1C .1-D .1-4.(2023·全国乙卷·高考真题)设252i1i i z +=++,则z =()A .12i-B .12i+C .2i-D .2i +5.(2023·全国新Ⅰ卷·高考真题)已知1i22iz -=+,则z z -=()A .i-B .iC .0D .16.(2022·全国甲卷·高考真题)若1i z =+.则|i 3|z z +=()A .B .C .D .7.(2022·全国甲卷·高考真题)若1z =-,则1zzz =-()A .1-B .1-C .1i33-+D .1i33--8.(2022·全国新Ⅰ卷·高考真题)若i(1)1z -=,则z z +=()A .2-B .1-C .1D .29.(2021·全国乙卷·高考真题)设()()2346i z z z z ++-=+,则z =()A .12i-B .12i+C .1i+D .1i -10.(2021·全国新Ⅰ卷·高考真题)已知2i z =-,则()i z z +=()A .62i-B .42i-C .62i+D .42i+考点05复数的模1.(2024·全国新Ⅱ卷·高考真题)已知1i z =--,则z =()A .0B .1C D .22.(2023·全国乙卷·高考真题)232i 2i ++=()A .1B .2CD .53.(2022·全国甲卷·高考真题)若1i z =+.则|i 3|z z +=()A .B .C .D .4.(2022·北京·高考真题)若复数z 满足i 34i z ⋅=-,则z =()A .1B .5C .7D .255.(2020·全国·高考真题)若312i i z =++,则||=z ()A .0B .1CD .26.(2020·全国·高考真题)若z=1+i ,则|z 2–2z |=()A .0B .1C D .27.(2020·全国·高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +,则12||z z -=.8.(2019·全国·高考真题)设3i12iz -=+,则z =A .2BC D .19.(2019·天津·高考真题)i 是虚数单位,则51ii-+的值为.10.(2019·浙江·高考真题)复数11iz =+(i 为虚数单位),则||z =.考点06复数的几何意义1.(2023·全国新Ⅱ卷·高考真题)在复平面内,()()13i 3i +-对应的点位于().A .第一象限B .第二象限C .第三象限D .第四象限2.(2023·北京·高考真题)在复平面内,复数z对应的点的坐标是(-,则z 的共轭复数z =()A .1B .1C .1-D .1-3.(2021·全国新Ⅱ卷·高考真题)复数2i13i--在复平面内对应的点所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限4.(2020·北京·高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=().A .12i+B .2i-+C .12i-D .2i--5.(2019·全国·高考真题)设z =-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限6.(2019·全国·高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=7.(2018·北京·高考真题)在复平面内,复数11i-的共轭复数对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限8.(2017·全国·高考真题)复平面内表示复数z=i(–2+i)的点位于A .第一象限B .第二象限C .第三象限D .第四象限9.(2017·北京·高考真题)若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是A .(–∞,1)B .(–∞,–1)C .(1,+∞)D .(–1,+∞)10.(2016·全国·高考真题)已知(3)(1)z m m i =++-在复平面内对应的点在第四象限,则实数m 的取值范围是A .(31)-,B .(13)-,C .(1,)+∞D .(3)-∞-,。
山东省各地市2024年高考数学(文科)最新试题分类大汇编24:复数-推理与证明

【山东省济宁市邹城二中2024届高三其次次月考文】1.已知i 是虚数单位,=-+i i21( )A .i 5151+ B .i 5351+C .i 5153+D .i 5353-【答案】B【山东省济宁市邹城二中2024届高三其次次月考文】13.给出下列命题:命题1:点(1,1)是直线y = x 与双曲线y = x1的一个交点; 命题2:点(2,4)是直线y = 2x 与双曲线y = x8的一个交点; 命题3:点(3,9)是直线y = 3x 与双曲线y = x27的一个交点; … … .请视察上面命题,猜想出命题n (n 是正整数)为: .【答案】),(2n n ) 是直线y=nx 与双曲线yn y 3=的一个交点【山东省济宁市鱼台二中2024届高三11月月考文】6.设i z -=1(为虚数单位),则=+zz 22( )A .i --1B .i +-1C .i +1D . i -1【答案】D【山东省济宁市汶上一中2024届高三11月月考文】7、计算=+-i i13( )A 、i 21+B 、i 21-C 、i +2D 、 i -2【答案】B【山东省济南市2024届高三12月考】6.复数z 满意(12)7i z i -=+,则复数z 的共轭复数z =A.i 31+B. i 31-C. i +3D. i -3【答案】B【山东省济南市2024届高三12月考】16. )(x f 是定义在R 上恒不为0的函数,对随意x 、R ∈y 都有)()()(y x f y f x f +=,若))((,21*1N n n f a a n ∈==,则数列{}n a 的前n 项和n S 为A .12121+-=n n SB .1211+-=n n S C.n n S 211-= D .n n S 2121-=【答案】C【山东省济宁市重点中学2024届高三上学期期中文】11. 若复数3(R,12a iz a i i+=∈-是虚数单位),且z 是纯虚数,则|2|a i +等于( )A .5B .210C .25D .40 【答案】B【山东省济宁一中2024届高三第三次定时检测文】2.复数123,1z i z i =+=-,则复数12z z 在复平面内对应的点位于 ( ) A .第一象限 B .其次象限 C .第三象限 D .第四象限 【答案】A【山东省莱州一中2024届高三其次次质量检测】对于连续函数)(x f 和)(x g ,函数|)()(|x g x f -在闭区间[b a ,]上的最大值为)(x f 与)(x g 在闭区间[b a ,]上的“肯定差”,记为b x a x g x f ≤≤∆)).(),((则322221331≤≤-+∆x x)x ,x (= 【答案】103【山东省青州市2024届高三2月月考数学(文)】13.若复数312a ii-+(,a R i ∈为虚数单位)是纯虚数,则实数a 的值为 . 【答案】6【山东省青州市2024届高三2月月考数学(文)】15.在一次演讲竞赛中,10位评委对一名选手打分的茎叶图如下所示,若去掉一个最高分和一个最低分,得到一组数据(18)i x i ≤≤,在如图所示的程序框图中,x 是这8个数据中的平均数,则输出的2S 的值为_ ____【答案】15【山东省青州市2024届高三上学期期中文16.已知数列{}n a 中,11211,241n n a a a n +==+-,则n a = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
a1?i是实数,则a)设a是实数,且=11(2007卷,2?1?i213D.1 .2
C.A. B 221?2i,3)设复数z满足2(2007卷2?z,则?i z(A)-2+i (B)-2
-i (C)2-i (D)2+i
3(a?bi)是实数,则≠0,若复数)设a,b∈R且b卷3(20082,222222222b99aa?3b?3aa?bb? B.
C. A.
D.
2i)a?i(?a R a?为正实数,则,且)(4.(2008卷1,4)设
?1D.1 C.0 A.2 B.Z z=则复数=2+i,卷1,2)已知5(2009i1+ tesoon天星
教育网-1+3i (B)1-3i (C)3+i (D)3-iA)(esoon t天星教育网10i?)
6(2009卷2,12-i-2+4i2-4i-2-4i2+4i D. B. A. C.
i3?2?)复数1卷,17(20010i2?3i?ii (B)(A) (C)12-13 (D) 12+13i2i?3???)
复数,128(20010卷??i1???4i?4i4i3?3?3?3?4i?( D (C)A()B ())
i2?复数的共轭复数是)卷9(2001111,1?2i精品文档.
精品文档
33i?i?i i D(C)(A))((B)55复数,为的共轭复数,
则i1?z??1z?z?zzz)2,110(20011卷(A)(B)(C)(D)
i2i2?ii?
2?z的四个命题卷1,3)下面是关于复数11(20012?1?i2ppppi?z22?|z|i?1?1zz的虚部
为的共轭复数为: ::: 4231其中真命题为
pppppppp,)),(A ) ,)(B( , D(C42224331?1?3i= )复数12(20012卷2,1
1?i A 2+I B 2-I C 1+2i D 1- 2i
13(2013课标全国Ⅰ,理2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为().
A.
44?C.4 D.B.-4 B.55zzz=( ).i)满足(1-=2i(2013
课标全国Ⅱ,理2)设复数,则14A.-1+i B.-1-I C.1+i D.1-i
3)i(1?15(2014卷1,2)= 2(1?i)C?1?i?111?i?i?i DAB. . . .
zzzz?iz?2?)设复数,卷(16201422,则在复平面内的对应点关于虚轴对称,,21211精品文档.
精品文档D. - 4 - i - 4+ i B. A. - 5 5 C.
z1?i?||zz= )设复数,则满足117(2015卷,1z1?
322
((A)1 (B)C (D))
a?ai??4ai)(a?2i)(2?)(卷2,2)若,则为实数且201518(
021?1 D B.. C.A.)(yi|x+|=+i)x=1+yi,其中x,y是实数,则)设(19(2016?新课标Ⅰ,21
2.C.DA.1
B.
1)i?(m?mz?(?3)m)已知在复平面内对应的点在第四象限,则实数卷20(20162,1 的取值范围是
31)(?()-?,?3)(1,(,?1,3)+?)(D)(C))(B(A
i4 ,则,2)若201621(卷3i21z???1zz? C. D. B. A. 1 ii?1?
)设有下面四个命题3201722(卷1,12R?zz Rzz?R?pp R z?;满足:若复数:若复数满足,则;,则21z精品文档.
精品文档
z?zz?Rz?R pz,zzz?Rp.
满足,则:若复数:若复数,则;21412123
其中的真命题为p,ppp,p,pp,p. C. B. DA.32413142
3?i?(),1)23(2017卷2i?11?2i1?2i2?i2?i.D C..A B .=
z∣z=2i,则∣3,2)设复数z满足(1+i)24(2017卷1222
..A. B .CD22
i1??z||2i?z? 1124(2018,则)设卷,i1?101DC A B ....2 22i1?25(2018卷2,1)?2i1?43344334 D .AB.C..ii???i?i????
55555555(1+i)(2-i)=( ) 26(2018,3卷2)3+i
-3-i A.3-i
.C-3+i
.B.D
精品文档.。