二次函数的图象和性质第1课时ppt课件
合集下载
二次函数的图形与性质PPT教学课件

探究一
在同一坐标系中画出下列函数 的图象:
y 3x2 ; y 3x2 2 ; y 3(x 1)2.
思考:它们的图象之间有 什么关系?
y
o
x
【解析】
函数 y 3x 2 2的图象
向上平移2个单位
函数 y 3x2 的图象
向右平移1个单位
函数 y 3( x 1)2 的图象
y
o
x
【归纳升华】
连接中考:
• 13.正确描述昌乐西瓜、青州银瓜共同特点
的是 C
• A.两性花,自花传粉 • B.两性花,雌雄同株 • C.单性花,异花传粉 • D.单性花,雌雄异株
连接中考:
• 14.右图为青州蜜桃切面图,图中所示结构a
是由( D)发育而来的。
• A.胚珠 • B.珠被 • C.受精卵 • D.子房壁
菜豆种子与玉米种子萌发过程的异同
相同点: 种子吸水膨胀;胚根首先突破 种皮,发育成根。随着胚轴伸长,使胚芽 露出地面,胚芽发育成茎和叶。种子的胚 就发育成幼苗。
不同点:菜豆种子的子叶包着胚芽出土, 玉米种子的子叶不出土;玉米种子的胚乳 留在土中;菜豆种子萌发所需的营养来自 子叶,玉米种子萌发所需的营养来自于胚 乳。
开口方向 向上 向下
对称轴 顶点坐标 直线x=h (h,k) 直线x=h (h,k)
2.y=a(x-h)2+k的图象与y=ax2的图象的关系.
抓着今天,你就会前进一步;丢弃今天, 你就会停滞不动.
第一章 绿色开花植物的一生
自问自答:
• 1、完全花的结构? • 2、解剖花实验? • 3、单性花和两性花? 举例 • 4、雌雄同株植物和雌雄异株植物? 举例 • 5、单生花和花序? 举例
二次函数 y=ax2的图象及其性质ppt课件

x轴
______对称.
如果已知y=ax2 (a≠0)的图象,可通过
2的图象.
翻折
_________更方便地得到y=-ax
上
当a>0时,抛物线开口向___;
当a<0时,抛物线开口向___.
下
y
7
6
5
4
3
2
1
-5 -4 -3 -2 -1 O
-1
-2
-3
-4
-5
-6
y=2x2
1 2 3 4 5
x
y=-2x2
第1章 二次函数
1.2 二次函数的图象
第1课时 二次函数 y=ax²的图象及其性质
学习目标
知识与技能 :能够利用描点法画函数y=ax2的图象。
过程与方法 :
①经历二次函数y=ax2图象的作法。
②探索二次函数y=ax2性质,获得利用图象研究函数性质的经验。
重点:会画函数y=ax2的图象,并根据图象认识和理解二次函数y=ax2
0 时, y 随x 的增大而减小
当 x=0 时, y 最大值 =0
16
探究新知
例1 已知二次函数y=ax2 (a≠0)的图象经过点(-2,-3).
(1)求a的值,并写出这个二次函数的表达式.
解:把点(-2,-3)的坐标代入y=ax2 ,
得-3=a(-2)2,
解得 a=-
.
所以这个二次函数的表达式是y=-
0.5x2的图象,它们的共同特点是( D )
A.都关于x轴对称,抛物线开口向上
B.都关于原点对称,顶点都是原点
C.都关于y轴对称,抛物线开口向下
D.都关于y轴对称,顶点都是原点
24
《二次函数的图像和性质》PPT(第1课时)

第三十章 二次函数
二次函数的图像和性质
第1课时
导入新课
讲授新课
当堂练习
-.
课堂小结
学习目标
1.正确理解抛物线的有关概念.(重点) 2.会用描点法画出二次函数y=ax²的图像,概括出图像 的特点.(难点) 3.掌握形如y=ax²的二次函数图像的性质,并会应用. (难点)
导入新课
情境引入
讲授新课
一 二次函数y=ax2的图像
问题2:观察图形,y随x的变化如何变化?
y x2
y ax2
(-1,-1) (-2,-4)
(1,-1) (2,-4)
知识要点
对于抛物线 y = ax 2 (a<0)
当x>0时,y随x取值的增大而减小; 当x<0时,y随x取值的增大而增大.
例2 在同一直角坐标系中,画出函数 y 1 x2, y 2x2 的图像.
关系是什么?
y y=ax2
二次项系数互为相反数,
开口相反,大小相同,
它们关于x轴对称.
O
x y=-ax2
二 二次函数y=ax2的性质 问题1:观察图形,y随x的变化如何变化?
(-2,4)
(2,4)
(-1,1)
(1,1)
y x2
y ax2
知识要点
对于抛物线 y = ax 2 (a>0) 当x>0时,y随x取值的增大而增大; 当x<0时,y随x取值的增大而减小.
< (1)若点(-2,y1)与(3,y2)在此二次函数的图像上,则y1_____y2;
(填“>”“=”或“<”);
(2)如图,此二次函数的图像经过点(0,0),长方形ABCD的顶
点A、B在x轴上,C、D恰好在二次函数的图像上,B点的横坐标
二次函数的图像和性质
第1课时
导入新课
讲授新课
当堂练习
-.
课堂小结
学习目标
1.正确理解抛物线的有关概念.(重点) 2.会用描点法画出二次函数y=ax²的图像,概括出图像 的特点.(难点) 3.掌握形如y=ax²的二次函数图像的性质,并会应用. (难点)
导入新课
情境引入
讲授新课
一 二次函数y=ax2的图像
问题2:观察图形,y随x的变化如何变化?
y x2
y ax2
(-1,-1) (-2,-4)
(1,-1) (2,-4)
知识要点
对于抛物线 y = ax 2 (a<0)
当x>0时,y随x取值的增大而减小; 当x<0时,y随x取值的增大而增大.
例2 在同一直角坐标系中,画出函数 y 1 x2, y 2x2 的图像.
关系是什么?
y y=ax2
二次项系数互为相反数,
开口相反,大小相同,
它们关于x轴对称.
O
x y=-ax2
二 二次函数y=ax2的性质 问题1:观察图形,y随x的变化如何变化?
(-2,4)
(2,4)
(-1,1)
(1,1)
y x2
y ax2
知识要点
对于抛物线 y = ax 2 (a>0) 当x>0时,y随x取值的增大而增大; 当x<0时,y随x取值的增大而减小.
< (1)若点(-2,y1)与(3,y2)在此二次函数的图像上,则y1_____y2;
(填“>”“=”或“<”);
(2)如图,此二次函数的图像经过点(0,0),长方形ABCD的顶
点A、B在x轴上,C、D恰好在二次函数的图像上,B点的横坐标
二次函数图像与性质(第1课时)

一次项和常数项,但不能没有二次项。 (4)x的取值范围是任意实数。
(5) 函数的右边是一个 整 式
二次函数的一般形式: y=ax2+bx+c (其中a、b、c是常数,a≠0)
二次函数的特殊形式:
– 当b=0时, y=ax2+c – 当c=0时, y=ax2+bx – 当b=0,c=0时, y=ax2
-2 -4.5
4 ··· ···
-8
x ··· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
y 2x2 ··· -8 -4.5 -2 -0.5 0 -0.5 -2 -4.5 -8 ···
-4
你画出的图象与图中相同吗?
-2 -2 -4
请找出相同点与不同点:
-6
-8
y x2
4
增大
2
不同点:a 值越大,抛物线
的开口越小.
-4 -2
y 2x2
y 1 x2 2
24
探究
画出函数
y
x2,
y
1 2
x2,
y
2x2
的图象,并考虑这些抛物线有什么共同点和不同点.
x ··· -4 -3 -2 -1 0 1 2 3
y
1 2
x2
···
-8
-4.5
-2 -0.5
0
-0.5
9 6 3
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称轴的交点(0, 0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点.
实际上,每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线 的顶点.顶点是抛物线的最低点或最高点.
(5) 函数的右边是一个 整 式
二次函数的一般形式: y=ax2+bx+c (其中a、b、c是常数,a≠0)
二次函数的特殊形式:
– 当b=0时, y=ax2+c – 当c=0时, y=ax2+bx – 当b=0,c=0时, y=ax2
-2 -4.5
4 ··· ···
-8
x ··· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
y 2x2 ··· -8 -4.5 -2 -0.5 0 -0.5 -2 -4.5 -8 ···
-4
你画出的图象与图中相同吗?
-2 -2 -4
请找出相同点与不同点:
-6
-8
y x2
4
增大
2
不同点:a 值越大,抛物线
的开口越小.
-4 -2
y 2x2
y 1 x2 2
24
探究
画出函数
y
x2,
y
1 2
x2,
y
2x2
的图象,并考虑这些抛物线有什么共同点和不同点.
x ··· -4 -3 -2 -1 0 1 2 3
y
1 2
x2
···
-8
-4.5
-2 -0.5
0
-0.5
9 6 3
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称轴的交点(0, 0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点.
实际上,每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线 的顶点.顶点是抛物线的最低点或最高点.
人教版九年级上册二次函数y=ax2+bx+c的图象和性质(第1课时)课件

2
b 4ac b 2
y=a(x-h)2+k。
a x
2
2a
4a
2
b
4
ac
b
a x
.
2a
4a
2
引入
y=ax 2 +bx+c的性质
探究
归纳总结
举个栗子
2
b
4
ac
b
y ax 2 bx c a x
1 2
y x 6 x 21
2
1 2
( x 12 x 42)
2
1 2
( x 12 x 62 62 42)
2
1
2
[( x 6) 6]
2
1
( x 6)2 3.
2
y=ax 2 +bx+c的性质
探究 将 =
1 2
2
引入
探究
归纳总结
举个栗子
22.1 二次函数的图像和性质
22.1.4 y=ax 2+bx+c的图像性质
y=ax 2 +bx+c的性质
引入
探究
二次函数的一般式y=ax2+bx+c,有什么性质?
它的开口由什么决定?
对称轴是什么?
顶点是什么?
归纳总结
举个栗子Βιβλιοθήκη 练习y=ax 2 +bx+c的性质
引入
用配方法解一元二次方程:x2+2x+2=0
1 2
= − 6 + 21
b 4ac b 2
y=a(x-h)2+k。
a x
2
2a
4a
2
b
4
ac
b
a x
.
2a
4a
2
引入
y=ax 2 +bx+c的性质
探究
归纳总结
举个栗子
2
b
4
ac
b
y ax 2 bx c a x
1 2
y x 6 x 21
2
1 2
( x 12 x 42)
2
1 2
( x 12 x 62 62 42)
2
1
2
[( x 6) 6]
2
1
( x 6)2 3.
2
y=ax 2 +bx+c的性质
探究 将 =
1 2
2
引入
探究
归纳总结
举个栗子
22.1 二次函数的图像和性质
22.1.4 y=ax 2+bx+c的图像性质
y=ax 2 +bx+c的性质
引入
探究
二次函数的一般式y=ax2+bx+c,有什么性质?
它的开口由什么决定?
对称轴是什么?
顶点是什么?
归纳总结
举个栗子Βιβλιοθήκη 练习y=ax 2 +bx+c的性质
引入
用配方法解一元二次方程:x2+2x+2=0
1 2
= − 6 + 21
二次函数的图像与性质(第一课时)优质课件

对称轴与抛物 线的交点叫做 抛物线的顶点.
抛物线y=x2在x轴的上方(除顶点外), 顶点是它的最低点,开口向上, 当x=0 时,函数y的值最小,最小值是0.
【内容】独立完成探究点一的针对练习、 探究点二。(5min)
【要求】1.独立思考,认真分析总结; 2.标记好自己的疑难问题,以便讨论 探究; 3.自主独立做题,2min时间到后学 科组长组织组员针对疑难问题及 小组任务进行讨论交流。
2.2 二次函数的图像与性质(一)
我们把物体抛射时所经过的路线叫做抛物线.
1.经历探索二次函数y=x2 的图像的作法
和性质的过程,获得利用图像研究函数性质 的经验;
2.能够利用描点法作出二次函数y=x2的图 像,并能根据图像认识和理解二次函数y=x2 的性质;
3.能够作出二次函数 y=-x2的图像,并能 够y=x2比较出与 的图像的异同,初步建立二 次函数表达式与图像之间的联系.
【内容】快速、独立完成训练案“自测反馈”(8min) 【要求】1.独立思考,认真分析总结
2.标记好自己的疑难问题,以便课后讨论探究
探究内容 展示小组
14组小2源自2组组 合3
6组
作
4
5组
能力提升1
1组
能力提升2
3组
【要求】1.独立完成训练案的填空题;2.标记好自己的疑难
问题,以便讨论 ;3.针对疑难,自由探讨,互帮互助.
2、剩余时间思考探究案中其他问题,并把你认为正确的答 案写在学案上。
1.列表时注意自变量X的取值是否有意义.
(1)反比例函数: y
2
x
(x≠0)
(2)圆的面积公式:S r 2 (r≥0)
(3)二次函数: y=-x2 (x取全体实数)
抛物线y=x2在x轴的上方(除顶点外), 顶点是它的最低点,开口向上, 当x=0 时,函数y的值最小,最小值是0.
【内容】独立完成探究点一的针对练习、 探究点二。(5min)
【要求】1.独立思考,认真分析总结; 2.标记好自己的疑难问题,以便讨论 探究; 3.自主独立做题,2min时间到后学 科组长组织组员针对疑难问题及 小组任务进行讨论交流。
2.2 二次函数的图像与性质(一)
我们把物体抛射时所经过的路线叫做抛物线.
1.经历探索二次函数y=x2 的图像的作法
和性质的过程,获得利用图像研究函数性质 的经验;
2.能够利用描点法作出二次函数y=x2的图 像,并能根据图像认识和理解二次函数y=x2 的性质;
3.能够作出二次函数 y=-x2的图像,并能 够y=x2比较出与 的图像的异同,初步建立二 次函数表达式与图像之间的联系.
【内容】快速、独立完成训练案“自测反馈”(8min) 【要求】1.独立思考,认真分析总结
2.标记好自己的疑难问题,以便课后讨论探究
探究内容 展示小组
14组小2源自2组组 合3
6组
作
4
5组
能力提升1
1组
能力提升2
3组
【要求】1.独立完成训练案的填空题;2.标记好自己的疑难
问题,以便讨论 ;3.针对疑难,自由探讨,互帮互助.
2、剩余时间思考探究案中其他问题,并把你认为正确的答 案写在学案上。
1.列表时注意自变量X的取值是否有意义.
(1)反比例函数: y
2
x
(x≠0)
(2)圆的面积公式:S r 2 (r≥0)
(3)二次函数: y=-x2 (x取全体实数)
人教版九年级数学上册《二次函数y=a(x-h)_+k的图象和性质》第1课时 课件(共22张PPT)

复习回顾
二次函数 =
>0
的图像和性质
<0
图像
开口方向
对称轴
顶点
<0
增减性
>0
开口大小
向上
向下
轴
轴
(0,0) (0,0) 最低点ቤተ መጻሕፍቲ ባይዱ
(0,0) (0,0) 最高点
随 的增大而减小
随 的增大而增大
随 的增大而增大
随 的增大而减小
越大,开口越小
探究二次函数 =
2
+ ≠ 0 的图像和性质
1 在同一个直角坐标系中画出 1 = 22,2 = 22 + 1,3 = 22 − 1 的图象.
1. 列表
1 =
···
2
2
2 = 22 + 1
3 =
2
2
−1
−2 −1.5 −1 −0.5
0
0.5
1
1.5
2
···
···
8
4.5
2
0.5
0
0.5
(0, ) 最高点
函数性质
最值
有最小值是
有最大值是
探究二次函数 =
2
+ ≠ 0 的图像和性质
6 抛物线 = 2 + 的性质.
图像从左至右 在对称轴左侧
的变化趋势 在对称轴右侧
增减性
>0
<0
下降
上升
上升
下降
>0
<0
<0
随 的增大而减小 随 的增大而增大
二次函数 =
>0
的图像和性质
<0
图像
开口方向
对称轴
顶点
<0
增减性
>0
开口大小
向上
向下
轴
轴
(0,0) (0,0) 最低点ቤተ መጻሕፍቲ ባይዱ
(0,0) (0,0) 最高点
随 的增大而减小
随 的增大而增大
随 的增大而增大
随 的增大而减小
越大,开口越小
探究二次函数 =
2
+ ≠ 0 的图像和性质
1 在同一个直角坐标系中画出 1 = 22,2 = 22 + 1,3 = 22 − 1 的图象.
1. 列表
1 =
···
2
2
2 = 22 + 1
3 =
2
2
−1
−2 −1.5 −1 −0.5
0
0.5
1
1.5
2
···
···
8
4.5
2
0.5
0
0.5
(0, ) 最高点
函数性质
最值
有最小值是
有最大值是
探究二次函数 =
2
+ ≠ 0 的图像和性质
6 抛物线 = 2 + 的性质.
图像从左至右 在对称轴左侧
的变化趋势 在对称轴右侧
增减性
>0
<0
下降
上升
上升
下降
>0
<0
<0
随 的增大而减小 随 的增大而增大
二次函数的图象与性质(第一课时) 课件(共34张PPT)北师大版初中数学九年级下册

(g为定值)
此外,二次函数在建筑学上也有重要应用,如抛物线型隧道、抛物线型拱桥、抛物线型吊桥、抛物线型弯道等.要确定这些抛物线的形状,需要对地质、地形、气象、水力、材料等因素进行综合分析.
这节课 你学到了什么?
同学们再见!
授课老师:
时间:2024年9月15日
1.某一物体的质量为m,它运动时的能量E与它的运动速度v之间的关系是:
(m为定值)
2.导线的电阻为R,当导线中有电流通过时,单位时间所产生的热量Q与电流强度I之间的关系是:
(R为定值)
Q=RI2
3.g表示重力加速度,当物体自由下落时,下落的距离s与下落时间t之间的关系是:
二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线 y=x2.
开口向上
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
有,(0,0)
是,对称轴是 y 轴.
(-2,4)和(2,4);
(-3,9)和(3,9)等等.
(-1,1)和(1,1);
(3)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点.
探究1 请作出二次函数 y=x2 的图象.
x
…
…
y
…
…
-3
-2
-1
0
1
2
3
(2)在直角坐标系中描点.
(3)用光滑的曲线顺次连接各点,便得到函数 y=x2 的图象.
y=x2
x
…
-3
-2
-1
0
1
2
3
…
y
…
9
4
1
0
1
4
9
…
(1)你能描述图象的形状吗?
此外,二次函数在建筑学上也有重要应用,如抛物线型隧道、抛物线型拱桥、抛物线型吊桥、抛物线型弯道等.要确定这些抛物线的形状,需要对地质、地形、气象、水力、材料等因素进行综合分析.
这节课 你学到了什么?
同学们再见!
授课老师:
时间:2024年9月15日
1.某一物体的质量为m,它运动时的能量E与它的运动速度v之间的关系是:
(m为定值)
2.导线的电阻为R,当导线中有电流通过时,单位时间所产生的热量Q与电流强度I之间的关系是:
(R为定值)
Q=RI2
3.g表示重力加速度,当物体自由下落时,下落的距离s与下落时间t之间的关系是:
二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线 y=x2.
开口向上
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
有,(0,0)
是,对称轴是 y 轴.
(-2,4)和(2,4);
(-3,9)和(3,9)等等.
(-1,1)和(1,1);
(3)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点.
探究1 请作出二次函数 y=x2 的图象.
x
…
…
y
…
…
-3
-2
-1
0
1
2
3
(2)在直角坐标系中描点.
(3)用光滑的曲线顺次连接各点,便得到函数 y=x2 的图象.
y=x2
x
…
-3
-2
-1
0
1
2
3
…
y
…
9
4
1
0
1
4
9
…
(1)你能描述图象的形状吗?
22.1《二次函数的图象和性质》课件(共5课时)

2.类比探究二次函数 y = ax2 + k 的图象和性质
归纳: 一般地,当 a>0 时,抛物线 y = ax2 + k 的对称轴是 y 轴,顶点是(0,k),开口向上,顶点是抛物线的最 低点,a 越大,抛物线的开口越小.当 x<0 时, y 随 x 的增大而减小,当 x>0 时, y 随 x 的增大而增大.
3.练习、巩固二次函数的定义
练习2 填空: (1)一个圆柱的高等于底面半径,则它的表面积 S 与底面半径 r 之间的关系式是__S_=__4_π_r_2_; (2) n 支球队参加比赛,每两队之间进行两场比 赛,则比赛场次数 m 与球队数 n 之间的关系式是 ___m_=__n(__n_-_1__)____.
某种产品现在的年产量是 20 t ,计划今后两年增加 产量.如果每一年都比上一年的产量增加 x 倍,那么两 年后这种产品的产量 y 将随计划所定的 x 的值而确定, y 与 x 之间的关系应该怎样表示?
y 20x2 40x 20
2.通过实例,归纳二次函数的定义
这三个函数关系式有什么共同点?
y 6x2 m 1 n2 1 n
2
4.小结
(1)本节课学了哪些主要内容? (2)抛物线 y = ax2 + k 与抛物线 y = ax2 的区别与联 系是什么?
5.布置作业
教科书习题 22.1 第 5 题(1).
九年级 上册
22.1 二次函数的图象和性质 (第4课时)
• 本课是在学生已经学习了二次函数 y = ax2,y = ax2+ k 的基础上,继续进行二次函数的学习,这是对二次函 数图象和性质研究的延续.
2.类比探究 y a(x h)2, y a(x h)2 k 的图 象和性质
《二次函数的图象与性质》二次函数PPT教学课件(第1课时)

对 称 取 点
抛物线
轴对称图形
开口方向
性
质
重点关注4
个 方 面
对 称 轴
顶点坐标
增 减 性
二次函数的图象与性质
第1课时
复习旧知
1.二次函数的定义
一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)
的函数叫做x的二次函数.
2.画函数图象的主要步骤是什么?
(1)列表.
(2)描点.
(3)连线.
导入新知
3.你还记得一次函数与反比例函数的图象吗?
(1)一次函数的图象是 一条直线
(2)反比例函数的图象是双曲线 .
出几对对称点.
是轴对称图形,对称轴是y轴(直线x=0);
如(1,1)和(-1,1)等.
练一练
二次函数y=x2的图象是一条抛物线,
开口方向:向上
对称轴:y轴
顶点:对称轴与抛物线的交点,它是图
象的最低点.坐标为(0,0)
合作探究
二次函数y =-x2的图象是什么形状?
它与二次函数y=x2的图象有什么关系?
0
1
2
3
···
··· 9
0
1
4
9
···
4
1
新知讲解
y
2.描点:根据表中x, y的数值在坐标平面
中描点(x, y).
9
6
3.连线:用平滑的曲线顺次连接各点,就得
到y = x2的图象.
3
-3
O
3
x
新知讲解
议一议
1.你能描述图象的形状吗?
二次函数y=x2的图象是一条抛物线,并且抛物线开口向上.
2.图象与x轴有交点吗?如果有,交点坐标是什么?
抛物线
轴对称图形
开口方向
性
质
重点关注4
个 方 面
对 称 轴
顶点坐标
增 减 性
二次函数的图象与性质
第1课时
复习旧知
1.二次函数的定义
一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)
的函数叫做x的二次函数.
2.画函数图象的主要步骤是什么?
(1)列表.
(2)描点.
(3)连线.
导入新知
3.你还记得一次函数与反比例函数的图象吗?
(1)一次函数的图象是 一条直线
(2)反比例函数的图象是双曲线 .
出几对对称点.
是轴对称图形,对称轴是y轴(直线x=0);
如(1,1)和(-1,1)等.
练一练
二次函数y=x2的图象是一条抛物线,
开口方向:向上
对称轴:y轴
顶点:对称轴与抛物线的交点,它是图
象的最低点.坐标为(0,0)
合作探究
二次函数y =-x2的图象是什么形状?
它与二次函数y=x2的图象有什么关系?
0
1
2
3
···
··· 9
0
1
4
9
···
4
1
新知讲解
y
2.描点:根据表中x, y的数值在坐标平面
中描点(x, y).
9
6
3.连线:用平滑的曲线顺次连接各点,就得
到y = x2的图象.
3
-3
O
3
x
新知讲解
议一议
1.你能描述图象的形状吗?
二次函数y=x2的图象是一条抛物线,并且抛物线开口向上.
2.图象与x轴有交点吗?如果有,交点坐标是什么?
1.2二次函数的图象与性质(第1课时)课件(共13张ppt)

图象的开口向 上 ; 图象是轴对称图形,对称轴是_y轴____x_=_0 对称轴与图象的交点是 O(0,0) ;
图象在对称轴左边的部分,函数值随
自变量取值的增大而 减小 ,
简称为“左降”;
图象在对称轴右边的部分,函数值随自变量取
值的增大而 增大 , 简称为“右升”; 当x= 0 时,函数值最 小 .
谢谢观赏
You made my day!
我们,还在路上……
当x= 0 时,函数值最 小 .
类似地,当a>0时,y=ax2的图象也具 有上述性质.
于是我们在画y=ax2(a>0)的图象时,可以先画出图象在y轴 右边的部分,然后利用对称性,画出图象在y轴左边的部分.
在画右边部分时,只要“列表、描点、连线”三个步骤 就可以了(因为我们知道了图象的性质).
例1 画二次函数y=x2的图象. 列表: x 0 0.5 1 1.5 2 3
,简称为“右升”.
观察
我们已经正确地画出了y =
现在可以从图象看出
y
=
1 2
x
2
的12 x其2 的他图一象些,性因质此(除,
了上面已经知道的关于y轴对称和“右升”外):
对称轴与图象的交点是 O(0,0) ;图象的开口向 上 ;
图象在对称轴左边的部分,函数值随自变量取值的
增大而 减小 , 简称为“左降”;
解:(1)把A(2,8)代人y=ax2 ∴ a=2 ∴ y=2x2
(2) 当x=1时,y=2 ≠ 4 ∴ B(1,4)不在y=2x2的图像上。
(3) 当y=18时,即2x2=18,x=3或x=-3 ∴ 纵坐标是18的点是:(3,18)和(-3,18)
对于y=ax2(当a>0时)的图象也具有上述性质.
图象在对称轴左边的部分,函数值随
自变量取值的增大而 减小 ,
简称为“左降”;
图象在对称轴右边的部分,函数值随自变量取
值的增大而 增大 , 简称为“右升”; 当x= 0 时,函数值最 小 .
谢谢观赏
You made my day!
我们,还在路上……
当x= 0 时,函数值最 小 .
类似地,当a>0时,y=ax2的图象也具 有上述性质.
于是我们在画y=ax2(a>0)的图象时,可以先画出图象在y轴 右边的部分,然后利用对称性,画出图象在y轴左边的部分.
在画右边部分时,只要“列表、描点、连线”三个步骤 就可以了(因为我们知道了图象的性质).
例1 画二次函数y=x2的图象. 列表: x 0 0.5 1 1.5 2 3
,简称为“右升”.
观察
我们已经正确地画出了y =
现在可以从图象看出
y
=
1 2
x
2
的12 x其2 的他图一象些,性因质此(除,
了上面已经知道的关于y轴对称和“右升”外):
对称轴与图象的交点是 O(0,0) ;图象的开口向 上 ;
图象在对称轴左边的部分,函数值随自变量取值的
增大而 减小 , 简称为“左降”;
解:(1)把A(2,8)代人y=ax2 ∴ a=2 ∴ y=2x2
(2) 当x=1时,y=2 ≠ 4 ∴ B(1,4)不在y=2x2的图像上。
(3) 当y=18时,即2x2=18,x=3或x=-3 ∴ 纵坐标是18的点是:(3,18)和(-3,18)
对于y=ax2(当a>0时)的图象也具有上述性质.
课时1二次函数y=ax2的图像与性质课件

例
已知二次函数y=2x2.
(1)若点(-2,y1)与(3,y2)在此二次函数的图象上,则y1_____y
<
2;(填“>”“=”或
“<”)
(2)如图,此二次函数的图象经过点(0,0),长方形ABCD的顶点A、B在x轴上,C、
D恰好在二次函数的图象上,若B点的横坐标为2,求图中阴影部分的面积之和.
新课讲解
3.如图,观察函数 = ( − )的图象,则k的取值范
围是
.
k>3
y
x
拓展与延伸
D
2 ),过点( − ,).
4.若抛物线 = ( ≠
(1)则a的值是
y轴
;
(2)对称轴是
(0,0)
,开口
(3)顶点坐标是 上
抛物线在轴的
向上
;
,顶点是抛物线上的最
小
值,
方(除顶点外);
(4) 若(, ), (, )在这条抛物线上,且 < < ,则 > .
在对称轴左侧递增,在对称轴右侧递减
新课讲解
知识点3 抛物线y=ax2与y=-ax2的关系
问题 观察下列图象,抛物线 = 与 = −( > 0)的关系是什么?
y
=
二次项系数互为相反数,开口相反,
大小相同,它们关于x轴对称。
O
x
= −
新课讲解
知识点4 函数y=ax2性质的应用
分析: (1)把两点的横坐标代入二次函数解析式得纵坐标
(2)两个阴影部分面积相加等于右边第一象限内的矩形面积
(, )
8
(, )
课堂小结
二次函数
y=ax2的
图象及性
已知二次函数y=2x2.
(1)若点(-2,y1)与(3,y2)在此二次函数的图象上,则y1_____y
<
2;(填“>”“=”或
“<”)
(2)如图,此二次函数的图象经过点(0,0),长方形ABCD的顶点A、B在x轴上,C、
D恰好在二次函数的图象上,若B点的横坐标为2,求图中阴影部分的面积之和.
新课讲解
3.如图,观察函数 = ( − )的图象,则k的取值范
围是
.
k>3
y
x
拓展与延伸
D
2 ),过点( − ,).
4.若抛物线 = ( ≠
(1)则a的值是
y轴
;
(2)对称轴是
(0,0)
,开口
(3)顶点坐标是 上
抛物线在轴的
向上
;
,顶点是抛物线上的最
小
值,
方(除顶点外);
(4) 若(, ), (, )在这条抛物线上,且 < < ,则 > .
在对称轴左侧递增,在对称轴右侧递减
新课讲解
知识点3 抛物线y=ax2与y=-ax2的关系
问题 观察下列图象,抛物线 = 与 = −( > 0)的关系是什么?
y
=
二次项系数互为相反数,开口相反,
大小相同,它们关于x轴对称。
O
x
= −
新课讲解
知识点4 函数y=ax2性质的应用
分析: (1)把两点的横坐标代入二次函数解析式得纵坐标
(2)两个阴影部分面积相加等于右边第一象限内的矩形面积
(, )
8
(, )
课堂小结
二次函数
y=ax2的
图象及性
《二次函数y=ax^2+bx+c的图象和性质(1)》名师课件

43;1的图象的对称轴是x=1, 在对称轴的右侧y随x的增大而增大,
∵点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上 两点, 1<2<3, ∴y1<y2. 【思路点拨】根据已知条件求出二次函数的图象的对称轴, 再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系.
4.你能归纳总结二次函数y=ax2+bx+c(a≠0)的图象和性 质吗?
知识回顾
问题探究
课堂小结
随堂检测
重点、难点知识★▲
探究三:二次函数的图象及性质 活动 师生共研,探究性质
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象与性质: (1)当a>0时,抛物线开口向上,并且向上无限延伸. a>0 b (2)对称轴是直线 x , 2a b 4ac b 2 顶点坐标为 ( , ). 2a 4a b (3)在对称轴的左侧,即相当于 x< 时, 2a y随x的增大而减小; b 在对称轴的右侧,即相当于 x 时, 简记为“左减右增”. 2a y随x的增大而增大;
1 2 解: y x 6 x 21 2 1 2 ( x 12 x 42) 2 1 2 ( x 12 x 36 6) 2 1 ( x 6)2 3 2
所以它的开口向上,对称轴是x=6, 顶点坐标是(6,3).
对称轴和顶点坐标.
同学们自己画图! 归纳: 一般式化为顶点式的思路:
b 4ac b 2 则: h , k . 2a 4a
2.在二次函数y=ax2+bx+c与二次函数y=a(x-h)2+k中,
b 4ac b 2 h ,k . 2a 4a
知识回顾
问题探究
课堂小结
随堂检测
∵点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上 两点, 1<2<3, ∴y1<y2. 【思路点拨】根据已知条件求出二次函数的图象的对称轴, 再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系.
4.你能归纳总结二次函数y=ax2+bx+c(a≠0)的图象和性 质吗?
知识回顾
问题探究
课堂小结
随堂检测
重点、难点知识★▲
探究三:二次函数的图象及性质 活动 师生共研,探究性质
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象与性质: (1)当a>0时,抛物线开口向上,并且向上无限延伸. a>0 b (2)对称轴是直线 x , 2a b 4ac b 2 顶点坐标为 ( , ). 2a 4a b (3)在对称轴的左侧,即相当于 x< 时, 2a y随x的增大而减小; b 在对称轴的右侧,即相当于 x 时, 简记为“左减右增”. 2a y随x的增大而增大;
1 2 解: y x 6 x 21 2 1 2 ( x 12 x 42) 2 1 2 ( x 12 x 36 6) 2 1 ( x 6)2 3 2
所以它的开口向上,对称轴是x=6, 顶点坐标是(6,3).
对称轴和顶点坐标.
同学们自己画图! 归纳: 一般式化为顶点式的思路:
b 4ac b 2 则: h , k . 2a 4a
2.在二次函数y=ax2+bx+c与二次函数y=a(x-h)2+k中,
b 4ac b 2 h ,k . 2a 4a
知识回顾
问题探究
课堂小结
随堂检测
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
9
创设情境 明确目标
.
10
创设情境 明确目标
.
11
创设情境 明确目标
.
12
创设情境 明确目标
.
奥运赛场腾空的篮球13
创设情境 明确目标
河上架起的拱桥,公园的喷泉喷出 的水,投篮球或掷铅球时球在空中经过 的路线都会形成一条曲线,这些曲线是 否能用函数关系式来表示?它们的形状 是怎样画出来的?
之间的关系,对于x的每一个值,y都有一个对
应值,即y是x的函数.
.
18
合作探究 达成目标
探究点一 二次函数及其相关概念
观察下列函数有什么共同点: y=6x2
m 1n2 1n 22
y=20x2+40x+20
函数都是用自变量的二次式表示的.
.
19
二次函数的定义:一般地,形如 ya2xb xc(a ,b ,c 是常数,a≠0) 的函数,叫做二次函数.其中, x 是自变量,a, b,c 分别是函数解析式的二次项系数、一次项 系数和常数项.
目前,我们已经学习了那几种类型的函数?
.
2
关变 系量
之 数函 间 的
一次函数
y=kx+b (k≠0)
正比例函数
y=kx (k≠0)
二次函数
.
3
创设情境 明确目标
.
4Leabharlann 创设情境 明确目标 观察姚明的投篮……
.
5
创设情境 明确目标
.
6
创设情境 明确目标
.
7
创设情境 明确目标
.
8
创设情境 明确目标
注意: (1)等号左边是函数y,右边是关于自变量x的 整式
(2) a,b,c为常数,且 a≠0.
(3)等式右边的最高次数为2,可以没有一次项和常数项, 但不能没有二次项 .
(4) 自变量x的取值范围是 任意实数
.
20
1.下列函数属于二次函数的是: ( A )
A.y 8x2 1
C. y 3x2 1 x
.
22
合作探究 达成目标
探究点二 列出实际问题中的二次函数解析式
例 某小区要修建一块矩形绿地,设矩形的边长为x米,宽为y 米,面积为S平方米,(x>y). (1)如果用18米的建筑材料来修建绿地的边框(即周长), 求S与x的函数关系,并求出x的取值范围. (2)根据小区的规划要求,所修建的绿地面积必须是18平方 米,在满足(1)的条件下,矩形的长和宽各为多少米?
.
16
合作探究 达成目标
探究点一 二次函数及其相关概念
问题2:
n个球队参加比赛,每两个队之间进行一
场比赛,比赛的场次m与球队n之间有什么
关系?
m 1n(n1) 2
m 1n2 1n 22
此式表示了比赛的场次m与球队n之间的关系,对于n 的每一个值,m都有一个对应值,即m是n的函数.
.
17
合作探究 达成目标
思考(1) 题目中蕴涵的公式是什么?第(2)问就是已知 _S_(_函__数_值_)_,求___x(__自_变_量__)_的问题. (2)根据实际问题列二次函数关系式的一般步骤有哪些?求 自变量的值或二次函数值与以前学过的哪些知识相关?
.
23
解:(1)由题意,得 2 x 2 y 1 , y 8 9 x . ∵ x>y>0,
∴ x 的取值范围是 9 <x<9, 2
∴ S矩形 = xy = x(9-x)=-x2+9x.
(2)当矩形面积 S矩形 = 18 时,即 - x2 + 9x = 18,
解得 x1 = 3,x2 = 6. 当 x = 3 时,y = 9 - 3 = 6,但 y>x ,不合题意,舍
去.
当 x = 6 时,y = 9 - 6 = 3.
B. y2x3 D. y 3
x
2.若y=(b-1)x2+3是二次函数,则b__≠_1_____.
3.若函数y=(m2+m)x2m-2+3是二次函数,则m=___2_____.
.
21
4.已知函数y=(m2-m)x2+mx+(x+1)(m是常数), 当m为何值时:
(1)当m__=_1___时,函数是一次函数; (2)当m__≠_0_和_1_____时,函数是二次函数。
22.1 二次函数的图象和性质 第1课时 二次函数
.
1
知识回顾
函数的概念: 在某变化过程中的两个变量x、y,当变量
x在某个范围内取一个确定的值,另一个变量 y总有唯一的值与它对应。这样的两个变量之 间的关系我们把它叫做函数关系。对于上述 变量x、y,我们把y叫x的函数。 x叫自变量, y叫应变量。
__y___a_(_1__x_% ___2)__.
.
25
总结梳理 内化目标
二次函数的一般形式: y=ax2+bx+c(a、b、c为常数,a≠0)
其中,是x自变量,a,b,c分别是函数表达式 的二次项系数、一次项系数和常数项.
.
26
达标检测 反思目标
C
3
2
1
解:m的值为3.
.
y=50(1+x)2
y 1 x2 2 3
所以当绿地面积为 18 m2 时,矩形的长为 6 m ,宽
为 3 m.
.
24
5.矩形的边长分别为2cm和3cm,若每边长都增加xcm,则面积增
加ycm2,则y与x的函数关系式是______y___x_2___5_x_.
6.某工厂实行技术改造,产量每年增长x%,已知2013年的产量 为a,那么2015年的产量y与x之间的函数关系式为
探究点一 二次函数及其相关概念
问题3:
某工厂一种产品现在的年产量是20件,计划今后两 年增加产量.如果每年都比上一年的产量增加x倍,那么 两年后这种产品的产量y将由计划所定的x的值而确定, y与x之间的关系怎样表示?
y=20(1+x)2=20x2+40x+20
此式表示了两年后的产量y与计划增产的倍数x
.
14
1. 理解二次函数及有关概念. 2. 能够表示简单变量之间的二次函数关系.
.
15
合作探究 达成目标
探究点一 二次函数及其相关概念
问题1:
正方体六个面是全等的正 方形,设正方形棱长为 x,表面 积为 y,则 y 关于 x的关系式 为________y_=. 6x2
此式表示了正方体的表面积y与棱长x之间的关系,对 于x的每一个值,y都有一个对应值,即y是x的函数.
27
• 上交作业:教科书第 41页第3,5题 .
• 课后作业:“学生用 书”的“课后作业” 部分.
.
28