第二章 平稳随机过程的谱分析
3第二章平稳随机过程
例题3:
设S(t)是一周期为T的函数, θ在(0,T)上 均匀分布,称X(t)=S(t+θ)为随机相位周 期过程,讨论其平稳性。
例题4: 随机过程X(t)只取+I和 -I,且P{X(t)=+I} = P{X(t)= -I}=1/2,而正负号在( t, t+ τ) 的变化次数N(t,t+τ)是随机的,且事件 AK={N(t,t+τ)=k}的概率为
1 N
N l im P{|Nk1Xk
m|}1
随时间n的无限增长,随机过程的样本函数 按时间平均以越来越大的概率近似于该过程的 统计平均。也就是说,只要观测的时间足够长, 则随机过程的每个样本函数都能够“遍历”各 种可能的状态。
例题:
随机过程X(t)=acos(wt+θ ),a,w为常 数,θ 为(0,2π )上均匀分布的随机变量, 试分析X(t)集合平均和时间平均值、相 关函数和时间相关函数。
E| a bX(t)d|2 ta ba bR X(t1,t2)d1d t2t
结论:数学期望和积分可以交换秩序。
定理6.9
设{X(t),t∈T}为二阶矩过程在区间[a,b]上均方连 续,则
b
Y(t) X()d a
在均方意义下存在,且随机过程{Y(t), t∈T}在区 间[a,b]上均方可微,且有Y’(t)=X(t)。
具有各态历经性。
定义6.11
如果均方连续的平稳过程{X(t),t∈T} 的均值和相关函数都具有各态历经性, 则称该平稳过程为具有各态历经性或遍 历性。
定理6.10 设{X(t),-∞<t<∞}是均方连续的平稳过程,则它 的均值具有各态历经性的充要条件为
l T .i .m 2 1 T 2 2 T T ( 1 |2 T |)R [ X () |m X |2 ] d 0
随机过程第二章 平稳过程
n (n 0,1,2, )
同分布, n ( n 0,1,2, )
同分布, E n E n 0, D n D n 2 0. 设
X n n n ( 1) n ( n n )
, } 则加密序列 { X n , n 0,1,2是平稳序列 .
平稳过程.
7
五.两个平稳过程的关系 下文中广义平稳过程简称平稳过程. 定义3 设 X (t ) 和 Y (t )是两个平稳过程,如果互相关 函数 E[ X (t )Y (t )] R XY ( ) 仅是参数间距 的函数,则称
X (t ) 与Y (t ) 平稳相关,或称其为
联合平稳的. 此时
C XY ( ) cov( X (t ), Y (t ))
E[ X (t )Y (t )] E[ X (t )]E[Y (t )]
RXY ( ) X Y
定义4
XY ( )
C XY ( ) C X ( 0) C Y ( 0)
称为标准互协方差函数. 特别当 XY ( ) 0 时,称两个平稳过程与不相关.
例2 设 X , Y 是相互独立的标准正态随机变量,
Z (t ) ( X 2 Y 2 )t , t 0
试验证随机过程
Z (t ) 不是严平稳过程, Z (t )
的数字特征也不具有平稳性.
4
第二节 广义平稳过程
(一) 广义平稳过程的定义
定义2 设随机过程
X (t ) ,对于任意 t T ,满足:
( | |) k | | P{N (t ) N (t ) k} e k!
0, k 0,1,2,
随机过程及其平稳性PPT课件
24
第24页/共43页
偏相关系数
X •
设 两
个
、
1
随机
变和X量2的是影三响个X。相3在互这之种间情都况有下关,系两的个随随机机变变量量,的每相个关随系机数变反量映都的包其含实有不另是
这两个变量之间的真正关系,因为这两个随机变量的水平都受第三个随机变量水
平的影响。设法将第三个变量的影响从前个变量中去掉后,再计算两“净值”序
.|. |
9
-0.159
-0.025
55.674
0.000
30
•
.**| . |
.|. |
10
- 0第. 23403页/共-40 3. 0页3 7
58.274
0.000
View/correlogram/选Level,OK
31
第31页/共43页
从上图样本自相关函数的值分析
• Autocorrelation的图形没有截尾或拖尾特征, • 还有许多值落在临界值范围之外,所以,可以初步判断时间序列Y有非平稳性。 • 下面分析DY的平稳性。
• 1983 615.0000
• 1984 726.0000
• 1985 992.0000
• 1986 1170.000
• 1987 1282.000
• 1988 1648.000
• 1989 1812.000
• 1990 1936.000
29
• 1991 2167.000
第29页/共43页
View/correlogram/level/ok
感谢您的观看!
43
第43页/共43页
800 600 400 200
通信原理第2章-随机信号分析
1 1 2
f ( x)dx f ( x)dx
a
2
在点 a 处取极大值: 1
2
■ a f x 左右平移
f x宽窄
a
x
37
二、正态分布函数
积分无法用闭合形式计算,要设法把这个积分式和可以在数学 手册上查出积分值的特殊函数联系起来,常引入误差函数和互 补误差函数表示正态分布函数。
38
三、误差函数和互补误差函数
39
40
四、为了方便以后分析,给出误差函数和互补误差 函数的主要性质:
41
42
2.5.4 高斯白噪声
43
这种噪声称为白噪声,是一种理想的宽带随机过程。 式子是一个常数,单位是瓦/赫兹。白噪声的自相关 函数:
说明,白噪声只有在 =0 时才相关,而在任意
两个时刻上的随机变量都是不相关的。白噪声的功 率谱和自相关函数如图。
F1 x1 ,
x1
t1
f1 x1 ,
t1
则称 f1 x1 , t1 为 (t的) 一维概率密度函数。
显然,随机过程的一维分布函数或一维概率密度函数 仅仅描述了随机过程在各个孤立时刻的统计特性,没 有说明随机过程在不同时刻取值之间的内在联系,因 此需要在足够多的时间上考虑随机过程的多维分布函 数
60
用示波器观 察一个实现 的波形,如 图所示,是 一个频率近 似为fc,包 络和相位随 机缓变的正 弦波。
Df -fc
s(t)
S( f )
O (a) 缓慢变化的包络[a(t)]
O
频率近似为 fc (b)
窄带过程的频谱和波形示意
61
Df
fc
f
t
因此,窄带随机过程ξ(t)可表示成:
2.2.4 平稳随机过程的相关性分析
2 lim RX (τ ) = RX (∞) = mX
证明 : 当 τ → ∞ 时 , X (t )与 X (t + τ )不相关 , 则有 :
τ →∞
lim R X (τ ) = R X ( ∞ ) = lim E [ X ( t ) X ( t + τ )]
τ →∞
2 = lim { E [ X ( t )] ⋅ E [ X (t + τ )]} = m X
17
∞
样本函数x(t)的平均功率: 样本函数x(t)的平均功率: x(t)的平均功率
1 T 2 w = lim ∫−T xT (t) dt T →∞ 2 T 1 1 ∞ 2 = lim ⋅ ∫−∞ XT (ω) dω T →∞ 2 T 2π 1 ∞ 1 2 = lim ∫−∞[T→∞ 2T XT (ω) ]dω 2π
∫
∞
−∞
xT ( t ) e
− jω t
dt =
∫
T
−T
x (t )e
− jω t
dt
1 xT (t ) = 2π
1 T 2 w = lim ∫−T xT (t) dt T →∞ 2 T
∫
∞
−∞
X T (ω )e jωt dω
2
1 ∞ 2 ∫−∞[x(t)] dt = 2π ∫−∞ X (ω) dω
样本函数x(t)的功率谱密度, 样本函数x(t)的功率谱密度, x(t)的功率谱密度 简称样本的功率谱密度。 简称样本的功率谱密度。
x(t), w和 T (ω)取 于 验 结 , 都 有 定 随 性 X 决 试 的 果 带 一 的 机 .
例 : 已知平稳过程 X (t )的自相关函数为 : (1) R X (τ ) = 3e
第二章 平稳随机过程的谱分析
u 2T
2T
2015-2-10
u 2T
u 2T
17
《随机信号分析》教学组
则
2T 1 1 2T S X ( ) lim { 0 d 2T RX ( )e j du T 2T 2
0 2T 1 2T d 2T RX ( )e j du} 2
对 S X ( ) 在X(t)的整个频率范围内积分, 便可得到X(t)的功率。 对于平稳随机过程,有:
1 E[ X ( t )] 2
2
2015-2-10
S X ( )d
14
《随机信号分析》教学组
三、功率谱密度与自相关函数之间的关系
确定信号: x(t ) X ( j) 随机信号:平稳随机过程的自相关函数
率。 2 解: E[ X (t )] E[a 2 cos2 (0t )]
a2 E{ [1 cos(20t 2)]} 2 2 2 a a 22 cos(20t 2 )d 0 2 2
a2 a2 sin(20 t 2 ) 02 2 2 a2 a2 sin 20t 2
S X ( ) 2 RX ( ) cosd
0
RX ( )
2015-2-10
1
0
S X ( ) cos d
19
《随机信号分析》教学组
3.单边功率谱
由于实平稳过程x(t)的自相关函数 RX ( ) 是实偶函数,功率谱密度也一定是实偶函 数。有时我们经常利用只有正频率部分的 单边功率谱。
2T 1 1 2T lim{ d RX ( )e j du} 2T 2 T 2T 2T 1 2T j lim ( 2 T ) R ( ) e d X T 2T 2T 2T lim (1 ) RX ( )e j d T 2T 2T 2T j RX ( )e j d RX ( )e d lim
第2章-随机过程习题及答案
第二章 随机过程分析1.1 学习指导 1.1.1 要点随机过程分析的要点主要包括随机过程的概念、分布函数、概率密度函数、数字特征、通信系统中常见的几种重要随机过程的统计特性。
1. 随机过程的概念随机过程是一类随时间作随机变化的过程,它不能用确切的时间函数描述。
可从两种不同角度理解:对应不同随机试验结果的时间过程的集合,随机过程是随机变量概念的延伸。
2. 随机过程的分布函数和概率密度函数如果ξ(t )是一个随机过程,则其在时刻t 1取值ξ(t 1)是一个随机变量。
ξ(t 1)小于或等于某一数值x 1的概率为P [ ξ(t 1) ≤x 1],随机过程ξ(t )的一维分布函数为F 1(x 1, t 1) = P [ξ(t 1) ≤x 1] (2-1)如果F 1(x 1, t 1)的偏导数存在,则ξ(t )的一维概率密度函数为1111111(,)(, ) (2 - 2)∂=∂F x t f x t x对于任意时刻t 1和t 2,把ξ(t 1) ≤x 1和ξ(t 2) ≤x 2同时成立的概率{}212121122(, ; , )(), () (2 - 3)F x x t t P t x t x ξξ=≤≤称为随机过程ξ(t )的二维分布函数。
如果2212122121212(,;,)(,;,) (2 - 4)F x x t t f x x t t x x ∂=∂⋅∂存在,则称f 2(x 1, x 2; t 1, t 2)为随机过程ξ(t )的二维概率密度函数。
对于任意时刻t 1,t 2,…,t n ,把{}n 12n 12n 1122n n ()(),(),,() (2 - 5)=≤≤≤F x x x t t t P t x t x t x ξξξ,,,;,,,称为随机过程ξ(t )的n 维分布函数。
如果n n 12n 12n n 12n 12n 12n(x )() (2 - 6)∂=∂∂∂F x x t t t f x x x t t t x x x ,,,;,,,,,,;,,,存在,则称f n (x 1, x 2, …, x n ; t 1, t 2, …, t n )为随机过程ξ(t )的n 维概率密度函数。
随机过程的谱分析
3.2、平稳随机过程功率谱密度的性质
3.2.2、有理谱分解定理
i) rational spectral: S X ( ) ak 2k
p k 0 q
b
k 0 2 k
: (P4) p < q
s-plane
2k
S X (s) a
(s a1 )(s a 2p ) (s b1 )(s b 2q )
sin( T) 1,所以 T
2
sin(T) lim T , 0 T T
综上:
sin(T) lim T K() T T
2
又因 2T[ sin( T) ]2 x(t),其中 x(t) 为三角波,如下图所示: T
(s 1 )(s p ) (s 1 )(s q ) S X (s)
* *
18 / 30
S (s) X
极点全在 s 左平面 零点在 s 左平面或虚轴上
极全在 s 右平面 零点在 s 右平面或虚轴上
3.3、功率谱密度与自相关函数的关系
维纳-辛钦定理
R X ( ) < > S X ()
2
14 / 30
3.1.3、功率谱密度与复频率面
拉普拉斯变换(Laplace transformation)
x(t) X(s) : s j
LT
1 j X(s)est ds dt x (t)dt x(t) 2j j j x(t)est dt ds 1 2 j X(s) j 1 j st j x(t) X(s)eds 1 2j j 2 j j X(s)X( s)ds
X X (T, ) [a bcos( 0t )]e jt dt
随机信号分析实验报告
随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
第二章平稳随机过程的谱分析平稳随机过程
第二章平稳随机过程的谱分析平稳随机过程第二章平稳随机过程的谱分析本章要解决的问题:●随机信号是否也可以应用频域分析方法?●傅里叶变换能否应用于随机信号?● 相关函数与功率谱的关系● 功率谱的应用● 采样定理● 白噪声的定义2.1 随机过程的谱分析2.1.1 预备知识1、付氏变换:对于一个确定性时间脉冲x(t),设x(t)是时间t 的非周期实函数,且x(t) 满足狄利赫利条件(有限个极值,有限个断点,断点为有限值)且绝对可积,能量有限,则x(t)傅里叶变换存在。
即:满足上述三个条件的x(t)的傅里叶变换为:其反变换为:2、帕赛瓦等式由上面式子可以重新得到:——称为非周期性三十天拉热函数的帕塞瓦(Parseval)等式。
物理意义:若x(t)表示的是电压(或电流) ,则上式左边代表x(t)在时间(-∞, ∞) 区间的总能量(单位阻抗)。
因此,等式右边的被积函数X X (ω)2表示了信号x(t)能量按频率分布的情况,故称X X (ω)2为能量谱密度。
2.1.2、随机过程的功率谱密度变换一个信号的惟教变换是否存在,可能需要满足三个条件,那么随机信号是否满足这三个条件从而存在付氏呢?随机信号持续时间无限长,因此,对于非0的样本函数,它的能量一般也是无限的,因此,其付氏变换不牵涉到。
但是注意到它的平均功率是有限的,在特定的条件下,仍然洪可以利用博里叶变换这一工具。
为了将傅里叶变换方法常量应用于随机过程,必须对过程的待测函数做某些限制,最简单的一种方法是应用截取函数。
截取函数x T (t):图2.1 x (t)及其截取函数当x(t)为有限值时,裁取函数x T (t)满足绝对可积条件。
因此,x T (t)的傅里叶变换存在,有很明显,式的变化)x T (t)也应满足帕塞瓦等式,即:(注意积分区间和表达用2T 除上式等号用的两端,可以得到等号于两边取集合平均,可以得到:令T→∞,再取极限,便可得到随机过程的平均功率。
实验二平稳随机过程的谱分析
实验二平稳随机过程的谱分析谱分析是对平稳随机过程的频率特性进行研究的一种方法。
它通过分析随机过程在不同频率下的能量分布,可以揭示出随机过程的主要频率成分和其相应的能量。
在实验二中,我们将以一个平稳随机过程为例,详细介绍谱分析的方法和步骤,并通过具体的实例来说明如何进行谱分析。
首先,我们需要明确谱密度函数的概念。
谱密度函数描述了随机过程在各个频率上的能量分布,其定义为随机过程在单位频率范围内的功率谱与单位频率之比。
一般地,谱密度函数可以通过傅里叶变换和自相关函数计算得到。
接下来,我们需要计算随机过程的自相关函数。
自相关函数反映了随机过程在不同时刻之间的相关性,其定义为随机过程在不同时刻的取值之积的期望。
通过计算自相关函数,我们可以得到随机过程的自相关系数和自相关函数的性质。
然后,我们可以通过自相关函数计算随机过程的功率谱密度函数。
功率谱密度函数描述了随机过程在各个频率上的能量分布,其定义为自相关函数的傅里叶变换。
通过计算功率谱密度函数,我们可以得到随机过程的频谱特性。
在进行谱分析时,我们需要选择适当的算法和工具进行计算。
常见的算法包括周期图法、Welch法和傅里叶变换法。
周期图法是一种通过周期图对随机过程进行频谱分析的方法,其步骤包括选择窗函数、计算周期图和计算功率谱密度函数。
Welch法是一种通过分段计算随机过程的频谱的方法,其步骤包括选择窗函数、选择段数、计算每一段的频谱并对它们求平均。
傅里叶变换法是一种通过对随机过程进行傅里叶变换得到频谱的方法,其步骤包括对随机过程进行傅里叶变换和计算功率谱密度函数。
最后,我们可以通过绘制频谱图来直观地表示随机过程的频谱特性。
频谱图是将频率作为横坐标、功率谱密度函数的取值作为纵坐标,以直方图或曲线的形式展示出来。
通过观察频谱图,我们可以得到随机过程的主要频率成分和其相应的能量。
综上所述,谱分析是一种揭示平稳随机过程频率特性的重要方法。
通过计算自相关函数和功率谱密度函数,并绘制频谱图,可以得到平稳随机过程的主要频率成分和其相应的能量,进而对随机过程进行频域分析。
平稳过程的谱分析
第二章 平稳过程的谱分析§1谱理论简介我们知道,由Wold 分解定理,一个平稳过程t Y 可以找到一个平稳的(,)ARM A p q 来近似。
且已知1,,T y y ,当T →∞,我们可以一致的估计(,)ARM A p q 模型中的未知参数,并由此来把握平稳过程t Y 。
现在,我们换一个角度看t Y ,把所有二阶矩平稳过程看成为一个Hilbert 空间,那么,由Hilbert 空间的谱表示定理,任何一个二阶矩平稳过程t Y 都可以表示成为一个右连续的正交增量过程的R —S 积分,即,()i tt Y edz πωπω-=⎰,()()()z A iB ωωω=+。
满足:[()()]0i j E dA dA ωω=, [()()]0i j E dB dB ωω=,i j ∀≠。
(正交增量性)[()][()]0E dA E dB ωω==, [()][()]Var dA Var dB ωω=,且右连续是指均方收敛,即,2[()()]0E A A ωδω+-→,0δ↓。
( 参见MIT 教本)将t Y 改写成,0cos()()sin()()t Y t dA t dB ππωωωω=+⎰⎰。
定义[()][()]Var dA Var dB ωω==2()dF ω,[0,]ωπ∀∈。
那么由(),()A B ωω的正交增量性和右连续性,知()F ω是一个[0,]π上的非减右连续的函数。
称()F ω为t Y 的谱分布函数。
又将()dF ω写成,()()dF f d ωωω=,则()f ω就称为t Y 的谱密度函数。
注意,()F ω或()f ω是由(),()A B ωω唯一决定的,也就是由t Y 唯一决定的。
这里唯一性指的是几乎处处唯一。
反过来也正确。
任给一个谱密度函数()f ω或谱分布函数()F ω,可以决定一个唯一的右连续的正交增量过程,()()()z A iB ωωω=+,并由()z ω决定一个唯一的平稳过程t Y 。
第二章+平稳随机过程的谱分析
2 0
2
cos
(20t
2
)d
a2 2
a2
2
sin(20t
2) 2 0
a2 2
a2
sin 20t
X (t)不是宽平稳的
2020/8/17
《随机信号分析》教学组
11
Q A E[ X 2 (t)]
lim
1
T 2T
T T
a2 (
2
a2
sin
20t)dt
a2 2
2020/8/17
《随机信号分析》教学组
x(t)e jt dt
其反变换为:
x(t) 1
2
X
X
(
)e
jt
d
称X X ()为 x(t)的频谱密度,也简称为频谱。
包含:振幅谱
相位
2020/8/17
《谱随机信号分析》教学组
4
常见的傅立叶变换
t 1 1 2
cos0t 0 0 sin0t j 0 0
2d
即
[x(t)]2 dt 1
2
X
X
()
2d
2020/8/17
《随机信号分析》教能学组量谱密度
6
二、随机过程的功率谱密度
应用截取函数
x(t) t T
xT (t)
0
t T
2020/8/17
《随机信号分析》教学组
7
当x(t)为有限值时,xT (t) 的傅里叶变换存在
X X (T ,)
et , t 0 1
j e t 2
2 2
e j0t 2 0
2020/8/17
《随机信号分析》教学组
实验二平稳随机过程的谱分析
实验二平稳随机过程的谱分析一、实验目的1、复习信号处理的采样定理2、理解功率谱密度函数与自相关函数的关系3、掌握对功率谱密度函数的求解和分析二、实验设备计算机、Matlab软件三、实验内容与步骤已知平稳随机过程的相关函数为:RX(τ)=1-|τ|/T |τ|<T=0 |τ|>=TT=学号*3设计程序求:1.利用采样定理求R1(m)2.利用RX(τ)求SX(w),3.利用功率谱密度采样定理求S(w)(离散时间序列的功率谱密度)4.利用IFFT求R(m)5.利用求出的R1(m),用FFT求S1(w)6.比较上述结果。
四、实验原理平稳随机过程的谱分析和付立叶变换1、TTTTSadjTRFTSTXX222)(sin4)2()exp()/1(2)}({)(ωωωτωτττω==--==⎰2、如果时间信号的采样间隔为T0,那么在频谱上的采样间隔1/(N*T0),保持时域和频域的采样点一致N3、注意实际信号以原点对称,画图时是以中心对称,注意坐标的变换五、实验报告要求1、打印所求出的R1(m)、R(m)、S1(w)、S(w)序列,并绘图。
采样点数根据采样定理求出,并在程序中设置为可任意键盘输入的值,以便了解采样点数变化和由采样所得序列能否正确恢复原始信号的关系。
2、附上程序和必要的注解。
六、实验过程function y = experiment2close all;clc;number = 41;T = number*3;T0 = 0.1 %input('采样间隔T0=');t = -T: T0: T;t1 = -2*T: T0: 2*T;n = T/T0;Rx1 = 1 - abs(t)/T;Rx = [zeros(1, n) Rx1 zeros(1, n)];figure(1),subplot(211), plot(t1, Rx);title('自相关函数') ; %自相关函数F = 1/(2*T0);F0 = 1/(4*T);f = -F: F0: F;w = 2* pi* f;a = w*T/2;Sx = T*sin(a).*sin(a)./(a.*a);Sx(2*n + 1) = T;subplot(212), plot(f, Sx); title('功率谱密度函数') ; %功率谱密度函数figure(2),R1 = Rx;subplot(211),plot(R1); title('自相关序列') ; %自相关序列S1 = T0*abs(fft(R1));S1 = fftshift(S1);subplot(212), plot(S1); title('自相关序列FFT得到功率谱密度函数') ; %自相关序列FFT得到功率谱密度函数figure(3),S = Sx;subplot(211), plot(S); title('功率谱密度函数采样序列') % 功率谱密度函数采样序列R = 1/T0*abs(ifft(S));R = ifftshift(R);subplot(212), plot(R); title('功率谱密度序列IFFT得到自相关序列') %功率谱密度序列IFFT得到自相关序列七、实验结果及分析-150-100-5005010015000.51自相关函数-5-4-3-2-1012345020406080功率谱密度函数05001000150020002500300000.51自相关序列050010001500200025003000020406080自相关序列FFT 得到功率谱密度函数050010001500200025003000020406080功率谱密度函数采样序列05001000150020002500300000.51功率谱密度序列IFFT 得到自相关序列八、实验心得体会通过本次对平稳随机过程的谱分析的实验,进一步熟悉了Matlab 软件的使用操作,加深了书本上的理论知识,如信号处理的采样定理的理解,掌握了功率谱密度函数与自相关函数的关系,以及对功率谱密度函数的求解和分析方法。
随机信号习题及答案
Y (t ) ___
_
___。
5. 已知平稳过程 X (t ) 的自相关函数为 R X (τ ) = 16 +
1 1+ 5
τ
,则其均值为
,方差
为 。 6. 若一高斯过程是宽平稳的,则必定是 ;若一个高斯过程不同时刻状态间是互不相关 的,则必定是 的(独立、不独立、不一定) 。 7. 若线性系统输入为高斯过程,则该系统输出仍为 。 二、简答题 1. 请给出随机过程为宽平稳随机过程满足的条件。 2. 若平稳随机过程是信号电压,试说明其数字期望、均方值、方差的物理意义。 3. 给出平稳过程的自相关函数的性质。 4. 写出随机过程的两个定义。 5. 随机过程有那两个变化特性,如何理解其随机性? 6. 叙述“狭义平稳”的定义;如何理解这个定义在实际应用中的困难? 7. (a)随机过程的遍历性与平稳性的关系是什么?(b) 简述“狭义遍历”与“宽遍历”的关系。 三、计算题 1 设随机振幅信号为
−10 t
10 , 4 + j 5ω
U (t ) 的系统的输入端,求系统输出随机信号的表达式。 −3t 4-2 已知系统的单位冲激响应 h(t ) = 5e U (t ) ,设其输入随机信号为 X (t ) = M + 4 cos(2t + Θ), (− ∞ < t < ∞ ) ,其中 M 是随机变量, Θ 是 (0,2π ) 上均匀分布的随机变量, 且 M 和 Θ 相互独立,求输出信号的表达式。
1.
第一章 二进制无记忆不对称信道,如图所示,传输 0,1,分别以 A0 和 A1 代表发送 0 和 1,以 3 5 B0 和 B1 代表接收 0 和 1 码,两个正确的转移概率分别为 P ( B0 / A0 ) = , P( B1 / A1 ) = , 6 4 1 1 两个错误的转移概率分别为 P ( B1 / A0 ) = , P( B0 / A1 ) = ,且先验概率相等,即: 6 4 1 P ( A0 ) = P( A1 ) = ,求:①B 端接收到 0 码及 1 码的概率 P ( B0 ) 及 P( B1 ) ;②当分别收到 2
随机过程第2章 平稳过程与二阶矩过程
迭代的 初始条件
有许多特殊的应用 利用随机微分方程分析信道的统计特性 07 IEEE T-IT
显然,其自相关 函数是参数 r 和 n 的函数,它表 明序列{Xn} 不 是平稳过程。
当 n 充分大时,此 一阶回归模型可以 看成渐近平稳过程。
宽平稳过程与严平稳过程的讨论
{ 严平稳+二阶矩存在性 可以导出 它是宽 平稳过程.
2.2 功率谱
定义: 一个随机过程 X (t)的功率谱是它自关 函数 R(τ 的) 付里叶变换 记为 S(ω。) 即
基本 定义
∫ S(ω) =
+∞
e
−
jωτ
R(τ
)dτ
−∞
∫ R(τ ) = 1 +∞S (ω)e jωτ dω
2π −∞
因为 R(−τ ) = R* (,τ ) 故 S(ω)是个实函数 由的于总21π面−∞∫∞积S (ω为)d非ω 负= R,(0)且= 等E {|于X 过(t ) 程|2 } 的≥ 0“,平故均S功(ω) / 2π
平稳过程与二阶矩过程
第二章 平稳过程与二阶矩过程
授课教师:樊平毅 清华大学电子工程系
2012
内容简介
{ 2.1 相关函数 { 2.2 功率谱 { 2.3 功率谱与时域平均 { 2.4 线性系统 { 2.5 随机连续性 { 2.6 随机微分(均方意义) { 2.7 Taylor级数 { 2.8 随机微分方程 { 2.9 随机积分 { 2.10 遍历性讨论 { 2.11 抽样定理与随机预测
(5)对于两个实过程X (t)与Y (t) ,则
Rx2y (τ ) ≤ Rxx (0)Ryy (0)
基本 不等式
2 | Rxy (τ ) |≤ Rxx (0) + Ryy (0)
刘次华版 平稳随机过程的谱分析
指导教师:卢玉贞
主讲人:柳 毅 团队成员:郑蓉蓉 潘智慧 李朝阳 李 阳 LOGO
7.3 窄带过程及白噪声过程的功率谱密度
窄带随机过程:谱密度限制在很窄的一段频率范围内。
求该过程的均方值及相关函数。 解 均方值为
S0 -2 1 例1: 已知窄带平稳过程的谱密度为 s X ( ) S0 1 2 0 其它
1 s XY ( )ei d 2 1 a ib i e d 2 0 1 [(a0 b) sin( 0 ) b0 cos(0 )]. 2
0 0
解: RXY ( )
0
7.5 平稳过程通过线性系统的分析
1 E[ X 2(t )] RX (0) 2
相关函数为
s X ( )d
2
1
1
2
1
s0 d
1
s0 (2 1 )
R X ( )
1
0
s X ( ) cos( )d 2 s0
1
s0 cos( )d 2 ) sin(
yt L e
H e
jt
jt
其中
H L e jt
t 0
对线性时不变系统输入一谐波信号时,其输出也是同频率的谐波, 只不过振幅和相位有所改变。其中H表示了这个变化,称它为系统的频 率响应函数一般地,它是复值函数。
7.5 平稳过程通过线性系统的分析
s XY ( )
2
s X ( ) sY ( ) .
(4) 若 X t 和 Y t 相互正交,则
平稳随机过程的谱分析
a
a2 ( 0 )2 a2 ( 0 )2
设平稳过程 X(t)的谱密度是 SX ,
若 Y(t)=X(t)+ X(t-T), 其中 T 为已知
求 Y(t) 的谱密度 SY
联合平稳过程的互谱密度
[定义] 设 X (t) 和 Y (t) 是两个平稳过程,且它们是联合
平稳(平稳相关)的,若它们的互相关函数 RXY() 满
n1
由欧拉公式 f (t) Fne jn1t
n
其中 F (0) a0
Fn
1 2
(an
jbn ),n
0
引入了负频率
1 Fn 2 (an jbn ),n 0
12
指数形式的傅里叶级数的系数
Fn
1 T
T
2 T
f ( )e jn1 dt
2
f (t) 1
T
n
T
2 T
2
f
(
)e
一种测量声音的相对响度的单位 巴斯卡=牛顿/平方米 ( N/m2) 人类最小感知 20个微巴斯卡,用巴斯卡(Pa)来表达声音或噪音, 须处理小至20,大至2,000,000,000的数字
白噪声,就是说功率谱为一常数;也就是说,其协方差函 数在delay=0时不为0,在delay不等于0时值为零; 换句 话说,样本点互不相关。
2
f
(
)e
jn1
d
e
jn1t
n
f (t) 1
2
∞ -∞
f(τ)e-jωτdτe
jt
d
傅立叶变换将平方可积且满足狄利赫利条件的函数f(t)表 示成复指数函数的积分或级数形式。
F () ∞ f(τ)e-jωτdτ -∞
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章平稳随机过程的谱分析本章要解决的问题:●随机信号是否也可以应用频域分析方法?●傅里叶变换能否应用于随机信号?●相关函数与功率谱的关系●功率谱的应用●采样定理●白噪声的定义2.1 随机过程的谱分析2.1.1 预备知识1、付氏变换:对于一个确定性时间信号x(t),设x(t)是时间t的非周期实函数,且x(t) 满足狄利赫利条件(有限个极值,有限个断点,断点为有限值)且绝对可积,能量有限,则x(t)傅里叶变换存在。
即:满足上述三个条件的x(t)的傅里叶变换为:其反变换为:2、帕赛瓦等式由上面式子可以得到:——称为非周期性时间函数的帕塞瓦(Parseval)等式。
物理意义:若x(t)表示的是电压(或电流),则上式左边代表x(t)在时间(-∞,∞)区间的总能量(单位阻抗)。
因此,等式右边的被积函数2)(ωXX表示了信号x(t)能量按频率分布的情况,故称2)(ωXX为能量谱密度。
2.1.2、随机过程的功率谱密度一个信号的付氏变换是否存在,需要满足三个条件,那么随机信号是否满足这三个条件从而存在付氏变换呢?随机信号持续时间无限长,因此,对于非0的样本函数,它的能量一般也是无限的,因此,其付氏变换不存在。
但是注意到它的平均功率是有限的,在特定的条件下,仍然可以利用博里叶变换这一工具。
为了将傅里叶变换方法应用于随机过程,必须对过程的样本函数做某些限制,最简单的一种方法是应用截取函数。
x(t):截取函数T图2.1 x(t)及其截取函数x(t)满足绝对可积条件。
因此,当x(t)为有限值时,裁取函数Tx(t)的傅里叶变换存在,有Tx(t)也应满足帕塞瓦等式,即:(注意积分区间和表达很明显,T式的变化)用2T 除上式等号的两端,可以得到等号两边取集合平均,可以得到:令∞→T ,再取极限,便可得到随机过程的平均功率。
交换求数学期望和积分的次序,可以得到:(注意这里由一条样本函数推广到更一般的随机过程,即下面式子对所有的样本函数均适用)ωωπd TT X E dt t XE TX T TT T 2]),([lim 21)]([21lim22⎰⎰∞∞-∞→-∞→=上式等号的左边表示的正是随机过程消耗在单位电阻上的平均功率(包含时间平均和统计平均),以后我们将简称它为随机过程的功率并记为Q 。
再看等式的右边,它当然也存在,并且等于Q 。
又因为2),(ωT XX非负,所以极限TT XE XT 2]),([lim2ω∞→必定存在,记为)(ωX S :ωωπd S dt t XE TQ X TT T ⎰⎰∞∞--∞→==)(21)]([21lim2注意:(1)Q 为确定性值,不是随机变量(2))(ωX S 为确定性实函数。
(见式)● 两个结论: 1.><=)]([2t X E A Q 式中,><>=<∞→.21lim.TA T表示时间平均。
它说明,随机过程的平均功率可以通过对过程的均方值求时间平均来得到,即对于一般的随机过程(例如,非平稳随机过程)求平均功率,需要既求时间平均,又求统计平均。
显然, Q 不是随机变量。
若随机过程为平稳的,则)0()]([)]([22X R t X E t X E A Q =>=<=这是因为均方值与时间t 无关,其时间平均为它自身。
由于已经对2),(ωT XX求了数学期望,所以)(ωX S 不再具有随机性,它是ω的确定性函数。
● 功率谱密度:)(ωX S 描述了随机过程X(t)的功率在各个不同频率上的分布——称)(ωX S 为随机过程X(t)的功率谱密度。
● 对)(ωX S 在X(t)的整个频率范围内积分,便可得到X(t)的功率。
● 对于平稳随机过程,则有:⎰∞∞-=ωωπd S t X E X )(21)]([22.1.3、功率谱密度的性质证明:证明:因为2),(ωT XX进行了取模运算,这是ω的实函数,所以)(ωX S 也是ω的实函数,且为确定性实函数。
证明:因此:即:得:证明:对于平稳随机过程,有:⎰∞∞-=ωωπd S t X E X )(21)]([22.2 联合平稳随机过程的互功率谱密度2.2.1、互谱密度可由单个随机过程的功率谱密度的概念,以及相应的分析方法推广而来。
考虑两个平稳实随机过程X(t)、Y(t), 它们的样本函数分别为)(t x 和)(t y ,定义两个截取函数()t x T 、()t y T 为:因为()t x T 、()t y T 都满足绝对可积的条件,所以它们的傅里叶变换存在。
在时间范围(-T ,T)内,两个随机过程的互功率)(T Q XY 为:(注意()t x T 、()t y T 为确定性函数,所以求平均功率只需取时间平均)由于()t x T 、()t y T 的傅里叶变换存在,故帕塞瓦定理对它们也适用,即:注意到上式中,)(t x 和)(t y 是任一样本函数,因此,具有随机性,取数学期望,并令∞→T ,得:])()(21[lim )]([lim dt t y t x TE Q T Q E TT T XY XY T ⎰-∞→∞→===]),(21[lim dt t t R TTT XYT ⎰-∞→=ωωωπd TT X T XE Y XT 2)],(),([lim 21*⎰∞∞-∞→定义互功率谱密度为:得:同理,有:又知以上定义了互功率和互功率谱密度,并且导出了它们之间的关系。
2.2.2、互谱密度和互相关函数的关系平稳随机过程的自相关函数与其功率谱密度之间互为傅里叶变换,互相关函数与互谱密度之间也存在着类似关系。
定义:对于两个实随机过程X(t)、Y(t),其互谱密度)(ωXY S 与互相关函数),(τ+t t R XY 之间的关系为若X(t)、Y(t)各自平稳且联合平稳,则有即:式中,><.A 表示时间平均。
显然:证明:略,参见自相关函数和功率谱密度关系的证明。
结论:对于两个联合平稳(至少是广义联合平稳)的实随机过程,它们的互谱密度与其互相关函数互为傅里叶变换。
2.3.3、互谱密度的性质互功率谱密度和功率谱密度不同,它不再是频率ω的正的、实的和偶函数。
性质1:)()()(*ωωωYX YX XY S S S =-= 证明:⎰∞∞--=ττωωτd eR S j XY XY )()(=⎰∞∞---ττωτd e R j YX )( 令ττ-==⎰∞∞-ττωτd eR j YX )(=)(*ωYXS=⎰∞∞---τττωd eR j YX )()(=)(ω-YX S性质2:)(Re[)](Re[ωω-=XY XY S S ;)(Re[)](Re[ωω-=YX YX S S证明:式中Re[·]表示实部。
亦即互谱密度的实部为ω的偶函数。
ττωωτd eR S j XY XY ⎰∞∞--=)()(=τωτωττd j R XY )]sin()[cos (⎰∞∞--+所以:τωττωd R S XYXY ⎰∞∞-=cos )()](Re[ 令ττ-==τωττd R XY⎰∞∞--cos )(=)](Re[ω-XY S其它同理可证。
性质3:证明:类似性质2证明。
性质4:若X(t)与Y(t)正交,则有证明:若X(t)与Y(t)正交,则0),(),(2121==t t R t t R YX XY 所以,0)()(==ωωYX XY S S性质5:若X(t)与Y(t)不相关,X(t)、Y(t)分别具有常数均值Xm 和Y m ,则证明:因为X(t)与Y(t)不相关,所以Y X m m t Y t X E =)]()([21ττωωτd eR S j XY XY ⎰∞∞--=)()(=τωτd em m j YX ⎰∞∞--=)(2ωδπY X m m (注意)(21ωπδ↔) 性质6:式中,A<∙>表示时间平均。
这给出了一般的随机过程(包含平稳)的互谱密度与互相关函数的关系式。
[例2.2] 设两个随机过程X(t)和Y(t)联合平稳,其互相关函数)(τXY R 为:求互谱密度)(ωXY S ,)(ωYX S 解:先求)(ωXY S :再求)(ωYX S2.3 功率谱密度与自相关函数之间的关系确定信号:x(t)↔ )(ωj X 。
随机信号:平稳随机过程的自相关函数↔功率谱密度。
1.定义:若随机过程X(t)是平稳的,自相关函数绝对可积,则自相关函数与功率谱密度构成一对付氏变换,即:这一关系就是著名的维纳—辛钦定理、或称为维纳—辛钦公式。
2. 证明:下面就来推导这一关系式。
证明方法类似式的证明。
因为:由(3.1.14)式 2[(,)]()lim2XX T E XT S Tωω→∞= *1lim[(,)(,)]2XXT E XT XT Tωω→∞==1lim2T T→∞121122[()()]T T j t j t TTE X t edt X t e dt ωω---⎰⎰交换积分和数学期望顺序=21()12121lim[()()]2T T j t t TTT E X t X t edt dt Tω----→∞⎰⎰=⎰⎰----∞→-T T TT t t j X T dt dt et t R T21)(1212)(21limω设12t t -=τ,12t t u +=,则22ut τ+=,21τ-=u t所以:2121212121),(),(21=-=∂∂=u t t J τ t1t2-TT2T2Tu -2T τ-=T u 2τ+-=T u 2τ+=T u 2τ--=T u 2τ图2.2则du e R d TS j X TT T T X ωτττττω--+-∞→⎰⎰=)(21{21lim)(2022 })(210222du eR d j X TT T ωτττττ--+--⎰⎰+=})(2121{lim 2222du eR d T j X TT T T T ωτττττ---+-∞→⎰⎰=τττωτd eR T Tj X TTT --∞→⎰-)()2(21lim22=τττωτd eR Tj X TTT --∞→⎰-)()21(lim22 (1)=⎰∞∞--ττωτd eR j X )(-22lim)()2T j X TT R ed Tωττττ--→∞⎰(注意T ∞→,02→Tτ;且∞→τ时,0)(→τX R 。
因此,通常情况下,第二项为0=⎰∞∞--ττωτd eR j X )(证毕。
推论:对于一般的随机过程X(t),有:则平均功率为:ωωπd S dt t XE TX TT T ⎰⎰∞∞--∞→=)(21)]([21lim2(0=τ)——时间平均加统计平均。
利用自相关函数和功率谱密度皆为偶函数的性质,又可将维纳—辛钦定理表示成:3.单边功率谱由于实平稳过程x(t)的自相关函数)(τX R 是实偶函数,功率谱密度也一定是实偶函数。