2018石家庄一模理科数学(清晰版)

合集下载

2018届河北省石家庄市高三第一次模拟考试卷 数学(理)

2018届河北省石家庄市高三第一次模拟考试卷 数学(理)

2018 届河北省石家庄市高三第一次模拟考试卷数学(理)注意 事项: 1 .答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答座位号题卡上的指定位置。

2 .选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试 题卷、草稿纸和答题卡上的非答题区域均无效。

3 .非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题 卡上的非答题区域均无效。

4 .考试结束后,请将本试题卷和答题卡一并上交。

A. i  4?B. i  4?C. i  5?D. i  5?7.南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小 斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为1  2 2  c 2  a 2  b2  c a   从隅,开方得积.”(即: S   4 2   2考场号第Ⅰ卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是 符合题目要求的. 1.已知集合 U  1,2,3,4,5,6,7 , A   x x  3, x  N ,则 ð UA( A. 1, 2 B. 3, 4,5,6,7 C. 1,3,4,7 )  , a  b  c ),并举例“问沙田一段,  有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形 田面积为( A.82 平方里 ) B.83 平方里 C.84 平方里 D.85 平方里D. 1,4,7 )8.如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则该几何体的表面积 为( )准考证号2.已知 i 为虚数单位, 1  i  x  2  yi ,其中 x, y  R ,则 x  yi  ( A. 2 2 B. 2 C.2 D.43. 函数 f  x   2x  x  0 , 其值域为 D , 在区间  1, 2 上随机取一个数 x , 则 x  D 的概率是 ( A.1 2)B.1 3C.1 4D.2 34.点 B 是以线段 AC 为直径的圆上的一点,其中 AB  2 ,则 AC  AB  ( A.1 姓名 B.2 C.3 D.4 ))A. 8  3B. 8  4C. 8  5D. 8  69.已知 f  x  是定义在 2b,1  b 上的偶函数,且在 2b,0 上为增函数,则 f  x 1  f  2x  的解 集为( 2 A. 1,   3y  x  5. x , y 满足约束条件:  x  y  1 ,则 z  2 x  y 的最大值为(  y  1 ) 1 B. 1,   3C. 1,1A. 3 班级B.3 21  D.  ,1 3 C.3D.4 10.在 △ABC 中, AB  2 , C  ) A. 7 B. 2 76.程序框图如图所示,该程序运行的结果为 s  25 ,则判断框中可填写的关于 i 的条件是( ,则 AC  3BC 的最大值为( 6)C. 3 7D. 4 711.过抛物线 y 1 2 x 焦点 F 的直线交抛物线于 A , B 两点,点 C 在直线 y  1 上,若 △ABC 为正 4三角形,则其边长为( A.11 B.12) C.13 D.1412.设 xOy , x ' Oy ' 为两个平面直角坐标系,它们具有相同的原点, Ox 正方向到 Ox ' 正方向的角 度为  ,那么对于任意的点 M ,在 xOy 下的坐标为  x, y  ,那么它在 x ' Oy ' 坐标系下的坐标  x ', y ' 可以表示为: x '  x cos   y sin  , y '  y cos  x sin  .根据以上知识求得椭圆3x '2  2 3x ' y ' 5 y '2 1  0 的离心率为() C.7 3A.6 3B.6 4D.7 4AB∥CD , AB  BC , AB  2 BC  2CD  2 , 18. (12 分) 四棱锥 S  ABCD 的底面 ABCD 为直角梯形, △SAD 为正三角形.第Ⅱ卷二、填空题:本大题共 4 小题,每小题 5 分. 13.命题 p : x0  1 , x02  2 x0  3  0 的否定为 .14.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄 比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是 . (1)点 M 为棱 AB 上一点,若 BC∥平面 SDM , AM   AB ,求实数  的值; (2)若 BC  SD ,求二面角 A  SB  C 的余弦值.15.一个直角三角形的三个顶点分别在底面棱长为 2 的正三棱柱的侧棱上,则该直角三角形斜边 的最小值为 16.已知函数 f  x   .x3  x  1 ln x ,g  x   ,若函数 y  f  g  x   a 有三个不同的零点 x1 ,x2 ,x3 x x 1(其中 x1  x2  x3 ),则 2g  x1   g  x2   g  x3  的取值范围为 三、解答题:解答应写出文字说明、证明过程或演算步骤..17.(12 分)已知等比数列 an  的前 n 项和为 Sn ,且满 2Sn  2n1  m  m  R  . (1)求数列 an  的通项公式; (2)若数列 bn  满足 bn 1 ,求数列 bn  的前 n 项和 Tn .  2n  1 log 2  an  an1 19.(12 分)小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪 薪酬方案.甲方案:底薪 100 元,每派送一单奖励 1 元;乙方案:底薪 140 元,每日前 55 单没有 奖励,超过 55 单的部分每单奖励 12 元. (1)请分别求出甲、乙两种薪酬方案中日薪 y (单位:元)与送货单数 n 的函数关系式; (2)根据该公司所有派送员 100 天的派送记录,发现派送员的日平均派送单数满足以下条件:在 这 100 天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在 2  n  1 2n  ,   n  1, 2,3, 4,5  时,日平均派送量为 50  2n 单.  10   10若将频率视为概率,回答下列问题: 20.(12 分)已知椭圆 C :x2 y 2 2  2  1(a  b  0) 的左、右焦点分别为 F1 , F2 ,且离心率为 , 2 a b 2M 为椭圆上任意一点,当 F1MF2  90 时, △F1MF2 的面积为 1.(1)求椭圆 C 的方程; (2)已知点 A 是椭圆 C 上异于椭圆顶点的一点,延长直线 AF1 , AF2 分别与椭圆交于点 B , D , 设直线 BD 的斜率为 k1 ,直线 OA 的斜率为 k2 ,求证: k1  k2 为定值.①根据以上数据,设每名派送员的日薪为 X (单位:元),试分别求出甲、乙两种方案的日薪 X 的分布列,数学期望及方差; ②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明 你的理由. (参考数据: 0.62  0.36 , 1.42  1.96 , 2.62  6.76 , 3.42  11.56 , 3.62  12.96 , 4.62  21.16 ,15.62  243.36 , 20.42  416.16 , 44.42  1971.36 )21.(12 分)已知函数 f  x    x  b   e x  a  ,  b  0  ,在  1, f  1  处的切线方程为请考生在 22 、 23 两题中任选一题作答,如果多做,则按所做的第一题记分. 22. (10 分) 【选修 4-4:坐标系与参数方程】  x  3  r cos  在平面直角坐标系 xOy 中,曲线 C 的参数方程为  ( r  0 ,  为参数),以坐标原 y  1  r sin    e 1 x  ey  e 1  0 .(1)求 a , b ; (2)若方程 f  x   m 有两个实数根 x1 , x2 ,且 x1  x2 ,证明: x2  x1  1 m 1  2e  . 1 e  点 O 为极点,x 轴正半轴为极轴建立极坐标系,直线 l 的极坐标方程为  sin      1 ,若直线 l 与 3 曲线 C 相切; (1)求曲线 C 的极坐标方程; (2)在曲线 C 上取两点 M , N 与原点 O 构成 △MON ,且满足 MON  大值. ,求面积 △MON 的最 623. (10 分) 【选修 4-5:不等式选讲】 已知函数 f  x   2 x  3  x  m 的定义域为 R ; (1)求实数 m 的取值范围; (2)设实数 t 为 m 的最大值,若实数 a , b , c 满足 a 2  b2  c 2  t 2 ,求 小值.1 1 1  2  2 的最 a 1 b  2 c  322018 届河北省石家庄市高三第一次模拟考试卷∵ AB // DC ,∴四边形 BCDM 为平行四边形, 又 AB  2CD ,∴M 为 AB 的中点. ∵ AM   AB ,  1 . 2S数学(理) 答 案一、选择题. 1-5:AABDC 二、填空题. 13. p : x  1, x2  2x  3  0 15. 2 3 三、解答题. 17. 【答案】 (1) an  2 ; (2) Tn n 16-10:CCDBD11、12:BA14.乙D C2   ,0 16.   2  e e AMBn . 2n  1(2)∵ BC  SD , BC  CD ,∴ BC  平面 SCD , 又∵ BC  平面 ABCD , ∴平面 SCD  平面 ABCD ,平面 SCD 平面 ABCD  CD ,【解析】(1)法一:由 2Sn  2n1  m  m  R  得 2Sn1  2n  m  m  R  , 当当 n  2 时, 2an  2Sn  2Sn1  2n ,即 an  2n1  n  2 , 又 a1  S1  2 m ,当 m  2 时符合上式,所以通项公式为 an  2n1 . 2在平面 SCD 内过点 S 作 SE  直线 CD 于点 E ,则 SE  平面 ABCD , 在 Rt△SEA 和 Rt△SED 中, ∵ SA  SD ,∴ AE  SA2  SE 2  SD2  SE2  DE , 又由题知 EDA  45 ,∴ AE  ED ,∴ AE  ED  SE  1 , 以下建系求解. 以点 E 为坐标原点,EA 方向为 X 轴,EC 方向为 Y 轴,ES 方向为 Z 轴建立如图所示空间坐标系, 则 E  0,0,0 , S  0,0,1 , A 1,0,0  , B 1,2,0 , C  0,2,0 , S1  2  m  n1 法二:由 2Sn  2  m  m  R  得  S2  4  m , S  8  m m  R    3从而有 a2  S2  S1  2, a3  S3  S2  4 , 所以等比数列公比 q a3  2 ,首项 a1  1,因此通项公式为 an  2n1 . a2(2)由(1)可得 log 2  an  an 1   log 2  2n 1  2n   2n  1 , bn  1 1 1 1  (  ), (2n  1)(2n  1) 2 2n  1 2n  11 1 1 1  bn  1     2 3 3 51 10 ; (2)  . 2 5Tn  b1  b2 1 1  n .   2n  1 2 n  1  2 n  118.【答案】 ( 1)SA  1,0, 1 , AB   0, 2,0  , SC   0, 2, 1 , CB  1,0,0  , n1  SA  0 设平面 SAB 的法向量 n1   x, y, z  ,则  ,  n1  AB  0【解析】(1)∵ BC∥平面 SDM, BC  平面 ABCD, 平面 SDM 平面 ABCD  DM ,∴ BC∥DM ,x  z  0 ∴ ,令 x  1 得 n1  1,0,1 为平面 SAB 的一个法向量, 2 y  0同理得 n2   0,1, 2 为平面 SBC 的一个法向量,由以上的计算可知,虽然 E  X甲   E  X乙  ,但两者相差不大,且 S甲2 远小于 S乙2 ,即甲方案日工资 收入波动相对较小,∴小明应选择甲方案. 答案二: 由以上的计算结果可以看出, E  X甲   E  X乙  ,即甲方案日工资期望小于乙方案日工资期望,∴ 小明应选择乙方案. 20.【答案】 (1)cos n1 , n2 n1  n2 10 ,  n1  n2 5∵二面角 A  SB  C 为钝角, ∴二面角 A  SB  C 余弦值为 10 . 5x2 (2)见解析.  y 2  1; 219.【答案】 (1)见解析; (2)①见解析;②见解析. 【解析】 (1)甲方案中派送员日薪 y (单位:元)与送单数 n 的函数关系式为: y  100  n, n  N , 乙方案中派送员日薪 y (单位:元)与送单数 n 的函数关系式为:  n  55, n  N  140, y , 12 n  520, n  55, n  N     c 2 e   a 2   r  r  2a 【解析】(1)设 MF1  r1 , MF2  r2 ,由题得  12 2 2 , 2  r1  r2  4c 1  r1  r2  1 2解得 a  2 , c  1 ,则 b2  1 ,(2)①由已知,在这 100 天中,该公司派送员日平均派送单数满足如下表格: 单数 频率 ∴ X 甲 的分布列为: 520.2 椭圆 C 的方程为x2  y 2  1. 2540.3560.2580.2600.1(2)设 A x0 , y0  x0  y0  0 , B  x1 , y1  , C  x2 , y2  ,  2 2  1, B  1,  当直线 AF1 的斜率不存在时,设 A  ,则       , 2 2    X甲1520.21540.31560.21580.21600.1Px2 2 直线 AF2 的方程为 y    x  1 代入  y 2  1,可得 5x2  2 x  7  0 2 4∴ E  X甲  =152  0.2  154  0.3  156  0.2  158  0.2  160  0.1  155.4 ,S甲2 =0.2  152  155.4  +0.3  154  155.4  +0.2  156  155.4 2 2 2 x2 7 7 2 2 , , y2   ,则 D     5 10  5 10 +0.2  158  155.4  +0.1 160  155.4  =6.44 ,2 2 直线 BD 的斜率为 k1 1520.2∴ X 乙 的分布列为:2  2   10  2  2 2  ,直线 OA 的斜率为 k2   , 7 2 6   1 5X乙1400.51760.22000.1 k1  k2 P2  2 1    ,    6  2  6∴ E  X乙  =140  0.5  152  0.2  176  0.2  200  0.1=155.6 ,S乙2 =0.5  140  155.6  +0.2  152  155.6  +0.2  176  155.6  +0.1  200  155.6 2 2 2 21 当直线 AF2 的斜率不存在时,同理可得 k1  k2   . 6=404.64 ,当直线 AF1 、 AF2 的斜率存在时, x0  1②答案一:y0  y   x  1  x0  1 y0  设直线 AF1 的方程为 y  消去 x 可得:  x  1 ,则由  2 x0  1  x  y2  1  22 2 2 2 2  x0  12  2 y0 x  4 y0 x  2 y0  2  x0  1  0 ,  2 x0 2 2 2  1,则 2 y0 又  y0 ,代入上述方程可得  2  x0 2设 f  x  在  1,0 处的切线方程为 h  x  ,1  易得 h  x     1  x  1 ,令 F  x   f  x   h  x  , e 1 1  即 F  x    x  1  e x  1    1  x  1 , F   x    x  2  e x  , e e  1 1 当 x  2 时, F   x    x  2  e x     0 e e 3  2 x0  x 2  2  2  x02  x  3x02  4 x0  0 , x1  x0 当 x  2 时,1 设 G  x   F   x    x  2  e x  , G  x    x  3 ex  0 , ey  3x0  4  y0 3x  4 x0 3x0  4 ,则 y1  0  , x1   1   3  2 x0 3  2 x0 x0  1  3  2 x0 3  2 x0 2 0故函数 F   x  在  2,   上单调递增,又 F  1  0 , ∴当 x   , 1 时, F   x   0 ,当 x   1,   时, F   x   0 , ∴函数 F  x  在区间  , 1 上单调递减,在区间  1,   上单调递增, 故 F  x   F  1  0 , f  x1   h  x1  ,me 设 h  x   m 的根为 x1 ,则 x1  1  , 1 e 3x  4 y0  B 0 , , 2 x  3 2 x  3 0 0    3x  4 y0  y 设直线 AF2 的方程为 y  0  x  1 ,同理可得 D  0 , , x0  1  2 x0  3 2 x0  3 y0 y0  2 x  3 2 x0  3 4 x0 y0 x y0   0 ,  直线 BD 的斜率为 k1  0 2 2 3x0  4 3 x0  4 12 x0  24 3x0 6  2 x0  3 2 x0  3又函数 h  x  单调递减,故 h x1  f  x1   h  x1  ,故 x1  x1 , 设 y  f  x  在  0, 0  处的切线方程为 y  t  x  ,易得 t  x   x , 令 T  x   f  x   t  x    x  1  e x  1  x , T   x    x  2 ex  2 , y 直线 OA 的斜率为 k2  0 , x02 x0 x y0 y0 y 1   2  2 2  .  k1  k2  0 2 3x0  6 x0 3x0  6 3x0  6 6 2 01当 x  2 时, T   x    x  2 ex  2  2  0 , 当 x  2 时, 设 H  x   T   x    x  2 ex  2 , H   x    x  3 ex  0 , 故函数 T   x  在  2,   上单调递增,又 T   0  0 , ∴当 x   ,0 时, T   x   0 ,当 x   0,  时, T   x   0 , ∴函数 T  x  在区间  ,0 上单调递减,在区间  0,  上单调递增,1 1 ∴直线 BD 与 OA 的斜率之积为定值  ,即 k1  k2   . 6 621.【答案】 ( 1) a  1 , b  1 ; (2)见解析.1  【解析】(1)由题意 f  1  0 ,∴ f  1   1  b    a   0 , e 又 f   x    x  b  1 ex  a ,∴ f   1 b 1  a  1  , e eT  x   T  0  0 , f  x2   t  x2  ,设 t  x   m 的根为 x2 ,则 x2  m , 又函数 t  x  单调递增,故 t x2  f  x2   t  x2  ,故 x2  x2 ,1 若 a  ,则 b  2  e  0 ,与 b  0 矛盾,故 a  1 , b  1 . e(2)由(1)可知 f  x    x  1  e x  1 , f  0  0, f  1  0 , 又 x1  x1 ,m 1  2e  me   故 x2  x1  x2  x1  m   1  .   1 1 e  1 e   22.【答案】 (1)   4sin     ; (2) 2  3 . 3 1 1  2  1 2 2  2  2     a  1  b  2  c  3 2 1 1 1 a  1 b  2 c  3     a 2  1 b2  2 c2  3 153b2  2 a 2  1 c 2  3 a 2  1 c 2  3 b2  2      a 2  1 b2  2 a 2  1 c 2  3 b2  2 c 2  3  9  3 , 15 15 5当且仅当 a2  1  b2  2  c2  3  5 ,即 a2  4, b2  3, c2  2 等号成立, ∴1 1 1 3  2  2 的最小值为 . a 1 b  2 c  3 52【解析】(1)由题意可知直线 l 的直角坐标方程为 y  3x  2 , 曲线 C 是圆心为 可得 r 3,1 ,半径为 r 的圆,直线 l 与曲线 C 相切,3  3 1  2 2 2 ;可知曲线 C 的方程为 x  3   y  1  4 ,22∴曲线 C 的极坐标方程为  2  2 3 cos  2 sin   0 ,  即   4sin     . 3    (2)由(1)不妨设 M  1,  , N  2 ,   ,  1  0, 2  0 6  S△MON  1 1     OM ON sin 1  2  4sin     sin    2 64 3 2   2sin  cos  2 3 cos2   sin 2  3 cos 2  3   2 sin      3 . 3 当  时, S△MON  2  3 , 12∴ △MON 面积的最大值为 2  3 .3 23.【答案】 (1) m  3 ; (2) . 5【解析】(1)由题意可知 2 x  3  x  m 恒成立, x  6,  x  3  令 g  x   2 x  3  x ,去绝对值可得 g  x   2 x  3  x  6  3x,  0  x  3 ,   x  0 6  x,画图可知 g  x  的最小值为 3 ,∴实数 m 的取值范围为 m  3 ; (2)由(1)可知 a 2  b2  c2  9 ,∴ a 2  1  b2  2  c 2  3  15 ,。

河北省石家庄市2018届高三毕业班9月模拟考试数学(理)试题含答案

河北省石家庄市2018届高三毕业班9月模拟考试数学(理)试题含答案

河北省石家庄市2018届高三毕业班9月模拟考试数学(理)试题 第I 卷(选择题共60分)一、选择题:(共12题.每小题5分。

共60分.在每小题给出的四个选项中只有一项是符合题目要求的) 1.若集合{}{}220,1x xx B x x -<=≤,则AB=.[1,0)A -.[1,2)B - .(0,1]C .[1,2)B2。

抛物线y =2x 2的焦点坐标是1.(,0)2A1.(,0)8B1.(0,)8C1.(0,)4D3.已知复数:满足(z 一2)i =1+i (i 为虚数单位),则z 的模为A. 2 B 。

4 C. 10 D 。

.10D4。

右图是容量为100的样本频率分布直方图,则样本 数据在[6,10)内的频数是A 32B 。

8 C. 24 D 36 5。

如图,网格纸上小正方形的边长为1,粗线画的是一个几何体的三视图.则该几何体的体积为.3A11.3B .7C23.3D 6.等比数列{}na 中,若418a a =,且a 1,、a 2+l 、a 3成等差数列,则其前5项和为 A. 30 B.32 C. 62 D. 647.执行如图所示的程序框图,当输入n 为7时,输出S 的值是A. 14B.210C.42D. 840S 。

已知非零向量a 、b 满足,(2)a b a a b =⊥-,则a 与b 的夹角是.30A ︒.60B ︒ .90C ︒.120D ︒9.将号码分别为1、2、3、4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同。

甲从袋中摸出一个小球,其号码为a ,放回后,乙从此口袋中再摸出一个小球,其号码为b ,则事件“不等式24a b ≥-成立”发生的概率为7.8A13.16B3.4C1.2D 10.双曲线2221(0)x y a b a b-=>>的左、右焦点分别为F 1、F 2,过F 1作倾斜角为30︒的直线与y 轴和双曲线右支分别交于A 、B 两点,若点A 平分F 1B,则该双曲线的离心率是B .2CD 11。

河北省石家庄市2018届高考一模考试数学(理)试题(A)含解析AlUKlK

河北省石家庄市2018届高考一模考试数学(理)试题(A)含解析AlUKlK

石家庄市2018届高中毕业班模拟考试(一)理科数学(A卷)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】故选A.2. 已知为虚数单位,,其中,则()A. B. C. 2 D. 4【答案】A【解析】,其中,解得,,故选3. 函数,其值域为,在区间上随机取一个数,则的概率是()A. B. C. D.【答案】B【解析】函数的值域为,即,则在区间上随机取一个数的概率.故选B.4. 点是以线段为直径的圆上的一点,其中,则()A. 1B. 2C. 3D. 4【答案】D【解析】故选5. ,满足约束条件:,则的最大值为()A. -3B.C. 3D. 4【答案】C【解析】依题意可画出可行域如下:联立,可得交点(2,-1),如图所示,当经过点(2,-1)时,z最大为3.故选C.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.6. 程序框图如图所示,该程序运行的结果为,则判断框中可填写的关于的条件是()A. B. C. D.【答案】C【解析】第一次运行,第二次运行,第三次运行,第四次运行,第五次运行,此时,输出25,故选C7. 南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:,),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为()A. 82平方里B. 83平方里C. 84平方里D. 85平方里【答案】C【解析】由题意可得:代入:则该三角形田面积为平方里故选8. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.【答案】D【解析】由图可知,几何体为半圆柱挖去半球体几何体的表面积为故选9. 已知是定义在上的偶函数,且在上为增函数,则的解集为()A. B. C. D.【答案】B【解析】是定义在上的偶函数,,即,则函数的定义域为函数在上为增函数,故两边同时平方解得,故选10. 在中,,,则的最大值为()A. B. C. D.【答案】D【解析】有正弦定理可得,故当时,的最大值为.故选D.11. 过抛物线焦点的直线交抛物线于,两点,点在直线上,若为正三角形,则其边长为()A. 11B. 12C. 13D. 14【答案】B【解析】如图:设,则:,取中点,分别作垂直于直线,连接则有,相减可得:即故设则,解得故,解得故选12. 设,为两个平面直角坐标系,它们具有相同的原点,正方向到正方向的角度为,那么对于任意的点,在下的坐标为,那么它在坐标系下的坐标可以表示为:,.根据以上知识求得椭圆的离心率为()A. B. C. D.【答案】A【解析】则故可化为方程表示为椭圆化简得:代入方程得:,,,故故选点睛:本题主要考查了三角函数的计算问题,以平面直角坐标系为载体,新定义坐标系,建立两坐标之间的关系,代入化简,由题意中的椭圆求出的值,再次代入求出结果,计算量比较大,有一定的难度。

2018届河北省模拟试题(一)数学(理)试卷(含答案)

2018届河北省模拟试题(一)数学(理)试卷(含答案)

衡水金卷2018年普通高等学校招生全国统一考试模拟试题(一)理数第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|20A x x x =-≤,{}|1381x B x =<<,{}|2,C x x n n N ==∈,则()A B C =U I ( ) A .{}2B .{}0,2C .{}0,2,4D .{}2,42.设i 是虚数单位,若5()2ii x yi i+=-,x ,y R ∈,则复数x yi +的共轭复数是( ) A .2i -B .2i --C .2i +D .2i -+3.已知等差数列{}n a 的前n 项和是n S ,且456718a a a a +++=,则下列命题正确的是( ) A .5a 是常数B .5S 是常数C .10a 是常数D .10S 是常数4.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是( )A .316B .38C .14D .185.已知点F 为双曲线C :22221x y a b-=(0a >,0b >)的右焦点,点F 到渐近线的距离是点F 到左顶点的距离的一半,则双曲线C 的离心率为( )A.2或5 3B.53C.2D.26.已知函数[]2sin,,0,()1,(0,1],x xf xx xπ⎧∈-⎪=⎨-∈⎪⎩则1()f x dxπ-=⎰()A.2π+B.2πC.22π-+D.24π-7.执行如图程序框图,则输出的S的值为()A2021B2019C.505D.50518.已知函数23()sin cos30)f x x x xωωωω=->的相邻两个零点差的绝对值为4π,则函数()f x的图象()A.可由函数()cos4g x x=的图象向左平移524π个单位而得B.可由函数()cos4g x x=的图象向右平移524π个单位而得C.可由函数()cos2g x x=的图象向右平移724π个单位而得D.可由函数()cos2g x x=的图象向右平移56π个单位而得9.61(23)(1)xx-+的展开式中剔除常数项后的各项系数和为()A.73-B.61-C.55-D.63-10.某几何体的三视图如图所示,其中俯视图为一个正六边形及其三条对角线,则该几何体的外接球的表面积是()A .4πB .8πC .16πD .32π11.设O 为坐标原点,点P 为抛物线C :22(0)y px p =>上异于原点的任意一点,过点P 作斜率为0的直线交y 轴于点M ,点P 是线段MN 的中点,连接ON 并延长交抛物线于点H ,则||||OH ON 的值为( ) A .pB .12C .2D .3212.若函数()y f x =,x M ∈,对于给定的非零实数a ,总存在非零常数T ,使得定义域M 内的任意实数x ,都有()()af x f x T =+恒成立,此时T 为()f x 的类周期,函数()y f x =是M 上的a 级类周期函数,若函数()y f x =是定义在区间[0,)+∞内的2级类周期函数,且2T =,当[0,2)x ∈时,212,01,()2(2),12,x x f x f x x ⎧-≤≤⎪=⎨⎪-<<⎩函数21()2ln 2g x x x x m =-+++,若[]16,8x ∃∈,2(0,)x ∃∈+∞,使21()()0g x f x -≤成立,则实数m 的取值范围是( )A .5(,]2-∞B .13(,]2-∞ C .3(,]2-∞-D .13[,)2+∞ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(2sin ,cos )a αα=r ,(1,1)b =-r ,且a b ⊥r r ,则2()a b -=r r .14.已知x ,y 满足约束条件20,20,4180,x y x y x y -≤⎧⎪-≥⎨⎪+-≤⎩则目标函数53z x y =-的最小值为 .15.在等比数列{}n a 中,2412a a a ⋅=,且4a 与72a 的等差中项为17,设(1)nn n b a =-,*n N ∈,则数列{}n b 的前2018项和为 .16.有一个容器,下部是高为5.5cm 的圆柱体,上部是与圆柱共底面且母线长为6cm 的圆锥,现不考虑该容器内壁的厚度,则该容器的最大容积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC ∆的内角A ,B ,C 的对边a ,b ,c 分别满足22c b ==,2cos cos cos 0b A a C c A ++=,又点D 满足1233AD AB AC =+u u u r u u u r u u u r .(1)求a 及角A 的大小;(2)求||AD u u u r的值.18.在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且12BC BB ==,1160A AB A AD ∠=∠=︒.(1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB 所成角的正弦值为7. 19.“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x (同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布2(,)N μσ,利用该正态分布,求Z 落在(14.55,38.45)内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X ,求X 的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为142.7511.95σ=≈; ②若2~(,)Z N μσ,则()0.6826P Z μσμσ-<≤+=,(22)0.9544P Z μσμσ-<≤+=.20.已知椭圆C :22221(0)x y a b a b+=>>的离心率为22,且以两焦点为直径的圆的内接正方形面积为2.(1)求椭圆C 的标准方程;(2)若直线l :2y kx =+与椭圆C 相交于A ,B 两点,点D 的坐标为1(0,)2,问直线AD 与BD 的斜率之和AD BD k k +是否为定值?若是,求出该定值,若不是,试说明理由. 21.已知函数()2(1)xf x e a x b =---,其中e 为自然对数的底数. (1)若函数()f x 在区间[]0,1上是单调函数,试求实数a 的取值范围;(2)已知函数2()(1)1xg x e a x bx =----,且(1)0g =,若函数()g x 在区间[]0,1上恰有3个零点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆1C 的参数方程为1cos ,1sin x a y a θθ=-=⎧⎨=-+⎩(θ是参数,a 是大于0的常数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,圆2C 的极坐标方程为)4πρθ=-.(1)求圆1C 的极坐标方程和圆2C 的直角坐标方程; (2)分别记直线l :12πθ=,R ρ∈与圆1C 、圆2C 的异于原点的交点为A ,B ,若圆1C 与圆2C 外切,试求实数a 的值及线段||AB 的长. 23.选修4-5:不等式选讲 已知函数()|21|f x x =+.(1)求不等式()10|3|f x x ≤--;(2)若正数m ,n 满足2m n mn +=,求证:()(2)16f m f n +-≥.2018年普通高等学校招生全国统一考试模拟试题理数(一)答案一、选择题1-5:BADAB 6-10:DCBAB 11、12:CB二、填空题13.185 14.2- 15.100841312- 16.312256cm π三、解答题17.解:(1)由2cos cos cos 0b A a C c A ++=及正弦定理得2sin cos sin cos cos sin B A A C A C -=+,即2sin cos sin()sin B A A C B -=+=, 在ABC ∆中,sin 0B >, 所以1cos 2A =-, 又(0,)A π∈,所以23A π=. 在ABC ∆中,由余弦定理得222222cos 7a b c bc A b c bc =+-=++=,所以a =(2)由1233AD AB AC =+u u u r u u u r u u u r ,得2212()33AD AB AC =+u u u r u u u r u u u r 4441421()99929=++⨯⨯⨯-=,所以2||3AD =u u u r .18.解:(1)连接1A B ,1A D ,AC ,因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以1A AB ∆和1A AD ∆均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1A O BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥,而1AO AC O =I ,所以BD ⊥平面1A AC , 又1AA ⊂平面1A AC ,所以1BD AA ⊥, 又11//CC AA ,所以1BD CC ⊥.(2)由112A B A D ==,及22BD AB ==,知11A B A D ⊥,于是111222AO A O BD AA ===,从而1A O AO ⊥, 结合1A O BD ⊥,AO BD O =I , 得1A O ⊥底面ABCD , 所以OA 、OB 、OA 两两垂直.如图,以点O 为坐标原点,OA u u u r的方向为x 轴的正方向,建立空间直角坐标系O xyz -,则(1,0,0)A ,(0,1,0)B ,(0,1,0)D -,1(0,0,1)A ,(1,0,0)C -,(0,2,0)DB =u u u r,11(1,0,1)BB AA ==-u u u r u u u r ,11(1,1,0)DC DC ==-u u u u r u u u r, 由11(1,0,1)DD AA ==-u u u u r u u u r ,易求得1(1,1,1)D --. 设111D E DC λ=u u u u r u u u u r ([]0,1λ∈),则(1,1,1)(1,1,0)E E E x y z λ++-=-,即(1,1,1)E λλ---. 设平面1B BD 的一个法向量为(,,)n x y z =r,由10,0,n DB n BB ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r得0,0,y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =r , 设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|DE n θ=<>u u u r r 227142(1)1λλ==⨯+--+, 解得12λ=或13λ=-(舍去). 所以当E 为11D C 的中点时,直线DE 与平面1BDB 所成角的正弦值为7.19.解:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数x 为:50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=.(2)①∵Z 服从正态分布2(,)N μσ,且26μ=,11.95σ≈,∴(14.5538.45)(26.511.9526.511.95)0.6826P Z P Z <<=-<<+=, ∴Z 落在(14.55,38.45)内的概率是0.6826. ②根据题意得1~(4,)2X B ,04411(0)()216P X C ===;14411(1)()24P X C ===;24413(2)()28P X C ===;34411(3)()24P X C ===;44411(4)()216P X C ===.∴X 的分布列为∴1()422E X =⨯=. 20.解:(1)由已知可得22222sin 4,c ac a b c π⎧=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得22a =,221b c ==,故所求的椭圆方程为2212x y +=. (2)由221,22,x y y kx ⎧+=⎪⎨⎪=+⎩得22(12)860k x kx +++=,则2226424(12)16240k k k ∆=-+=->,解得k <或k >. 设11(,)A x y ,22(,)B x y ,则122812k x x k +=-+,122612x x k=+, 则1112AD y k x -=,2212BDy k x -=,所以122112121()2AD BDy x y x x x k k x x +-++=12121232()2kx x x x x x ++=6603k k -==,所以AD BD k k +为定值,且定值为0. 21.解:(1)'()2(1)xf x e a =--,当函数()f x 在区间[]0,1上单调递增时,'()2(1)0xf x e a =--≥在区间[]0,1上恒成立,∴min 2(1)()1xa e -≤=(其中[]0,1x ∈),解得32a ≤; 当函数()f x 在区间[]0,1上单调递减时,'()2(1)0xf x e a =--≤在区间[]0,1上恒成立,∴max 2(1)()xa e e -≥=(其中[]0,1x ∈),解得12ea ≥+. 综上所述,实数a 的取值范围是3(,][1,)22e -∞++∞U . (2)'()2(1)()xg x e a x b f x =---=.由(0)(1)0g g ==,知()g x 在区间(0,1)内恰有一个零点, 设该零点为0x ,则()g x 在区间0(0,)x 内不单调, 所以()f x 在区间0(0,)x 内存在零点1x , 同理,()f x 在区间0(,1)x 内存在零点2x , 所以()f x 在区间(0,1)内恰有两个零点. 由(1)知,当32a ≤时,()f x 在区间[]0,1上单调递增,故()f x 在区间(0,1)内至多有一个零点,不合题意. 当12ea ≥+时,()f x 在区间[]0,1上单调递减,故()f x 在区间(0,1)内至多有一个零点,不合题意,所以3122e a <<+. 令'()0f x =,得ln(22)(0,1)x a =-∈,所以函数()f x 在区间[]0,ln(22)a -上单调递减,在区间(ln(22),1]a -内单调递增. 记()f x 的两个零点为1x ,2x 12()x x <,因此1(0,ln(22)]x a ∈-,2(ln(22),1)x a ∈-,必有(0)10f b =->,(1)220f e a b =-+->. 由(1)0g =,得a b e +=,所以1()1()102f a b e =-+=-<,又(0)10f a e =-+>,(1)20f a =->,所以12e a -<<.综上所述,实数a 的取值范围为(1,2)e -.22.解:(1)圆1C :1cos ,1sin x a y a θθ=-+⎧⎨=-+⎩(θ是参数)消去参数θ,得其普通方程为222(1)(1)x y a +++=,将cos x ρθ=,sin y ρθ=代入上式并化简,得圆1C 的极坐标方程为22sin()204a πρθ++-+=.由圆2C 的极坐标方程)4πρθ=-,得22cos 2sin ρρθρθ=+. 将cos x ρθ=,sin y ρθ=,222x y ρ+=代入上式,得圆2C 的直角坐标方程为22(1)(1)2x y -+-=.(2)由(1)知圆1C 的圆心1C (1,1)--,半径1r a =;圆2C 的圆心2(1,1)C ,半径2r =12||C C == ∵圆1C 与圆2C 外切,a =a =即圆1C的极坐标方程为)4πρθ=-+, 将12πθ=代入1C,得sin()124ππρ=-+,得ρ= 将12πθ=代入2C,得cos()124ππρ=-,得ρ=故12||||AB ρρ=-=23.解:(1)此不等式等价于1,221(3)10,x x x ⎧<-⎪⎨⎪--+-≤⎩或13,221(3)10,x x x ⎧-≤≤⎪⎨⎪++-≤⎩或3,21310.x x x >⎧⎨++-≤⎩ 解得8132x -≤<-或132x -≤≤,或34x <≤, 即不等式的解集为8,43⎡⎤-⎢⎥⎣⎦. (2)∵0m >,0n >,2m n mn +=,21(2)2(2)28m n m n m n ++=⋅≤,即28m n +≥, 当且仅当2,2,m n m n mn =⎧⎨+=⎩即4,2m n =⎧⎨=⎩时取等号.∴()(2)|21||41|f m f n m n +-=++-+|(21)(41)|m n ≥+--+|24|m n =+2(2)16m n =+≥, 当且仅当410n -+≤,即14n ≥时取等号, ∴()(2)16f m f n +-≥.。

河北省石家庄市2018届高考一模考试数学理科试题(A)含答案

河北省石家庄市2018届高考一模考试数学理科试题(A)含答案

石家庄市2018届高中毕业班模拟考试(一)理科数学(A 卷)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4,5,6,7}U =,{|3,}A x x x N =≥∈,则U C A =( ) A .{1,2} B .{3,4,5,6,7} C .{1,3,4,7} D .{1,4,7}2.已知i 为虚数单位,(1)2i x yi +=+,其中,x y R ∈,则x yi +=( ) A.C .2D .43.函数()2(0)xf x x =<,其值域为D ,在区间(1,2)-上随机取一个数x ,则x D ∈的概率是( ) A .12 B .13 C .14 D .234.点B 是以线段AC 为直径的圆上的一点,其中2AB =,则AC AB ⋅=( ) A .1 B .2 C .3 D .45. x ,y 满足约束条件:11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .-3B .32C .3D .4 6.程序框图如图所示,该程序运行的结果为25s =,则判断框中可填写的关于i 的条件是( )A .4?i ≤B .4?i ≥C .5?i ≤D .5?i ≥ 7.南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:S =a b c >>),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为( )A .82平方里B .83平方里C .84平方里D .85平方里 8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .83π+B .84π+C .85π+D .86π+ 9.已知()f x 是定义在[2,1]b b -+上的偶函数,且在[2,0]b -上为增函数,则(1)(2)f x f x -≤的解集为( )A .2[1,]3- B .1[1,]3- C .[1,1]- D .1[,1]310.在ABC ∆中,2AB =,6C π=,则AC +的最大值为( )A B ... 11.过抛物线214y x =焦点F 的直线交抛物线于A ,B 两点,点C 在直线1y =-上,若ABC ∆为正三角形,则其边长为( )A .11B .12C .13D .1412.设xOy ,''x Oy 为两个平面直角坐标系,它们具有相同的原点,Ox 正方向到'Ox 正方向的角度为θ,那么对于任意的点M ,在xOy 下的坐标为(,)x y ,那么它在''x Oy 坐标系下的坐标(',')x y 可以表示为:'cos sin x x y θθ=+,'cos sin y y x θθ=-.根据以上知识求得椭圆223'''5'10x y y -+-=的离心率为( )AD二、填空题:本大题共4小题,每题5分,共20分.13.命题p :01x ∃≥,200230x x --<的否定为 .14.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是 . 15.一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为 .16.已知函数31()1x x f x x -+=-,ln ()xg x x =,若函数(())y f g x a =+有三个不同的零点1x ,2x ,3x (其中123x x x <<),则1232()()()g x g x g x ++的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.已知等比数列{}n a 的前n 项和为n S ,且满足122()n n S m m R +=+∈.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足211(21)log ()n n n b n a a +=+⋅,求数列{}n b 的前n 项和n T .18.四棱锥S ABCD -的底面ABCD 为直角梯形,//AB CD ,AB BC ⊥,222AB BC CD ===,SAD ∆为正三角形.(Ⅰ)点M 为棱AB 上一点,若//BC 平面SDM ,AM AB λ=,求实数λ的值; (Ⅱ)若BC SD ⊥,求二面角A SB C --的余弦值.19.小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y (单位:元)与送货单数n 的函数关系式; (Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在2(1)2(,]1010n n-(1,2,3,4,5)n =时,日平均派送量为502n +单. 若将频率视为概率,回答下列问题:①根据以上数据,设每名派送员的日薪为X (单位:元),试分别求出甲、乙两种方案的日薪X 的分布列,数学期望及方差;②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:20.60.36=,21.4 1.96=,22.6 6.76=,23.411.56=,23.612.96=,24.621.16=,215.6243.36=,220.4416.16=,244.41971.36=)20.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,且离心率为2,M为椭圆上任意一点,当1290F MF ∠=时,12F MF ∆的面积为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知点A 是椭圆C 上异于椭圆顶点的一点,延长直线1AF ,2AF 分别与椭圆交于点B ,D ,设直线BD 的斜率为1k ,直线OA 的斜率为2k ,求证:12k k ⋅为定值.21.已知函数()()()xf x x b e a =+-,(0)b >,在(1,(1))f --处的切线方程为(1)10e x ey e -++-=.(Ⅰ)求a ,b ;(Ⅱ)若方程()f x m =有两个实数根1x ,2x ,且12x x <,证明:21(12)11m e x x e--≤+-.(二)选考题:共10分,请考生在22、23题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分. 22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线C 的参数方程为cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin()13πρθ-=,若直线l 与曲线C 相切;(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)在曲线C 上取两点M ,N 与原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.23.[选修4-5:不等式选讲]已知函数()f x =R ;(Ⅰ)求实数m 的取值范围;(Ⅱ)设实数t 为m 的最大值,若实数a ,b ,c 满足2222a b c t ++=,求222111123a b c +++++的最小值.石家庄市2017-2018学年高中毕业班第一次模拟考试试题理科数学答案一、选择题1-5: AABDC 6-10: CCDBD 11、12:BA 二、填空题13. 2:1,230p x x x ⌝∀≥--≥ 14. 乙15. 22,0e e ⎛⎫- ⎪-⎝⎭三、解答题 17解:(1) 法一:由122()n n S m m R +=+∈得122()nn S m m R -=+∈, 当当2n ≥时,12222n n n n a S S -=-=,即12(2)n n a n -=≥,又1122m a S ==+,当2m =-时符合上式,所以通项公式为12n n a -=. 法二:由122()n n S m m R +=+∈得1232;4;8()S m S m S m m R =+⎧⎪=+⎨⎪=+∈⎩,从而有2213322,4a S S a S S =-==-=, 所以等比数列公比322a q a ==,首项11a =,因此通项公式为12n n a -=. (2)由(1)可得1212log ()log (22)21n n n n a a n -+⋅=⋅=-,1111()(21)(21)22121n b n n n n ∴==-+--+,12111111(1)2335212121n n nT b b b n n n ∴=+++=-+-++-=-++. 18.(1)因为//BC 平面SDM ,BC ⊂平面ABCD ,平面SDM 平面ABCD=DM , 所以DM BC //,因为DC AB //,所以四边形BCDM 为平行四边形, 又CD AB2=,所以M 为AB 的中点. 因为AB AM λ=,12λ∴=.(2)因为BC ⊥SD , BC ⊥CD , 所以BC ⊥平面SCD , 又因为BC ⊂平面ABCD , 所以平面SCD ⊥平面ABCD , 平面SCD平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E , 则SE ⊥平面ABCD , 在Rt SEA 和Rt SED 中, 因为SA SD =,所以AE DE ===,又由题知45EDA ∠=, 所以AE ED ⊥所以1AE ED SE ===,以下建系求解.以点E 为坐标原点,EA 方向为X 轴,EC 方向为Y 轴,ES 方向为Z 轴建立如图所示空间坐标系,则(0,0,0)E ,(0,0,1)S ,(1,0,0)A ,(1,2,0)B ,(0,2,0)C ,(1,0,1)SA =-,(0,2,0)AB =,(0,2,1)SC =-,(1,0,0)CB =,设平面S AB 的法向量1(,,)n x y z =,则1100n S A n A B ⎧⋅=⎪⎨⋅=⎪⎩,所以20x z y -=⎧⎨=⎩,令1x =得1(1,0,1)n =为平面SAB 的一个法向量,同理得2(0,1,2)n =为平面SBC 的一个法向量,12121210cos ,5||||n n n n n n ⋅<>==⋅,因为二面角A SB C --为钝角, 所以二面角A SB C --余弦值为5-.19.解:(1)甲方案中派送员日薪y (单位:元)与送单数n 的函数关系式为: N ,100∈+=n n y , 乙方案中派送员日薪y (单位:元)与送单数n 的函数关系式为:⎩⎨⎧∈>-∈≤=N),55(,52012N),55(,140n n n n n y , (2)①由已知,在这100天中,该公司派送员日平均派送单数满足如下表格:所以X 甲的分布列为:所以()=1520.21540.31560.21580.21600.1155.4E X ⨯+⨯+⨯+⨯+⨯=甲,()()()()()222222=0.2152155.4+0.3154155.4+0.2156155.4+0.2158155.4+0.1160155.4=6.44S ⨯-⨯-⨯-⨯-⨯-甲,所以X 乙的分布列为:所以()=1400.51520.21760.22000.1=155.6E X ⨯+⨯+⨯+⨯乙,()()()()22222=0.5140155.6+0.2152155.6+0.2176155.6+0.1200155.6=404.64S ⨯-⨯-⨯-⨯-乙,②答案一:由以上的计算可知,虽然()()E X E X <乙甲,但两者相差不大,且2S 甲远小于2S 乙,即甲方案日工资收入波动相对较小,所以小明应选择甲方案. 答案二:由以上的计算结果可以看出,()()E X E X <乙甲,即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案. 20解:(1)设,,2211r MF r MF ==由题122221212224112c e a r r ar r c r r ⎧==⎪⎪+=⎪⎨+=⎪⎪⋅=⎪⎩, 解得1a c ==,则21b =,∴椭圆C 的方程为2212x y +=.(2)设0000(,)(0)A x y x y ⋅≠,1122(,),(,)B x y C x y , 当直线1AF的斜率不存在时,设(A -,则(1,B -, 直线2AF的方程为1)4y x =--代入2212x y +=,可得25270x x --= 275x ∴=,210y =-,则7(,)510D -∴直线BD的斜率为1(10276(1)5k ---==--,直线OA的斜率为22k =-,121(626k k ∴⋅=-=-, 当直线2AF 的斜率不存在时,同理可得1216k k ⋅=-. 当直线1AF 、2AF 的斜率存在时,10±≠x设直线1AF 的方程为00(1)1y y x x =++,则由0022(1)112y y x x x y ⎧=+⎪+⎪⎨⎪+=⎪⎩消去x 可得:22222200000[(1)2]422(1)0x y x y x y x ++++-+=, 又220012x y +=,则220022y x =-,代入上述方程可得2220000(32)2(2)340x x x x x x ++---=,2000101003434,3232x x x x x x x x ----∴⋅=∴=++,则000100034(1)13232y x y y x x x --=+=-+++ 000034(,)2323x y B x x +∴--++,设直线2AF 的方程为00(1)1y y x x =--,同理可得000034(,)2323x y D x x ---, ∴直线BD 的斜率为000000001220000002323434341224362323y y x x x y x y k x x x x x x +-+===-+--+-+, 直线OA 的斜率为020y k x =, ∴20200001222200001123636366x x y y y k k x x x x -⋅=⋅===----. 所以,直线BD 与OA 的斜率之积为定值16-,即1216k k ⋅=-. 21.解:(Ⅰ)由题意()10f -=,所以()1(1)10f b a e ⎛⎫-=-+-=⎪⎝⎭, 又()()1x f x x b e a '=++-,所以1(1)1b f a e e'-=-=-+, 若1a e=,则20b e =-<,与0b >矛盾,故1a =,1b =. (Ⅱ)由(Ⅰ)可知()()()11x f x x e =+-, (0)0,(1)0f f =-=, 设)(x f 在(-1,0)处的切线方程为)(x h , 易得,()1()11h x x e ⎛⎫=-+ ⎪⎝⎭,令()()()F x f x h x =- 即()()()1()1111x F x x e x e ⎛⎫=+---+ ⎪⎝⎭,()1()2x F x x e e '=+-, 当2x ≤-时,()11()20x F x x e e e '=+-<-< 当2x >-时,设()1()()2x G x F x x e e'==+-, ()()30x G x x e '=+>, 故函数()F x '在()2,-+∞上单调递增,又(1)0F '-=,所以当(),1x ∈-∞-时,()0F x '<,当()1,x ∈-+∞时,()0F x '>, 所以函数()F x 在区间(),1-∞-上单调递减,在区间()1,-+∞上单调递增, 故0)1()(=-≥F x F ,11()()f x h x ≥,设()h x m =的根为1x ',则111me x e'=-+-, 又函数()h x 单调递减,故111()()()h x f x h x '=≥,故11x x '≤, 设()y f x =在(0,0)处的切线方程为()y t x =,易得()t x x =,令()()()()()11x T x f x t x x e x =-=+--,()()22x T x x e '=+-, 当2x ≤-时,()()2220x T x x e '=+-<-<,当2x >-时,故函数()T x '在()2,-+∞上单调递增,又(0)0T '=,所以当(),0x ∈-∞时,()0T x '<,当()0,x ∈+∞时,()0T x '>, 所以函数()T x 在区间(),0-∞上单调递减,在区间()0,+∞上单调递增, 0)0()(=≥T x T ,22()()f x t x ≥ ,设()t x m =的根为2x ',则2x m '=,又函数()t x 单调递增,故222()()()t x f x t x '=≥,故22x x '≥, 又11x x '≤,2121(12)1111me m e x x x x m e e -⎛⎫''-≤-=--+=+ ⎪--⎝⎭. 选作题22(1)由题意可知直线l 的直角坐标方程为2y =+,曲线C是圆心为,半径为r 的圆,直线l 与曲线C相切,可得:2r ==;可知曲线C的方程为22((1)4x y +-=, 所以曲线C的极坐标方程为2cos 2sin 0ρθρθ--=, 即4sin()3ρθπ=+. (2)由(1)不妨设M (1,ρθ),)6,(2πθρ+N ,(120,0ρρ>>)6πS MON =∆. 当12πθ=时, 32+≤∆MON S ,所以△MON面积的最大值为2.23. 【解析】(1)由题意可知32x x m --≥恒成立,令3()2x g x x -=-, 去绝对值可得:36,(3)()263,(03)6,(0)x x x g x x x x x x --≥⎧⎪=-=-<<⎨⎪-≤⎩,画图可知()g x 的最小值为-3,所以实数m 的取值范围为3m ≤-;(2)由(1)可知2229a b c ++=,所以22212315a b c +++++=,222222222111()(123)11112312315a b c a b c a b c ++⋅++++++++++=+++ 22222222222221313239312132315155b a c a c b a b a c b c ++++++++++++++++++=≥=, 当且仅当2221235a b c +=+=+=,即2224,3,2a b c ===等号成立, 所以222111123a b c +++++的最小值为35.。

河北省石家庄市高三下学期4月一模考试数学(理)试题Word版含答案

河北省石家庄市高三下学期4月一模考试数学(理)试题Word版含答案

石家庄市2018届高中毕业班模拟考试(一)理科数学(A卷)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)ABCD2.)AB C.2 D.43.是()ABCD4.)A.1 B.2 C.3D.45.)A.-3B C.3D.46.程序框图如图所示,()ABC D7.南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”,并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为( )A .82平方里B .83平方里C .84平方里D .85平方里 8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()ABCD9.已知是定义在上的偶函数,且在上为增函数,则)ABCD10.)A BCD11.)A .11B .12C .13D .1412.根据以上知识求得)ABCD二、填空题:本大题共4小题,每题5分,共20分.13..14.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是 . 15.一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为.16..三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.18.四棱锥的底面为直角梯形,,,.(Ⅰ)点M为棱AB上一点,若.19.小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.(Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在.若将频率视为概率,回答下列问题:,试分别求出甲、乙两种方案的日②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.20.1.(Ⅱ).21.已知函数,,在)处的切线方程为(二)选考题:共10分,请考生在22、23题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.22.[选修4-4:坐标系与参数方程],以坐标原极点正半轴为极轴建立极坐标系,直极坐标方程为.23.[选修4-5:不等式选讲](Ⅱ)设实数为的最大值,若实数,,满足,求.精品文档石家庄市2017-2018学年高中毕业班第一次模拟考试试题理科数学答案一、选择题1-5: AABDC 6-10: CCDBD 11、12:BA二、填空题13. 14. 乙15. 16.三、解答题17解:(1)法一:法二:(2)由(1(1)23352121n n =-+-++--+18.(1SDM ,ABCD ,平面SDMABCD=DM ,所以四边形BCDM 为平行四边形, 所以M 为AB 的中点.(2以下建系求解.以点E 为坐标原点,EA 方向为X 轴,EC 方向为Y轴,ES 方向为Z 轴建立如图所示空间坐设平法向所1210||||n n =⋅19.解:(1)元)①由已知,在这100天中,该公司派送员日平均派送单数满足如下表格:②答案一:案日工资收入波动相对较小,所以小明应选择甲方案. 答案二:望,所以小明应选择乙方案.20解:(1(221.解:(-1,0)(0,0),选作题22(1可知曲线C所以曲线C(2)由(1)不妨设M所以△MON 23.【解析】(1-3(2)由(1石家庄市2017-2018学年高中毕业班第一次模拟考试试题理科数学答案选择题(A卷答案)1-5AABDC 6-10CCDBD 11-12 BA(B卷答案)1-5BBADC 6-10CCDAD 11-12 AB填空题13.14.乙15.16.三、解答题(解答题仅提供一种或两种解答,其他解答请参照此评分标准酌情给分)17解:(1)法一:2分4分6分法二:………………2分………………4分6分(2)由(18分10分(1)23352121n n =-+-++--+ (12)分18(1SDM,ABCD,平面SDMABCD=DM, 2分所以四边形BCDM 为平行四边形,又,所以M 为AB 的中点。

2018-2019年石家庄一模:河北省石家庄市2018届高三年级第一次模拟考试(理科)数学-附答案精

2018-2019年石家庄一模:河北省石家庄市2018届高三年级第一次模拟考试(理科)数学-附答案精

河北省石家庄市2018届高三年级第一次模拟考试理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ()A. B.C. D.2. 设集合,,则()A. B. C. D.3. 已知,且,则()A. B. C. D.4. 两个单位向量,的夹角为,则()A. B. C. D.5. 用两个,一个,一个,可组成不同四位数的个数是()A. B. C. D.6. 已知,,,则()A. B. C. D.7. 如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是()A. 求B. 求C. 求D. 求8. 为了得到函数的图象,可以将函数的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向右平移个单位长度D. 向左平移个单位长度9. 某几何体的三视图如图所示,则该几何体的表面积是()A. B. C. D.10. 已知为双曲线:的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点.若,则的离心率是()A. B. C. D.11. 已知函数,则下列关于的表述正确的是()A. 的图象关于轴对称B. ,的最小值为C. 有个零点D. 有无数个极值点12. 已知,,,是半径为的球面上的点,,,点在上的射影为,则三棱锥体积的最大值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分.13. 设,满足约束条件,则的最小值是__________.14. 的展开式中,二项式系数最大的项的系数是__________.(用数字作答)15. 已知为抛物线上异于原点的点,轴,垂足为,过的中点作轴的平行线交抛物线于点,直线交轴于点,则__________.16. 在中,角,,的对边分别为,,,边上的高为,若,则的取值范围是__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答. (一)必考题:共60分.17. 已知数列为单调递增数列,为其前项和,.(1)求的通项公式;(2)若,为数列的前项和,证明:.18. 某水产品经销商销售某种鲜鱼,售价为每公斤元,成本为每公斤元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失元.根据以往的销售情况,按,,,,进行分组,得到如图所示的频率分布直方图.(1)求未来连续三天内,该经销商有连续两天该种鲜鱼的日销售量不低于公斤,而另一天日销售量低于公斤的概率;(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值.(i)求日需求量的分布列;(ii)该经销商计划每日进货公斤或公斤,以每日利润的数学期望值为决策依据,他应该选择每日进货公斤还是公斤?19. 如图,在三棱柱中,平面平面,.(1)证明:;(2)若是正三角形,,求二面角的大小.20. 已知椭圆:的左焦点为,上顶点为,长轴长为,为直线:上的动点,,.当时,与重合.(1)若椭圆的方程;(2)若直线交椭圆于,两点,若,求的值.21. 已知函数,.(1)设,求的最小值;(2)证明:当时,总存在两条直线与曲线与都相切.(二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中,圆:,圆:.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求,的极坐标方程;(2)设曲线:(为参数且),与圆,分别交于,,求的最大值.23. 选修4-5:不等式选讲设函数的最大值为.(1)求的值;(2)若正实数,满足,求的最小值.。

河北省石家庄市2018届高考一模考试数学理科试题(A)含答案

河北省石家庄市2018届高考一模考试数学理科试题(A)含答案

河北省石家庄市2018届高考一模考试数学理科试题(A )含答案石家庄市2018届高中毕业班模拟考试(一)理科数学(A 卷)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4,5,6,7}U =,{|3,}A x x x N =≥∈,则U C A =( ) A .{1,2} B .{3,4,5,6,7} C .{1,3,4,7} D .{1,4,7}2.已知i 为虚数单位,(1)2i x yi +=+,其中,x y R ∈,则x yi +=( )A .B C .2 D .43.函数()2(0)xf x x =<,其值域为D ,在区间(1,2)-上随机取一个数x ,则x D ∈的概率是( ) A .12 B .13 C .14 D .234.点B 是以线段AC 为直径的圆上的一点,其中2AB =,则AC AB ⋅=( ) A .1 B .2 C .3 D .45. x ,y 满足约束条件:11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .-3B .32C .3D .4 6.程序框图如图所示,该程序运行的结果为25s =,则判断框中可填写的关于i 的条件是( )A .4?i ≤B .4?i ≥C .5?i ≤ D.5?i ≥7.南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:S =a b c >>),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为( )A .82平方里B .83平方里C .84平方里D .85平方里8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .83π+B .84π+C .85π+D .86π+9.已知()f x 是定义在[2,1]b b -+上的偶函数,且在[2,0]b -上为增函数,则(1)(2)f x f x -≤的解集为( ) A .2[1,]3- B .1[1,]3- C .[1,1]- D .1[,1]310.在ABC ∆中,2AB =,6C π=,则3AC BC +的最大值为( )A B ...11.过抛物线214y x =焦点F 的直线交抛物线于A ,B 两点,点C 在直线1y =-上,若ABC ∆为正三角形,则其边长为( )A .11B .12C .13D .1412.设xOy ,''x Oy 为两个平面直角坐标系,它们具有相同的原点,Ox 正方向到'Ox 正方向的角度为θ,那么对于任意的点M ,在xOy 下的坐标为(,)x y ,那么它在''x Oy 坐标系下的坐标(',')x y 可以表示为:'cos sin x x y θθ=+,'cos sin y y x θθ=-.根据以上知识求得椭圆223'''5'10x y y -+-=的离心率为( )A .3.4.3 D .4二、填空题:本大题共4小题,每题5分,共20分.13.命题p :01x ∃≥,200230x x --<的否定为 .14.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是 .15.一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为 .16.已知函数31()1x x f x x -+=-,ln ()xg x x =,若函数(())y f g x a =+有三个不同的零点1x ,2x ,3x (其中123x x x <<),则1232()()()g x g x g x ++的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.已知等比数列{}n a 的前n 项和为n S ,且满足122()n n S m m R +=+∈.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足211(21)log ()n n n b n a a +=+⋅,求数列{}n b 的前n 项和n T .18.四棱锥S ABCD -的底面ABCD 为直角梯形,//AB CD ,AB BC ⊥,222AB BC CD ===,SAD ∆为正三角形.(Ⅰ)点M 为棱AB 上一点,若//BC 平面SDM ,AM AB λ=,求实数λ的值; (Ⅱ)若BC SD ⊥,求二面角A SB C --的余弦值.19.小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元. (Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y (单位:元)与送货单数n 的函数关系式;(Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在2(1)2(,]1010n n-(1,2,3,4,5)n =时,日平均派送量为502n +单.若将频率视为概率,回答下列问题:①根据以上数据,设每名派送员的日薪为X (单位:元),试分别求出甲、乙两种方案的日薪X 的分布列,数学期望及方差;②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由. (参考数据:20.60.36=,21.4 1.96=,22.6 6.76=,23.411.56=,23.612.96=,24.621.16=,215.6243.36=,220.4416.16=,244.41971.36=)20.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,M 为椭圆上任意一点,当1290F MF ∠=时,12F MF ∆的面积为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知点A 是椭圆C 上异于椭圆顶点的一点,延长直线1AF ,2AF 分别与椭圆交于点B ,D ,设直线BD 的斜率为1k ,直线OA 的斜率为2k ,求证:12k k ⋅为定值.21.已知函数()()()xf x x b e a =+-,(0)b >,在(1,(1))f --处的切线方程为(1)10e x ey e -++-=. (Ⅰ)求a ,b ;(Ⅱ)若方程()f x m =有两个实数根1x ,2x ,且12x x <,证明:21(12)11m e x x e--≤+-.(二)选考题:共10分,请考生在22、23题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分. 22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线C 的参数方程为cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin()13πρθ-=,若直线l 与曲线C 相切;(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)在曲线C 上取两点M ,N 与原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.23.[选修4-5:不等式选讲]已知函数()f x =R ;(Ⅰ)求实数m 的取值范围;(Ⅱ)设实数t 为m 的最大值,若实数a ,b ,c 满足2222a b c t ++=,求222111123a b c +++++的最小值.石家庄市2017-2018学年高中毕业班第一次模拟考试试题理科数学答案一、选择题1-5: AABDC 6-10: CCDBD 11、12:BA 二、填空题13. 2:1,230p x x x ⌝∀≥--≥ 14. 乙 15. 22,0e e ⎛⎫-⎪-⎝⎭三、解答题 17解:(1) 法一:由122()n n S m m R +=+∈得122()nn S m m R -=+∈,当当2n ≥时,12222n n n n a S S -=-=,即12(2)n n a n -=≥, 又1122ma S ==+,当2m =-时符合上式,所以通项公式为12n n a -=. 法二:由122()n n S m m R +=+∈得1232;4;8()S m S m S m m R =+⎧⎪=+⎨⎪=+∈⎩,从而有2213322,4a S S a S S =-==-=, 所以等比数列公比322a q a ==,首项11a =,因此通项公式为12n n a -=. (2)由(1)可得1212log ()log (22)21n n n n a a n -+⋅=⋅=-,1111()(21)(21)22121n b n n n n ∴==-+--+,12111111(1)2335212121n n nT b b b n n n ∴=+++=-+-++-=-++. 18.(1)因为//BC 平面SDM ,BC ⊂平面ABCD ,平面SDM 平面ABCD=DM , 所以DM BC //,因为DC AB //,所以四边形BCDM 为平行四边形, 又CD AB 2=,所以M 为AB 的中点. 因为λ=,12λ∴=.(2)因为BC ⊥SD , BC ⊥CD ,所以BC ⊥平面SCD , 又因为BC ⊂平面ABCD , 所以平面SCD ⊥平面ABCD , 平面SCD平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E , 则SE ⊥平面ABCD , 在Rt SEA 和Rt SED 中, 因为SA SD =,所以AE DE ===,又由题知45EDA ∠=, 所以AE ED ⊥所以1AE ED SE ===, 以下建系求解.以点E 为坐标原点,EA 方向为X 轴,EC 方向为Y 轴,ES 方向为Z 轴建立如图所示空间坐标系,则(0,0,0)E ,(0,0,1)S ,(1,0,0)A ,(1,2,0)B ,(0,2,0)C ,(1,0,1)SA =-,(0,2,0)AB =,(0,2,1)SC =-,(1,0,0)CB =,设平面SAB 的法向量1(,,)n x y z =,则110n SA n AB ⎧⋅=⎪⎨⋅=⎪⎩,所以020x z y -=⎧⎨=⎩,令1x =得1(1,0,1)n =为平面SAB 的一个法向量,同理得2(0,1,2)n =为平面SBC 的一个法向量,12121210cos ,5||||n n n n n n ⋅<>==⋅,因为二面角A SB C --为钝角, 所以二面角A SB C --余弦值为5-.19.解:(1)甲方案中派送员日薪y (单位:元)与送单数n 的函数关系式为: N ,100∈+=n n y , 乙方案中派送员日薪y (单位:元)与送单数n 的函数关系式为:⎩⎨⎧∈>-∈≤=N),55(,52012N),55(,140n n n n n y , (2)①由已知,在这100天中,该公司派送员日平均派送单数满足如下表格:所以X 甲的分布列为:所以()=1520.21540.31560.21580.21600.1155.4E X ⨯+⨯+⨯+⨯+⨯=甲,()()()()()222222=0.2152155.4+0.3154155.4+0.2156155.4+0.2158155.4+0.1160155.4=6.44S ⨯-⨯-⨯-⨯-⨯-甲,所以X 乙的分布列为:所以()=1400.51520.21760.22000.1=155.6E X ⨯+⨯+⨯+⨯乙,()()()()22222=0.5140155.6+0.2152155.6+0.2176155.6+0.1200155.6=404.64S ⨯-⨯-⨯-⨯-乙,②答案一:由以上的计算可知,虽然()()E X E X <乙甲,但两者相差不大,且2S 甲远小于2S 乙,即甲方案日工资收入波动相对较小,所以小明应选择甲方案.答案二:由以上的计算结果可以看出,()()E X E X <乙甲,即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案. 20解:(1)设,,2211r MF r MF ==由题122221212224112c e a r r ar r c r r ⎧==⎪⎪+=⎪⎨+=⎪⎪⋅=⎪⎩,解得1a c ==,则21b =,∴椭圆C 的方程为2212x y +=.(2)设0000(,)(0)A x y x y ⋅≠,1122(,),(,)B x y C x y , 当直线1AF 的斜率不存在时,设2(1,)2A -,则2(1,)2B --, 直线2AF的方程为(1)4y x =--代入2212x y +=,可得25270x x --= 275x ∴=,210y =-,则7(,510D -∴直线BD的斜率为1(10276(1)5k -==--,直线OA的斜率为22k =-121(626k k ∴⋅=-=-, 当直线2AF 的斜率不存在时,同理可得1216k k ⋅=-. 当直线1AF 、2AF 的斜率存在时,10±≠x设直线1AF 的方程为00(1)1y y x x =++,则由0022(1)112y y x x x y ⎧=+⎪+⎪⎨⎪+=⎪⎩消去x 可得:22222200000[(1)2]422(1)0x y x y x y x ++++-+=, 又220012x y +=,则220022y x =-,代入上述方程可得2220000(32)2(2)340x x x x x x ++---=,2000101003434,3232x x x x x x x x ----∴⋅=∴=++,则000100034(1)13232y x y y x x x --=+=-+++ 000034(,)2323x y B x x +∴--++,设直线2AF 的方程为00(1)1y y x x =--,同理可得000034(,)2323x y D x x ---, ∴直线BD 的斜率为000000001220000002323434341224362323y y x x x y x y k x x x x x x +-+===-+--+-+, 直线OA 的斜率为020y k x =, ∴20200001222200001123636366x x y y y k k x x x x -⋅=⋅===----. 所以,直线BD 与OA 的斜率之积为定值16-,即1216k k ⋅=-. 21.解:(Ⅰ)由题意()10f -=,所以()1(1)10f b a e ⎛⎫-=-+-=⎪⎝⎭, 又()()1x f x x b e a '=++-,所以1(1)1b f a e e'-=-=-+, 若1a e=,则20b e =-<,与0b >矛盾,故1a =,1b =.(Ⅱ)由(Ⅰ)可知()()()11x f x x e =+-, (0)0,(1)0f f =-=, 设)(x f 在(-1,0)处的切线方程为)(x h , 易得,()1()11h x x e ⎛⎫=-+ ⎪⎝⎭,令()()()F x f x h x =- 即()()()1()1111x F x x e x e ⎛⎫=+---+ ⎪⎝⎭,()1()2x F x x e e '=+-, 当2x ≤-时,()11()20x F x x e e e '=+-<-< 当2x >-时,设()1()()2x G x F x x e e'==+-, ()()30x G x x e '=+>, 故函数()F x '在()2,-+∞上单调递增,又(1)0F '-=,所以当(),1x ∈-∞-时,()0F x '<,当()1,x ∈-+∞时,()0F x '>, 所以函数()F x 在区间(),1-∞-上单调递减,在区间()1,-+∞上单调递增, 故0)1()(=-≥F x F ,11()()f x h x ≥,设()h x m =的根为1x ',则111me x e'=-+-, 又函数()h x 单调递减,故111()()()h x f x h x '=≥,故11x x '≤,设()y f x =在(0,0)处的切线方程为()y t x =,易得()t x x =,令()()()()()11x T x f x t x x e x =-=+--,()()22x T x x e '=+-, 当2x ≤-时,()()2220x T x x e '=+-<-<,当2x >-时,故函数()T x '在()2,-+∞上单调递增,又(0)0T '=,所以当(),0x ∈-∞时,()0T x '<,当()0,x ∈+∞时,()0T x '>,所以函数()T x 在区间(),0-∞上单调递减,在区间()0,+∞上单调递增, 0)0()(=≥T x T ,22()()f x t x ≥ ,设()t x m =的根为2x ',则2x m '=,又函数()t x 单调递增,故222()()()t x f x t x '=≥,故22x x '≥, 又11x x '≤,2121(12)1111me m e x x x x m e e -⎛⎫''-≤-=--+=+ ⎪--⎝⎭. 选作题22(1)由题意可知直线l 的直角坐标方程为2y =+,曲线C 是圆心为,半径为r 的圆,直线l 与曲线C 相切,可得:2r ==;可知曲线C 的方程为22((1)4x y +-=,所以曲线C 的极坐标方程为2cos 2sin 0ρθρθ--=, 即4sin()3ρθπ=+. (2)由(1)不妨设M (1,ρθ),)6,(2πθρ+N ,(120,0ρρ>>)6πS MON =∆. 当12πθ=时, 32+≤∆MON S ,所以△MON 面积的最大值为2.23. 【解析】(1)由题意可知32x x m --≥恒成立,令3()2x g x x -=-, 去绝对值可得:36,(3)()263,(03)6,(0)x x x g x x x x x x --≥⎧⎪=-=-<<⎨⎪-≤⎩,画图可知()g x 的最小值为-3,所以实数m 的取值范围为3m ≤-;(2)由(1)可知2229a b c ++=,所以22212315a b c +++++=,222222222111()(123)11112312315a b c a b c a b c ++⋅++++++++++=+++ 22222222222221313239312132315155b a c a c b a b a c b c ++++++++++++++++++=≥=, 当且仅当2221235a b c +=+=+=,即2224,3,2a b c ===等号成立, 所以222111123a b c +++++的最小值为35.。

高三数学河北省石家庄市2018届高三下学期一模考试试题(A卷)理科数学及参考答案及参考答案

高三数学河北省石家庄市2018届高三下学期一模考试试题(A卷)理科数学及参考答案及参考答案

河北省石家庄市2018届高三下学期一模考试数学试题(理)(A卷)【参考答案】1-5AABDC 6-10CCDBD 11-12 BA13. 2:1,230p x x x ⌝∀≥--≥ 14. 乙15. 16. 22,0e -e ⎛⎫- ⎪⎝⎭17.解:(1)法一:由122()n n S m m R +=+∈得122()n n S m m -=+∈R ,当当2n ≥时,12222n n n n a S S -=-=,即12(2)n n a n -=≥, 又1122m a S ==+,当2m =-时符合上式,所以通项公式为12n n a -=, 法二: 由122()n n S m m R +=+∈得1232;4;8()S m S m S m m R =+⎧⎪=+⎨⎪=+∈⎩ ,从而有2213322,4a S S a S S =-==-=, 所以等比数列公比322a q a ==,首项11a =,因此通项公式为12n n a -=, (2)由(1)可得1212log ()log (22)21n n n n a a n -+⋅=⋅=-,1111()(21)(21)22121n b n n n n ∴==-+--+, 12111111(1)2335212121n n n T b b b n n n ∴=+++=-+-++-=-++. 18.解:(1)因为//BC 平面SDM ,BC ⊂平面ABCD ,平面SDM 平面ABCD =DM ,所以DM BC //,因为DC AB //,所以四边形BCDM 为平行四边形,又,CD AB 2=,所以M 为AB 的中点,因为AB AM λ=,12λ∴=; (2)因为BC ⊥SD , BC ⊥CD ,所以BC ⊥平面SCD ,又因为BC ⊂平面ABCD ,所以平面SCD ⊥平面ABCD ,平面SCD 平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E ,则SE ⊥平面ABCD ,在Rt SEA 和Rt SED 中,因为SA SD =,所以AE DE ==,又由题知45EDA ∠=,所以AE ED ⊥所以1AE ED SE ===,以下建系求解.以点E 为坐标原点,EA 方向为X 轴,EC 方向为Y 轴,ES 方向为Z 轴建立如图所示空间坐标系,则(0,0,0)E ,(0,0,1)S ,(1,0,0)A ,(1,2,0)B ,(0,2,0)C ,(1,0,1)SA =-,(0,2,0)AB =,(0,2,1)SC =-,(1,0,0)CB =,设平面SAB 的法向量1(,,)n x y z =,则1100n SA n AB ⎧⋅=⎪⎨⋅=⎪⎩,所以020x z y -=⎧⎨=⎩, 令1x =得1(1,0,1)n =为平面SAB 的一个法向量,同理得2(0,1,2)n =为平面SBC 的一个法向量, 12121210cos ,||||n n n n n n ⋅<>==⋅,因为二面角A SB C --为钝角,所以二面角A SB C --余弦值为5-. 19.解:(1)甲方案中派送员日薪y (单位:元)与送单数n 的函数关系式为: N ,100∈+=n n y ,乙方案中派送员日薪y (单位:元)与送单数n 的函数关系式为:⎩⎨⎧∈>-∈≤=N),55(,52012N),55(,140n n n n n y . ①由已知,在这100天中,该公司派送员日平均派送单数满足如下表格:所以X 甲的分布列为:所以()=1520.21540.31560.21580.21600.1155.4E X ⨯+⨯+⨯+⨯+⨯=甲, ()()()()()222222=0.2152155.4+0.3154155.4+0.2156155.4+0.2158155.4+0.1160155.4=6.44.S ⨯-⨯-⨯-⨯-⨯-甲所以X 乙的分布列为: 所以()=1400.51520.21760.22000.1=155.6E X ⨯+⨯+⨯+⨯乙.()()()()22222=0.5140155.6+0.2152155.6+0.2176155.6+0.1200155.6=404.64.S ⨯-⨯-⨯-⨯-乙②答案一: 由以上的计算可知,虽然()()E X E X <乙甲,但两者相差不大,且2S 甲远小于2S 乙,即甲方案日工资收入波动相对较小,所以小明应选择甲方案.答案二:由以上的计算结果可以看出,()()E X E X <乙甲,即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案. 20解:(1)设,,2211r MF r MF ==由题122221212224112c e a r r a r r cr r ⎧==⎪⎪+=⎪⎨+=⎪⎪⋅=⎪⎩,解得1a c ==,则21b =, ∴椭圆C 的方程为2212x y +=.(2)设0000(,)(0)A x y x y ⋅≠,1122(,),(,)B x y C x y , 当直线1AF 的斜率不存在时,设(1,2A -,则(1,2B --, 直线2AF的方程为(1)4y x =--代入2212x y +=,可得25270x x --= 275x ∴=,210y =-则7(,510D - ∴直线BD的斜率为1(1027(1)5k -==--,直线OA的斜率为22k =-121(6k k ∴⋅==-, 当直线2AF 的斜率不存在时,同理可得1216k k ⋅=-. 当直线1AF 、2AF 的斜率存在时,10±≠x设直线1AF 的方程为00(1)1y y x x =++,则由0022(1)112y y x x x y ⎧=+⎪+⎪⎨⎪+=⎪⎩消去x 可得: 22222200000[(1)2]422(1)0x y x y x y x ++++-+=,又220012x y +=,则220022y x =-,代入上述方程可得 2220000(32)2(2)340x x x x x x ++---=,2000101003434,3232x x x x x x x x ----∴⋅=∴=++,则000100034(1)13232y x y y x x x --=+=-+++ 000034(,)2323x y B x x +∴--++ 设直线2AF 的方程为00(1)1y y x x =--,同理可得000034(,)2323x y D x x --- , ∴直线BD 的斜率为000000001220000002323434341224362323y y x x x y x y k x x x x x x +-+===-+--+-+, 直线OA 的斜率为020y k x =, ∴20200001222200001123636366x x y y y k k x x x x -⋅=⋅===----. 所以,直线BD 与OA 的斜率之积为定值16-,即1216k k ⋅=-. 21.解:(Ⅰ)由题意()10f -=,所以()1(1)10f b a e ⎛⎫-=-+-= ⎪⎝⎭, 又()()1x f x x b e a '=++-,所以1(1)1b f a e e'-=-=-+, 若1a e=,则20b e =-<,与0b >矛盾,故1a =,1b =; (Ⅱ)由(Ⅰ)可知()()()11x f x x e =+-, (0)0,(1)0f f =-=, 设)(x f 在(-1,0)处的切线方程为)(x h ,易得,()1()11e h x x ⎛⎫=-+ ⎪⎝⎭,令()()()F x f x h x =-即()()()1()1e 111e x F x x x ⎛⎫=+---+ ⎪⎝⎭,()1()2e ex F x x '=+-, 当2x ≤-时,()11()2e 0e ex F x x '=+-<-< 当2x >-时,设()1()()2e ex G x F x x '==+-, ()()3e 0x G x x '=+>, 故函数()F x '在()2,-+∞上单调递增,又(1)0F '-=,所以当(),1x ∈-∞-时,()0F x '<,当()1,x ∈-+∞时,()0F x '>,所以函数()F x 在区间(),1-∞-上单调递减,在区间()1,-+∞上单调递增, 故0)1()(=-≥F x F ,11()()f x h x ≥,设()h x m =的根为1x ',则1e 11em x '=-+-, 又函数()h x 单调递减,故111()()()h x f x h x '=≥,故11x x '≤,设()y f x =在(0,0)处的切线方程为()y t x =,易得()t x x =令()()()()()1e 1x T x f x t x x x =-=+--,()()2e 2xT x x '=+-, 当2x ≤-时,()()2220x T x x e '=+-<-<当2x >-时,故函数()T x '在()2,-+∞上单调递增,又(0)0T '=,所以当(),0x ∈-∞时,()0T x '<,当()0,x ∈+∞时,()0T x '>,所以函数()T x 在区间(),0-∞上单调递减,在区间()0,+∞上单调递增, 0)0()(=≥T x T ,22()()f x t x ≥ ,设()t x m =的根为2x ',则2x m '=,又函数()t x 单调递增,故222()()()t x f x t x '=≥,故22x x '≥,又11x x '≤,2121e (12e)111e 1e m m x x x x m -⎛⎫''-≤-=--+=+ ⎪--⎝⎭. 选作题22.解:(1)由题意可知直线l的直角坐标方程为2y =+, 曲线C是圆心为,半径为r 的圆,直线l 与曲线C 相切,可得:2r =;可知曲线C的方程为22((1)4x y +-=,所以曲线C的极坐标方程为2cos 2sin 0ρθρθ--=, 即4sin()3ρθπ=+ ; (2)由(1)不妨设M (1,ρθ),)6,(2πθρ+N ,(120,0ρρ>>)6πS MON =∆ ,, 当12πθ=时, 32+≤∆MO N S , 所以△MON面积的最大值为2+.23. 解:(1)由题意可知32x x m --≥恒成立,令3()2x g x x -=-, 去绝对值可得:36,(3)()263,(03)6,(0)x x x g x x x x x x --≥⎧⎪=-=-<<⎨⎪-≤⎩,画图可知()g x 的最小值为-3,所以实数m 的取值范围为3m ≤-;(2)由(1)可知2229a b c ++=,所以22212315a b c +++++=,222222222111()(123)11112312315a b c a b c a b c ++⋅++++++++++=+++22222221313239312132315155b a c a c b a b a c b c ++++++++++++++++++=≥= 当且仅当2221235a b c +=+=+=,即2224,3,2a b c ===等号成立, 所以222111123a b c +++++的最小值为35.。

河北省石家庄市2018届高三第一次模拟考试理科数学试题及答案

河北省石家庄市2018届高三第一次模拟考试理科数学试题及答案

2021届石家庄市高中毕业班第一次模拟考试试卷数学〔理科〕A 卷第一卷〔选择题,共 60分〕一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只 有一项是符合题目要求的.. 假设复数z 2i〔i 是虚数单位〕,那么z)iA .1iB .1iC .1iD .1i2. 集合 A{x|x 25x 6 0},B {x|3 x3},那么AB()A .( 3,3)B .( 3,6)C .( 1,3) D .( 3,1)x 1 03. 设变量,y 满足约束条件 x 2y 2 0,那么目标函数z3x4y 的最小值为()2x y 2 0A .1B.3C.26D. 195f(11)的值为() 4. 函数f(x)Asin( x)(A 0,0)的局部图像如右图所示,那么24A .6 B.3C.2 D.12225.程序框图如图,当输入x 为2021时,输出的 y 的值为( )A.1B.1C.2D.4 86.为比拟甲乙两地某月11时的气温情况,随机选取该月中的5天中11时的气温数据〔单位:℃〕制成如下图的茎叶图,考虑以下结论:甲乙982689210311①甲地该月11时的平均气温低于乙地该月11时的平均气温②甲地该月11时的平均气温高于乙地该月11时的平均气温③甲地该月11时的气温的标准差小于乙地该月11时的气温的标准差④甲地该月11时的气温的标准差大于乙地该月11时的气温的标准差其中根据茎叶图能得到的正确结论的编号为()A.①③B.①④C.②③D.②④7.过点A(0,1)作直线,与双曲线x2y21有且只有一个公共点,那么符合条件的直线的条数为9()A.0B.2C.4D.无数8.如下图的数阵中,用A(m,n)表示第m行的第n个数,那么依此规律A(15,2)为()A.29B.7C.17D.73 4210241029.函数yf(x2)的图象关于直线x2对称,且当x(0,)时,f () |log 2 | ,假设x xaf(3),bf(1 ,那么a,b,c 的大小关系是( )),cf(2)4A .abcB .bacC .cabD .acb10.某几何体的三视图如下图,图中网格小正方形边长为 1,那么该几何体的体积是()A .4B .16C .20D .123 311.A,B,C〔R,是圆O 上不同的三点,线段CO 与线段R 〕,那么的取值范围是 ( )AB交于D ,假设OCOAOBA .(0,1)B .(1,)C .(1,2]D .(1,0)12.如下图,一个圆柱形乒乓球筒,高为20厘米,底面半径为2厘米.球筒的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切〔球筒和乒乓球厚度忽略不计〕 .一个平面与两乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,那么该椭圆的离心率为( )A . 15B .1C .26D .14 5 54第二卷〔非选择题,共 90分〕二、填空题〔每题 5分,总分值20分,将答案填在答题纸上〕13. (x1)6的展开式中常数项为.4xsin x, 1x 01,那么x 的值为.14. 函数f(x)2,且f(x)log 2(x 1),0 x 1215.ABC 中,AC4,BC27,BAC60,ADBC 于D ,那么BD的值为.CD16. 假设函数f x ) x 3ax 2 bxabRA(m,0)(m0),且 f(x)的极大((, )的图象与x 轴相切于一点值为1,那么m 的值为.2三、解答题〔本大题共6小题,共70分.解容许写出文字说明、证明过程或演算步骤 .〕〔本小题总分值12分〕〔本小题总分值12分〕在平面四边形ACBD 〔图①〕中, ABC 与ABD 均为直角三角形且有公共斜边AB ,设AB2,BAD30,BAC45,将ABC 沿AB 折起,构成如图②所示的三棱锥 C'ABC ,且使C'D2.〔Ⅰ〕求证:平面〔Ⅱ〕求二面角C'ABAC'D 平面DABB的余弦值;.C'CA B A B①D②D〔本小题总分值12分〕某篮球队对篮球运发动的篮球技能进行统计研究,针对篮球运发动在投篮命中时,运发动在篮筐中心的水平距离这项指标,对某运发动进行了假设干场次的统计,依据统计结果绘制如下频率分布直方图:〔Ⅰ〕依据频率分布直方图估算该运发动投篮命中时,他到篮筐中心的水平距离的中位数;〔Ⅱ〕在某场比赛中,考察他前4次投篮命中到篮筐中心的水平距离的情况,并且规定:运发动投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否那么扣掉 1分.用随机变量X表示第4次投篮后的总分,将频率视为概率,求X的分布列和数学期望.〔本小题总分值12分〕抛物线C:22pxp0)过点M(m,2)|MF|2,其焦点为F,且.(〔Ⅰ〕求抛物线C的方程;〔Ⅱ〕设E为y轴上异于原点的任意一点,过点E作不经过原点的两条直线分别与抛物线C和圆F:(x1)2y21相切,切点分别为A,B,求证:直线AB过定点.〔本小题总分值12分〕f(x)e x ax22x b〔e为自然对数的底数,a,bR〕.〔Ⅰ〕设f'(x)为f(x)的导函数,证明:当a0时,f'(x)的最小值小于0;〔Ⅱ〕假设a0,f(x)0恒成立,求符合条件的最小整数b.请考生在22、23、24三题中任选一题作答,如果多做,那么按所做的第一题记分.〔本小题总分值10分〕选修4-1:几何证明选讲如下图,过点P分别做圆O的切线PA、PB和割线PCD,弦BE交CD于F,满足P、B、F、A四点共圆.〔Ⅰ〕证明:AE//CD;〔Ⅱ〕假设圆O的半径为5,且PC CF FD 3,求四边形PBFA的外接圆的半径.〔本小题总分值10分〕选修4-4:坐标系与参数方程在极坐标系中,曲线C1:2cos和曲线C2:cos3,以极点O为坐标原点,极轴为x轴非负半轴建立平面直角坐标系.〔Ⅰ〕求曲线C1和曲线C2的直角坐标方程;〔Ⅱ〕假设点P是曲线C1上一动点,过点P作线段OP的垂线交曲线C2于点Q,求线段PQ长度的最小值.〔本小题总分值10分〕选修4-5:不等式选讲函数f(x) |x| |x1|.〔Ⅰ〕假设f(x)|m1|恒成立,求实数m的最大值M;〔Ⅱ〕在〔Ⅰ〕成立的条件下,正实数a,b满足a2b2M,证明:ab2ab.2021届高三数学一模理科答案一.选择题:A卷答案:1-5BCBDA6-10CCCBB11-12BAB卷答案:1-5ACADB6-10CCCAA11-12AB二.填空题:13..514.1 16315.616.3 2三、解答题:2a2a3a5=4a1+8d=2017.解:〔I〕由得109,-------------------------------2分10a1+2d=10a1+45d=100解得a11-------------------------------4分d,2所以{a n}的通项公式为a n52(n3)2n1,--------------------------------5分〔II〕由〔I〕可知a n b n(2n1)22n1,所以S n121323525(2n3)22n3(2n1)22n1,①4S n123325527(2n3)22n1(2n1)22n1,②---------------------7分①-②得:3S n22(232522n1)(2n1)22n1S n 22(232522n1)(2n1)22n13⋯⋯⋯⋯⋯⋯9分22(8(14n1))(2n1)22n1143628(14n1)(6n3)22n1分9---------------------1110 (6n 5)22n1--------------------------12分9解:〔1〕取AB的中点O,CO,DO,在RTACB,RT ADB,AB2,CO DO1,又CD2,CO2DO2CD2,即COOD,⋯⋯⋯⋯2分又CO AB,ABODO,AB,OD平面ABDCO平面ABD,⋯⋯⋯⋯⋯⋯⋯4分又CO平面ABC平面CAB平面DAB5分〔2〕以O原点,AB,OC所在的直分y,z,建立如空直角坐系,A(0,1,0),B(0,1,0),C(0,0,1),D(3,1,0),2 2AC(0,1,1),BC(0, 1,1),CD( 3,1, 1)⋯⋯⋯⋯6分2 2平面ACD 的法向量n 1n 1ACn 1 AC(x 1,y 1,z 1),,即n 1,n 1CDCDy 1 z 1 03x 11 ,令z 11,y 11,x 13,2 y 1z 12n 1( 3,1,1)⋯⋯⋯⋯8分平面BCD 的法向量n 2n 2BCn 2 BC 0(x 2,y 2,z 2),,即n 2 CD,n 2CDy 2 z 2 03,3 1 ,令z 21,y 21,x 22 x 22 y 2z 23n(3,1,1)⋯⋯⋯⋯⋯⋯10分233 3 ( 1)111cosn 1,n 23 1105,173531 115133二面角ACDB105 分的余弦-.⋯⋯⋯⋯⋯123519.解:〔I 〕运到筐的水平距离的中位数 x ,∵2,且0.20) 1,∴x[4,5]⋯⋯⋯⋯⋯⋯⋯ 2分随机量的所有可能取 -4,-2,0,2,4;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分4PX4216,P(X2)C 43(2)1(3)321656255 5625P(X2)C 41(2)3(3)965 5 625P(X0) C 42(2)2(3)2216 ;5 5 625P(X2) C 43(2)1(3)32165 5625481PX435625X-4-20 2 4P16 96216 216 81625625625625625⋯⋯⋯⋯⋯⋯⋯ 10分EX4 16 ( 2) 96 0 2162 216 4 814625 625 625625 625 5 ⋯⋯⋯⋯⋯⋯⋯12分20.解:〔1〕抛物C 的准方程:xp ,p2p|MF|m2,又 4 2pm ,即42p(2 )--------------------2分22p 24p 4 0, p 2抛物C 的方程y 24x .-------------------4 分〔2〕点E(0,t)(t 0),由切不 y ,EA:y kx ty kx t(2kt 4)x t 2联立y24x ,消去y ,可得k 2x 2直线EA 与抛物线C 相切,(2kt4)2 4k 2t 20,即kt1代入12x 22xt 20, xt 2,即A(t 2,2t)-------------------------------------- 6分t设切点B(x 0,y 0),那么由几何性质可以判断点O,B 关于直线EF:ytx t 对称,那么y 0 t 01x 02t222t 222t)-------------------------------x 0 0 1t 2 1,即B(,解得: t , 8分y 0 t x 0 ty 02t 1t 12 2t21思路1:直线AB 的斜率为k AB2t (t 1)t 21直线AB 的方程为y2t (x t 2) 2t ,--------------------------------------10分2tt 2 1整理yt 1(x1)2直线AB 过定点恒过定点 F(1,0)--------------------------------------11分当t1时,A(1, 2),B(1,1),此时直线AB 为x1 ,过点F(1,0).综上,直线AB 过定点恒过定点F(1,0)--------------------------------------12 分思路2:直线AF 的斜率为k AF2t2(t1) ,t 12t 0 2t直线BF 的斜率为k BFt 2 1 (t1) ,2t 2 t 21t 211kAFk BF ,即A,B,F 三点共线--------------------------------------10 分当t1时,A(1,2),B(1, 1) ,此时 A,B,F 共线.--------------------------------------11分直线AB 过定点F .--------------------------------------12分21.解:〔Ⅰ〕证明:令 g(x) f(x)e x 2ax2,那么g(x)e x 2a因为a 0 ,令g(x 0)0,x 0ln2a所以当x ( ,ln2a)时,g(x)0,g(x)单调递减;当x (ln2a,)时,g(x)0,g(x)单调递增-------------------- 2分那么f(x)ming(x)min g(ln2a)e ln2a2aln2a2=2a2aln2a 2 --------------------3分令G(x) x xlnx2,(x0)G(x)1 (lnx1)lnx当x (0,1)时,G(x) 0,G(x)单调递增当x(1,)时,G(x)0,G(x)单调递减所以G(x)maxG(1) 1 0,所以f(x)min0成立.-------------------- 5 分〔Ⅱ〕证明: f(x)0恒成立,等价于 f(x)min 0恒成立令g(x)f(x) e x2ax 2,那么g(x) e x 2a因为a0 ,所以g(x)0,所以g(x)单调递增,又g(0) 1 0, g(1) e2a2 0 ,所以存在x 0(0,1),使得g(x 0)0---------------------6分那么x(,x)时,g(x) f (x)0, f(x)单调递减;x(x 0,)时,g(x) f(x)0, f(x)单调递增;所以f(x)minf(x 0)e x 0ax 022x 0 b 0 恒成立 (1)且ex2ax 0 20 (2)由〔1〕〔2〕,bexax 2 2xexx(ex 01)2x(x0 1)e x 0x 即可-----------------8 分22又由〔2〕aex20 ,所以x 0 (0,ln 2)---------------------9 分2x 0令m(x)(x1)e x x,x (0,ln2)2 1(x1)e xn(x)m(x)112n(x)xe x 0 ,2所以n(x)n(0) 1 0 所以m(x)单调递增,2,m(x)m(0)(1)e 01,m(x)m(ln2)(ln21)e ln2ln22ln22---------------------11 分2所以b1,所以符合条件的b=0---------------------12分法2:令x 0,f(0) 1 b 0,b1 ,故符合条件的最小整数 b 0.-------------------6分现证明b 0 时,f(x)求f(x)e x ax 22x 的最小值即可令g(x) f (x) e x 2ax 2,那么g(x)e x 2a因为a 0 ,所以g(x)0,所以g(x)单调递增,又g(0) 1 0,g(1) e 2a 2 0,所以存在x 0(0,1),使得g(x 0)0那么x (,x 0)时,g(x)f(x)0,f(x)单调递减;x(x 0,)时,g(x)f (x) 0,f(x)单调递增;所以f(x)minf(x 0)e x 0ax 02 2x 0.(1)且e x 0 2ax 0 2 0 (2)f(x)minf(x 0)exx 0(e x2) 2x 0 (1x 0)e x 0x 0---------------8分22又由〔2〕aex2 0 ,所以x 0 (0,ln2)---------------9分2x 0现在求函数p(x)(1x)e x x,x(0,ln2)的范围2q(x0)p(x)1(1x)e x1,q(x0)1xe x0,212所以q(x)q(0)0,所以p(x)单调递减,2p(x)p(0)(1)e01p(x)p(ln2)(1ln2)e ln2ln22ln20-------------11分2所以b=0是符合条件的.-------------12分选做题:22.解:〔I〕连接AB,P、B、F、A四点共圆,PAB PFB..................2分又PA与圆O切于点A,PAB AEB,.............4分PFB AEBAE//CD..............5分〔II〕因为PA、PB是圆O的切线,所以P、B、O、A四点共圆,由PAB外接圆的唯一性可得P、B、F、A、O共圆,四边形PBFA的外接圆就是四边形PBOA的外接圆,OP是该外接圆的直径..............7分由切割线定理可得PA2PC PD3927.............9分OP PA2OA22725213.四边形PBFA的外接圆的半径为13.............10分23解:〔I〕C1的直角坐标方程为x 12y21,............2分C2的直角坐标方程为x3;............4分〔II〕设曲线C1与x轴异于原点的交点为A, PQOP,PQ过点A(2,0),设直线PQ的参数方程为x2tcost为参数,y tsin代入C1可得t22tcos0,解得t10或t22cos,可知|AP||t2||2cos|............6分代入C2可得2tcos3,解得t/1,1cos可知|AQ||t/|||............8分cos11所以PQ=|AP||AQ||2cos||22,当且仅当|2cos||||时取等号,cos cos所以线段PQ长度的最小值为22.............10分12x,x024.解:〔I〕由可得f(x)1,0x1,2x1,x1所以f min(x)1,............3分所以只需|m 1| 1,解得 1 m 1 1,0 m2,所以实数m的最大值M2.............5分〔II〕法一:综合法a2b22abab1ab1,当且仅当a b时取等号,①............7分又ab a b 2ab1a b2ab ab,当且仅当ab时取等号,②............9分a b2由①②得,ab 1,所以ab2ab.............10分a b2法二:分析法因为 a 0,b0,所以要证a b2ab,只需证(a b)24a2b2,即证a2b22ab4a2b2,a2b2M,所以只要证22ab4a2b2,............7分即证2(ab)2ab10,即证(2ab1)(ab1)0,因为2ab10,所以只需证,ab1下证ab1,因为2a2b22ab,所以ab 成立,1所以a b2ab............10分精品文档强烈推荐精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有精品推荐强力推荐值得拥有。

2018年河北省石家庄市高考一模考试数学理科试题(A)及答案

2018年河北省石家庄市高考一模考试数学理科试题(A)及答案

石家庄市2018届高中毕业班模拟考试(一)理科数学(A 卷)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4,5,6,7}U =,{|3,}A x x x N =≥∈,则U C A =( ) A .{1,2} B .{3,4,5,6,7} C .{1,3,4,7} D .{1,4,7}2.已知i 为虚数单位,(1)2i x yi +=+,其中,x y R ∈,则x yi +=( ) A.22 B .2 C .2 D .43.函数()2(0)xf x x =<,其值域为D ,在区间(1,2)-上随机取一个数x ,则x D ∈的概率是( )A .12 B .13 C .14 D .234.点B 是以线段AC 为直径的圆上的一点,其中2AB =,则AC AB ⋅=u u u r u u u r( )A .1B .2C .3D .45. x ,y 满足约束条件:11y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值为( )A .-3B .32C .3D .4 6.程序框图如图所示,该程序运行的结果为25s =,则判断框中可填写的关于i 的条件是( )A .4?i ≤B .4?i ≥C .5?i ≤D .5?i ≥7.南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:2222221[()]42c a b S c a +-=-,a b c >>),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为( )A .82平方里B .83平方里C .84平方里D .85平方里 8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .83π+B .84π+C .85π+D .86π+ 9.已知()f x 是定义在[2,1]b b -+上的偶函数,且在[2,0]b -上为增函数,则(1)(2)f x f x -≤的解集为( )A .2[1,]3- B .1[1,]3- C .[1,1]- D .1[,1]310.在ABC ∆中,2AB =,6C π=,则3AC BC +的最大值为( )A 7B .27.37.47 11.过抛物线214y x =焦点F 的直线交抛物线于A ,B 两点,点C 在直线1y =-上,若ABC ∆为正三角形,则其边长为( )A .11B .12C .13D .1412.设xOy ,''x Oy 为两个平面直角坐标系,它们具有相同的原点,Ox 正方向到'Ox 正方向的角度为θ,那么对于任意的点M ,在xOy 下的坐标为(,)x y ,那么它在''x Oy 坐标系下的坐标(',')x y 可以表示为:'cos sin x x y θθ=+,'cos sin y y x θθ=-.根据以上知识求得椭圆223'23''5'10x x yy -+-=的离心率为( )A .6 B .6 C .7 D .7 二、填空题:本大题共4小题,每题5分,共20分.13.命题p :01x ∃≥,200230x x --<的否定为 .14.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是 . 15.一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为 .16.已知函数31()1x x f x x -+=-,ln ()xg x x =,若函数(())y f g x a =+有三个不同的零点1x ,2x ,3x (其中123x x x <<),则1232()()()g x g x g x ++的取值范围为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.已知等比数列{}n a 的前n 项和为n S ,且满足122()n n S m m R +=+∈.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足211(21)log ()n n n b n a a +=+⋅,求数列{}n b 的前n 项和n T .18.四棱锥S ABCD -的底面ABCD 为直角梯形,//AB CD ,AB BC ⊥,222AB BC CD ===,SAD ∆为正三角形.(Ⅰ)点M 为棱AB 上一点,若//BC 平面SDM ,AM AB λ=u u u u r u u u r,求实数λ的值;(Ⅱ)若BC SD ⊥,求二面角A SB C --的余弦值.19.小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.(Ⅰ)请分别求出甲、乙两种薪酬方案中日薪y (单位:元)与送货单数n 的函数关系式; (Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在2(1)2(,]1010n n-(1,2,3,4,5)n =时,日平均派送量为502n +单. 若将频率视为概率,回答下列问题:①根据以上数据,设每名派送员的日薪为X (单位:元),试分别求出甲、乙两种方案的日薪X 的分布列,数学期望及方差;②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:20.60.36=,21.4 1.96=,22.6 6.76=,23.411.56=,23.612.96=,24.621.16=,215.6243.36=,220.4416.16=,244.41971.36=)20.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F 2,M为椭圆上任意一点,当1290F MF ∠=o时,12F MF ∆的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知点A 是椭圆C 上异于椭圆顶点的一点,延长直线1AF ,2AF 分别与椭圆交于点B ,D ,设直线BD 的斜率为1k ,直线OA 的斜率为2k ,求证:12k k ⋅为定值.21.已知函数()()()xf x x b e a =+-,(0)b >,在(1,(1))f --处的切线方程为(1)10e x ey e -++-=.(Ⅰ)求a ,b ;(Ⅱ)若方程()f x m =有两个实数根1x ,2x ,且12x x <,证明:21(12)11m e x x e--≤+-.(二)选考题:共10分,请考生在22、23题中任选一题作答,并用2B 铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分. 22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线C 的参数方程为cos 1sin x r y r ϕϕ⎧=⎪⎨=+⎪⎩(0r >,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin()13πρθ-=,若直线l 与曲线C 相切;(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)在曲线C 上取两点M ,N 与原点O 构成MON ∆,且满足6MON π∠=,求面积MON ∆的最大值.23.[选修4-5:不等式选讲]已知函数()f x =R ;(Ⅰ)求实数m 的取值范围;(Ⅱ)设实数t 为m 的最大值,若实数a ,b ,c 满足2222a b c t ++=,求222111123a b c +++++的最小值.石家庄市2017-2018学年高中毕业班第一次模拟考试试题理科数学答案一、选择题1-5: AABDC 6-10: CCDBD 11、12:BA 二、填空题13. 2:1,230p x x x ⌝∀≥--≥ 14. 乙15. 22,0e e ⎛⎫- ⎪-⎝⎭三、解答题 17解:(1) 法一:由122()n n S m m R +=+∈得122()nn S m m R -=+∈, 当当2n ≥时,12222n n n n a S S -=-=,即12(2)n n a n -=≥,又1122m a S ==+,当2m =-时符合上式,所以通项公式为12n n a -=. 法二:由122()n n S m m R +=+∈得1232;4;8()S m S m S m m R =+⎧⎪=+⎨⎪=+∈⎩,从而有2213322,4a S S a S S =-==-=, 所以等比数列公比322a q a ==,首项11a =,因此通项公式为12n n a -=. (2)由(1)可得1212log ()log (22)21n n n n a a n -+⋅=⋅=-,1111()(21)(21)22121n b n n n n ∴==-+--+,12111111(1)2335212121n n nT b b b n n n ∴=+++=-+-++-=-++L L . 18.(1)因为//BC 平面SDM ,BC ⊂平面ABCD ,平面SDM I 平面ABCD=DM , 所以DM BC //,因为DC AB //,所以四边形BCDM 为平行四边形, 又CD AB 2=,所以M 为AB 的中点. 因为AB AM λ=,12λ∴=.(2)因为BC ⊥SD , BC ⊥CD , 所以BC ⊥平面SCD , 又因为BC ⊂平面ABCD , 所以平面SCD ⊥平面ABCD , 平面SCD I 平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E , 则SE ⊥平面ABCD , 在Rt SEA V 和Rt SED V 中, 因为SA SD =,所以AE DE ===,又由题知45EDA ∠=o , 所以AE ED ⊥所以1AE ED SE ===, 以下建系求解.以点E 为坐标原点,EA 方向为X 轴,EC 方向为Y 轴,ES 方向为Z 轴建立如图所示空间坐标系,则(0,0,0)E ,(0,0,1)S ,(1,0,0)A ,(1,2,0)B ,(0,2,0)C ,(1,0,1)SA =-u u r ,(0,2,0)AB =u u u r ,(0,2,1)SC =-u u u r ,(1,0,0)CB =u u u r,设平面SAB 的法向量1(,,)n x y z =u r ,则110n SA n AB ⎧⋅=⎪⎨⋅=⎪⎩u r u u r u r u u u r,所以020x z y -=⎧⎨=⎩,令1x =得1(1,0,1)n =u r为平面SAB 的一个法向量,同理得2(0,1,2)n =u u r为平面SBC 的一个法向量,121212cos ,5||||n n n n n n ⋅<>==⋅u r u u ru r u u r u r u u r ,因为二面角A SB C --为钝角, 所以二面角A SB C --余弦值为.19.解:(1)甲方案中派送员日薪y (单位:元)与送单数n 的函数关系式为: N ,100∈+=n n y , 乙方案中派送员日薪y (单位:元)与送单数n 的函数关系式为:⎩⎨⎧∈>-∈≤=N),55(,52012N),55(,140n n n n n y , (2)①由已知,在这100天中,该公司派送员日平均派送单数满足如下表格: 单数 52 54 56 58 60 频率0.20.30.20.20.1所以X 甲的分布列为:X 甲152 154 156 158 160 P0.20.30.20.20.1所以()=1520.21540.31560.21580.21600.1155.4E X ⨯+⨯+⨯+⨯+⨯=甲,()()()()()222222=0.2152155.4+0.3154155.4+0.2156155.4+0.2158155.4+0.1160155.4=6.44S ⨯-⨯-⨯-⨯-⨯-甲,所以X 乙的分布列为:X 乙140 152 176 200 P0.50.20.20.1所以()=1400.51520.21760.22000.1=155.6E X ⨯+⨯+⨯+⨯乙,()()()()22222=0.5140155.6+0.2152155.6+0.2176155.6+0.1200155.6=404.64S ⨯-⨯-⨯-⨯-乙,②答案一:由以上的计算可知,虽然()()E X E X <乙甲,但两者相差不大,且2S 甲远小于2S 乙,即甲方案日工资收入波动相对较小,所以小明应选择甲方案. 答案二:由以上的计算结果可以看出,()()E X E X <乙甲,即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案. 20解:(1)设,,2211r MF r MF ==由题12222121224112c e a r r ar r c r r ⎧==⎪⎪+=⎪⎨+=⎪⎪⋅=⎪⎩,解得1a c ==,则21b =,∴椭圆C 的方程为2212x y +=.(2)设0000(,)(0)A x y x y ⋅≠,1122(,),(,)B x y C x y , 当直线1AF的斜率不存在时,设(A -,则(1,B -, 直线2AF的方程为1)4y x =--代入2212x y +=,可得25270x x --= 275x ∴=,210y =-,则7(,)510D -∴直线BD的斜率为1(10276(1)5k -==--,直线OA的斜率为22k =-,121(626k k ∴⋅=-=-, 当直线2AF 的斜率不存在时,同理可得1216k k ⋅=-.当直线1AF 、2AF 的斜率存在时,10±≠x设直线1AF 的方程为00(1)1y y x x =++,则由0022(1)112y y x x x y ⎧=+⎪+⎪⎨⎪+=⎪⎩消去x 可得:22222200000[(1)2]422(1)0x y x y x y x ++++-+=, 又220012x y +=,则220022y x =-,代入上述方程可得2220000(32)2(2)340x x x x x x ++---=,2000101003434,3232x x x x x x x x ----∴⋅=∴=++,则000100034(1)13232y x y y x x x --=+=-+++ 000034(,)2323x y B x x +∴--++,设直线2AF 的方程为00(1)1y y x x =--,同理可得000034(,)2323x y D x x ---, ∴直线BD 的斜率为000000001220000002323434341224362323y y x x x y x y k x x x x x x +-+===-+--+-+, Q 直线OA 的斜率为020y k x =, ∴20200001222200001123636366x x y y y k k x x x x -⋅=⋅===----. 所以,直线BD 与OA 的斜率之积为定值16-,即1216k k ⋅=-. 21.解:(Ⅰ)由题意()10f -=,所以()1(1)10f b a e ⎛⎫-=-+-=⎪⎝⎭, 又()()1x f x x b e a '=++-,所以1(1)1b f a e e'-=-=-+,若1a e=,则20b e =-<,与0b >矛盾,故1a =,1b =. (Ⅱ)由(Ⅰ)可知()()()11x f x x e =+-, (0)0,(1)0f f =-=, 设)(x f 在(-1,0)处的切线方程为)(x h ,易得,()1()11h x x e ⎛⎫=-+ ⎪⎝⎭,令()()()F x f x h x =-即()()()1()1111xF x x e x e ⎛⎫=+---+⎪⎝⎭,()1()2x F x x e e '=+-,当2x ≤-时,()11()20x F x x e e e'=+-<-< 当2x >-时,设()1()()2x G x F x x e e'==+-, ()()30x G x x e '=+>, 故函数()F x '在()2,-+∞上单调递增,又(1)0F '-=,所以当(),1x ∈-∞-时,()0F x '<,当()1,x ∈-+∞时,()0F x '>, 所以函数()F x 在区间(),1-∞-上单调递减,在区间()1,-+∞上单调递增, 故0)1()(=-≥F x F ,11()()f x h x ≥,设()h x m =的根为1x ',则111mex e'=-+-, 又函数()h x 单调递减,故111()()()h x f x h x '=≥,故11x x '≤, 设()y f x =在(0,0)处的切线方程为()y t x =,易得()t x x =, 令()()()()()11xT x f x t x x e x =-=+--,()()22x T x x e '=+-,当2x ≤-时,()()2220x T x x e '=+-<-<, 当2x >-时,故函数()T x '在()2,-+∞上单调递增,又(0)0T '=,所以当(),0x ∈-∞时,()0T x '<,当()0,x ∈+∞时,()0T x '>, 所以函数()T x 在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,0)0()(=≥T x T ,22()()f x t x ≥ ,设()t x m =的根为2x ',则2x m '=,又函数()t x 单调递增,故222()()()t x f x t x '=≥,故22x x '≥, 又11x x '≤,2121(12)1111me m e x x x x m e e -⎛⎫''-≤-=--+=+ ⎪--⎝⎭. 选作题22(1)由题意可知直线l 的直角坐标方程为32y x =+,曲线C 是圆心为(3,1),半径为r 的圆,直线l 与曲线C 相切,可得:33122r ⋅-+==;可知曲线C 的方程为22(3)(1)4x y -+-=,所以曲线C 的极坐标方程为223cos 2sin 0ρρθρθ--=,即4sin()3ρθπ=+.(2)由(1)不妨设M (1,ρθ),)6,(2πθρ+N ,(120,0ρρ>>) 6sin 21πON OM S MON =∆.当12πθ=时, 32+≤∆MON S ,所以△MON 面积的最大值为23. 23. 【解析】(1)由题意可知32x x m --≥恒成立,令3()2x g x x -=-,去绝对值可得:36,(3)()263,(03)6,(0)x x x g x x x x x x --≥⎧⎪=-=-<<⎨⎪-≤⎩,画图可知()g x 的最小值为-3,所以实数m 的取值范围为3m ≤-; (2)由(1)可知2229a b c ++=,所以22212315a b c +++++=,222222222111()(123)11112312315a b c a b c a b c ++⋅++++++++++=+++ 22222222222221313239312132315155b ac a c b a b a c b c ++++++++++++++++++=≥=, 当且仅当2221235a b c +=+=+=,即2224,3,2a b c ===等号成立, 所以222111123a b c +++++的最小值为35.。

河北省石家庄市2018届高考一模考试数学(理)试题(A)及解析

河北省石家庄市2018届高考一模考试数学(理)试题(A)及解析

石家庄市2018届高中毕业班模拟考试(一)理科数学(A卷)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】故选A.2. 已知为虚数单位,,其中,则()A. B. C. 2 D. 4【答案】A【解析】,其中,解得,,故选3. 函数,其值域为,在区间上随机取一个数,则的概率是()A. B. C. D.【答案】B【解析】函数的值域为,即,则在区间上随机取一个数的概率.故选B.4. 点是以线段为直径的圆上的一点,其中,则()A. 1B. 2C. 3D. 4【答案】D【解析】故选5. ,满足约束条件:,则的最大值为()A. -3B.C. 3D. 4【解析】依题意可画出可行域如下:联立,可得交点(2,-1),如图所示,当经过点(2,-1)时,z最大为3.故选C.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.6. 程序框图如图所示,该程序运行的结果为,则判断框中可填写的关于的条件是()A. B. C. D.【答案】C【解析】第一次运行,第二次运行,第三次运行,第四次运行,第五次运行,此时,输出25,故选C7. 南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:,),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为()A. 82平方里B. 83平方里C. 84平方里D. 85平方里【解析】由题意可得:代入:则该三角形田面积为平方里故选8. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.【答案】D【解析】由图可知,几何体为半圆柱挖去半球体几何体的表面积为故选9. 已知是定义在上的偶函数,且在上为增函数,则的解集为()A. B. C. D.【答案】B【解析】是定义在上的偶函数,,即,则函数的定义域为函数在上为增函数,故两边同时平方解得,故选10. 在中,,,则的最大值为()A. B. C. D.【答案】D【解析】有正弦定理可得,故当时,的最大值为.故选D.11. 过抛物线焦点的直线交抛物线于,两点,点在直线上,若为正三角形,则其边长为()A. 11B. 12C. 13D. 14【答案】B【解析】如图:设,则:,取中点,分别作垂直于直线,连接则有,相减可得:即故设则,解得故,解得故选12. 设,为两个平面直角坐标系,它们具有相同的原点,正方向到正方向的角度为,那么对于任意的点,在下的坐标为,那么它在坐标系下的坐标可以表示为:,.根据以上知识求得椭圆的离心率为()A. B. C. D.【答案】A【解析】则故可化为方程表示为椭圆化简得:代入方程得:,,,故故选点睛:本题主要考查了三角函数的计算问题,以平面直角坐标系为载体,新定义坐标系,建立两坐标之间的关系,代入化简,由题意中的椭圆求出的值,再次代入求出结果,计算量比较大,有一定的难度。

河北石家庄市2018届高三数学4月一模试卷理科附答案

河北石家庄市2018届高三数学4月一模试卷理科附答案

河北石家庄市2018届高三数学4月一模试卷(理科附答案)石家庄市2018届高中毕业班模拟考试(一)理科数学(A卷)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.2.已知为虚数单位,,其中,则()A.B.C.2D.43.函数,其值域为,在区间上随机取一个数,则的概率是()A.B.C.D.4.点是以线段为直径的圆上的一点,其中,则()A.1B.2C.3D.45.,满足约束条件:,则的最大值为()A.-3B.C.3D.46.程序框图如图所示,该程序运行的结果为,则判断框中可填写的关于的条件是()A.B.C.D.7.南宋数学家秦九韶早在《数书九章》中就独立创造了已知三角形三边求其面积的公式:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减之,以四约之,为实,一为从隅,开方得积.”(即:,),并举例“问沙田一段,有三斜(边),其小斜一十三里,中斜一十四里,大斜一十五里,欲知为田几何?”则该三角形田面积为()A.82平方里B.83平方里C.84平方里D.85平方里8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A.B.C.D.9.已知是定义在上的偶函数,且在上为增函数,则的解集为()A.B.C.D.10.在中,,,则的最大值为()A.B.C.D.11.过抛物线焦点的直线交抛物线于,两点,点在直线上,若为正三角形,则其边长为()A.11B.12C.13D.1412.设,为两个平面直角坐标系,它们具有相同的原点,正方向到正方向的角度为,那么对于任意的点,在下的坐标为,那么它在坐标系下的坐标可以表示为:,.根据以上知识求得椭圆的离心率为()A.B.C.D.二、填空题:本大题共4小题,每题5分,共20分.13.命题:,的否定为.14.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙的年龄比学委的大,甲与体委的年龄不同,体委比乙年龄小.据此推断班长是.15.一个直角三角形的三个顶点分别在底面棱长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为.16.已知函数,,若函数有三个不同的零点,,(其中),则的取值范围为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.已知等比数列的前项和为,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足,求数列的前项和.18.四棱锥的底面为直角梯形,,,,为正三角形.(Ⅰ)点为棱上一点,若平面,,求实数的值;(Ⅱ)若,求二面角的余弦值.19.小明在石家庄市某物流派送公司找到了一份派送员的工作,该公司给出了两种日薪薪酬方案.甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元. (Ⅰ)请分别求出甲、乙两种薪酬方案中日薪(单位:元)与送货单数的函数关系式;(Ⅱ)根据该公司所有派送员100天的派送记录,发现派送员的日平均派送单数满足以下条件:在这100天中的派送量指标满足如图所示的直方图,其中当某天的派送量指标在时,日平均派送量为单.若将频率视为概率,回答下列问题:①根据以上数据,设每名派送员的日薪为(单位:元),试分别求出甲、乙两种方案的日薪的分布列,数学期望及方差;②结合①中的数据,根据统计学的思想,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:,,,,,,,,)20.已知椭圆:的左、右焦点分别为,,且离心率为,为椭圆上任意一点,当时,的面积为1.(Ⅰ)求椭圆的方程;(Ⅱ)已知点是椭圆上异于椭圆顶点的一点,延长直线,分别与椭圆交于点,,设直线的斜率为,直线的斜率为,求证:为定值.21.已知函数,,在处的切线方程为.(Ⅰ)求,;(Ⅱ)若方程有两个实数根,,且,证明:.(二)选考题:共10分,请考生在22、23题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分. 22.[选修4-4:坐标系与参数方程]在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;(Ⅰ)求曲线的极坐标方程;(Ⅱ)在曲线上取两点,与原点构成,且满足,求面积的最大值.23.[选修4-5:不等式选讲]已知函数的定义域为;(Ⅰ)求实数的取值范围;(Ⅱ)设实数为的最大值,若实数,,满足,求的最小值.石家庄市2017-2018学年高中毕业班第一次模拟考试试题理科数学答案一、选择题1-5:AABDC6-10:CCDBD11、12:BA二、填空题13.14.乙15.16.三、解答题17解:(1)法一:由得,当当时,,即,又,当时符合上式,所以通项公式为.法二:由得,从而有,所以等比数列公比,首项,因此通项公式为.(2)由(1)可得,,.18.(1)因为平面SDM,平面ABCD,平面SDM平面ABCD=DM,所以,因为,所以四边形BCDM为平行四边形,又,所以M为AB的中点.因为,.(2)因为,,所以平面,又因为平面,所以平面平面,平面平面,在平面内过点作直线于点,则平面,在和中,因为,所以,又由题知,所以所以,以下建系求解.以点E为坐标原点,EA方向为X轴,EC方向为Y轴,ES 方向为Z轴建立如图所示空间坐标系,则,,,,,,,,,设平面的法向量,则,所以,令得为平面的一个法向量,同理得为平面的一个法向量,,因为二面角为钝角,所以二面角余弦值为.19.解:(1)甲方案中派送员日薪(单位:元)与送单数的函数关系式为:,乙方案中派送员日薪(单位:元)与送单数的函数关系式为:,①由已知,在这100天中,该公司派送员日平均派送单数满足如下表格:单数5254565860频率0.20.30.20.20.1所以的分布列为:1521541561581600.20.30.20.20.1所以,,所以的分布列为:1401521762000.50.20.20.1所以,,②答案一:由以上的计算可知,虽然,但两者相差不大,且远小于,即甲方案日工资收入波动相对较小,所以小明应选择甲方案.答案二:由以上的计算结果可以看出,,即甲方案日工资期望小于乙方案日工资期望,所以小明应选择乙方案.20解:(1)设由题,解得,则,椭圆的方程为.(2)设,,当直线的斜率不存在时,设,则,直线的方程为代入,可得,,则直线的斜率为,直线的斜率为,,当直线的斜率不存在时,同理可得. 当直线、的斜率存在时,设直线的方程为,则由消去可得:,又,则,代入上述方程可得,,则,设直线的方程为,同理可得,直线的斜率为,直线的斜率为,.所以,直线与的斜率之积为定值,即. 21.解:(Ⅰ)由题意,所以,又,所以,若,则,与矛盾,故,.(Ⅱ)由(Ⅰ)可知,,设在(-1,0)处的切线方程为,易得,,令即,,当时,当时,设,,故函数在上单调递增,又,所以当时,,当时,,所以函数在区间上单调递减,在区间上单调递增,故,,设的根为,则,又函数单调递减,故,故,设在(0,0)处的切线方程为,易得,令,,当时,,当时,故函数在上单调递增,又,所以当时,,当时,,所以函数在区间上单调递减,在区间上单调递增,,,设的根为,则,又函数单调递增,故,故,又,.选作题22(1)由题意可知直线的直角坐标方程为,曲线是圆心为,半径为的圆,直线与曲线相切,可得:;可知曲线C的方程为,所以曲线C的极坐标方程为,即.(2)由(1)不妨设M(),,().当时,,所以△MON面积的最大值为.23.【解析】(1)由题意可知恒成立,令,去绝对值可得:,画图可知的最小值为-3,所以实数的取值范围为;(2)由(1)可知,所以,,当且仅当,即等号成立,所以的最小值为.石家庄市2017-2018学年高中毕业班第一次模拟考试试题理科数学答案选择题(A卷答案)1-5AABDC6-10CCDBD11-12BA(B卷答案)1-5BBADC6-10CCDAD11-12AB填空题13.14.乙15.16.三、解答题(解答题仅提供一种或两种解答,其他解答请参照此评分标准酌情给分)17解:(1)[KS5UKS5UKS5U]法一:由得………………2分当当时,,即………………4分又,当时符合上式,所以通项公式为………………6分法二:由得………………2分从而有………………4分所以等比数列公比,首项,因此通项公式为………………6分(2)由(1)可得…………………8分………………………10分……………12分18(1)因为平面SDM,平面ABCD,平面SDM平面ABCD=DM,所以……………………2分因为,所以四边形BCDM为平行四边形,又,,所以M为AB的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档