高中数学必修二第二章经典练习题
高中数学必修2第二章单元测试题(含答案)
高一数学必修2第二章测试题【第七次周练】一、选择题(每小题4分,共48分)1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体1111ABCD A B C D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45o角 D 、11AC与1B C 成60o 角5、若直线l 垂直平面α,直线a α⊂,则l 与a 的位置关系是A 、l 垂直aB 、l 与a 异面C 、l 与a 相交D 、以上三种 6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有A 、1B 、2C 、3D 、47、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点P 不在直线AC 上 B 、点P 必在直线BD 上C 、点P 必在平面ABC 内D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有A 、0个B 、1个C 、2个D 、3个 9、如图,是正方体的平面展开图,在这个正方体中有下列几个结论①BM//ED ②CN 与BE 是异面直线 ③CN 与BM 成600角 ④DM ⊥BNB 1C 1A 1D 1BACD其中正确的结论的序号是()A ,①②③B ,②④C ,③④D ,②③④ 10、给出以下四个命题①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面; ③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直. 其中真命题的个数是A.4B.3C.2D.111、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是A 、23 B 、76 C 、45D 、5612、直线m,n 分别在两个互相垂直的平面α,β内,且α∩β= a ,m 和n 与 a 不垂直也不平行,那么m 和n 的位置关系是()A .可能垂直,但不一定平行,B ,可能平行,但一定不垂直C ,可能垂直,可能平行,D ,一定不垂直,也一定不平行。
数学必修二第二章经典测试题(含答案)(2)(K12教育文档)
数学必修二第二章经典测试题(含答案)(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(数学必修二第二章经典测试题(含答案)(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为数学必修二第二章经典测试题(含答案)(2)(word版可编辑修改)的全部内容。
必修二第二章综合检测题一、选择题1.若直线a和b没有公共点,则a与b的位置关系是( )A.相交B.平行 C.异面 D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3 B.4 C.5 D.63.已知平面α和直线l,则α内至少有一条直线与l()A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得( )A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α6.下面四个命题:其中真命题的个数为( )①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.A.4 B.3 C.2 D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有( )A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是( )A.AB∥m B.AC⊥m C.AB∥β D.AC⊥β10.已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为( )A.-错误! B .错误!C。
高一数学必修2第二章测试题及答案解析甄选范文
高一数学必修2第二章测试题及答案解析(优选.)最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改第二章综合检测题一、选择题1.若直线a和b没有公共点,则a与b的位置关系是()A.相交B.平行 C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3B.4C.5D.63.已知平面α和直线l,则α内至少有一条直线与l()A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得()A a⊂α,b⊂αB a⊂α,b∥αC a⊥α,b⊥αD a⊂α,b⊥α6.下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中真命题的个数为()A.4B.3C.2D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有()A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是()A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,n ∥β,则下列四种位置关系中,不一定成立的是 A .AB ∥m B .AC ⊥m C .AB ∥βD .AC ⊥β10已知正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、CC 1的中点,那么直线AE 与D 1F 所成角的余弦值为( )A .-45 B. .35 C .34 D .-3511.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的余弦值为( ) A.33 B.13 C .0 D .-1212.如图所示,点P 在正方形ABCD 所在平面外,PA ⊥平面ABCD ,PA =AB ,则PB 与AC 所成的角是( )A .90°B .60°C .45°D .30° 二、填空题13.下列图形可用符号表示为________.14.正方体ABCD -A 1B 1C 1D 1中,二面角C 1-AB -C 的平面角等于________.15.设平面α∥平面β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,AS =8,BS =6,CS =12,则SD =________.16.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论: ①AC ⊥BD ;②△ACD 是等边三角形; ③AB 与平面BCD 成60°的角; ④AB 与CD 所成的角是60°. 其中正确结论的序号是________. 三、解答题17.如下图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.18如图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(1)证明:CD⊥平面PAE;(2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.20如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.(1)证明:平面AB1C⊥平面A1BC1;(2)设D是A1C1上的点,且A1B∥平面B1CD,求A1D DC1的值.21如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.22如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.详解答案1[答案]D2[答案]C[解析]AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CC1相交的有:CD、C1D1与CC1平行且与AB相交的有:BB1、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案]C[解析]1°直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;2°l⊂α时,在α内不存在直线与l异面,∴D错;3°l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4[答案]D[解析]由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.5[答案]B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a ⊂α,b⊥α,一定有a⊥b,D错误.6[答案]D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c可以平行,可以相交,也可以异面,故④错误.7[答案]D[解析]如图所示.由于AA1⊥平面A1B1C1D1,EF⊂平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF⊂平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.8[答案]D[解析]选项A中,a,b还可能相交或异面,所以A是假命题;选项B中,a,b还可能相交或异面,所以B是假命题;选项C中,α,β还可能相交,所以C是假命题;选项D中,由于a⊥α,α⊥β,则a∥β或a ⊂β,则β内存在直线l∥a,又b⊥β,则b⊥l,所以a⊥b.9[答案]C[解析]如图所示:AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β.10[答案]35命题意图]本试题考查了正方体中异面直线的所成角的求解的运用.[解析]首先根据已知条件,连接DF,然后则角DFD1即为异面直线所成的角,设边长为2,则可以求解得到5=DF=D1F,DD1=2,结合余弦定理得到结论.11[答案]C[解析]取BC中点E,连AE、DE,可证BC⊥AE,BC⊥DE,∴∠AED为二面角A-BC-D的平面角又AE=ED=2,AD=2,∴∠AED=90°,故选C.12[答案]B[解析]将其还原成正方体ABCD-PQRS,显见PB∥SC,△ACS为正三角形,∴∠ACS=60°.13[答案]α∩β=AB14[答案]45°[解析]如图所示,正方体ABCD-A1B1C1D1中,由于BC⊥AB,BC1⊥AB,则∠C1BC是二面角C1-AB-C的平面角.又△BCC1是等腰直角三角形,则∠C1BC=45°.15[答案]9[解析]如下图所示,连接AC,BD,则直线AB,CD确定一个平面ACBD.∵α∥β,∴AC∥BD,则ASSB=CSSD,∴86=12SD,解得SD=9.16[答案]①②④[解析]如图所示,①取BD中点,E连接AE,CE,则BD⊥AE,BD⊥CE,而AE∩CE=E,∴BD⊥平面AEC,AC⊂平面AEC,故AC⊥BD,故①正确.②设正方形的边长为a,则AE=CE=2 2a.由①知∠AEC=90°是直二面角A-BD-C的平面角,且∠AEC=90°,∴AC=a,∴△ACD是等边三角形,故②正确.③由题意及①知,AE⊥平面BCD,故∠ABE是AB与平面BCD所成的角,而∠ABE=45°,所以③不正确.④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=12AB=12a,ME∥CD,且ME=12CD=12a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=22a,AC=a,∴NE=12AC=12a.∴△MEN是正三角形,∴∠EMN=60°,故④正确.17[证明](1)在正三棱柱ABC-A1B1C1中,∵F、F1分别是AC、A1C1的中点,∴B1F1∥BF,AF1∥C1F.又∵B1F1∩AF1=F1,C1F∩BF=F,∴平面AB1F1∥平面C1BF.(2)在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1.又B1F1⊥A1C1,A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1,∴平面AB1F1⊥平面ACC1A1.18[解析](1)如图所示,连接AC,由AB=4,BC=3,∠ABC=90°,得AC=5.又AD=5,E是CD的中点,所以CD⊥AE.∵PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD.而PA,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.(2)过点B作BG∥CD,分别与AE,AD相交于F,G,连接PF.由(1)CD⊥平面PAE知,BG⊥平面PAE.于是∠BPF为直线PB与平面PAE所成的角,且BG⊥AE.由PA⊥平面ABCD知,∠PBA为直线PB与平面ABCD所成的角.AB=4,AG=2,BG⊥AF,由题意,知∠PBA=∠BPF,因为sin∠PBA=PAPB,sin∠BPF=BFPB,所以PA=BF.由∠DAB=∠ABC=90°知,AD∥BC,又BG∥CD,所以四边形BCDG是平行四边形,故GD=BC=3.于是AG =2.在Rt△BAG中,AB=4,AG=2,BG⊥AF,所以BG=AB2+AG2=25,BF=AB2BG=1625=855.于是PA=BF=855.又梯形ABCD的面积为S=12×(5+3)×4=16,所以四棱锥P-ABCD的体积为V=13×S×PA=13×16×855=128515.19[解析](1)证明:如图所示,取CD的中点E,连接PE,EM,EA,∵△PCD为正三角形,∴PE⊥CD,PE=PD sin∠PDE=2sin60°= 3.∵平面PCD⊥平面ABCD,∴PE⊥平面ABCD,而AM⊂平面ABCD,∴PE⊥AM.∵四边形ABCD是矩形,∴△ADE,△ECM,△ABM均为直角三角形,由勾股定理可求得EM=3,AM=6,AE=3,∴EM2+AM2=AE2.∴AM⊥EM.又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.(2)解:由(1)可知EM⊥AM,PM⊥AM,∴∠PME是二面角P-AM-D的平面角.∴tan∠PME=PEEM=33=1,∴∠PME=45°.∴二面角P-AM-D的大小为45°. 20[解析](1)因为侧面BCC1B1是菱形,所以B1C⊥BC1,又已知B1C⊥A1B,且A1B∩BC1=B,所以B1C⊥平面A1BC1,又B1C⊂平面AB1C所以平面AB1C⊥平面A1BC1 .(2)设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线.因为A1B∥平面B1CD,A1B⊂平面A1BC1,平面A1BC1∩平面B1CD=DE,所以A1B∥DE.又E是BC1的中点,所以D为A1C1的中点.即A1D DC1=1.21[解](1)证明:连接AE,如下图所示.∵ADEB为正方形,∴AE∩BD=F,且F是AE的中点,又G是EC的中点,∴GF∥AC,又AC⊂平面ABC,GF⊄平面ABC,∴GF∥平面ABC.(2)证明:∵ADEB为正方形,∴EB⊥AB,又∵平面ABED⊥平面ABC,平面ABED∩平面ABC=AB,EB⊂平面ABED,∴BE⊥平面ABC,∴BE⊥AC.又∵AC=BC=22AB,∴CA2+CB2=AB2,∴AC ⊥BC .又∵BC ∩BE =B ,∴AC ⊥平面BCE .(3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22,∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.22[解析] (1)证明:在直三棱柱ABC -A 1B 1C 1中,底面三边长AC =3,BC =4,AB =5,∴AC ⊥BC . 又∵C 1C ⊥AC .∴AC ⊥平面BCC 1B 1.∵BC 1⊂平面BCC 1B ,∴AC ⊥BC 1.(2)证明:设CB 1与C 1B 的交点为E ,连接DE ,又四边形BCC 1B 1为正方形.∵D 是AB 的中点,E 是BC 1的中点,∴DE ∥AC 1.∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.(3)解:∵DE ∥AC 1,∴∠CED 为AC 1与B 1C 所成的角.在△CED 中,ED =12AC 1=52,CD =12AB =52,CE =12CB 1=22,∴cos ∠CED =252=225.∴异面直线AC 1与B 1C 所成角的余弦值为225.最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。
高中数学 必修二 第二章 2.1 2.1.1课后练习题
第二章 2.1 2.1.1基础巩固一、选择题1.空间中,可以确定一个平面的条件是()A.两条直线B.一点和一条直线C.一个三角形D.三个点[答案] C2.如图所示,下列符号表示错误的是()A.l∈αB.P∉lC.l⊂αD.P∈α[答案] A[解析]观察图知:P∉l,P∈α,l⊂α,则l∈α是错误的.3.下面四个说法(其中A,B表示点,a表示直线,α表示平面):①∵A⊂α,B⊂α,∴AB⊂α;②∵A∈α,B∉α,∴AB∉α;③∵A∉a,a⊂α,∴A∉α;④∵A∈a,a⊂α,∴A∈α.其中表述方式和推理都正确的命题的序号是()A.①④B.②③C.④D.③[答案] C[解析]①错,应写为A∈α,B∈α;②错,应写为AB⊄α;③错,推理错误,有可能A∈α;④推理与表述都正确.4.如图所示,平面α∩β=l,A,B∈α,C∈β且C∉l,AB∩l=R,设过A,B,C三点的平面为γ,则β∩γ等于()A.直线AC B.直线BCC.直线CR D.以上都不对[答案] C[解析]由C,R是平面β和γ的两个公共点,可知β∩γ=CR.5.若一直线a在平面α内,则正确的图形是()[答案] A6.下图中正确表示两个相交平面的是()[答案] D[解析]A中无交线;B中不可见线没有画成虚线;C中虚、实线没按画图规则画,也不正确.D的画法正确.画两平面相交时,一定要画出交线,还要注意画图规则,不可见线一般应画成虚线,有时也可以不画.二、填空题7.已知如图,试用适当的符号表示下列点、直线和平面的关系:(1)点C与平面β:________.(2)点A与平面α:________.(3)直线AB与平面α:________.(4)直线CD与平面α:________.(5)平面α与平面β:________.[答案](1)C∉β(2)A∉α(3)AB∩α=B(4)CD⊂α(5)α∩β=BD8.在正方体ABCD-A1B1C1D1中,下列说法正确的是________(填序号).(1)直线AC1在平面CC1B1B内.(2)设正方体ABCD与A1B1C1D1的中心分别为O,O1,则平面AA1C1C与平面BB1D1D 的交线为OO1.(3)由A,C1,B1确定的平面是ADC1B1.(4)由A,C1,B1确定的平面与由A,C1,D确定的平面是同一个平面.[答案](2)(3)(4)[解析](1)错误.如图所示,点A∉平面CC1B1B,所以直线AC1⊄平面CC1B1B.(2)正确.如图所示.因为O∈直线AC⊂平面AA1C1C,O∈直线BD⊂平面BB1D1D,O1∈直线A1C1⊂平面AA1C1C,O1∈直线B1D1⊂平面BB1D1D,所以平面AA1C1C与平面BB1D1D的交线为OO1.(3)(4)都正确,因为AD∥B1C1且AD=B1C1,所以四边形AB1C1D是平行四边形,所以A,B1,C1,D共面.三、解答题9.求证:两两相交且不过同一点的三条直线必在同一个平面内.[分析][解析]已知:AB∩AC=A,AB∩BC=B,AC∩BC=C.求证:直线AB,BC,AC共面.证明:方法一:因为AC∩AB=A,所以直线AB,AC可确定一个平面α.因为B∈AB,C ∈AC,所以B∈α,C∈α,故BC⊂α.因此直线AB,BC,AC都在平面α内,所以直线AB,BC,AC共面.方法二:因为A不在直线BC上,所以点A和直线BC可确定一个平面α.因为B∈BC,所以B∈α.又A∈α,同理AC⊂α,故直线AB,BC,AC共面.方法三:因为A,B,C三点不在同一条直线上,所以A,B,C三点可以确定一个平面α.因为A∈α,B∈α,所以AB⊂α,同理BC⊂α,AC⊂α,故直线AB,BC,AC共面.规律总结:1.利用公理2及三个推论,可以确定平面及平面的个数,公理中要求“不共线的三点”,推论1要求“平面外一点”,推论2要求“两条相交直线”,推论3要求“两条平行线”,因此对公理、推论的条件和结论必须理解清楚.2.对于证明几个点(或几条直线)共面的问题,在由其中几个点(或几条直线)确定一个平面后,只要再证明其他点(或直线)也在该平面内即可.10.如图所示,AB∥CD,AB∩α=B,CD∩α=D,AC∩α=E.求证:B,E,D三点共线.[解析]∵AB∥CD,∴AB,CD共面,设为平面β,∴AC在平面β内,即E在平面β内.而AB∩α=B,CD∩α=D,AC∩α=E,可知B,D,E为平面α与平面β的公共点,根据公理3可得,B,D,E三点共线.能力提升一、选择题1.(2015·天津武清月考)下列说法正确的是()A.两两相交的三条直线确定一个平面B.四边形确定一个平面C.梯形可以确定一个平面D.圆心和圆上两点确定一个平面[答案] C[解析]因为梯形的两腰是相交直线,所以根据确定平面的条件,梯形应确定一个平面.2.下列命题正确的是()A.两个平面如果有公共点,那么一定相交B.两个平面的公共点一定共线C.两个平面有3个公共点一定重合D.过空间任意三点,一定有一个平面[答案] D[解析]如果两个平面重合,则排除A、B;两个平面相交,则有一条交线,交线上任取3个点都是两个平面的公共点,故排除C;而D中的三点不论共线还是不共线,则一定能找到一个平面过这3个点.3.设P表示一个点,a、b表示两条直线,α、β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⊂α②a∩b=P,b⊂β⇒a⊂β③a∥b,a⊂α,P∈b,P∈α⇒b⊂α④α∩β=b,P∈α,P∈β⇒P∈bA.①②B.②③C.①④D.③④[答案] D[解析]当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;a∩β=P时,②错;如图∵a∥b,P∈b,∴P∉a,∴由直线a与点P确定唯一平面α,又a∥b,由a与b确定唯一平面β,但β经过直线a与点P,∴β与α重合,∴b⊂α,故③正确;两个平面的公共点必在其交线上,故④正确,选D.4.如图,α∩β=l,A∈α,C∈β,C∉l,直线AD∩l=D,过A,B,C三点确定的平面为γ,则平面γ、β的交线必过()A.点A B.点BC.点C,但不过点D D.点C和点D[答案] D[解析]A、B、C确定的平面γ与直线BD和点C确定的平面重合,故C、D∈γ,且C、D∈β,故C,D在γ和β的交线上.二、填空题5.过同一点的4条直线中,任意3条都不在同一平面内,则这4条直线确定的平面的个数是________.[答案] 6[解析]如图.6.如图所示,A,B,C,D为不共面的四点,E,F,G,H分别在线段AB,BC,CD,DA上.(1)如果EH∩FG=P,那么点P在直线________上.(2)如果EF∩GH=Q,那么点Q在直线________上.[答案](1)BD(2)AC[解析](1)若EH∩FG=P,那么点P∈平面ABD,P∈平面BCD,而平面ABD∩平面BCD =BD,所以P∈BD.(2)若EF∩GH=Q,则点Q∈平面ABC,Q∈平面ACD,而平面ABC∩平面ACD=AC,所以Q∈AC.三、解答题7.在正方体ABCD-A1B1C1D1中,E为AB的中点,F为AA1的中点,求证:(1)E 、C 、D 1、F 、四点共面; (2)CE 、D 1F 、DA 三线共点. [证明] (1)分别连结EF 、A1B 、D 1C , ∵E 、F 分别是AB 和AA 1的中点, ∴EF ∥A 1B 且EF =12A 1B .又∵A 1D 1綊B 1C 1綊BC , ∴四边形A 1D 1CB 是平行四边形, ∴A 1B ∥CD 1,从而EF ∥CD 1. EF 与CD 1确定一个平面. ∴E 、F 、D 1、C 四点共面. (2)∵EF 綊12CD 1,∴直线D 1F 和CE 必相交.设D 1F ∩CE =P , ∵D 1F ⊂平面AA 1D 1D ,P ∈D 1F ,∴P ∈平面AA 1D 1D . 又CE ⊂平面ABCD ,P ∈EC ,∴P ∈平面ABCD , 即P 是平面ABCD 与平面AA 1D 1D 的公共点. 而平面ABCD ∩平面AA 1D 1D =直线AD ,∴P ∈直线AD (公理3),∴直线CE 、D 1F 、DA 三线共点.8.(2015·江苏淮安模拟)如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是AA 1,D 1C 1的中点,过D ,M ,N 三点的平面与正方体的下底面相交于直线l .(1)画出直线l 的位置;(2)设l ∩A 1B 1=P ,求线段PB 1的长.[解析] (1)延长DM 交D 1A 1的延长线于E ,连接NE ,则NE 即为直线l 的位置.(2)∵M 为AA 1的中点,AD ∥ED 1, ∴AD =A 1E =A 1D 1=a . ∵A 1P ∥D 1N ,且D 1N =12a ,∴A 1P =12D 1N =14a ,于是PB 1=A 1B 1-A 1P =a -14a =34a .。
数学必修二第二章经典测试题(含答案)
必建二第二章概括检测题之阳早格格创做一、采用题1.若曲线a战b不大众面,则a与b的位子闭系是() A.相接B.仄止C.同里D.仄止或者同里2.仄止六里体ABCD-A1B1C1D1中,既与AB共里也与CC1共里的棱的条数为()A.3B.4C.5D.63.已知仄里α战曲线l,则α内起码有一条曲线与l() A.仄止B.相接C.笔曲D.同里4.少圆体ABCD-A1B1C1D1中,同里曲线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°5.对付二条不相接的空间曲线a与b,必存留仄里α,使得()A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α6.底下四个命题:其中实命题的个数为()①若曲线a,b同里,b,c同里,则a,c同里;②若曲线a,b相接,b,c相接,则a,c相接;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.A.4B.3C.2D.17.正在正圆体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端面沉合的动面,如果A1E=B1F,有底下四个论断:①EF⊥AA1;②EF∥AC;③EF与AC同里;④EF∥仄里ABCD.其中一定精确的有()A.①②B.②③C.②④D.①④8.设a,b为二条不沉合的曲线,α,β为二个不沉合的仄里,下列命题中为实命题的是()A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知仄里α⊥仄里β,α∩β=l,面A∈α,A∉l,曲线AB∥l,曲线AC⊥l,曲线m∥α,n∥β,则下列四种位子闭系中,纷歧定创造的是()A.AB∥m B.AC⊥mC.AB∥β D.AC⊥β10.已知正圆体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中面,那么曲线AE与D1F所成角的余弦值为()A.-45B .35C.34D.-3511.已知三棱锥D-ABC的三个正里与底里齐等,且AB=AC=3,BC=2,则以BC为棱,以里BCD与里BCA 为里的二里角的余弦值为()A.33B.13C.0D.-1212.如图所示,面P正在正圆形ABCD地圆仄里中,PA⊥仄里ABCD,PA=AB,则PB与AC所成的角是() A.90°B.60°C.45°D.30°二、挖空题三、13.下列图形可用标记表示为________.14.正圆体ABCD-A1B1C1D1中,二里角C1-AB-C 的仄里角等于________.15.设仄里α∥仄里β,A,C∈α,B,D∈β,曲线AB 与CD接于面S,且面S位于仄里α,β之间,AS=8,BS=6,CS=12,则SD=________.16.将正圆形ABCD沿对付角线BD合成曲二里角A-BD-C,犹如下四个论断:①AC⊥BD;②△ACD是等边三角形;③AB与仄里BCD成60°的角;④AB与CD所成的角是60°.其中精确论断的序号是________.三、解问题(解允许写出笔墨道明,道明历程或者演算步调)17.如下图,正在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1皆为正三角形且AA1⊥里ABC,F、F1分别是AC,A1C1的中面.供证:(1)仄里AB1F1∥仄里C1BF;(2)仄里AB1F1⊥仄里ACC1A118.如图所示,正在四棱锥P-ABCD中,PA⊥仄里ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中面.(1)道明:CD⊥仄里PAE;(2)若曲线PB与仄里PAE所成的角战PB与仄里ABCD 所成的角相等,供四棱锥P-ABCD的体积.19.如图所示,边少为2的等边△PCD地圆的仄里笔曲于矩形ABCD地圆的仄里,BC=22,M为BC的中面.(1)道明:AM⊥PM;(2)供二里角P-AM-D的大小.20.如图,棱柱ABC-A1B1C1的正里BCC1B1是菱形,B1C⊥A1B.(1)道明:仄里AB1C⊥仄里A1BC1;(2)设D是A1C1上的面,且A1B∥仄里B1CD,供A1D DC1的值.21.如图,△ABC中,AC=BC=22AB,ABED是边少为1的正圆形,仄里ABED⊥底里ABC,若G,F分别是EC,BD的中面.(1)供证:GF∥底里ABC;(2)供证:AC⊥仄里EBC;(3)供几许体ADEBC的体积V.22.如下图所示,正在曲三棱柱ABC-A1B1C1中,AC =3,BC=4,AB=5,AA1=4,面D是AB的中面.(1)供证:AC⊥BC1;(2)供证:AC1∥仄里CDB1;(3)供同里曲线AC1与B1C所成角的余弦值.必建二第二章概括检测题1D2CAB与CC1为同里曲线,故棱中不存留共时与二者仄止的曲线,果此惟有二类:第一类与AB仄止与CC1相接的有:CD、C1D1与CC1仄止且与AB相接的有:BB1、AA1,第二类与二者皆相接的惟有BC,故公有5条.3C当曲线l与仄里α斜接时,正在仄里α内不存留与l 仄止的曲线,∴A错;当l⊂α时,正在α内不存留曲线与l 同里,∴D错;当l∥α时,正在α内不存留曲线与l相接.无论哪种情形正在仄里α内皆有无数条曲线与l笔曲.4D由于AD∥A1D1,则∠BAD是同里曲线AB,A1D1所成的角,很明隐∠BAD=90°.5B对付于选项A,当a与b是同里曲线时,A过失;对付于选项B,若a,b不相接,则a与b仄止或者同里,皆存留α,使a⊂α,b∥α,B精确;对付于选项C,a⊥α,b⊥α,一定有a∥b,C过失;对付于选项D,a⊂α,b⊥α,一定有a⊥b,D过失.6D同里、相接闭系正在空间中不克不迭传播,故①②错;根据等角定理,可知③精确;对付于④,正在仄里内,a∥c,而正在空间中,a与c不妨仄止,不妨相接,也不妨同里,故④过失.7D如图所示.由于AA1⊥仄里A1B1C1D1,EF⊂仄里A1B1C1D1,则EF⊥AA1,所以①精确;当E,F分别是线段A1B1,B1C1的中面时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不精确;当E,F分别不是线段A1B1,B1C1的中面时,EF与AC同里,所以②不精确;由于仄里A1B1C1D1∥仄里ABCD,EF⊂仄里A1B1C1D1,所以EF∥仄里ABCD,所以④精确.8D选项A中,a,b还大概相接或者同里,所以A是假命题;选项B中,a,b还大概相接或者同里,所以B是假命题;选项C中,α,β还大概相接,所以C是假命题;选项D中,由于a⊥α,α⊥β,则a∥β或者a⊂β,则β内存留曲线l∥a,又b⊥β,则b⊥l,所以a⊥b.9C如图所示:AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β.10、3 511C与BC中面E,连AE、DE,可证BC⊥AE,BC⊥DE,∴∠AED为二里角A-BC-D的仄里角又AE=ED=2,AD=2,∴∠AED=90°,故选C.12B将其还本成正圆体ABCD-PQRS,隐睹PB∥SC,△ACS为正三角形,∴∠ACS=60°.13α∩β=AB1445°如图所示,正圆体ABCD-A1B1C1D1中,由于BC⊥AB,BC1⊥AB,则∠C1BC是二里角C1-AB-C的仄里角.又△BCC1是等腰曲角三角形,则∠C1BC=45°.15、9如下图所示,对接AC,BD,则曲线AB,CD决定一个仄里ACBD.∵α∥β,∴AC∥BD,则AS SB =CSSD,∴86=12SD,解得SD=9.16①②④如图所示,①与BD中面,E对接AE,CE,则BD⊥AE,BD⊥CE,而AE∩CE=E,∴BD⊥仄里AEC,AC⊂仄里AEC,故AC⊥BD,故①精确.②设正圆形的边少为a,则AE=CE=2 2a.由①知∠AEC=90°是曲二里角A-BD-C的仄里角,且∠AEC=90°,∴AC=a,∴△ACD是等边三角形,故②精确.③由题意及①知,AE⊥仄里BCD,故∠ABE是AB与仄里BCD所成的角,而∠ABE=45°,所以③不精确.④分别与BC,AC的中面为M,N,对接ME,NE,MN.则MN∥AB,且MN=12AB=12a,ME∥CD,且ME=12CD=12a,∴∠EMN是同里曲线AB,CD所成的角.正在Rt△AEC中,AE=CE=22a,AC=a,∴NE=12AC=12a.∴△MEN是正三角形,∴∠EMN=60°,故④精确.17(1)正在正三棱柱ABC-A1B1C1中,∵F、F1分别是AC、A1C1的中面,∴B1F1∥BF,AF1∥C1F.又∵B1F1∩AF1=F1,C1F∩BF=F∴仄里AB1F1∥仄里C1BF.(2)正在三棱柱ABC-A1B1C1中,AA1⊥仄里A1B1C1,∴B1F1⊥AA1.又B1F1⊥A1C1,A1C1∩AA1=A1∴B1F1⊥仄里ACC1A1,而B1F1⊂仄里AB1F1∴仄里AB1F1⊥仄里ACC1A1.18(1)如图所示,对接AC,由AB=4,BC=3,∠ABC=90°,得AC=5.又AD=5,E是CD的中面,所以CD⊥AE.∵PA⊥仄里ABCD,CD⊂仄里ABCD,所以PA⊥CD.而PA,AE是仄里PAE内的二条相接曲线,所以CD⊥仄里PAE.(2)过面B做BG∥CD,分别与AE,AD相接于F,G,对接PF.由(1)CD⊥仄里PAE知,BG⊥仄里PAE.于是∠BPF为曲线PB与仄里PAE所成的角,且BG⊥AE.由PA⊥仄里ABCD知,∠PBA为曲线PB与仄里ABCD 所成的角.AB=4,AG=2,BG⊥AF,由题意,知∠PBA=∠BPF,果为sin∠PBA=PAPB ,sin∠BPF=BFPB,所以PA=BF.由∠DAB=∠ABC=90°知,AD∥BC,又BG∥CD,所以四边形BCDG是仄止四边形,故GD=BC=3.于是AG=2.正在Rt△BAG中,AB=4,AG=2,BG⊥AF,所以BG=AB2+AG2=25,BF=AB2BG=1625=855.于是PA=BF=85 5.又梯形ABCD的里积为S=12×(5+3)×4=16,所以四棱锥P-ABCD的体积为V=13×S×PA=13×16×855=128515.19[剖析](1)道明:如图所示,与CD的中面E,对接PE,EM,EA,∵△PCD为正三角形,∴PE⊥CD,PE=PDsin∠PDE=2sin60°= 3.∵仄里PCD⊥仄里ABCD,∴PE⊥仄里ABCD,而AM⊂仄里ABCD,∴PE⊥AM.∵四边形ABCD是矩形,∴△ADE,△ECM,△ABM均为曲角三角形,由勾股定理可供得EM=3,AM=6,AE=3∴EM2+AM2=AE2.∴AM⊥EM.又PE∩EM=E,∴AM⊥仄里PEM,∴AM⊥PM.(2)解:由(1)可知EM⊥AM,PM⊥AM,∴∠PME是二里角P-AM-D的仄里角.∴tan∠PME=PEEM=33=1,∴∠PME=45°.∴二里角P-AM-D的大小为45°20(1)果为正里BCC1B1是菱形,所以B1C⊥BC1,又已知B1C⊥A1B,且A1B∩BC1=B,所以B1C⊥仄里A1BC1,又B1C⊂仄里AB1C所以仄里AB1C⊥仄里A1BC1 .(2)设BC1接B1C于面E,对接DE,则DE是仄里A1BC1与仄里B1CD的接线.果为A1B∥仄里B1CD,A1B⊂仄里A1BC1,仄里A1BC1∩仄里B1CD=DE,所以A1B∥DE.又E是BC1的中面,所以D为A1C1的中面.即A1D DC1=1.21[解](1)道明:对接AE,如下图所示.∵ADEB为正圆形∴AE∩BD=F,且F是AE的中面,又G是EC的中面∴GF∥AC,又AC⊂仄里ABC,GF⊄仄里ABC,∴GF∥仄里ABC.(2)道明:∵ADEB为正圆形,∴EB⊥AB,又∵仄里ABED⊥仄里ABC,仄里A BED∩仄里ABC=AB,EB⊂仄里ABED,∴BE⊥仄里ABC,∴BE⊥AC.又∵AC=BC=22AB,∴CA2+CB2=AB2,∴AC⊥BC.又∵BC∩BE=B,∴AC⊥仄里BCE.(3)与AB的中面H,连GH,∵BC=AC=22AB=22,∴CH⊥AB,且CH=12,又仄里ABED⊥仄里ABC∴GH⊥仄里ABCD,∴V=13×1×12=16.22[剖析](1)道明:正在曲三棱柱ABC-A1B1C1中,底里三边少AC=3,BC=4,AB=5,∴AC⊥BC.又∵C1C⊥AC.∴AC⊥仄里BCC1B1∵BC1⊂仄里BCC1B,∴AC⊥BC1.(2)道明:设CB1与C1B的接面为E,对接DE,又四边形BCC1B1为正圆形.∵D是AB的中面,E是BC1的中面,∴DE∥AC1.∵DE⊂仄里CDB1,AC1⊄仄里CDB1,∴AC1∥仄里CDB1.(3)解:∵DE∥AC1,∴∠CED为AC1与B1C所成的角.正在△CED中,ED=12AC1=5 2,CD=12AB=52,CE=12CB1=22,∴cos∠CED=252=225.∴同里曲线AC1与B1C所成角的余弦值为22 5.。
高中数学必修2第二章测试(含答案).docx
第二章测试(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行.其中正确的命题是()A.①②B.②④C.①③D.②③答案:B2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是()A.平行B.相交C.平行或相交D.不相交解析:由棱台的定义知,各侧棱的延长线交于一点,所以选B.答案:B3.一直线/与其外三点A, B, C可确定的平面个数是()A.1个B. 3个C. 1个或3个D. 1个或3个或4个解析:当A、B、C共线且与/平行或相交时,确定一个平面;当A、B、C共线且与/ 异面时,可确定3个平面;当A、B. C三点不共线时,可确定4个平面.答案:D4.若三个平面两两相交,有三条交线,则下列命题中止确的是()A.三条交线为异面直线B.三条交线两两平行C.三条交线交于一点D.三条交线两两平行或交于一点答案:D5.如图,在AABC中,ZBAC=90°,丄面ABC, AB=AC, D是BC的中点,则图中直角三角形的个数是()A. 5B. 8C. 10D. 6解析:这些直角三角形是:△B4B, △B4D, AMC, MAC, ABAD, ACAD,△PBD, △PCD.共8 个.答案:B6.下列命题正确的有()①若厶ABC在平面a外,它的三条边所在直线分别交a于P、Q、R,则P、0、R三点、共线.②若三条平行线a、b. c都与直线/相交,则这四条直线共面.③三条直线两两相交,则这三条直线共面.A. 0个B. 1个C. 2个D. 3个解析:易知①与②正确,③不正确.答案:C7.若平面a丄平面沟a^p=l,且点Pea, PH,则下列命题中的假命题是()A.过点P且垂直于a的直线平行于0B.过点P且垂直于/的直线在a内C.过点P且垂直于0的直线在a内D.过点P且垂直于/的平面垂直于0答案:B& 如右图,在棱长为2的正方体ABCD-ArBiCiDr中,O是底面ABCD的中心,M、N分别是棱DDi、DiCi的中点,则直线OM()A.与AC、MN均垂直相交B.与AC垂直,与MN不垂直C.与A/N垂直,与AC不垂直D.与AC、MN均不垂直解析:易证 AC 丄面 BB X D\D, OMU 面 BBQQ, :.AC±OM.计算得 OM 2 + MN 1 = ON 1=5, OMLMN.答案:A 9. (2010-江西高考)如图,M 是正方体ABCD-AiBrCiDi 的棱DDi 的中点,给出下列四 个命题:D.①②③ 解析:将过点M 的平面CDDiCi 绕直线DDi 旋转任意非零的角度,所得平面与直线AB, BiCi 都相交,故③错误,排除A, B, D.答案:C10.已知平面a 外不共线的三点A 、B 、C 到a 的距离相等,则正确的结论是()A. 平面ABC 必平行于aB. 平面ABC 必不垂直于aC. 平面ABC 必与a 相交D. 存在/\ABC 的一条中位线平行于a 或在a 内解析:排除A 、B 、C,故选D.答案:D11. (2009-广东高考)给定下列四个命题:① 若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ② 若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③ 垂直于同一直线的两条直线相互平行;④ 若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂 直.其中,为真命题的是()A.①和②B.②和③ ①过M 点有且只有一条直线与直线AB,Bi 。
高中数学二第二章练习试题整理.docx
完美格式整理版高一数学必修二第二章经典练习题A.相交B.异面 C .平行D .异面或相交第 I 卷(选择题) 6. 设四棱锥-的底面不是平行四边形,用平面α去截此四棱锥P ABCD请修改第 I 卷的文字说明( 如图 ) ,使得截面四边形是平行四边形,则这样的平面α()评卷人得分一、单项选择1.在空间,下列哪些命题是正确的().①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A.仅②不正确B.仅①、④正确C.仅①正确D.四个命题都正确2.如果直线a是平面α的斜线,那么在平面α内()A不存在与 a 平行的直线B不存在与a垂直的直线C与a垂直的直线只有一条D与a平行的直线有无数条3.平面α内有一四边形 ABCD,P 为α外一点, P 点到四边形 ABCD各边的距离相等,则这个四边形()A 必有外接圆B必有内切圆C既有内切圆又有外接圆D 必是正方形4.已知六棱锥 P- ABCDEF的底面是正六边形, PA⊥平面 ABC, PA=2AB,则下列结论正确的是 ()A.PB⊥AD B.平面PAB⊥平面 PBCC.直线∥平面PAE D.直线与平面所成的角为 45°BC PD ABC A.不存在B.只有 1 个C.恰有4个D.有无数多个7.设 P 是△ ABC所在平面外一点, P 到△ ABC各顶点的距离相等,而且 P 到△ ABC各边的距离也相等,那么△ABC()A 是非等腰的直角三角形B是等腰直角三角形C 是等边三角形D不是 A、 B、C 所述的三角形8. 已知正四棱锥S ABCD 的侧棱长与底面边长都相等, E是SB的中点, 则AE,SD所成的角的余弦值为 ()A.1B.2C.3D.2 33339. 正方体 ABCD — A B CD 中, E 、 F 分别是 AA 与 CC 的中点,则直线 ED1 1 1 111与 D 1F 所成角的大小是( )A .1B 。
人教版高中数学必修2第二章测试题A组及答案解析
人教版高中数学必修2第二章测试题A组及答案解析第二章点、直线、平面之间的位置关系一、选择题1.设 $\alpha$,$\beta$ 为两个不同的平面,$l$,$m$ 为两条不同的直线,且 $l\subset\alpha$,$m\subset\beta$,有如下的两个命题:①若 $\alpha\parallel\beta$,则 $l\parallel m$;②若 $l\perp m$,则 $\alpha\perp\beta$。
那么()。
A。
①是真命题,②是假命题B。
①是假命题,②是真命题C。
①②都是真命题D。
①②都是假命题2.如图,ABCD为正方体,下面结论错误的是()。
A。
BD $\parallel$ 平面CBB。
AC $\perp$ BDC。
AC $\perp$ 平面CBD。
异面直线AD与CB角为60°3.关于直线 $m$,$n$ 与平面 $\alpha$,$\beta$,有下列四个命题:① $m\parallel\alpha$,$n\parallel\beta$ 且$\alpha\parallel\beta$,则 $m\parallel n$;② $m\perp\alpha$,$n\perp\beta$ 且 $\alpha\perp\beta$,则$m\perp n$;其中真命题的序号是()。
A。
①②B。
③④C。
①④D。
②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线 $l_1$,$l_2$ 与同一平面所成的角相等,则$l_1$,$l_2$ 互相平行④若直线 $l_1$,$l_2$ 是异面直线,则与 $l_1$,$l_2$ 都相交的两条直线是异面直线其中假命题的个数是()。
A。
1B。
2C。
3D。
45.下列命题中正确的个数是()。
①若直线 $l$ 上有无数个点不在平面 $\alpha$ 内,则$l\parallel\alpha$②若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都没有公共点A。
数学必修二第二章测试题(含答案)
第二章综合检测题时间120分钟,满分150分。
一、选择题<本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的>1.若直线a和b没有公共点,则a与b的位置关系是< >A.相交B.平行C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为< >A.3 B.4 C.5 D.63.已知平面α和直线l,则α内至少有一条直线与l< >A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于< >A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得< > A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α6.下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中真命题的个数为< >A.4 B.3 C.2 D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有< >A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是< >A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC ⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是< > A.AB∥m B.AC⊥mC.AB∥βD.AC⊥β10.<2012·大纲版数学<文科>>已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为< >A.-错误!B. .错误!C.错误!D.-错误!11.已知三棱锥D-ABC的三个侧面与底面全等,且AB=AC=错误!,BC=2,则以BC为棱,以面BCD与面BCA为面的二面角的余弦值为< >A.错误!B.错误!C.0 D.-错误!12.如图所示,点P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,则PB与AC所成的角是< >A.90°B.60°C.45°D.30°二、填空题<本大题共5小题,每小题5分,共25分.把答案填在题中的横线上>13.下列图形可用符号表示为________.14.正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于________.15.设平面α∥平面β,A,C∈α,B,D∈β,直线AB与CD交于点S,且点S位于平面α,β之间,AS=8,BS=6,CS=12,则SD=________.16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________.三、解答题<本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤>17.<10分>如下图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:<1>平面AB1F1∥平面C1BF;<2>平面AB1F1⊥平面ACC1A1.[分析] 本题可以根据面面平行和面面垂直的判定定理和性质定理,寻找使结论成立的充分条件.18.<本小题满分12分>如图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.<1>证明:CD⊥平面PAE;<2>若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.<12分>如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2错误!,M为BC的中点.<1>证明:AM⊥PM;<2>求二面角P-AM-D的大小.20.<本小题满分12分><2010·XX文,19>如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.<1>证明:平面AB1C⊥平面A1BC1;<2>设D是A1C1上的点,且A1B∥平面B1CD,求A1D DC1的值.21.<12分>如图,△ABC中,AC=BC=错误!AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.<1>求证:GF∥底面ABC;<2>求证:AC⊥平面EBC;<3>求几何体ADEBC的体积V.[分析] <1>转化为证明GF平行于平面ABC内的直线AC;<2>转化为证明AC垂直于平面EBC内的两条相交直线BC和BE;<3>几何体ADEBC是四棱锥C-ABED.22.<12分>如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC =4,AB=5,AA1=4,点D是AB的中点.<1>求证:AC⊥BC1;<2>求证:AC1∥平面CDB1;<3>求异面直线AC1与B1C所成角的余弦值.详解答案1[答案] D2[答案] C[解析] AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CC1相交的有:CD、C1D1与CC1平行且与AB相交的有:BB1、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案] C[解析] 1°直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;2°l⊂α时,在α内不存在直线与l异面,∴D错;3°l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4[答案] D[解析] 由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.5[答案] B[解析] 对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.6[答案] D[解析] 异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c可以平行,可以相交,也可以异面,故④错误.7[答案] D[解析] 如图所示.由于AA1⊥平面A1B1C1D1,EF⊂平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF⊂平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.8[答案] D[解析] 选项A中,a,b还可能相交或异面,所以A是假命题;选项B中,a,b还可能相交或异面,所以B是假命题;选项C中,α,β还可能相交,所以C是假命题;选项D中,由于a⊥α,α⊥β,则a∥β或a⊂β,则β内存在直线l∥a,又b⊥β,则b⊥l,所以a⊥b.9[答案] C[解析] 如图所示:AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β.10[答案] 错误!命题意图] 本试题考查了正方体中异面直线的所成角的求解的运用.[解析] 首先根据已知条件,连接DF,然后则角DFD1即为异面直线所成的角,设边长为2,则可以求解得到错误!=DF=D1F,DD1=2,结合余弦定理得到结论.11[答案] C[解析] 取BC中点E,连AE、DE,可证BC⊥AE,BC⊥DE,∴∠AED为二面角A-BC-D的平面角又AE=ED=错误!,AD=2,∴∠AED=90°,故选C.12[答案] B[解析] 将其还原成正方体ABCD-PQRS,显见PB∥SC,△ACS为正三角形,∴∠ACS=60°.13[答案] α∩β=AB14[答案] 45°[解析] 如图所示,正方体ABCD-A1B1C1D1中,由于BC⊥AB,BC1⊥AB,则∠C1BC是二面角C1-AB-C的平面角.又△BCC1是等腰直角三角形,则∠C1BC=45°.15[答案] 9[解析] 如下图所示,连接AC,BD,则直线AB,CD确定一个平面ACBD.∵α∥β,∴AC∥BD,则错误!=错误!,∴错误!=错误!,解得SD=9.16[答案] ①②④[解析] 如图所示,①取BD中点,E连接AE,CE,则BD⊥AE,BD⊥CE,而AE∩CE=E,∴BD⊥平面AEC,AC⊂平面AEC,故AC⊥BD,故①正确.②设正方形的边长为a,则AE=CE=错误!a.由①知∠AEC=90°是直二面角A-BD-C的平面角,且∠AEC=90°,∴AC=a,∴△ACD是等边三角形,故②正确.③由题意及①知,AE⊥平面BCD,故∠ABE是AB与平面BCD所成的角,而∠ABE=45°,所以③不正确.④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=错误!AB=错误!a,ME∥CD,且ME=错误!CD=错误!a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=错误!a,AC=a,∴NE=错误!AC=错误!a.∴△MEN是正三角形,∴∠EMN=60°,故④正确.17[证明] <1>在正三棱柱ABC-A1B1C1中,∵F、F1分别是AC、A1C1的中点,∴B1F1∥BF,AF1∥C1F.又∵B1F1∩AF1=F1,C1F∩BF=F,∴平面AB1F1∥平面C1BF.<2>在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1.又B1F1⊥A1C1,A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1,∴平面AB1F1⊥平面ACC1A1.18[解析]<1>如图所示,连接AC,由AB=4,BC=3,∠ABC=90°,得AC=5.又AD=5,E是CD的中点,所以CD⊥AE.∵PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD.而PA,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.<2>过点B作BG∥CD,分别与AE,AD相交于F,G,连接PF.由<1>CD⊥平面PAE知,BG⊥平面PAE.于是∠BPF为直线PB与平面PAE所成的角,且BG⊥AE.由PA⊥平面ABCD知,∠PBA为直线PB与平面ABCD所成的角.AB=4,AG=2,BG⊥AF,由题意,知∠PBA=∠BPF,因为sin∠PBA=错误!,sin∠BPF=错误!,所以PA=BF.由∠DAB=∠ABC=90°知,AD∥BC,又BG∥CD,所以四边形BCDG是平行四边形,故GD=BC=3.于是AG=2.在Rt△BAG中,AB=4,AG=2,BG⊥AF,所以BG=错误!=2错误!,BF=错误!=错误!=错误!.于是PA=BF=错误!.又梯形ABCD的面积为S=错误!×<5+3>×4=16,所以四棱锥P -ABCD的体积为V=错误!×S×PA=错误!×16×错误!=错误!.19[解析] <1>证明:如图所示,取CD的中点E,连接PE,EM,EA, ∵△PCD为正三角形,∴PE⊥CD,PE=PD sin∠PDE=2sin60°=错误!.∵平面PCD⊥平面ABCD,∴PE⊥平面ABCD,而AM⊂平面ABCD,∴PE⊥AM.∵四边形ABCD是矩形,∴△ADE,△ECM,△ABM均为直角三角形,由勾股定理可求得EM =错误!,AM=错误!,AE=3,∴EM2+AM2=AE2.∴AM⊥EM.又PE∩EM=E,∴AM⊥平面PEM,∴AM⊥PM.<2>解:由<1>可知EM⊥AM,PM⊥AM,∴∠PME是二面角P-AM-D的平面角.∴tan∠PME=错误!=错误!=1,∴∠PME=45°.∴二面角P-AM-D的大小为45°.20[解析]<1>因为侧面BCC1B1是菱形,所以B1C⊥BC1,又已知B1C⊥A1B,且A1B∩BC1=B,所以B1C⊥平面A1BC1,又B1C⊂平面AB1C所以平面AB1C⊥平面A1BC1 .<2>设BC1交B1C于点E,连接DE,则DE是平面A1BC1与平面B1CD的交线.因为A1B∥平面B1CD,A1B⊂平面A1BC1,平面A1BC1∩平面B1CD=DE,所以A1B∥DE.又E是BC1的中点,所以D为A1C1的中点.即A1D DC1=1.21[解] <1>证明:连接AE,如下图所示.∵ADEB为正方形,∴AE∩BD=F,且F是AE的中点,又G是EC的中点,∴GF∥AC,又AC⊂平面ABC,GF⊄平面ABC,∴GF∥平面ABC.<2>证明:∵ADEB为正方形,∴EB⊥AB,又∵平面ABED⊥平面ABC,平面ABED∩平面ABC=AB,EB⊂平面ABED,∴BE⊥平面ABC,∴BE⊥AC.又∵AC=BC=错误!AB,∴CA2+CB2=AB2,∴AC⊥BC.又∵BC∩BE=B,∴AC⊥平面BCE.<3>取AB的中点H,连GH,∵BC=AC=错误!AB=错误!,∴CH⊥AB,且CH=错误!,又平面ABED⊥平面ABC∴GH⊥平面ABCD,∴V=错误!×1×错误!=错误!.22[解析] <1>证明:在直三棱柱ABC-A1B1C1中,底面三边长AC=3,BC=4,AB=5,∴AC⊥BC.又∵C1C⊥AC.∴AC⊥平面BCC1B1.∵BC1⊂平面BCC1B,∴AC⊥BC1.<2>证明:设CB1与C1B的交点为E,连接DE,又四边形BCC1B1为正方形.∵D是AB的中点,E是BC1的中点,∴DE∥AC1.∵DE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1.<3>解:∵DE∥AC1,∴∠CED为AC1与B1C所成的角.在△CED中,ED=错误!AC1=错误!,CD=错误!AB=错误!,CE=错误!CB1=2错误!,∴cos∠CED=错误!=错误!.∴异面直线AC1与B1C所成角的余弦值为错误!.。
数学必修二第二章测试题(含答案)
第二章综合检测题时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若直线a和b没有公共点,则a与b的位置关系是()A.相交B.平行C.异面D.平行或异面2.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3B.4C.5D.63.已知平面α和直线l,则α内至少有一条直线与l()A.平行B.相交C.垂直D.异面4.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于()A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得() A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α6.下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中真命题的个数为()A.4B.3C.2D.17.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.其中一定正确的有()A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是()A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC .若a ⊂α,b ⊂β,a ∥b ,则α∥βD .若a ⊥α,b ⊥β,α⊥β,则a ⊥b9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,n ∥β,则下列四种位置关系中,不一定成立的是( )A .AB ∥m B .AC ⊥mC .AB ∥βD .AC ⊥β10.(2012·大纲版数学(文科))已知正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、CC 1的中点,那么直线AE 与D 1F 所成角的余弦值为( )A .-45 B. .35C .34D .-3511.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的余弦值为( ) A.33 B.13 C .0 D .-1212.如图所示,点P 在正方形ABCD 所在平面外,P A ⊥平面ABCD ,P A =AB ,则PB 与AC 所成的角是( )A .90°B .60°C .45°D .30°二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)13.下列图形可用符号表示为________.14.正方体ABCD -A 1B 1C 1D 1中,二面角C 1-AB -C 的平面角等于________.15.设平面α∥平面β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,AS =8,BS =6,CS =12,则SD =________.16.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 成60°的角;④AB 与CD 所成的角是60°.其中正确结论的序号是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如下图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.[分析]本题可以根据面面平行和面面垂直的判定定理和性质定理,寻找使结论成立的充分条件.18.(本小题满分12分)如图所示,在四棱锥P-ABCD中,P A⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(1)证明:CD⊥平面P AE;(2)若直线PB与平面P AE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.(12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.20.(本小题满分12分)(2010·辽宁文,19)如图,棱柱ABC-A1B1C1的侧面BCC1B1是菱形,B1C⊥A1B.(1)证明:平面AB1C⊥平面A1BC1;(2)设D是A1C1上的点,且A1B∥平面B1CD,求A1D DC1的值.21.(12分)如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.[分析](1)转化为证明GF平行于平面ABC内的直线AC;(2)转化为证明AC垂直于平面EBC内的两条相交直线BC和BE;(3)几何体ADEBC是四棱锥C-ABED.22.(12分)如下图所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1;(3)求异面直线AC1与B1C所成角的余弦值.详解答案1[答案] D2[答案] C[解析]AB与CC1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与AB平行与CC1相交的有:CD、C1D1与CC1平行且与AB相交的有:BB1、AA1,第二类与两者都相交的只有BC,故共有5条.3[答案] C[解析]1°直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错;2°l⊂α时,在α内不存在直线与l异面,∴D错;3°l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4[答案] D[解析]由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD=90°.5[答案] B[解析]对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b ∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a∥b,C错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.6[答案] D[解析]异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c 可以平行,可以相交,也可以异面,故④错误.7[答案] D[解析]如图所示.由于AA1⊥平面A1B1C1D1,EF⊂平面A1B1C1D1,则EF⊥AA1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,EF∥A1C1,又AC∥A1C1,则EF∥AC,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,EF与AC异面,所以②不正确;由于平面A1B1C1D1∥平面ABCD,EF⊂平面A1B1C1D1,所以EF∥平面ABCD,所以④正确.8[答案] D[解析]选项A中,a,b还可能相交或异面,所以A是假命题;选项B中,a,b还可能相交或异面,所以B是假命题;选项C中,α,β还可能相交,所以C是假命题;选项D中,由于a⊥α,α⊥β,则a ∥β或a⊂β,则β内存在直线l∥a,又b⊥β,则b⊥l,所以a⊥b.9[答案] C[解析]如图所示:AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β.10[答案]35命题意图]本试题考查了正方体中异面直线的所成角的求解的运用.[解析]首先根据已知条件,连接DF,然后则角DFD1即为异面直线所成的角,设边长为2,则可以求解得到5=DF=D1F,DD1=2,结合余弦定理得到结论.11[答案] C[解析]取BC中点E,连AE、DE,可证BC⊥AE,BC⊥DE,∴∠AED为二面角A-BC-D的平面角又AE=ED=2,AD=2,∴∠AED=90°,故选C.12[答案] B[解析]将其还原成正方体ABCD-PQRS,显见PB∥SC,△ACS 为正三角形,∴∠ACS=60°.13[答案]α∩β=AB14[答案]45°[解析]如图所示,正方体ABCD-A1B1C1D1中,由于BC⊥AB,BC1⊥AB,则∠C1BC是二面角C1-AB-C的平面角.又△BCC1是等腰直角三角形,则∠C1BC=45°.15[答案]9[解析]如下图所示,连接AC,BD,则直线AB ,CD 确定一个平面ACBD .∵α∥β,∴AC ∥BD ,则AS SB =CS SD ,∴86=12SD ,解得SD =9.16[答案] ①②④[解析] 如图所示,①取BD 中点,E 连接AE ,CE ,则BD ⊥AE ,BD ⊥CE ,而AE ∩CE =E ,∴BD ⊥平面AEC ,AC ⊂平面AEC ,故AC ⊥BD ,故①正确.②设正方形的边长为a ,则AE =CE =22a .由①知∠AEC =90°是直二面角A -BD -C 的平面角,且∠AEC =90°,∴AC =a ,∴△ACD 是等边三角形,故②正确.③由题意及①知,AE ⊥平面BCD ,故∠ABE 是AB 与平面BCD 所成的角,而∠ABE =45°,所以③不正确.④分别取BC ,AC 的中点为M ,N ,连接ME ,NE ,MN .则MN ∥AB ,且MN =12AB =12a ,ME ∥CD ,且ME =12CD =12a ,∴∠EMN 是异面直线AB ,CD 所成的角.在Rt △AEC 中,AE =CE =22a ,AC =a ,∴NE =12AC =12a .∴△MEN 是正三角形,∴∠EMN =60°,故④正确.17[证明] (1)在正三棱柱ABC -A 1B 1C 1中,∵F 、F 1分别是AC 、A 1C 1的中点,∴B 1F 1∥BF ,AF 1∥C 1F .又∵B 1F 1∩AF 1=F 1,C 1F ∩BF =F ,∴平面AB 1F 1∥平面C 1BF .(2)在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面A 1B 1C 1,∴B 1F 1⊥AA 1.又B 1F 1⊥A 1C 1,A 1C 1∩AA 1=A 1,∴B 1F 1⊥平面ACC 1A 1,而B 1F 1⊂平面AB 1F 1,∴平面AB 1F 1⊥平面ACC 1A 1.18[解析](1)如图所示,连接AC ,由AB =4,BC =3,∠ABC =90°,得AC =5.又AD =5,E 是CD 的中点,所以CD ⊥AE .∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD .而P A ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)过点B 作BG ∥CD ,分别与AE ,AD 相交于F ,G ,连接PF . 由(1)CD ⊥平面P AE 知,BG ⊥平面P AE .于是∠BPF 为直线PB 与平面P AE 所成的角,且BG ⊥AE .由P A ⊥平面ABCD 知,∠PBA 为直线PB 与平面ABCD 所成的角. AB =4,AG =2,BG ⊥AF ,由题意,知∠PBA =∠BPF ,因为sin ∠PBA =P A PB ,sin ∠BPF =BF PB ,所以P A =BF .由∠DAB =∠ABC =90°知,AD ∥BC ,又BG ∥CD ,所以四边形BCDG 是平行四边形,故GD =BC =3.于是AG =2.在Rt △BAG 中,AB =4,AG =2,BG ⊥AF ,所以BG =AB 2+AG 2=25,BF =AB 2BG =1625=855.于是P A =BF =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A =13×16×855=128515.19[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA ,∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin60°= 3.∵平面PCD ⊥平面ABCD ,∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM .∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形,由勾股定理可求得EM =3,AM =6,AE =3,∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,∴AM ⊥PM .(2)解:由(1)可知EM ⊥AM ,PM ⊥AM ,∴∠PME 是二面角P -AM -D 的平面角.∴tan ∠PME =PE EM =33=1,∴∠PME =45°. ∴二面角P -AM -D 的大小为45°.20[解析](1)因为侧面BCC 1B 1是菱形,所以B 1C ⊥BC 1,又已知B 1C ⊥A 1B ,且A 1B ∩BC 1=B ,所以B 1C ⊥平面A 1BC 1,又B 1C ⊂平面AB 1C所以平面AB 1C ⊥平面A 1BC 1 .(2)设BC 1交B 1C 于点E ,连接DE ,则DE 是平面A 1BC 1与平面 B 1CD 的交线.因为A 1B ∥平面B 1CD ,A 1B ⊂平面A 1BC 1,平面A 1BC 1∩平面B 1CD =DE ,所以A 1B ∥DE .又E 是BC 1的中点,所以D 为A 1C 1的中点.即A 1D DC 1=1.21[解] (1)证明:连接AE ,如下图所示.∵ADEB 为正方形,∴AE ∩BD =F ,且F 是AE 的中点,又G 是EC 的中点,∴GF ∥AC ,又AC ⊂平面ABC ,GF ⊄平面ABC ,∴GF ∥平面ABC .(2)证明:∵ADEB 为正方形,∴EB ⊥AB ,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ⊂平面ABED ,∴BE ⊥平面ABC ,∴BE ⊥AC .又∵AC =BC =22AB ,∴CA 2+CB 2=AB 2,∴AC ⊥BC .又∵BC ∩BE =B ,∴AC ⊥平面BCE .(3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22,∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.22[解析] (1)证明:在直三棱柱ABC -A 1B 1C 1中,底面三边长AC =3,BC =4,AB =5,∴AC ⊥BC .又∵C 1C ⊥AC .∴AC ⊥平面BCC 1B 1.∵BC 1⊂平面BCC 1B ,∴AC ⊥BC 1.(2)证明:设CB 1与C 1B 的交点为E ,连接DE ,又四边形BCC 1B 1为正方形.∵D 是AB 的中点,E 是BC 1的中点,∴DE ∥AC 1.∵DE ⊂平面CDB 1,AC 1⊄平面CDB 1,∴AC 1∥平面CDB 1.(3)解:∵DE ∥AC 1,∴∠CED 为AC 1与B 1C 所成的角.在△CED 中,ED =12AC 1=52,CD =12AB =52,CE =12CB 1=22,∴cos ∠CED =252=225.∴异面直线AC1与B1C所成角的余弦值为225.。
数学必修二第二章经典测试题(含答案)
必修二第二章综合检测题一、选择题1.若直线a和b没有公共点,则a与b的位置关系是( ) A.相交B.平行C.异面D.平行或异面2.平行六面体-A1B1C1D1中,既与共面也与1共面的棱的条数为( )A.3 B.4 C.5 D.63.已知平面α和直线l,则α内至少有一条直线与l( ) A.平行B.相交C.垂直D.异面4.长方体-A1B1C1D1中,异面直线,A1D1所成的角等于( )A.30°B.45°C.60°D.90°5.对两条不相交的空间直线a与b,必存在平面α,使得( )A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α6.下面四个命题:其中真命题的个数为( )①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.A.4 B.3 C.2 D.17.在正方体-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:①⊥1;②∥;③与异面;④∥平面.其中一定正确的有( )A.①②B.②③C.②④D.①④8.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b9.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线∥l,直线⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是( )A.∥m B.⊥m C.∥βD.⊥β10.已知正方体-A1B1C1D1中,E、F分别为1、1的中点,那么直线与D1F所成角的余弦值为( )A.- B D.-11.已知三棱锥D-的三个侧面与底面全等,且==,=2,则以为棱,以面与面为面的二面角的余弦值为( )C.0 D.-12.如图所示,点P在正方形所在平面外,⊥平面,=,则与所成的角是( )A.90°B.60°C.45°D.30°二、填空题三、13.下列图形可用符号表示为.14.正方体-A1B1C1D1中,二面角C1--C的平面角等于.15.设平面α∥平面β,A,C∈α,B,D∈β,直线与交于点S,且点S位于平面α,β之间,=8,=6,=12,则=.16.将正方形沿对角线折成直二面角A--C,有如下四个结论:①⊥;②△是等边三角形;③与平面成60°的角;④与所成的角是60°.其中正确结论的序号是.三、解答题(解答应写出文字说明,证明过程或演算步骤)17.如下图,在三棱柱-A1B1C1中,△与△A1B1C1都为正三角形且1⊥面,F、F1分别是,A1C1的中点.求证:(1)平面1F1∥平面C1;(2)平面1F1⊥平面1A118.如图所示,在四棱锥P-中,⊥平面,=4,=3,=5,∠=∠=90°,E是的中点.(1)证明:⊥平面;(2)若直线与平面所成的角和与平面所成的角相等,求四棱锥P-的体积.19.如图所示,边长为2的等边△所在的平面垂直于矩形所在的平面,=2,M为的中点.(1)证明:⊥;(2)求二面角P--D的大小.20.如图,棱柱-A1B1C1的侧面1B1是菱形,B1C⊥A1B.(1)证明:平面1C⊥平面A11;(2)设D是A1C1上的点,且A1B∥平面B1,求A1D1的值.21.如图,△中,==,是边长为1的正方形,平面⊥底面,若G,F分别是,的中点.(1)求证:∥底面;(2)求证:⊥平面;(3)求几何体的体积V.22.如下图所示,在直三棱柱-A1B1C1中,=3,=4,=5,1=4,点D是的中点.(1)求证:⊥1;(2)求证:1∥平面1;(3)求异面直线1与B1C所成角的余弦值.必修二第二章综合检测题1 D2 C 与1为异面直线,故棱中不存在同时与两者平行的直线,因此只有两类:第一类与平行与1相交的有:、C1D1与1平行且与相交的有:1、1,第二类与两者都相交的只有,故共有5条.3 C 当直线l与平面α斜交时,在平面α内不存在与l 平行的直线,∴A错;当l⊂α时,在α内不存在直线与l异面,∴D错;当l∥α时,在α内不存在直线与l相交.无论哪种情形在平面α内都有无数条直线与l垂直.4 D 由于∥A1D1,则∠是异面直线,A1D1所成的角,很明显∠=90°.5 B 对于选项A,当a与b是异面直线时,A错误;对于选项B,若a,b不相交,则a与b平行或异面,都存在α,使a⊂α,b∥α,B正确;对于选项C,a⊥α,b⊥α,一定有a ∥b,C错误;对于选项D,a⊂α,b⊥α,一定有a⊥b,D错误.6 D 异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确;对于④,在平面内,a∥c,而在空间中,a与c可以平行,可以相交,也可以异面,故④错误.7 D 如图所示.由于1⊥平面A1B1C1D1,⊂平面A1B1C1D1,则⊥1,所以①正确;当E,F分别是线段A1B1,B1C1的中点时,∥A1C1,又∥A1C1,则∥,所以③不正确;当E,F分别不是线段A1B1,B1C1的中点时,与异面,所以②不正确;由于平面A1B1C1D1∥平面,⊂平面A1B1C1D1,所以∥平面,所以④正确.8 D选项A中,a,b还可能相交或异面,所以A是假命题;选项B中,a,b还可能相交或异面,所以B是假命题;选项C 中,α,β还可能相交,所以C是假命题;选项D中,由于a⊥α,α⊥β,则a∥β或a⊂β,则β内存在直线l∥a,又b⊥β,则b⊥l,所以a⊥b.9 C如图所示:∥l∥m;⊥l,m∥l⇒⊥m;∥l⇒∥β.10、11 C 取中点E,连、,可证⊥,⊥,∴∠为二面角A--D的平面角又==,=2,∴∠=90°,故选C.12 B 将其还原成正方体-,显见∥,△为正三角形,∴∠=60°.13 α∩β=14 45°如图所示,正方体-A1B1C1D1中,由于⊥,1⊥,则∠C1是二面角C1--C的平面角.又△1是等腰直角三角形,则∠C1=45°.15、9如下图所示,连接,,则直线,确定一个平面.∵α∥β,∴∥,则=,∴=,解得=9.16 ①②④如图所示,①取中点,E连接,,则⊥,⊥,而∩=E,∴⊥平面,⊂平面,故⊥,故①正确.②设正方形的边长为a,则==a.由①知∠=90°是直二面角A--C的平面角,且∠=90°,∴=a,∴△是等边三角形,故②正确.③由题意与①知,⊥平面,故∠是与平面所成的角,而∠=45°,所以③不正确.④分别取,的中点为M,N,连接,,.则∥,且==a,∥,且==a,∴∠是异面直线,所成的角.在△中,==a,=a,∴==a.∴△是正三角形,∴∠=60°,故④正确.17 (1)在正三棱柱-A1B1C1中,∵F、F1分别是、A1C1的中点,∴B1F1∥,1∥C1F.又∵B1F1∩1=F1,C1F∩=F ∴平面1F1∥平面C1.(2)在三棱柱-A1B1C1中,1⊥平面A1B1C1,∴B1F1⊥1.又B1F1⊥A1C1,A1C1∩1=A1 ∴B1F1⊥平面1A1,而B1F1⊂平面1F1 ∴平面1F1⊥平面1A1.18(1)如图所示,连接,由=4,=3,∠=90°,得=5.又=5,E是的中点,所以⊥.∵⊥平面,⊂平面,所以⊥.而,是平面内的两条相交直线,所以⊥平面.(2)过点B作∥,分别与,相交于F,G,连接.由(1)⊥平面知,⊥平面.于是∠为直线与平面所成的角,且⊥.由⊥平面知,∠为直线与平面所成的角.=4,=2,⊥,由题意,知∠=∠,因为∠=,∠=,所以=.由∠=∠=90°知,∥,又∥,所以四边形是平行四边形,故==3.于是=2.在△中,=4,=2,⊥,所以==2,===.于是==.又梯形的面积为S=×(5+3)×4=16,所以四棱锥P-的体积为V=×S×=×16×=.19[解析] (1)证明:如图所示,取的中点E,连接,,,∵△为正三角形,∴⊥,=∠=260°=.∵平面⊥平面,∴⊥平面,而⊂平面,∴⊥.∵四边形是矩形,∴△,△,△均为直角三角形,由勾股定理可求得=,=,=3 ∴2+2=2.∴⊥.又∩=E,∴⊥平面,∴⊥.(2)解:由(1)可知⊥,⊥,∴∠是二面角P--D的平面角.∴∠===1,∴∠=45°.∴二面角P--D的大小为45°20(1)因为侧面1B1是菱形,所以B1C⊥1,又已知B1C⊥A1B,且A1B∩1=B,所以B1C⊥平面A11,又B1C⊂平面1C所以平面1C⊥平面A11 .(2)设1交B1C于点E,连接,则是平面A11与平面B1的交线.因为A1B∥平面B1,A1B⊂平面A11,平面A11∩平面B1=,所以A1B∥.又E是1的中点,所以D为A1C1的中点.即A1D1=1.21[解] (1)证明:连接,如下图所示.∵为正方形∴∩=F,且F是的中点,又G是的中点∴∥,又⊂平面,⊄平面,∴∥平面.(2)证明:∵为正方形,∴⊥,又∵平面⊥平面,平面∩平面=,⊂平面,∴⊥平面,∴⊥.又∵==,∴2+2=2,∴⊥.又∵∩=B,∴⊥平面.(3)取的中点H,连,∵===,∴⊥,且=,又平面⊥平面∴⊥平面,∴V=×1×=.22[解析] (1)证明:在直三棱柱-A1B1C1中,底面三边长=3,=4,=5,∴⊥.又∵C1C⊥.∴⊥平面1B1∵1⊂平面1B,∴⊥1.(2)证明:设1与C1B的交点为E,连接,又四边形1B1为正方形.∵D是的中点,E是1的中点,∴∥1.∵⊂平面1,1⊄平面1,∴1∥平面1.(3)解:∵∥1,∴∠为1与B1C所成的角.在△中,=1=,==,=1=2,∴∠==.∴异面直线1与B1C所成角的余弦值为.。
高中数学必修2第二章单元测试题(含答案)
高一数学必修2第二章测试题【第七次周练】一、选择题(每小题4分,共48分)1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能 4、在正方体111A B C D A B C D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角D 、11AC与1B C 成60角5、若直线l 垂直平面α,直线a α⊂,则l 与a 的位置关系是A 、l 垂直aB 、l 与a 异面C 、l 与a 相交D 、以上三种 6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有A 、1B 、2C 、3D 、4 7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取EFGH 、、、四点,如果与EF GH 、能相交于点P ,那么 A 、点P 不在直线AC 上 B 、点P 必在直线BD 上C 、点P 必在平面ABC 内D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有A 、0个B 、1个C 、2个D 、3个 9、如图,是正方体的平面展开图,在这个正方体中有下列几个结论①BM//ED ②CN 与BE 是异面直线 ③CN 与BM 成600角 ④DM ⊥BN 其中正确的结论的序号是()B 1C 1A 1D 1BACDA ,①②③B ,②④C ,③④D ,②③④ 10、给出以下四个命题①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面; ③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直. 其中真命题的个数是A.4B.3C.2D.111、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是A 、23 B 、76 C 、45D 、5612、直线m,n 分别在两个互相垂直的平面α,β内,且α∩β= a ,m 和n 与 a 不垂直也不平行,那么m 和n 的位置关系是()A .可能垂直,但不一定平行,B ,可能平行,但一定不垂直C ,可能垂直,可能平行,D ,一定不垂直,也一定不平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前201*年**中学同步教学测试试卷**测试试卷考试围:xxx;考试时间:100分钟;命题人:xxx 题号一二三四五总分得分注意事项:1.答题前填写好自己的、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请修改第I卷的文字说明评卷人得分一、单项选择1. 在空间,下列哪些命题是正确的().①平行于同一条直线的两条直线互相平行②垂直于同一条直线的两条直线互相平行③平行于同一个平面的两条直线互相平行④垂直于不一个平面的两条直线互相平行A.仅②不正确B.仅①、④正确C.仅①正确D.四个命题都正确2. 如果直线 a是平面α的斜线,那么在平面α()A 不存在与a平行的直线B 不存在与a垂直的直线C 与a垂直的直线只有一条D 与a平行的直线有无数条3. 平面α有一四边形ABCD,P为α外一点,P点到四边形ABCD各边的距离相等,则这个四边形()A 必有外接圆B 必有切圆C 既有切圆又有外接圆D 必是正方形4. 已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是( )A.PB⊥AD B.平面PAB⊥平面PBCC.直线BC∥平面PAE D.直线PD与平面ABC所成的角为45°5. 若a,b是异面直线,直线c∥a,则c与b的位置关系是()A.相交 B.异面 C.平行 D.异面或相交6. 设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α( )A.不存在B.只有1个 C.恰有4个D.有无数多个7. 设P是△ABC所在平面外一点,P到△ABC各顶点的距离相等,而且P 到△ABC各边的距离也相等,那么△ABC()A 是非等腰的直角三角形B 是等腰直角三角形C 是等边三角形D 不是A、B、C所述的三角形8. 已知正四棱锥S ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE SD ,所成的角的余弦值为( ) A.13B.23C.33D.239. 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是 ( ) A .15 B 。
13 C 。
12D 。
3210. 已知空间两条不同的直线m,n 和两个不同的平面,αβ,则下列命题中正确的是( )A.若//,,//m n m n αα⊂则B.若,,m m n n αβα⋂=⊥⊥则C.若//,//,//m n m n αα则D.若//,,,//m m n m n αβαβ⊂=则11. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .90 w.w.w.k.s.5.u.c.o.m12. 已知直线 l 、m ,平面α、β,且l α⊥,m β⊂,则//αβ是l m ⊥的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件13. 设,b c 表示两条直线,,αβ表示两个平面,下列命题中是真命题的是( )A .////b b c c αα⊂⎫⇒⎬⎭ B .////b c b c αα⊂⎫⇒⎬⎭C .//c c ααββ⎫⇒⊥⎬⊥⎭D .//c c αβαβ⎫⇒⊥⎬⊥⎭14. 在下列四个正方体中,能得出AB ⊥CD 的是( )15. 在正方体1111D C B A ABCD -中,O 为正方形ABCD 中心,则O A 1与平面ABCD 所成角的正切值为( ) A.2 B.22 C.1 D.3316. 在正方体1111ABCD A B C D -中,若E 是11A C 的中点,则直线CE 垂直于( )A ACB BDC 1AD D 11A D17. 四条不共线的线段顺次首尾连接,可确定平面的个数是( ) A .1 B .3 C .4 D .1或418. 设a ,b 为两条直线,α,β为两个平面,下列四个命题中真命题是点H .则以下命题中错误..的是( )A .点H 是1A BD ∆的垂心B .AH 垂直平面11CB DC .AH 的延长线经过点1CD .直线AH 和1BB 所成角为4529. 空间四边形ABCD 中,AC ⊥BD ,且AC=BD ,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则四边形EFGH 是( ) A .菱形 B .矩形 C .梯形 D .正方形30. 命题:(1)一个平面的两条斜线段中,较长的斜线段有较长的射影;(2)两条异面直线在同一平面的射影是两条相交直线;(3)两条平行直线在同一平面的射影是两条平行直线;(4)一个锐角在一个平面的射影一定是锐角。
以上命题正确的有 ( )A 0个B 1个C 2个 D3个31. 正四棱锥P ABCD -的所有棱长相等,E 为PC 的中点,那么异面直线BE 与PA 所成角的余弦值等于( ) A.12B.22C.23D.3332. 对于任意的直线l 与平面α,在平面α必有直线m ,使m 与l ( )(A)平行 (B )相交(C)垂直 (D)互为异面直线33. 已知a 、b 、c 均是直线,则下列命题中,必成立的是 ( ) A . 若a ⊥b ,b ⊥c ,则a ⊥c B . 若a 与b 相交,b 与c 相交,则a 与c 也相交C . 若a//b ,b//c ,则a//cD . 若a 与b 异面,b 与c 异面,则a 与c 也是异面直线34. 在正四棱锥P-ABCD 中,点P 在底面上的射影为O ,E 为PC 的中点,则直线AP 与OE 的位置关系是( )A .平行B .相交C .异面D .都有可能35. 三棱锥P -ABC 的四个顶点都在体积为500π3的球的表面上,△ABC 所在的小圆面积为16π,则该三棱锥的高的最大值为( ) A .7 B .7.5 C .8 D .936. 已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为( ) (A ) 34 (B) 54 (C) 74 (D) 3437. 已知a ,b 是两条不重合的直线,α,β是两个不重合的平面,下列命题中正确的是( ) A . //a b ,//b α,则//a αB)αγ⊥其中正确命题序号是 .44. 已知平面,,αβγ,直线,l m 满足:,,,αγγαγβ⊥==⊥m l l m ,那么①m β⊥; ②l α⊥; ③βγ⊥; ④αβ⊥.可由上述条件可推出的结论有 (请将你认为正确的结论的序号都填上).45. 已知平面βα,和直线,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//.(i )当满足条件 时,有β//m ;(ii )当满足条件时,有β⊥m . (填所选条件的序号)评卷人 得分三、解答题46. 如图,四棱锥P -ABCD 的底面ABCD 为矩形,且PA=AD=1,AB=2, 120PAB ∠=,90PBC ∠=.(1)求证:平面PAD ⊥平面PAB ; (2)求三棱锥D -PAC 的体积;47. 如图,直角梯形ABCD 中,AB CD ∥, AD AB ⊥,24CD AB ==,2AD =,E 为CD 的中点,将BCE ∆沿BE 折起,使得⊥CO DE ,其中点O 在线段DE .(1)求证:CO ⊥平面ABED ;(2)问CEO ∠(记为θ)多大时, 三棱锥C AOE -的体积最大? 最大值为多少?48. 如图,ABCD 是正方形,O 是正方形的中心,PO ⊥面ABCD,E 是PC 的中点.求证:(1)PA ∥平面BDE (2)平面PAC ⊥平面BDEABCDOPE49. 如图,已知四棱台ABCD –A 1B 1C 1D 1的侧棱AA 1垂直于底面ABCD ,底面ABCD 是边长为2的正方形,四边形A 1B 1C 1D 1是边长为1的正方形,DD 1=2. ( I )求证:平面A 1ACC 1⊥平面B 1BDD 1; (Ⅱ)求四棱台ABCD - A 1B 1C 1D 1的体积; (Ⅲ)求二面角B —C 1C —D 的余弦值.50. 如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的.,,,A A B B ''分别为CD ,C D '',DE ,D E ''的中点,1122,,,O O O O ''分别为CD ,C D '',DE ,D E ''的中点.(1)证明:12,,,O A O B ''四点共面;(2)设G 为AA '中点,延长1A O ''到H ',使得11O H A O ''''=.证明:2BO '⊥平面H B G ''.'C C E参考答案一、单项选择 1.【答案】B【解析】①该命题就是平行公理,即课本中的公理4,因此该命题是正确的;②如图,直线a ⊥平面α,α⊂b ,α⊂c ,且A c b = ,则b a ⊥,c a ⊥,即平面α两条直交直线b ,c 都垂直于同一条直线a ,但b ,c 的位置关系并不是平行.另外,b ,c 的位置关系也可以是异面,如果把直线b 平移到平面α外,此时与a 的位置关系仍是垂直,但此时,b ,c 的位置关系是异面.③如图,在正方体1111D C B A ABCD -中,易知ABCD B A 平面//11,ABCD D A 平面//11,但11111A D A B A = ,因此该命题是错误的.④该命题是线面垂直的性质定理,因此是正确的.综上可知①、④正确.2.【答案】A3.【答案】B4.【答案】D【解析】∵AD 与PB 在平面ABC 的射影AB 不垂直,∴A 不成立;又平面PAB ⊥平面PAE ,∴平面PAB ⊥平面PBC 也不成立;∵BC ∥AD ,∴BC ∥平面PAD ,∴直线BC ∥平面PAE 也不成立.在Rt △PAD 中,PA =AD =2AB ,∴∠PDA =45°,∴D 正确.5.【答案】D6.【答案】D【解析】设四棱锥的两组不相邻的侧面的交线为m 、n ,直线m 、n 确定了一个平面β.作与β平行的平面α,与四棱锥的各个侧面相截,则截得的四边形必为平行四边形.而这样的平面α有无数多个.7.【答案】C8.【答案】连接AC 、BD 交于O,连接OE,因OE∥SD.所以∠AEO 为所求.设侧棱长与底面边长都等于2,则在⊿AEO 中,OE =1,AO =2,AE=3122=-, 于是3331132)2(1)3(cos 222==⨯⨯-+=∠AEO 【答案】C9.【答案】A 10.【答案】D11.【答案】C【解析】取BC 的中点E ,则AE ⊥面11BB C C ,w.w.w.k.s.5.u.c.o.mAE DE ∴⊥,因此AD 与平面11BB C C 所成角即为ADE ∠,设AB a =,则3AE a =,2aDE =,即有0tan 3,60ADE ADE ∠=∴∠=.12.【答案】B 13.【答案】C 14.【答案】A【解析】∵CD 在平面BCD ,AB 是平面BCD 的斜线,由三垂线定理可得A.15.【答案】A16.【答案】B 17.【答案】D【解析】可以是平面四边形,也可以是空间四边形,所以正确选项为D.18.【答案】 D【解析】正四棱锥P -ABCD 中,PA 、PC 与底面ABCD 所成角相等,但PA 与PC 相交,∴A 错;如图(1)正方体中,a ∥b ∥c ,满足a ∥α,b ∥β,α⊥β,故B 错;图(2)正方体中,上、下底面为β、α,a 、b 为棱,满足a ?α,b ?β,a ⊥b ,但α∥β,故C 错;19.【答案】C【解析】在平面DAB 过点B与直线BC 成60°角的直线共有2条,故在平面DAB过点P与直线BC成60°角的直线共有2条。