正方形网格中的每个小正方形边长都是1
2020中考数学复习图形的性质基础练习题3(附答案) (1)
2020中考数学复习图形的性质基础练习题3(附答案)1.如图,在六边形ABCDEF 中,A B E F α∠+∠+∠+∠=,CP DP 、分别平分BCD CDE ∠∠、,则P ∠的度数为( )A .11802α-oB .11802α-oC .12α D .13602α-o 2.如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点E ,F ,再以点E 为圆心,以EF 长为半径画弧,交弧①于点D ,画射线.OD 若26AOB ∠=o ,则BOD ∠的补角的度数为( )A .38oB .52oC .128oD .154o3.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于()A .6B .8C .9D .184.以长为8cm 、6cm 、10cm 、4cm 的四条线段中的三条线段为边,可以画出三角形的个数为( )A .1个B .2个C .3个D .4个5.如图,是某住宅小区平面图,点B 是某小区“菜鸟驿站”的位置,其余各点为居民楼,图中各条线为小区内的小路.从居民楼点A 到“菜鸟驿站”点B 的最短路径是()A .A C G EB ----B .AC E B --- C .AD GE B ---- D .AF E B ---6.如图,将△ABC 绕点C 按逆时针方向旋转45°后得到△A ′B ′C ′,若∠A =45°,∠B ′=100°,则∠BCA ′的度数是( )A .10°B .15°C .20°D .25°7.下列图形中不可能是正多边形的是( )A .三角形B .正方形C .四边形D .梯形8.将正方形ABCD 与等腰直角三角形EFG 如图摆放,若点M 、N 刚好是AD 的三等分点,下列结论正确的是( )①△AMH ≌△NME ;②12AM BF =;③GH ⊥EF ;④S △EMN :S △EFG =1:16A .①②③④B .①②③C .①③④D .①②④9.如图,矩形ABCD 的外接圆O 与水平地面有唯一交点A ,圆O 的半径为4,且»BC=2»AB .若在没有滑动的情况下,将圆O 向右滚动,使得O 点向右移动了98π,则此时该圆与地面交点在( )上.A .»AB B .»BC C .»CD D .»DA10.如图,已知ΔABC 和ΔDCE 均是等边三角形,点B ,C ,E 在同一条直线上,AE 与CD 交于点G ,AC 与BD 交于点F ,连接FG ,则下列结论: ①AE=BD ;②AG =BF ;③FG ∥BE ;④CF=CG.其中正确的结论为____________.11.指出命题“对顶角相等”的题设和结论,题设_____,结论_____.12.在半径为7cm 的圆中,若弦AB =7cm ,则弦AB 所对的圆周角的度数是_____ 13.如图,将矩形纸片ABCD 折叠,使点C 与点A 重合,其中4,8AB BC ==,则AE 的长度为__________.14.已知在Rt △ABC 中,∠C =90°,BC =5,AC =12,E 为线段AB 的中点,D 点是射线AC 上的一个动点,将△ADE 沿线段DE 翻折,得到△A′DE ,当A′D ⊥AB 时,则线段AD 的长为_____.15.如图,已知AD ∥BC ,∠B =30°,DB 平分∠ADE ,则∠ADE =________;16.如图,已知:等腰Rt △ABC 中,∠BAC =90°,BC =2,E 为边AB 上任意一点,以CE 为斜边作等腰Rt △CDE ,连接AD ,下列说法:①∠BCE =∠AED ;3中正确的结论有_____.(填写所有正确结论的序号)17.如图,在四边形ABCD 中,2AB =,2BC =,3CD =,1DA =,且90ABC ∠=︒,则BAD ∠=______度.18.如图,点E 在正方形ABCD 内,△ABE 是等边三角形,点P 是对角线AC 上的一个动点,若AC =4,则PD +PE 的最小值为_____.19.如图,△ABC 中,∠ACB =90°,AB =5,AC =3,BC 为半圆O 的直径,将△ABC 沿射线CB 方向平移得到△A 1B 1C 1.当A 1B 1与半圆O 相切于点D 时,平移的距离的长为_____.20.如图,C 是线段AB 上一点,M 是AC 的中点,N 是CB 的中点,如果AB=10cm .求:MN 的长.21.计算:(1)50°24′×3+98°12′25″÷5;(2)100°23′42″+26°40′28″+25°30′16″×4.22.正方形网格中的每个小正方形边长都是1,(1)请在图中画出等腰△ABC ,使AB =AC 5BC 2;(2)在△ABC 中,AB 边上的高为 .23.如图,点C在射线OA上,射线CE平分∠ACD,射线OF平分∠COB,并与射线CD交于点F.(1)依题意补全图形;(2)若∠COB+∠OCD=180°,求证:∠ACE=∠COF.24.已知:如图,△DAC、△EBC均是等边三角形,点A、C、B在同一条直线上,且AE、BD分别与CD、CE交于点M、N.求证:(1)AE=DB;(2)△CMN为等边三角形.25.如图,在6×10的网格中,每个小正方形的边长均为1,每个小正方形顶点叫作格点,△ABC的三个顶点和点D,E,F,G,H,K均在格点上,现以D,E,F,G,H,K中的三个点为顶点画三角形.(1)在图①中画出一个三角形与△ABC全等,如△DEG;(2)在图②中画出一个三角形与△ABC面积相等但不全等,如△HFG.26.如图,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB 并延长交直线AD于点E.(1)如图,求∠QEP的度数;(2)如图,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.27.四边形ABCD中,AB=BC,∠B=∠C=90°,P是BC边上一点,AP⊥PD,E是AB 边上一点,∠BPE=∠BAP.(1)如图1,若AE=PE,直接写出CPPB=______;(2)如图2,求证:AP=PD+PE;(3)如图3,当AE=BP时,连BD,则PEBD=______,并说明理由.参考答案1.A【解析】【分析】由多边形内角和定理求出∠A+∠B+∠E+∠F+∠CDE+∠BCD =720°①,由角平分线定义得出∠BCP =∠DCP ,∠CDP =∠PDE ,根据三角形内角和定理得出∠P+∠PCD+∠PDE =180°,得出2∠P+∠BCD+∠CDE =360°②,由①和②即可求出结果. 【详解】在六边形 A BCDEF 中,∠A+∠B+∠E+∠F+∠CDE+∠BCD =(6-2)×180°=720°①, Q CP 、DP 分別平分∠BCD 、∠CDE ,∴∠BCP =∠DCP ,∠CDP =∠PDE ,Q ∠P+∠PCD+∠PDE =180°,∴2(∠P+∠PCD+∠PDE)=360°,即2∠P+∠BCD+∠CDE =360°②, ①-②得:∠A+∠B+∠E+∠F-2∠P =360°,即α-2∠P =360°,∴∠P=12α-180°, 故选:A.【点睛】本题考查了多边形内角和定理、角平分线定义以及三角形内角和定理;熟记多边形内角和定理和三角形内角和定理是解题关键.2.C【解析】【分析】根据作一个角等于一直角的作法即可得出结论.【详解】由题意可得:26AOB AOD ∠=∠=o ,262652BOD o o o ∴∠=+=,BOD ∴∠的补角的度数18052128=-=o o o ,故选C .【点睛】本题考查的是余角与补角,熟知作一个角等于已知角的步骤是解答此题的关键.3.C【解析】【分析】作EH ⊥BC 于H ,根据角平分线的性质得到EH=DE=3,根据三角形的面积公式计算即可.【详解】解:作EH ⊥BC 于H ,∵BE 平分∠ABC ,CD 是AB 边上的高线,EH ⊥BC ,∴EH=DE=3,∴△BCE 的面积=12×BC×EH=9, 故选C . 【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.4.C【解析】【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】分成四种情况:①4cm ,6cm ,8cm ;②4cm ,6cm ,10cm ;③6cm ,8cm ,10cm ;④4cm ,8cm,10cm,∵4+6=10,∴②不能够成三角形,故只能画出3个三角形.故选C.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.5.D【解析】【分析】根据两点之间线段最短即可判断.【详解】从居民楼点A到“菜鸟驿站”点B的最短路径是A-E-B,故选D.【点睛】此题主要考查点之间的距离,解题的关键是熟知两点之间线段最短.6.A【解析】【分析】利用三角形内角和定理以及旋转不变性解决问题即可.【详解】由题意∠B=∠B′=100°,∠A=45°,∴∠ACB=180°﹣∠B﹣∠A=180°﹣100°﹣45°=35°,∵∠ACA′=45°,∴∠BCA′=∠ACA′﹣∠ACB=45°﹣35°=10°,故选:A.【点睛】本题考查三角形内角和定理,旋转变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.D【解析】【分析】根据正多边形的性质依次判定各项后即可解答.【详解】选项A,三角形中的等边三角形是正三角形;选项B,正方形是正四边形;选项C,四边形中的正方形是正四边形;选项D,梯形的上底与下底不相等所以梯形不可能是正多边形.故选D.【点睛】本题考查了正多边形的性质,熟知每条边都相等、每个角都相等的多边形是正多边形是解决问题的关键.8.A【解析】【分析】利用三角形全等和根据题目设未知数,列等式解答即可.【详解】解:设AM=x,∵点M、N刚好是AD的三等分点,∴AM=MN=ND=x,则AD=AB=BC=3x,∵△EFG是等腰直角三角形,∴∠E=∠F=45°,∠EGF=90°,∵四边形ABCD是正方形,∴∠A=∠ABC=∠BGN=∠ABF=90°,∴四边形ABGN是矩形,∴∠AHM=∠BHF=∠AMH=∠NME=45°,∴△AMH≌△NMH(ASA),故①正确;∵∠AHM=∠AMH=45°,∴AH=AM=x,则BH=AB﹣AH=2x,又Rt△BHF中∠F=45°,∴BF=BH=2x,AMBF=12,故②正确;∵四边形ABGN是矩形,∴BG=AN=AM+MN=2x,∴BF=BG=2x,∵AB⊥FG,∴△HFG是等腰三角形,∴∠FHB=∠GHB=45°,∴∠FHG=90°,即GH⊥EF,故③正确;∵∠EGF=90°、∠F=45°,∴EG=FG=BF+BG=4x,则S△EFG=12•EG•FG=12•4x•4x=8x2,又S△EMN=12•EN•MN=12•x•x=12x2,∴S△EMN:S△EFG=1:16,故④正确;故选A.【点睛】本题主要考察三角形全等证明的综合运用,掌握相关性质是解题关键. 9.B【解析】【分析】根据题意得出圆的周长以及圆转动的周数,进而得出与地面相切的弧.【详解】∵圆O半径为4,∴圆的周长为:2π×r=8π,∵将圆O向右滚动,使得O点向右移动了98π,∴98π÷8π=12…2π,即圆滚动12周后,又向右滚动了2π,∵矩形ABCD的外接圆O与水平地面相切于A点,»BC=2»AB,∴»AB=16×8π=43π<2π,»AB+»BC=12×8π=4π>2π,∴此时»BC与地面相切,∴此时该圆与地面交点在»BC上,故选B.【点睛】此题主要考查了旋转的性质以及圆的周长公式等知识,得出O点转动的周数是解题关键.10.①②③④【解析】【分析】首先由SAS判定△BCD≌△ACE,即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,同理证得CF=CG,则④正确,可得∠FCE=60°,可得△CFG是等边三角形,则可得∠CFG=∠FCB,则FG∥BE,可得③正确.【详解】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,AC=BC,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确)∴CF=CG(④正确),且∠ACD=60°∴△CFG是等边三角形,∴∠CFG=∠FCB=60°,∴FG∥BE,(③正确)正确的有①②③④.【点睛】本题的关键是熟练掌握等边三角形的判定与性质,全等三角形的判定与性质,应用数形结合思想.11.两个角是对顶角,这两个角相等.【解析】【分析】根据命题的定义即可解答.【详解】对顶角相等.题设:两个角是对顶角;结论:这两个角相等;故答案为:两个角是对顶角,这两个角相等.【点睛】本题考查命题,熟悉命题的设定过程是解题关键.12.30°或150°【解析】【分析】弦所对的弧有优弧和劣弧,故弦所对的圆周角也有两个,它们的关系是互补关系;弦长等于半径时,弦所对的圆心角为60°,由此解答即可.【详解】如图,弦AB所对的圆周角为∠C,∠D,连接OA、OB,因为AB=OA=OB=7cm,所以,∠AOB=60°,根据圆周角定理知,∠C12∠AOB=30°,根据圆内接四边形的性质可知,∠D=180°﹣∠C=150°,所以,弦AB所对的圆周角的度数30°或150°.故答案为:30°或150°.【点睛】本题考查了圆内接四边形的性质、圆周角定理及等边三角形的判定与性质,解答此题时要注意一条弦所对的圆周角有两个,这两个角互为补角.13.5【解析】【分析】由折叠的AE=EC,设AE=x,则EB=8-x,利用勾股定理求解即可.【详解】由折叠的AE=EC,设AE=x,则EB=8-x∵矩形ABCD∴∠B=90°∴42+(8-x)2=x2∴x=5故AE=5.【点睛】本题考查的是折叠,熟练掌握勾股定理是解题的关键.14.133或394.【解析】【分析】①延长A'D交AB于H,则A'H⊥AB,然后根据勾股定理算出AB,推断出△ADH∽△ABC,即可解答此题②同①的解题思路一样【详解】解:分两种情况:①如图1所示:设AD=x,延长A'D交AB于H,则A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB13,∵∠A=∠A,∴△ADH∽△ABC,∴DH AH ADBC AC AB==,即51213DH AH x==,解得:DH=513x,AH=1213x,∵E是AB的中点,∴AE=12AB=132,∴HE=AE﹣AH=132﹣1213x,由折叠的性质得:A'D=AD=x,A'E=AE=132,∴sin∠A=sin∠A'=1312521313`132xHEA E-==,解得:x=133;②如图2所示:设AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=132,DH=513x,∴A'H=A'D﹣DH=x﹣513=813x,∴cos∠A=cos∠A'=8`121313`132xA HA E==,解得:x=394;综上所述,AD的长为133或394.故答案为133或394.【点睛】此题考查了勾股定理,三角形相似,关键在于做辅助线15.60°【解析】【分析】直接利用平行线的性质以及角平分线的性质得出∠ADB=∠BDE,进而得出答案.【详解】∵AD∥BC,∴∠ADB=∠DBC,∵DB平分∠ADE,∴∠ADB=∠BDE=12∠ADE,∵∠B=30°,∴∠ADB=∠BDE=30°,则∠ADE的度数为:60°.故答案为:60°.【点睛】此题主要考查了平行线的性质,正确得出∠ADB的度数是解题关键.16.①③④【解析】【分析】首先根据已知条件看能得到哪些等量条件,然后根据得出的条件来判断各结论是否正确.【详解】∵△ABC、△DCE都是等腰Rt△,∴AB=AC=22,BC=2,CD=DE=22CE;∠B=∠ACB=∠DEC=∠DCE=45°;①∵∠B=∠DEC=45°,∴180°-∠BEC-45°=180°-∠BEC-45°;即∠AEC=∠BCE;故①正确;③∵CD AC EC BC=,∴CD CE AC BC=,由①知∠ECB=∠DCA,∴△BEC∽△ADC;∴∠DAC=∠B=45°;∴∠DAC=∠BCA=45°,即AD∥BC,故③正确;②由③知:∠DAC=45°,则∠EAD=135°;∠BEC=∠EAC+∠ECA=90°+∠ECA;∵∠ECA<45°,∴∠BEC<135°,即∠BEC<∠EAD;因此△EAD与△BEC不相似,故②错误;④△ABC的面积为定值,若梯形ABCD的面积最大,则△ACD的面积最大;△ACD中,AD边上的高为定值(即为1),若△ACD的面积最大,则AD的长最大;由④的△BEC∽△ADC知:当AD最长时,BE也最长;故梯形ABCD面积最大时,E、A重合,此时,AD=1;故S梯形ABCD=12(1+2)×1=32,故④正确;故答案为①③④.【点睛】本题考查了相似三角形的判定与性质,等腰直角三角形的性质,平行线的判定,熟练掌握相似三角形的判定与性质是解题的关键.17.135【解析】【分析】根据勾股定理可得AC的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD 的度数.【详解】∵AB=2,BC=2,∠ABC=90°,∴=,∠BAC=45°,∵12+()2=32,∴∠DAC=90°,∴∠BAD=90°+45°=135°,故答案是:135.【点睛】考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.18.【解析】首先求得正方形的边长,从而可得到BE的长,然后连接BP则PD=BP,则PD+PE=PE +BP,故当点E、P、B在一条直线上时,PD+PE有最小值.【详解】解:如图所示:连接BP.∵在正方形ABCD中,AC=4,∴AB=22AC=22.∵△ABE为等边三角形,∴BE=AB=22.∵ABCD为正方形,∴PB=PD,∴PE+PD=PB+PE.∵PB+PE≥BE,∴当点E、P、B在一条直线上时,PD+PE有最小值,最小值=BE=22.故答案为22.【点睛】本题主要考查的是正方形的性质、等边三角形的性质、轴对称图形的性质,找出PD+PE取得最小值的条件是解题的关键.19.4 3【解析】【分析】连结OG,如图,根据勾股定理得到BC=4,根据平移的性质得到CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,根据切线的性质得到OD⊥A1B1,根据相似三角形的性质即可得到结论.连结OG ,如图, ∵∠BAC =90°,AB =5,AC =3,∴BC =22AB AC -=4,∵Rt △ABC 沿射线CB 方向平移,当A 1B 1与半圆O 相切于点D ,得△A 1B 1C 1,∴CC 1=BB 1,A 1C 1=AC =3,A 1B 1=AB =5,∠A 1C 1B 1=∠ACB =90°,∵A 1B 1与半圆O 相切于点D ,∴OD ⊥A 1B 1,∵BC =4,线段BC 为半圆O 的直径,∴OB =OC =2,∵∠GEO =∠DEF ,∴Rt △B 1OD ∽Rt △B 1A 1C 1,∴11111OB OD A B A C =,即1253OB =,解得OB 1=103, ∴BB 1=OB 1﹣OB =103﹣2=43, 故答案为43.【点睛】本题考查了切线的性质,平移的性质、勾股定理和相似三角形的判定与性质,熟练掌握相关性质是解题的关键.20.5.【解析】【分析】根据中点的性质可得出MC=12AC ,CN=12CB ,根据图即可得出MN 的长度. 【详解】解:因为,M是AC的中点,N是CB的中点所以,MC=12AC,CN=12CB所以,MN=MC+CN=12AC+12CB=12(AC+CB) =12×10=5【点睛】本题主要考查了利用中点性质转化线段之间的倍分关系,长度带单位的一定注意不要漏掉长度的单位,比较简单.21.(1)170°50′29″.(2)229°5′14″.【解析】【分析】(1)先做乘除法,度与度,分与分,秒与秒对应相乘除,最后做加法;(2)先做乘法,然后做加法,度与度,分与分,秒与秒对应相加,秒的结果满60,则化为分,分的结果若满60,则转化为度.【详解】解:(1)50°24′×3+98°12′25″÷5;50°24′×3=150°72′98°12′25″÷5=19.6°2.4′5″=19°38′29″50°24′×3+98°12′25″÷5=150°72′+19°38″29″=170°50′29″;(2)100°23′42″+26°40′28″+25°30′16″×4.25°30′16″×4=100°120′64″=102°1′4″100°23′42″+26°40′28″+102°1′4″=228°64′74″= 229°5′14″【点睛】此类题是进行度、分、秒的加法、减法.乘除法计算,相对比较简单,注意以60为进制即可.22.(1)详见解析;(2.【解析】【分析】(1)利用数形结合的思想解决问题即可;(2)利用三角形的面积,构建方程求解即可. 【详解】(1)△ABC如图所示.(2)设CD⊥AB,∵S△ABC=12•AB•CD=4-12×2×1-12×2×1-12×1×1,∴35,35.【点睛】本题考查作图,勾股定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会利用面积法构建方程解决问题.23.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据题意补全图形即可;(2)根据角平分线的定义得到∠ACE=12∠ACD,∠COF=12∠COB.根据同角的补角相等得到∠ACE=∠COF.【详解】解:(1)补全图形,如图所示:(2)证明:∵CE平分∠ACD,OF平分∠COB,∴∠ACE=12∠ACD,∠COF=12∠COB.∵点C在射线OA上,∴∠ACD+∠OCD=180°.∵∠COB+∠OCD=180°,∴∠ACD=∠COB.∴∠ACE=∠COF.【点睛】本题考查了角的计算,角平分线的定义的运用,熟练掌握角平分线的定义是解题的关键.24.证明略【解析】【分析】证明:(1)∵△DAC、△EBC均是等边三角形,∴AC=DC,EC=BC,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,∴△ACE≌△DCB(SAS).∴AE=DB.(2)由(1)可知:△ACE≌△DCB,∴∠CAE=∠CDB,即∠CAM=∠CDN.∵△DAC、△EBC均是等边三角形,∴AC=DC,∠ACM=∠BCE=60°.又点A、C、B在同一条直线上,∴∠DCE=180°-∠ACD-∠BCE=180°-60°-60°=60°,即∠DCN=60°.∴∠ACM=∠DCN.在△ACM和△DCN中,∴△ACM≌△DCN(ASA).∴CM=CN.又∠DCN=60°,∴△CMN为等边三角形.【详解】请在此输入详解!25.(1)见解析;(2)见解析.【解析】【分析】(1)观察图形,根据△ABC的特征,利用全等三角形的判定方法即可得出符合题意的答案;(2)结合图形,根据三角形面积求法即可得出答案.【详解】(1)如图①所示,△DEF(或△KHE,△KHD)即为所求.(2)如图②所示,△KFH(或△KHG,△KFG)即为所求.【点睛】本题考查了格点的特征、全等三角形的判定方法及三角形的面积求法,熟练运用格点的特征是解决问题的关键.26.(1)60°,理由见解析;(2)BQ=26﹣22.【解析】【分析】(1)先证明出△CQB≌△CPA,即可得出∠QEP=60°;(2)作CH⊥AD于H,如图2,证明△ACP≌△BCQ,则AP=BQ,由∠DAC=135°,∠ACP=15°,得出AH=3,CH=33,即可得出PH=CH=33,即可得出结论.【详解】(1)如图1,∵PC=CQ,且∠PCQ=60°,则△CQB和△CPA中,PC QCPCQ ACB AC BC⎧⎪∠∠⎨⎪⎩===,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因为△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP =60°.(2)作CH⊥AD于H,如图2,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵线段CP绕点C顺时针旋转60°得到线段CQ,∴CP=CQ,∠PCQ=6O°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,CA CB ACP BCQ CP CQ ⎧⎪∠∠⎨⎪⎩===∴△ACP ≌△BCQ (SAS ), ∴AP =BQ ,∵∠DAC =135°,∠ACP =15°,∴∠APC =30°,∠PCB =45°,∴△ACH 为等腰直角三角形,∴AH =CH =2AC =2×4=22 ,在Rt △PHC 中,PH =3CH =26,∴PA =PH ﹣AH =26﹣22,∴BQ =26﹣22.【点睛】本题考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了全等三角形的判定与性质、等边三角形的性质和等腰直角三角形的性质.27.(131;(2)证明见解析;(3)22. 【解析】【分析】(1)首先证明∠P AB =30°,设PB =a ,可得AB =BC 3=,求出PC 即可解决问题;(2)如图2中,延长DP 交AB 的延长线于M ,作MN ⊥DC 交DC 的延长线于N .首先证明PE =PM ,再证明△ABP ≌△MND (ASA )即可解决问题;(3)如图3,延长DP 交AB 的延长线于M ,作MN ⊥DC 交DC 的延长线于N .首先证明DN =PB =AE ,EB =BM =CN ,设AE =PB =DN =x ,EB =BM =CN =y ,求出PE ,BD 即可解决问题.【详解】(1)如图1.∵AE =PE ,∴∠EAP =∠EP A .∵∠EPB =∠P AE ,∴∠EPB =∠P AE =∠EP A .∵∠B =90°,∴∠P AB +∠APB =90°,∴3∠P AE =90°,∴∠P AE =30°.设PB =a ,则AB =BC 3=a ,∴PC =BC ﹣PB 3=a ﹣a ,∴33PC a a PB a-==-1. 故答案为:31-.(2)如图2,延长DP 交AB 的延长线于M ,作MN ⊥DC 交DC 的延长线于N .∵AP ⊥DM ,∴∠APM =∠PBM =90°.∵∠P AE +∠APB =90°,∠APB +∠BPM =90°,∴∠P AE =∠BPM .∵∠EPB =∠P AE ,∴∠EPB =∠BPM .∵∠EPB +∠PEB =90°,∠BPM +∠PMB =90°,∴∠PEB =∠PMB ,∴PE =PM .∵∠CBM =∠BCN =∠N =90°,∴四边形BCNM 是矩形,∴BC =MN =AB ,BC ∥MN ,∴∠DMN =∠BPM =∠P AB .∵∠ABP =∠N =90°,∴△ABP ≌△MND (ASA ),∴P A =DM .∵DM =DP +PM =DP +PE ,∴P A =DP +PE .(3)如图3,延长DP 交AB 的延长线于M ,作MN ⊥DC 交DC 的延长线于N .由(2)可知:PE =PM ,△ABP ≌△MND ,四边形BCNM 是矩形,∴PB =DN ,设PB =DN =x ,∴AE =PB =DN =x .∵PE =PM ,PB ⊥EM ,∴EB =BM .∵BM =CN ,∴BE =BM =CN ,设BE =BM =CN =y ,则CD =x ﹣y ,BC =AB =x +y .在Rt △PBE 中,PE 22x y =+在Rt △DCB 中,BD 2222()()22x y x y x y =-++=+∴2222222x y PE BD x y +==+ 故答案为:22. 【点睛】本题考查了四边形综合题、直角梯形的性质、矩形的判定和性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.。
人教版七年级数学下册第五章第四节平移复习题(含答案) (7)
人教版七年级数学下册第五章第四节平移复习题(含答案) 画图并填空:如图,方格纸中每个小正方形的边长都为1,在方格纸中将△ABC经过一次平移后得到△A′B′C′,图中标出来点A,点B′、点C和它的对应点C′.(1)请画出平移前后的△ABC和△A′B′C′;(注意并标注好字母)(2)利用网格画出△ABC中BC边上的中线AD;(注意并标注好字母)(3)利用网格画出△ABC中AB边上的高CE;(注意并标注好字母)(4)△A′B′C′的面积为.【答案】(1)详见解析;(2)详见解析;(3)详见解析;(4)6.【解析】【分析】(1)根据题意画出△ABC和△A′B′C′即可;(2)作出△ABC中BC边上的中线AD即可;(3)过点C向AB的延长线作垂线,垂足为E即可;(4)直接利用三角形的面积公式即可得出结论.【详解】解:(1)如图,△ABC和△A′B′C′即为所求;(2)如图,线段AD即为所求;(3)如图,线段CE即为所求;(4)S△A′B′C′=1×3×4=6.2【点睛】考查的是作图-平移变换,熟知图形平移不变性的性质是解答此题的关键.62.作图题(1)如图①,点C是∠AOB边OB上的一点,在图中作出点C到OA的垂线段CD,垂足为D.再过C点作OA的平行线CE.(2)如图①,在正方形网格中,每个小正方形的边长为1,△ABC的顶点都在正方形顶点上,将△ABC先向左平移2个单位,再向下平移3个单位,得到△A′B′C′,请你画出平移后的△A′B′C′.【答案】(1)如图所示:CD,CE即为所求;见解析;(2)如图所示:△A′B′C′,即为所求.见解析.【解析】【分析】(1)直接利用作一角等于已知角的作法以及过一点作已知直线的垂线作法分别得出答案;(2)利用平移的性质得出对应点位置进而得出答案.【详解】(1)如图所示:CD,CE即为所求;(2)如图所示:△A′B′C′,即为所求.【点睛】本题考查平移变换以及基本作图,正确掌握基本作图方法是解题关键.63.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A,B,C在小正方形的顶点上,利用网格作图:(1)过AB的中点D作DE∥BC交AC于点E;(2)将△ABC水平向右平移4个单位得到△A1B1C1,画出△A1B1C1.【答案】(1)图形见解析;(2)图形见解析.【解析】【分析】(1)找出AB的中点D,用三角尺的一边与BC重合,用一个直尺靠紧三角尺的另一边,推动三角尺,但不能转动,直到三角尺与BC重合的边经过AB中点时,即可过D作DE∥BC交AC于点E;(2)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;【详解】【点睛】本题考查作图-平移变换,熟知图形平移不变性的性质是解答此题的关键,也考查了作平行线.64.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD.(2)画出△ABC向右平移4个单位后得到的△A1B1C1.(3)图中AC与A1C1的关系是:______.【答案】(1)作图见解析;(2)作图见解析;(3)平行且相等【解析】【分析】(1)根据中线的定义得出AB的中点即可得出△ABC的AB边上的中线CD;(2)平移A,B,C各点,得出各对应点,连接得出△111A B C;(3)利用平移的性质得出AC与A1C1的关系;【详解】(1)△ABC的AB上的中线CD如图所示,(2)△111A B C如图所示,(3)根据平移的性质得出,AC与11A C的关系是:平行且相等;65.在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,4),(﹣1,2).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)将△ABC向右平移2个单位长度,然后再向下平移3个单位长度,得到△A′B′C′,画出平移后的△A′B′C′.(3)求S△A′B′C′的面积.【答案】(1)见解析;(2)见解析;(3)S△A′B′C′=4.【解析】【分析】(1)根据点A、点C的坐标确定出坐标原点,然后建立平面直角坐标系即可;(2)根据网格结构找出平移后的点A′、B′、C′的位置,然后顺次连接即可;(3)根据三角形的面积等于三角形所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】解:(1)如图,建立平面直角坐标系;(2)如图,△A′B′C′为所作;(3)S△A′B′C′=3×4﹣12×2×1﹣12×2×3﹣12×2×4=4.【点睛】本题考查了根据已知点的坐标确定平面直角坐标系、图形的平移变换,熟练掌握网格结构,准确找出对应点的位置是解题的关键,(3)利用三角形所在的矩形的面积减去四周直角三角形的面积求解是常用的方法.66.如图,ABC ∆的顶点都在每个边长为1个单位长度的方格纸的格点上,将ABC ∆向右平移2格,再向上平移3格,得到A B C '''∆ .(1)请在图中画出A B C '''∆;(2)ABC ∆的面积为 ;(3)若AC 的长约为2.6,则AC 边上的高约为 (结果保留分数).【答案】(1)见解析;(2)3;(3)3013【解析】【分析】 (1)根据平移的方向与距离进行作图;(2)根据△ABC 中BC 为3,BC 边上的高为2,求得三角形的面积;(3)设AC 边上的高为h ,根据△ABC 的面积为3,列出方程求解即可.【详解】(1)如图所示:(2)△ABC 的面积为12×3×2=3; (3)设AC 边上的高为h ,则12×AC ×h=3, 即12×2.6×h=3, 解得h=3013. 【点睛】本题主要考查了运用平移变换作图,图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.67.如图,方格纸中每个小正方形的边长都为1.在方格纸内将格点ABC ∆经过一次平移后得到'''A B C ∆,图中标出了点B 的对应点'B .(1)在给定方格纸中画出平移后的'''A B C ∆;(2)画出ABC ∆中AC 边上的中线BD 和AB 边上的高线CE .【答案】(1)见解析(2)见解析【解析】【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用三角形高线以及中线作法得出答案.【详解】(1)如图所示:'''A B C 即为所求;(2)如图所示:中线BD 和高线CE 即为所求.【点睛】此题主要考查了平移变换以及基本作图,正确得出对应点位置是解题关键.68.如图,把△ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到△A 1B 1C 1.(1)在图中画出△A 1B 1C 1,并写出点A 1、B 1、C 1的坐标;(2)连接A 1A 、C 1C ,则四边形A 1ACC 1的面积为______.【答案】(1) 画图见解析,点A 1(0,5)、B 1(-1,2)、C 1(3,2);(2)15.【解析】【分析】(1)将△ABC的三个顶点分别向上平移3个单位长度,然后再向右平移2个单位长度,连接各点,可以得到△A1B1C1,根据网格特点,找到各点横纵坐标即可找到△A1B1C1三个顶点的坐标;(2)四边形的面积可看成两个底为5,高为3的三角形的和,由三角形面积公式进行计算即可得.【详解】(1) △A1B1C1如图所示,点A1(0,5)、B1(-1,2)、C1(3,2);(2)四边形A1ACC1的面积为:11⨯⨯+⨯⨯=15,535322故答案为:15.【点睛】本题考查了作图——平移变换,四边形的面积,熟练掌握平移的性质以及网格的结构特征是解题的关键.69.如图为一梯级平面图,一只老鼠沿图形A→B→C的路线跑,一只猫同时沿梯级(折线)A→C→D的路线追,结果在距离C点6米的D点处,猫捉到了.老鼠,其中老鼠的速度是猫的57(1)填空,用含x的式子表示:(2)求梯级(折线)A→C的长度.【答案】(1)(2)36米.【解析】【分析】(1)根据题意,结合图形即可解答;(2)设梯级(折线)A→C的长度为x米,v米/秒,根据猫追上老鼠时,猫和老鼠猫的速度为v米/秒,则老鼠的速度为57用到时间相同列出方程,解方程即可求解.【详解】(1)(2)设梯级(折线)A→C的长度为x米,猫的速度为v米/秒,则老鼠的速度为57v米/秒,由题意可得,6657x xv v+-=,解得x=36.答:梯级(折线)A→C的长度为36米.【点睛】本题考查了列代数式及方程的应用问题,解题的关键是深入把握题意,准确找出命题中隐含的数量关系.70.如图,利用网格点和三角板画图或计算.(1)若点A平移后的对应点是A′,在给定方格纸中画出平移后的三角形A′B′C′;(2)作三角形A′B′C′的高A′D(3)记网格的边长为1,求三角形A′B′C′的面积.【答案】(1)见解析;(2)见解析;(3)8.【解析】【分析】(1)利用点A和它的对应点A′的位置可确定△ABC先向下平移1个单位,再向左平移7个单位得到△A′B′C′,然后利用此平移规律画出点B、C的对应点B′、C′,即可得到△A′B′C′;(2))从A点向B C''的延长线作垂线,垂足为点D,AD即为三角形A′B′C′的高;(3)根据三角形的面积公式计算.【详解】解:(1)如图:(2)如图所示:(3) ∵记网格的边长为1,∴1442A B CS'''=⨯⨯=8【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点.。
中心对称与中心对称图形中档题30道解答题附规范标准答案
9.2 中心对称与中心对称图形中档题汇编(3)一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为_________ ;(3)求线段CC′的长.3.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E 、O、F在同一直线上且OE=OF.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F ,求证:点E,F关于AD的中心对称.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有_________,是中心对称图形有_________ .(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律._________ .(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是_________ ;②十二瓣图形是_________ ;③十五瓣图形是_________ ;④二十六瓣图形是_________ .8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标_________ ;(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是_________ 图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点_________ .9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O中心对称.求证:BF=DE.11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D (0,4).(1)根据图形直接写出点C的坐标:_________ ;(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.13.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.15.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为_________ .18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa _________ Sb _________ Sc _________ Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?19.(1)能把平行四边形分成面积相等的两部分的直线有_________ 条,它们的共同特点是_________ .(2)如图,已知:AB∥CD∥FE,AF∥BC∥DE、求作一条直线,将这个图形分成面积相等的两部分、要求:对分法的合理性进行说明,并在图中作出分法的示意图(保留作图痕迹).(3)自己设计一个图形A(由至少两个基本的中心对称图形B、C组成),并作出可以将图形A面积分成相等两部分的直线.20.(2014春•定陶县期末)如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.21.(2011秋•庄浪县校级期末)如图,正方形ABCD与正方形A′B′C′D′关于点O中心对称,若正方形ABCD的边长为1,设图形重合部分的面积为y,线段OB的长为x,求y与x之间的函数关系式.22.(2009秋•和县期末)用六根一样长的小棒搭成如图所示的图形,试移动AC、BC这两根小棒,使六根小棒成为中心对称图形;若移动AC、DE这两根,能不能也达到要求呢?(画出图形)23.(2009秋•泗阳县校级期中)如图,AC=BD,∠A=∠B,点E、F在AB上,且DE∥CF,试说明这是中心对称图形.24.(2010秋•白下区校级期中)如图,已知△ABC和点O.(1)在图中画出△A′B′C′,使△A′B′C′与△ABC关于O点中心对称;(2)点A、B、C、A′、B′、C′能组成哪几个平行四边形?请用符号表示出来_________ .25.(2009秋•琼海期中)如图,已知AD是△ABC的中线,画出以点D为对称中心、与△ABD成中心对称的三角形.26.(2011秋•克拉玛依区校级期中)关于点E成中心对称的图形.27.(2014秋•宜春期末)如图是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.28.(2010秋•苏州期中)如图,由4个全等的正方形组成的L形图案,请按下列要求画图:(1)在图案①中添加1个正方形,使它成轴对称图形(不能是中心对称图形);(2)在图案②中添画1个正方形,使它成中心对称图形(不能是轴对称图形);(3)在图案中改变1个正方形的位置,画成图案③,使它既成中心对称图形,又成轴对称图形.29.(2010秋•宿豫区期中)如图,已知△ABC与△A′B′C′成中心对称图形,求出它的对称中心O.30.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是无理数;(2)在图2中,画出一个直角三角形,使它的三边长都是整数;(3)在图3中,画出一个中心对称图形.9.2 中心对称与中心对称图形中档题汇编(3)参考答案与试题解析一.解答题(共30小题)1.(2013•江西模拟)物体受重力作用的作用点叫做这个物体的重心.例如一根均匀的棒,重心是棒的中点,一块均匀的三角形木板,重心就是这个三角形三条中线的交点,等等.(1)你认为平行四边形的重心位置在哪里?请说明理由;(2)现有如图的一块均匀模板,请只用直尺和铅笔,画出它的重心(直尺上没有刻度,而且不允许用铅笔在直尺上做记号).考点:中心对称;三角形的重心.专题:作图题.分析:(1)根据平行四边形的性质可知:重心是两条对角线的交点.(2)两模块分成两个矩形,得到连接各自中心的第二条线段,指出重心.解答:(1)平行四边形的重心是两条对角线的交点.(1分)如图,平行四边形ABCD是中心对称图形,对角线的交点O是对称中心,经过点O与对边相交的任何一条线段都以点O为中点(如图中线段PQ),因此点O是各条线段的公共重心,也是▱ABCD的重心.(2)把模板分成两个矩形,连接各自的中心;把模板重新分成两个矩形,得到连接各自中心的第二条线段,指出重心.点评:本题考查了中心对称与重心之间的关系,有一定难度,注意掌握一些特殊图形的性质.2.(2010•沙河口区一模)在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为(7,﹣2);(3)求线段CC′的长.考点:中心对称;勾股定理.分析:(1)根据中心对称的性质直接就得出答案即可;(2)利用点C的坐标为(0,0),即可得出点B′的坐标;(3)利用勾股定理求出即可.解答:解:(1)△ABC与△A′B′C′成中心对称;(2)根据点C的坐标为(0,0),则点B′的坐标为:(7,﹣2);(3)线段CC′的长为:=2.点评:此题主要考查了勾股定理以及中心对称图形的定义以及点的坐标特点等知识,中心对称图形的性质是初中阶段考查重点应熟练掌握.3.(2006•陕西)观察下面网格中的图形,解答下列问题:(1)将网格中左图沿水平方向向右平移,使点A移至点A′处,作出平移后的图形:(2)(1)中作出的图形与右边原有的图形,组成一个新的图形,这个新图形是中心对称图形,还是轴对称图形?考点:中心对称图形;轴对称图形;作图-平移变换.专题:网格型.分析:(1)从A和A′的位置,确定平移方法,然后按平移条件找出其他顶点的对应点,顺次连接,即得到平移后的图形;(2)观察图形即可.解答:解:(1)如图所示.(作图正确3分)(2)新图形是轴对称图形.(6分)点评:本题的关键是作各个关键点的对应点,从而做出正确判断.4.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF,试利用“中心对称”的有关知识,说明点E、O、F在同一直线上且OE=OF.考点:中心对称.分析:连接AD、BC,根据对角线互相平分的四边形是平行四边形求出四边形ABCD是平行四边形,再根据平行四边形的中心对称性判断出E、F是对称点,然后根据轴对称性解答.解答:证明:如图,连接AD、BC,∵AC与BD互相平分且相交于点O,∴四边形ABCD是平行四边形,∴点O是平行四边形ABCD的对称中心,∵AE=CF,∴点E、F是对称点,∴点E、O、F在同一直线上且OE=OF.点评:本题考查了中心对称,主要利用了平行四边形的判定与中心对称性,对称点的连线比过对称中心并且被对称中心平分,熟记性质并作辅助线构造出平行四边形是解题的关键.5.如图,在△ABC中,D为BC上任一点,DE∥AC交AB与E,DF∥AB交AC于F,求证:点E,F关于AD的中心对称.考点:中心对称.专题:证明题.分析:根据题意推知四边形AEDF是平行四边形,则该四边形关于点O对称.解答:证明:如图,连接EF交于点O.∵DE∥AC交AB与E,DF∥AB交AC于F,∴四边形AEDF是平行四边形,∴点E,F关于AD的中心对称.点评:本题考查了中心对称.平行四边形是中心对称图形,对称中心是对角线的交点.6.如图所示,过▱ABCD的对角线的交点O任意画一条直线l,分别交AD、BC于点E、F,l将平行四边形分成两个四边形,这两个四边形是否关于点O成中心对称?请说明理由.考点:中心对称.分析:判断两个四边形是否关于点O中心对称可以转换为判断两个四边形的顶点是否关于点O对称即可.解答:解:这两个四边形关于点O成中心对称.∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵EF、AC、BD都经过点O,∴EO=FO,∴点A与点C,点B与点D,点E与点F均关于点O成中心对称,∴这两个四边形关于点O成中心对称.点评:本题考查了中心对称的知识,解题的关键是判断对应的顶点关于O点中心对称,难度不大.7.将两个大小相等的圆部分重合,其中重叠的部分(如图1中的阴影部分)我们称之为一个“花瓣”,由一个“花瓣”及圆组成的图形称之为花瓣图形,下面是一些由“花瓣”和圆组成的图形.(1)以上5个图形中是轴对称图形的有A,B,C,D,E ,是中心对称图形有A,C,E .(分别用图形的代号A、B、C、D、E填空).(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是是轴对称图形;②十二瓣图形是既是轴对称图形也是中心对称图形;③十五瓣图形是是轴对称图形;④二十六瓣图形是既是轴对称图形也是中心对称图形.考点:中心对称图形;轴对称图形.专题:规律型.分析:(1)根据轴对称图形和中心对称图形的性质可知三个图形中轴对称的为A,B,C,D,E.是中心对称的为A,C,E;(2)利用轴对称图形和中心对称图形的性质得出规律即可;(3)利用(2)中规律直接判断得出即可.解答:解:(1)以上5个图形中是轴对称图形的有A,B,C,D,E,是中心对称图形有A,C,E.故答案为:A,B,C,D,E;A,C,E;(2)若“花瓣”在圆中是均匀分布的,试根据上题的结果总结“花瓣”的个数与花瓣图形的对称性(轴对称或中心对称)之间的规律.当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形.故答案为:当花瓣是偶数个,则即是中心对称图形也是轴对称图形,若花瓣是奇数个,则是轴对称图形;(3)根据上面的结论,试判断下列花瓣图形的对称性:①九瓣图形是轴对称图形;②十二瓣图形是轴对称图形也是中心对称图形;③十五瓣图形是轴对称图形;④二十六瓣图形是轴对称图形也是中心对称图形.故答案为:①轴对称图形;②轴对称图形也是中心对称图形;③轴对称图形;④轴对称图形也是中心对称图形.点评:本题主要考查了中心对称和轴对称的关键,做这些题时,掌握他们的性质是关键.所以学生对一些定义,性质类的知识一定要牢记.8.(2011•芜湖县校级模拟)一天,上九年级的聪聪和明明在一起下棋,这时聪聪灵机一动,象棋中也有很多数学知识,如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”的规定,若“马”的位置在图中的点P.(1)写出下一步“马”可能到达的点的坐标(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)明明想了想,我还有两个问题呢:①如果顺次连接(1)中的所有点,你知道得到的图形是轴对称图形(填“中心对称”、“旋转对称”、“轴对称”);②指出(1)中关于点P成中心对称的点(0,0)点和(4,2)点;(0,2)点和(4,0)点.考点:中心对称;轴对称图形.专题:压轴题;数形结合.分析:(1)马走日,就是说在平面直角坐标系中要走到与P相邻正方形的对角位置,(2)连线可以看出是轴对称图形.解答:解:(1)根据分析可得,下一步“马”可能到达的点的坐标:(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);(2)连线可以看出得的图形为轴对称;根据中心对称的定义可得,(1)中关于点P成中心对称的点为:(0,0)点和(4,2)点;(0,2)点和(4,0)点.点评:本题主要考查轴对称的性质和坐标确定位置等知识点,不是很难,做题要细心.9.(2011•垫江县校级模拟)有一块方角形钢板如图所示,如何用一条直线将其分为面积相等的两部分.考点:中心对称.专题:作图题.分析:思路1:先将图形分割成两个矩形,找出各自的对称中心,过两个对称中心做直线即可;思路2:先将图形补充成一个大矩形,分别找出图中两个矩形各自的对称中心,过两个对称中心做直线即可.解答:解:如图所示,有三种思路:点评:本题需利用矩形的中心对称性解决问题.10.(2012•钦州模拟)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O 中心对称.求证:BF=DE.考点:中心对称;全等三角形的判定与性质;平行四边形的判定与性质.专题:证明题.分析:连接AD、BC,根据一组对边平行且相等的四边形是平行四边形证明四边形ABCD是平行四边形,再根据平行四边形的对角线互相平分可得BO=DO,根据E、F关于点O中心对称可得OE=OF,然后利用“边角边”证明△BOF和△DOE全等,根据全等三角形对应边相等即可得证.解答:证明:如图,连接AD、BC,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴BO=DO,∵点E、F关于点O中心对称,∴OF=OE,在△BOF和△DOE中,,∴△BOF≌△DOE(SAS),∴BF=DE.点评:本题考查了中心对称的性质,全等三角形的判定与性质,平行四边形的判定与性质,作辅助线构造出平行四边形,然后证明得到BO=DO是证明三角形全等的关键,也是解决本题的难点.11.已知△ABC,∠ACB=90°,把△ABC用直线分割成两部分,可以拼成与△ABC等面积的一些四边形.比如图①,把△ABC用直线EF分割后,利用中心对称知识,拼成了与它等面积的矩形GBCF.请你也利用中心对称知识,按下列要求进行操作:(1)把图②中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个平行四边形;(2)把图③中的直角△ABC用适当的直线分割成两部分,拼成与△ABC等面积的一个梯形.(图中需作必要的标记,不要求说明理由)考点:中心对称.分析:(1)根据中心对称的定义和性质,找直角△ABC两条边的中点作图是解题的关键;(2)根据中心对称的定义和性质,找直角△ABC一条边的中点,另一条边非中点作图是解题的关键.解答:解:(说明:两图各(2分);图中没有标记点中点,累计扣(1分),未利用中心对称扣1分.)参考图:点评:中心对称的定义:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称点.中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.12.(2014春•宜春期末)如图,矩形ABCD在平面直角坐标系的位置如图,A(0,0)、B(6,0)、D(0,4).(1)根据图形直接写出点C的坐标:(6,4);(2)已知直线m经过点P(0,6)且把矩形ABCD分成面积相等的两部分,请只用直尺准确地画出直线m,并求该直线m的解析式.考点:中心对称;待定系数法求一次函数解析式;矩形的性质.分析:(1)根据点B、D的坐标求出点C的横坐标与纵坐标,然后写出即可;(2)连接OC、BD得到矩形的中心,然后根据平分矩形面积的直线比过中心作出直线m即可,再利用待定系数法求一次函数解析式解答.解答:解:(1)∵B(6,0)、D(0,4),∴点C的横坐标是6,纵坐标是4,∴点C的坐标为(6,4);故答案为:(6,4);(2)直线m如图所示,对角线OC、BD的交点坐标为(3,2),设直线m的解析式为y=kx+b(k≠0),则,解得,所以,直线m的解析式为y=﹣x+6.点评:本题考查了中心对称,矩形的性质,待定系数法求一次函数解析式,熟记过矩形的中心的直线把矩形的面积分成面积相等的两份是解题的关键.13.(2009秋•苏州期末)如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)试判断△BEC是否为等腰三角形,请说明理由?(2)若AB=1,∠ABE=45°,求BC的长.(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.考点:中心对称;等腰三角形的判定;菱形的判定;矩形的性质.分析:(1)易证∠BEC=∠BCE,从而判定△BCE是等腰三角形.(2)由(1)知BC=BE,而BC是等腰直角△ABE的斜边,AB=BE,运用勾股定理可求.(3)根据中心对称的性质,可知四边形BCFE是平行四边形,又BC=BE,得出▱BCFE是菱形.解答:解:(1)∵AD∥BC,∴∠DEC=∠BCE,∵∠DEC=∠BEC,∴∠BEC=∠BCE,∴△BCE是等腰三角形.(2)∵在Rt△ABE中,∠ABE=45°,∴∠AEB=∠ABE=45°,∴AB=AE=1.∴,∴.(3)如图,∵△FCE与△BEC关于CE的中点O成中心对称,∴OB=OF,OE=OC,∴四边形BCFE是平行四边形,又∵BC=BE,∴四边形BCFE是菱形.点评:本题考查了矩形的性质,等腰三角形的判定、性质,勾股定理,中心对称的性质以及平行四边形和菱形的判定,知识点较多,需熟练掌握.14.(2011春•武胜县校级期末)如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.考点:中心对称;全等三角形的判定;平行四边形的性质;旋转的性质.分析:(1)根据已知条件证出∠CDO=∠ABO,∠DEO=∠BFO.,再根据点O是平行四边形的对称中心,得出OD=OB,即可证出△DEO≌△BFO.(2)首先要判断四边形是什么形状,然后根据题意首先证明△OAD是等腰直角三角形,然后证明OE=OF,再根据已知条件即可证出四边形AECF的形状.解答:(1)证明:在平行四边形ABCD中,CD∥AB,∴∠CDO=∠ABO,∠DEO=∠BFO.又∵点O是平行四边形的对称中心,∴OD=OB.∴△DEO≌△BFO.(2)解:∵在△ABD中,DB=2,AD=1,AB=,∴DB2+AD2=AB2.∴△ABD是直角三角形,且∠ADB=90°∵OD=OB=DB=1,∴AD=OD=1.∴△OAD是等腰直角三角形,∴∠AOD=45°.当直线DB绕点O顺时针旋转45°时,即∠DOE=45°,∴∠AOE=90°∵△DEO≌△BFO,∴OE=OF又∵点O是平行四边形的对称中心,∴OA=OC∴四边形AECF是平行四边形∴四边形AECF是菱形.点评:此题考查了中心对称,是一道综合型试题,比较难,证明三角形全等必须要找出三个条件相等,按照判定四边形形状的定义证明该四边形为何形状.15.(2012秋•简阳市期末)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为2,求四边形BDEG的面积.考点:中心对称;菱形的判定;矩形的性质.分析:(1)根据菱形的判定以及中心对称图形的性质得出即可;(2)利用中心对称图形的性质得出四边形BDEG的面积=2×矩形ABCD面积,即可得出答案.解答:解:(1)是菱形,∵矩形ABCD和矩形AEFG关于点A中心对称,∴AD=AG,AB=AE,BE⊥DG,∴四边形BDEG是菱形;(2)∵矩形ABCD和矩形AEFG关于点A中心对称,∴AD=AG,AB=AE,BE⊥DG,∴四边形BDEG的面积=2×矩形ABCD面积=2×2=4.点评:此题主要考查了矩形的性质、菱形的判定和中心对称的性质,利用中心对称的性质得出是解题关键.16.(2010秋•庄浪县校级期末)如图所示:两个五角星关于某一点成中心对称,指出哪一点是对称中心?并指出图中A,B,C,D的对称点.考点:中心对称.分析:由中心对称的特征可知点A是对称中心,将点B,C,D分别绕A点旋转180°后,B与G重合,C与H重合,D与E重合.解答:解:点A是对称中心.图中A,B,C,D的对称点分别是A、G、H、E.点评:本题实际考查了中心对称的性质,关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分,由此可以得出对称中心A的位置.17.(2014秋•东西湖区校级期末)如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,BC=,求BB′的长为8 .考点:中心对称.分析:在直角三角形ABC中,根据30°的余弦求出AB的长,再根据中心对称的性质得到BB′的长.解答:解:在直角三角形中,根据cosB===,解得:AB=4.再根据中心对称图形的性质得到:BB′=2AB=8.故答案为:8.点评:此题主要考查了解直角三角形的知识和中心对称图形的性质,根据题意得出AB的长是解题关键.18.阅读下面操作过程,回答后面的问题:在一次数学实践探究活动中,李小明同学如图1,过AB、CD的中点画直线EF,把矩形ABCD分割成a,b两部分;而王小刚同学如图2,过A、C两点画直线AC,把矩形ABCD分割成c,d两部分.(1)a,b,c,d的面积关系是Sa = Sb = Sc = Sd.(2)根据这两位同学的分割原理,你能探索出多少种分割方法?请写出你的推理结果或猜想,并任意画出一种;(3)由上述的实验操作过程,你能发现什么规律?考点:中心对称.专题:探究型.分析:(1)由于四边形AEFD≌四边形BEFC,则Sa=Sb=S矩形ABCD,同样,△ACD≌△CAD,∴Sc=Sd=S矩形ABCD.从而得出结果.(2)只要过矩形中心的任意一条直线,都可把矩形分割成面积相等的两部分.(3)过中心对称图形的对称中心的任意一条直线,都可把图形分割成面积相等的两部分.解答:解:(1)a,b,c,d的面积关系是S a=S b=S c=S d;(2)无数种.如图,DE=BF,直线EF把矩形分割成面积相等的两部分.(3)过中心对称图形的对称中心的任意一条直线,都可把图形分割成面积相等的两部分.点评:中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.。
中考数学复习专题训练《圆的综合》(3)
中考数学复习专题训练《圆的综合》(3)1.如图,在3×3的正方形网格中,每个小正方形的边长都为1,O、A、B三点都在格点处,线段OA绕点O顺时针旋转至OB.(1)求线段OA的长;(2)画出旋转过程中点A经过的路径,且求出该路径的长.2.如图,网格中每个小正方形的边长为1,△OAB的顶点都在格点上,以O为坐标原点,OA所在直线为x轴建立平面直角坐标系.(1)将△OAB绕点O按逆时针方向旋转,使A点初次落在点A1上,请在图中画出△OAB 旋转后所得的像△OA1B1;(2)将△OA1B1向左平移三个单位得到△O2A2B2,请在图中画出平移后所得的像△O2A2B2;(3)求两次变换后B点所经过的路径总长.3.如图,点O、B的坐标分别为(0,0),(3,0),将△OAB绕点O按逆时针方向旋转90°到△OA′B′.(1)画出△OA′B′;(2)点A′的坐标为;(3)求在旋转过程中,点B所经过的路线的长度.4.如图,在正三角形网格中,每一个小三角形都是边长为1的正三角形,解答下列问题:(1)网格中每个小三角形的面积为;(2)将顶点在格点上的四边形ABOC绕点O顺时针旋转120°两次,画出所得到的两个图形,并写出点A所经过的路线为.(结果保留π).5.如图,边长为a的正方形ABCD沿直线l向右滚动.(1)当正方形滚动一周时,正方形中心O经过的路程为,此时点A经过的路程为;(2)当点A经过的路程为时,中心O与初始位置的距离为;(3)将正方形在滚动中转了180°时点A的位置记为A1,正方形转了360°时点B的位置记为B1,请你猜想∠AA1B1的大小,并请你利用三角函数中正切的两角和公式来验证你的猜想.6.如图,⊙O的半径为10cm.(1)如果∠AOB=100°,求扇形AOB的面积;(2)已知弧BC长为25cm,求∠COB的度数.(结果保留整数)7.如图,点C,D是半圆O上的三等分点,直径AB=8,连接AD,AC,作DE⊥AB,垂足为E,DE交AC于点F.(1)求证:AF=DF.(2)求阴影部分的面积(结果保留π和根号).8.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A,B,O都在格点上.(1)画出△ABO绕点O逆时针旋转90°后得到的三角形;(2)求△ABO在上述旋转过程中所扫过的面积.9.如图,P A、PB是半径为1的⊙O的两条切线,点A、B分别为切点,∠APB=60°,OP 与弦AB交于点C,与⊙O交于点D.(1)在不添加任何辅助线的情况下,写出图中所有的全等三角形;(2)求阴影部分的面积(结果保留π).10.如图,在半径为,圆心角等于45°的扇形AOB内部作一个正方形CDEF,使点C 在OA上,点D、E在OB上,点F在弧AB上.(1)求正方形CDEF的边长;(2)求阴影部分的面积(结果保留π).11.如图,已知△ABC,若将△ABC绕点C按顺时针方向旋转90°后得到△A1B1C1.①请在图中画出△A1B1C1;②写出A点的对应点A1的坐标;③求出线段CB在旋转过程中扫过的面积.12.如图,⊙O交x轴于A,B两点(点A在点B的左侧),交y轴的正半轴于点C,点D 为第一象限内⊙O上的一点,连接AD,OD,CD,已知∠DAB=15°,CD=2.(1)∠OCD=.(2)⊙O的半径为.(3)S扇形COD=.13.如图,⊙O是等边三角形ABC的外接圆,已知△ABC的边长为a,求图中阴影部分的面积.14.如图,点P在圆O外,P A与圆O相切于A点,OP与圆周相交于C点,点B与点A关于直线PO对称,已知OA=4,P A=.求:(1)∠POA的度数;(2)弦AB的长;(3)阴影部分的面积.15.如图,AB是⊙O的切线,切点为B,AO交⊙O于点C,过点C作DC⊥OA,交AB于点D,(1)求证:∠CDO=∠BDO;(2)若∠A=30°,⊙O的半径为4,求阴影部分的面积.(结果保留π)16.如图,在△ABC中,AB=AC,∠B=30°,O是BC上一点,以点O为圆心,OB长为半径作圆,恰好经过点A,并与BC交于点D.(1)判断直线CA与⊙O的位置关系,并说明理由;(2)若AB=2,求图中阴影部分的面积(结果保留π).17.如图,扇形OAB的半径OA=4,圆心角∠AOB=90°,点C是弧AB上异于A、B的一点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,过点C作弧AB所在圆的切线CG交OA的延长线于点G.(1)求证:∠CGO=∠CDE;(2)若∠CGD=60°,求图中阴影部分的面积.18.如图,已知A为⊙O外一点,连接OA,交⊙O于P,AB是⊙O的切线,B是切点,且PO=2cm,AB=2cm,求阴影部分的面积.19.如图,已知菱形ABCD的边长为1.5cm,B,C两点在扇形AEF的上,求的长度及扇形ABC的面积.20.如图所示,在⊙O中,=,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC.(1)求证:AC2=AB•AF;(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积.21.在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,画出小狗活动的区域,并求出当BC=2m时S的值.(结果保留π)(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,设BC=xm,①写出面积S与x的关系式;②在BC的变化过程中,当S取得最小值时,求边BC的长及S的最小值.(结果保留π)22.如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ 所围成图形的面积S.23.如图,在⊙O中,弦BC垂直于半径OA,垂足为E,D是优弧BC上一点,连接BD,AD,OC,∠ADB=30°.(1)求∠AOC的度数;(2)若弦BC=8cm,连结OB,求图中扇形BOC的面积.24.如图,点A是游乐场上方25m处安装的一盏照明灯,灯光以圆锥形式照射地面.若圆锥的母线AB与AC的夹角为60°,求此灯光照射地面的面积.25.如图,在△ABC中,∠BAC=90°,请用尺规作图法作经过A、B、C三点的⊙O.(不写作法,保留作图痕迹)26.如图,点E,C在BF上,BE=FC,∠ABC=∠DEF=45°,∠A=∠D=90°.(1)求证:AB=DE;(2)若AC交DE于M,且AB=,ME=,将线段CE绕点C顺时针旋转,使点E旋转到AB上的G处,求旋转角∠ECG的度数.27.如图,四边形ABCD内接于以BC为直径的圆,圆心为O,且AB=AD,延长CB、DA 交于P,过C点作PD的垂线交PD的延长线于E,且PB=BO,连接OA.(1)求证:OA∥CD;(2)求线段BC:DC的值;(3)若CD=18,求DE的长.28.如图,在四边形ABCD中,∠A=∠D=90°,AD=AB,以BC为直径的半⊙O与边AD相切于点E.(1)求证:∠BCE=∠DCE;(2)若,求DE的长.29.如图,四边形ABCD内接于⊙O,直径AC与弦BD的交点为E,OB∥CD,BH⊥AC,垂足为H,且∠BF A=∠DBC.(1)求证:BF是⊙O的切线;(2)若BH=3,求AD的长度;(3)若sin∠DAC=,求△OBH的面积与四边形OBCD的面积之比.30.如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,EF:FD=4:3.(1)求证:点F是AD的中点;(2)求cos∠AED的值;(3)如果BD=10,求半径CD的长.。
10 专题 勾股定理(逆定理)与网格画图
专题 勾股定理(逆定理)与网格画图
【方法归纳】通过网格运用勾股定理及其逆定理来研究三角形或四边形的形状.
1.如图,每个小正方形的边长为1,A ,B ,C 是小正方形的顶点,则∠ABC 的度数为 .
2.如图,每个小正方形的边长都是1,在图中画一个三角形,使它的三边长分别是3,22,5,且三角形的三个顶点都在格点上.
3.如图,每个小正方形的边长都是1,在图中画一个边长为5的正方形,且正方形的四个顶点在格点上.
4.在图中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有3个.
5.如图,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是 中的三角形,图4中最长边上的高为 . A
C
B
第2
题图第3题图
第4
题图
6.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画图:
7.如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB 的端点在格点上.
(1)图1中,以AB 为腰的等腰三角形有 个,画出其中的一个,并直接写出其
边长.
(2)图2中,以AB 为底边的等腰三角形有 个,画出其中一个,并直接写出其底边上的高.
图4图3图2图
1图2
图1图2图1
A
B A B。
中考复习数学 网格作图与相关计算问题
网格作图与相关计算问题
D C
A
O
B
O
归纳总结
考题再现
如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平 面直角坐标系△ABC的三个顶点坐标分别为A(1,-1),B(2,-5),C(5,-4), (1)将△ABC先向左平移6个单位,再向上平移4个单位,得到△A1B1C1, 画出两次平移后的△A1B1C1,并写出点A1的坐标; (2)画出△A1B1C1绕点C1顺时针旋转90°后得到△A2B2C1,并写出点A2坐 标; (3)在(2)的条件下,求点A1旋转到点A2的过程中所经过的路径长(结果保 留π).
求点B在旋转过程中所经过的路径长。(结果保留π)
O
x
考题再现
如图,正方形网格中,每个小正方形的边长都是一个单位长 度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为 A(3,1),B(4, 4),C(2, 4). (1)请画出△ABC 向下平移5个单位后得到的△A1B1C1,直 接写出点B1的坐标 (2)请画出△ABC 绕点O逆时针旋转 90°后的△A2B2C2. (3)在(2)的条件下,求点C经过的路径长.(结果保留π).
y
O
x A
C B
考题再现
如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平 面直角坐标系中, △ABC 的三个顶点 A(5,2)、B(5,5)、c(1,1)均在 格点上. (1)将△ABC向左平移5个单位得到△A1B1C1,并写出点A1的坐标; (2)画出△A1B1C1绕点C1顺时针旋转 90°后得到的△A₂B2C2,并写出点 A2的坐标; (3)在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π).
y
C
人教版八年级上学期第十三章轴对称--正方形网格中的轴对称图形(word无答案)
正方形网格图中的轴对称图形1、有16个相同的小正方形拼成的正方形网格,其中有两个小正方形已经涂黑,请你用四种不同的方法分别在斜面的四个图中将两个空白的小正方形涂黑,使正方形网格图称为轴对称图形,使用同样的方法你一共能找到种不同的方法,使这样的网格图称为轴对称图形.2、在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有_____种.3、如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形。
4、在由小正方形围成的L形图中,请你用三种方法分别添画一个小正方形,使它成为轴对称图形.5、如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用四种不同的方法分别在下图中再涂黑三个空白的小正方形,使它成为轴对称图形.6、(2018年长春)图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.7、如图,在由大小相同的小正方形拼成的正方形网格中,请在图中画出所有符合要求的线段,使它与线段AB 、CD 构成的图形为轴对称图形.8、(2016秋• 长春期中)如图,正方形网格中的每个小正方形边长都是1.(1)在图①中,已知线段AB,CD 画线段EF,使它与AB,CD 组成轴对称图形(要求画出一种符号题意的线段);(2)在图②中,找一格点D,满足①到CB 、CA 的距离相等;②到点A 、C 的距离相等.9、如图,在6×6方格纸中(每个小正方形的边长均为1个单位长度),有直线MN 和线段AB,其中点A,B,M,N 均在小正方形的顶点上.(1)在方格纸中画出线段AB关于直线MN的轴对称图形CD,点A 的对称点为点D,点B 的对称点为点C,连接AD,BC;(2)直接写出四边形ABCD 的面积为 .10、如图,正方形网格中的每个小正方形边长都是1.(1)图1中已知线段AB 、CD,画线段EF,使它与AB 、CD 组成轴对称图形(要求:画出一个即可);11、(2017•宁波改编)在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边AC的格点三角形(2)将图2中画出与△ABC成轴对称且与△ABC有公共边BC的格点三角形。
2021年中考一轮复习数学 分类训练:锐角三角函数及其应用(含答案)
2021中考数学 分类训练:锐角三角函数及其应用一、选择题 1. (2020·聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,那么sin ∠ACB 的值为( )A .553 B .517C .53D .542. 在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm .则BC 的长度为( ) A . 6 cm B . 7 cm C . 8 cm D . 9 cm3. 满足下列条件时,△ABC 不是直角三角形的为 ( )A .AB=,BC=4,AC=5B .AB ∶BC ∶AC=3∶4∶5 C .∠A ∶∠B ∶∠C=3∶4∶5D .cos A -+tan B -2=04. 在直角三角形中,下列条件中不能解直角三角形的是( )A .已知一直角边和一锐角B .已知斜边和一锐角C .已知两边D .已知两角5. (2019•山东威海)如图,一个人从山脚下的A 点出发,沿山坡小路AB 走到山顶B点.已知坡角为20°,山高BC=2千米.用科学计算器计算小路AB 的长度,下列按键顺序正确的是A.B.C.D.6. 如图,平面直角坐标系中,☉P经过三点A(8,0),O(0,0),B(0,6),点D 是☉P上的一动点,当点D到弦OB的距离最大时,tan∠BOD的值是()A.2B.3C.4D.57. (2019·浙江杭州)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于A.asinx+bsinx B.acosx+bcosxC.asinx+bcosx D.acosx+bsinx8. (2019·浙江金华)如图,矩形ABCD的对角线交于点O.已知AB=m,∠BAC=∠α,则下列结论错误的是A.∠BDC=∠αB.BC=m•tanαC .AO 2sin mα= D .BD cos mα=二、填空题 9. 【题目】(2020·黔东南州)cos60°= .10. 如图,在△ABC 中,BC =6+2,∠C =45°,AB =2AC ,则AC 的长为________.11. (2019•湖北随州)计算:(π–2019)0–2cos60°=__________.12. (2019·浙江衢州)如图,人字梯AB ,AC 的长都为2米,当α=50°时,人字梯顶端离地面的高度AD 是__________米(结果精确到0.1m .参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).13. (2020·天水)如图所示,∠AOB是放置在正方形网格中的一个角,则sin ∠AOB 的值是________.14. 如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里.(结果取整数.参考数据:sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)15. (2019·浙江舟山)如图,在△ABC中,若∠A=45°,AC2–BC255AB2,则tanC=__________.16. 如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l 上一点.当△APB为直角三角形时,AP=________.三、解答题17. 如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,连接CE,求:(1)线段BE的长;(2)∠ECB的正切值.18. 如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边AB,BC于点D,E,连接AE.(1)如果∠B=25°,求∠CAE的度数;(2)如果CE =2,sin ∠CAE =23,求tanB 的值.19. 如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB 与墙MN平行且距离为0.8米.已知小汽车车门宽AO 为1.2米,当车门打开角度∠AOB 为40°时,车门是否会撞到墙?请说明理由.(参考数据:sin 40°≈0.64;cos 40°≈0.77;tan 40°≈0.54)20. 某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3. (1)求新坡面的坡角α;(2)天桥底部的正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.21. 如图,⊙O是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E .(1)求证:∠1=∠BCE ;(2)求证:BE 是⊙O 的切线;(3)若EC =1,CD =3,求cos ∠DBA .22. 阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=tanα±tanβ1∓tanαtanβ利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,例如:tan75°=tan(45°+30°)=tan45°+tan30°1-tan45°tan30°=1+331-1×33=2+ 3根据以上阅读材料,请选择适当的公式计算下列问题:(1)计算sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度,已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为 3 米,请你帮助李三求出纪念碑的高度.23. 如图1,图2,在△ABC中,AB=13,BC=14,5cos13ABC∠=.探究如图1,AH⊥BC于点H,则AH=_____,AC=______,△ABC的面积S △ABC=________.拓展如图2,点D在AC上(可与点A、C重合),分别过点A、C作直线BD 的垂线,垂足为E、F.设BD=x,AE=m,CF=n.(当点D与点A重合时,我们认为S△ABD=0)(1)用含x ,m 或n 的代数式表示S △ABD 及S △CBD ;(2)求(m +n )与x 的函数关系式,并求(m +n )的最大值和最小值;(3)对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值范围. 发现 请你确定一条直线,使得A 、B 、C 三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.图1 图22021中考数学 分类训练:锐角三角函数及其应用-答案一、选择题 1. 【答案】D【解析】利用网格特征把∠ACB 放置于直角三角形中求正弦值.如图,在Rt △ACD 中,由勾股定理,得AC =22CD AD +=2234+=5,于是sin ∠ACB =AC AD =54.ABCD2. 【答案】C【解析】∵sin A=BCAB=45,∴设BC=4a,则AB=5a,AC=(5a)2-(4a)2=3a,∴3a=6,即a=2,故BC=4a=8 cm.3. 【答案】C[解析]A.∵52+42=25+16=41=()2,∴△ABC是直角三角形;B.设AB=3x,则BC=4x,AC=5x.∵(3x)2+(4x)2=9x2+16x2=25x2=(5x)2,∴△ABC 是直角三角形;C.∵∠A∶∠B∶∠C=3∶4∶5,∴∠C=×180°=75°≠90°,∴△ABC不是直角三角形;D.∵cos A-+tan B-2=0,∴cos A=,tan B=,∴∠A=60°,∠B=30°,∴∠C=90°,∴△ABC是直角三角形.故选C.4. 【答案】D5. 【答案】A【解析】在△ABC中,sinA=sin20°=BCAB,∴AB=sin20BC︒=2sin20︒,∴按键顺序为:2÷sin20=,故选A.6. 【答案】B[解析]如图所示,当点D到弦OB的距离最大时,DE⊥OB于E点,且D,E,P三点共线.连接AB,由题意可知AB为☉P的直径,∵A(8,0),∴OA=8,∵B(0,6),∴OB=6,∴OE=BE=OB=3,在Rt△AOB中,AB==10,∴BP=AB=×10=5,在Rt△PEB中,PE==4,∴DE=EP+DP=4+5=9,∴tan∠DOB===3,故选B.7. 【答案】D【解析】如图,过点A 作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=x ,∴∠EAB=x ,∴∠FBA=x ,∵AB=a ,AD=b ,∴FO=FB+BO=a •cosx+b •sinx , 故选D.8. 【答案】C【解析】A 、∵四边形ABCD 是矩形,∴∠ABC=∠DCB=90°,AC=BD ,AO=CO ,BO=DO ,∴AO=OB=CO=DO ,∴∠DBC=∠ACB ,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,故本选项不符合题意; B 、在Rt △ABC 中,tan αBCm=,即BC=m •tan α,故本选项不符合题意; C 、在Rt △ABC 中,AC cos m α=,即AO 2cos mα=,故本选项符合题意;D 、∵四边形ABCD 是矩形,∴DC=AB=m ,∵∠BAC=∠BDC=α,∴在Rt △DCB 中,BD cos mα=,故本选项不符合题意; 故选C .二、填空题9. 【答案】【答案】10. 【答案】2 [解析] 过点A 作AD ⊥BC ,垂足为D ,如图所示.设AC =x ,则AB =2x. 在Rt △ACD 中,AD =AC·sinC =22x , CD =AC·cosC =22x. 在Rt △ABD 中,AB =2x ,AD =22x , ∴BD =AB 2-AD 2=62x. ∴BC =BD +CD =62x +22x =6+2, ∴x =2.11. 【答案】0 【解析】原式=1–2×=1–1=0,故答案为:0.12. 【答案】1.5【解析】∵sin αAD AC,∴AD=AC •sin α≈2×0.77≈1.5,故答案为:1.5. 13. 【答案】22【解析】连接AB ,利用勾股定理的逆定理证明△OAB 是等腰直角三角形,得到∠AOB =45°,再根据特殊角的三角函数求解.∵AB 2=12+32=10,OB 2=12+32=10,OA 2=22+42=20,∴AB 2+OB 2=OA 2,∴△OAB 是等腰直角三角形,∠AOB =45°,∴sin ∠AOB =sin45°=22.14. 【答案】11 【解析】∵∠A =30°,∴PM =12PA =9海里.∵∠B =55°, sin B=PM PB ,∴0.8=9PB ,∴PB ≈11海里.15. 【答案】5【解析】如图,过B 作BD ⊥AC 于D ,∵∠A=45°,∴∠ABD=∠A=45°,∴AD=BD.∵∠ADB=∠CDB=90°,∴AB2=AD2+DB2=2BD2,BC2=DC2+BD2,∴AC2–BC2=(AD+DC)2–(DC2+BD2)=AD2+DC2+2AD•DC–DC2–BD2=2AD•DC=2BD•DC,∵AC2–BC255=AB2,∴2BD•DC55=⨯2BD2,∴DC55=BD,∴tan555BD BDCDCBD===.故答案为:5.16. 【答案】3或3 3 或37【解析】如解图,∵点O是AB的中点,AB=6,∴AO=BO=3.①当点P为直角顶点,且P在AB上方时,∵∠1=120°,∴∠AOP1=60°,∴△AOP1是等边三角形,∴AP1=OA=3;②当点P为直角顶点,且P在AB下方时,AP2=BP1=62-32=33;③当点A为直角顶点时,AP3=AO·tan∠AOP3=3×3=33;④当点B为直角顶点时,AP4=BP3=62+(33)2=37.综上,当△APB为直角三角形时,AP的值为3或3 3 或37.三、解答题17. 【答案】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt △ABC 中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE ⊥AB ,∴∠AED=90°,∴AE=AD ·cos45°=2×=, ∴BE=AB -AE=3=2, 即线段BE 的长为2. (2)过点E 作EH ⊥BC ,垂足为点H ,如图所示.∵在Rt △BEH 中,∠EHB=90°,∠B=45°,∴EH=BH=BE ·cos45°=2=2,∵BC=3,∴CH=1,在Rt △CHE 中,tan ∠ECB==2,即∠ECB 的正切值为2.18. 【答案】 解:(1)∵DE 垂直平分AB ,∴EA =EB ,∴∠EAB =∠B =25°.又∵∠C =90°,∴∠CAE =90°-25°-25°=40°.(2)∵∠C =90°,∴sin ∠CAE =CE AE =23. ∵CE =2,∴AE =3,∴AC = 5.∵EA =EB =3,∴BC =5,∴tanB =AC BC =55.19. 【答案】【思路分析】本题是一道锐角三角形函数的实际应用问题,关键是从实际问题抽象出数学模型.本题车门是否会碰到墙?实际上就是求点A到直线OB的距离,所以过点A作AC⊥OB于点C,在Rt△AOC中,利用锐角三角函数关系,可求得AC的长,与0.8米比较就可得出结论.解图解:如解图,过点A作OB的垂线,垂足为C,在Rt△AOC中,sin∠AOC=AC AO,(3分)∴AC=AO·sin40°=1.2×0.64=0.768. ∵0.768<0.8,∴车门不会碰到墙.(8分)20. 【答案】解:(1)∵新坡面AC的坡度为1∶3,∴tanα=13=33,∴α=30°.(2分)答:新坡面的坡角α的度数为30°.(3分)(2)原天桥底部正前方8米处的文化墙PM不需要拆除.理由如下:如解图所示,过点C作CD⊥AB,垂足为点D,∵坡面BC的坡度为1∶1,∴BD=CD=6米,(4分)∵新坡面AC的坡度为1∶3,∴CD∶AD=1∶3,∴AD=63米,(6分)∴AB=AD-BD=(63-6)米<8米,故正前方的文化墙PM不需拆除.答:原天桥底部正前方8米处的文化墙PM 不需要拆除.(7分)21. 【答案】(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵,∴AB =BD在△ABF 与△DBE 中,⎩⎨⎧∠BAF =∠BDE∠AFB =∠DEB AB =DB,∴△ABF ≌△DBE (AAS),∴BF =BE ,∵BE ⊥DC ,BF ⊥AC ,∴∠1=∠BCE ;(2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°,∵∠BCE +∠EBC =90°,且∠1=∠BCE ,∴∠BAC =∠EBC ,∵OA =OB ,∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°,∴∠EBO =90°,又∵OB 为⊙O 的半径,∴BE 是⊙O 的切线;解图(3)解:在△EBC 与△FBC 中,⎩⎨⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS),∴CE =CF =1.由(1)可知:AF =DE =1+3=4,∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.22. 【答案】解:(1)sin 15°=sin (45°-30°)(2分)=sin 45°cos 30°-cos 45°sin 30°(3分) =22×32-22×12 =6-24.(4分)(2)在Rt △BDE 中,∠BDE =75°,DE =CA =7,tan ∠BDE =BE DE ,即tan 75°=BE 7=2+3,(5分)∴ BE =14+73,(6分)又∵AE =DC =3,∴AB =BE +AE =14+73+3=14+83(米),(7分) 答:纪念碑的高度是(14+83)米.(8分)23. 【答案】探究 AH =12,AC =15,S △ABC =84.拓展 (1)S △ABD =12mx ,S △CBD =12nx . (2)由S △ABC =S △ABD +S △CBD ,得118422mx nx +=.所以168m n x +=. 由于AC 边上的高565BG =,所以x 的取值范围是565≤x ≤14. 所以(m +n )的最大值为15,最小值为12. (3)x 的取值范围是x =565或13<x ≤14. 发现 A 、B 、C 三点到直线AC 的距离之和最小,最小值为565.。
初中数学专题复习网格型问题(含答案)
专题训练22 网格型问题一、选择题(每小题3分,共24分)1.下列图形中只能用其中一部分平移可以得到的是 ( )2.如图,方格纸上一圆经过(2 , 5)、(2 , -3)两点,且此两点为圆与方格纸横线的切点,则该圆圆心的坐标为( )A .(2, -1)B .(2, 2)C .(2, 1)D .(3, 1)3.在如图的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2个平方单位,则满足条件的格点C 的个数是( )A.5B.4C.3D.24.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是( )A.3:4B.5:8C.9:16D.1:25.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为()a b ,,那么大“鱼”上对应“顶点”的坐标为( )A.(2)a b --, B.(2)a b --, C.(22)a b --, D.(22)b a --, 6. 下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是 ( )ABCD(第2题)(第3题)DACB(第4题)(第5题)x (小时)(千米)y 012345153045甲乙(第14题)7.已知:如图ABC △的顶点坐标分别为(43)A --,,(03)B -,,(21)C -,,如将B 点向右平移2个单位后再向上平移4个单位到达1B 点,若设ABC △的面积为1S ,1AB C △的面积为2S ,则12S S ,的大小关系为( )A .12S S >B .12S S =C .12S S <D .不能确定8. 如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( ) A.x l =1,x 2=2 B.x l = -2,x 2= -1 C.x l =1,x 2= -2 D.x l =2,x 2= -1 二、填空题(每小题3分,共18分) 9.如图,∠1的正切值等于__________.10. 线段AB 、CD 在平面直角坐标系中的位置如图所示,O 为坐标原点。
轴对称典型试题和画图试题
(
、已知:如图,C及两点及两点、。求作:点P,使得P=P,且点到C两边所在的直线距离相等.
答案一:C内角平分线与线段的垂直平分线交点
13、下列说法正确的是(A).
A.轴对称涉及两个图形,轴对称图形涉及一个图形D.有两个内角相等的三角形不是轴对称图形
B.如果两条线段互相垂直平分,那么这两条线段互为对称轴C.所有直角三角形都不是轴对称图形
14、下列图形中对称轴最多的是(C).A.等腰三角形B.正方形C.圆D.线段
15、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ).
解析:(1)△ABC中各顶点的坐标分别是A(1,4)、B(-1,1)、C(2,-1)
(2)过点(-1,0)作y轴的平行线m,即直线x=-1.
(3)分别作点A、B、C关于直线m对称的点A′(-3,4)、B′(-1,1)、C′(-4,-1),并对顺次连接A′、B′、C′三点,则△A′B′C′即为所求.
(4)观察发现三组对称点的纵坐标没有变化.而横坐标都可以表示为2×(-1) 减去对应点的横坐标.所以点P的对应点的坐标为(-2-a,b)。
答案二:ABC外角平分线与线段的垂直平分线交点
27、已知点 A在直线l 外,点P 为直线l 上的一个动点,探究是否存在一个定点B ,当点P 在直线l 上运动时,点 P 与 A、 B 两点的距离总相等,如果存在,请作出定点B ;若不存在,请说明理由.
苏科版初中七年级数学图形的平移练习题分析解答
苏科版初中七年级数学图形的平移练习题分析解答1.如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移2格,再向上平移3格,其中每个格子的边长为1个单位长度.(1)画出△ABC边AB上的高;(2)请在图中画出平移后的三角形A′B′C′;(3)若连接BB′,CC′,则这两条线段之间的关系是平行且相等.【分析】(1)依据三角形高线的概念即可得到△ABC边AB上的高;(2)依据平移的方向和距离,即可得到平移后的三角形A′B′C′;(3)依据平移的性质,即可得到BB′,CC′这两条线段之间的关系是平行且相等.【解答】解:(1)如图所示,CD即为△ABC的边AB上的高;(2)如图所示,△A'B'C'即为所求;(3)若连接BB′,CC′,则这两条线段之间的关系是平行且相等.故答案为:平行且相等.【点评】本题考查了利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.2.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.(1)现将△ABC 平移,使点A 变换为点A ′,点B ′、C ′分别是B 、C 的对应点.请画出平移后的△A ′B ′C ′;(2)线段BC 与B ′C ′的关系是 平行且相等 ;(3)△A ′B ′C ′的面积为 72 .【分析】(1)利用点A 和A ′的位置确定平移的方向与距离,然后利用此平移规律画出B 、C 的对应点B ′、C ′即可;(2)根据平移的性质进行判断;(3)用一个矩形的面积分别减去三个三角形的面积计算△A ′B ′C ′的面积.【解答】解:(1)如图,△A ′B ′C ′为所作;(2)线段BC 与B ′C ′的关系是平行且相等;(3)△A ′B ′C ′的面积=3×3−12×1×2−12×2×3−12×3×1=72.故答案平行且相等;72. 【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.3.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)在图中画出△A′B′C′的高C′D′.【分析】(1)根据平移的性质即可在图中画出平移后的△A′B′C′;(2)根据网格即可在图中画出△A′B′C′的高C′D′.【解答】解:(1)如图,△A′B′C′即为所求;(2)如图,高C′D′即为所求.【点评】本题考查了作图﹣平移变换,解决本题的关键是掌握平移的性质.4.画图并填空:如图,每个小正方形的边长为1个单位,每个小正方形的顶点叫格点.(1)将△ABC向左平移4格,再向下平移1格,请在图中画出平移后的△A'B'C';(2)利用网格线在图中画出△ABC的中线CD,高线AE;(3)△A'B'C'的面积为8.【分析】(1)根据平移的性质即可将△ABC向左平移4格,再向下平移1格,进而画出平移后的△A'B'C';(2)利用网格线即可在图中画出△ABC的中线CD,高线AE;(3)根据网格即可求出△A 'B 'C '的面积.【解答】解:(1)如图,△A 'B 'C '即为所求;(2)如图,中线CD ,高线AE 即为所求;(3)△A 'B 'C '的面积为:12×4×4=8. 故答案为:8.【点评】本题考查了作图﹣平移变换,解决本题的关键是掌握平移的性质.5.如图,在方格纸中,将△ABC 水平向右平移4个单位,再向下平移1个单位,得到△A ′B ′C ′(1)画出平移后的三角形;(2)画出AB 边上的中线CD 和高线CE ;(利用网格和直尺画图)(3)△BCD 的面积是 4 .【分析】(1)利用网格特点和平移的性质画出点A 、B 、C 的对应点A ′、B ′、C ′即可;(2)利用网格特点确定AB 的中点得到CE ,再把AD 逆时针旋转90°得到AM ,然后把MA 平移使M 点与C 点重合,平移后的直线与直线AB 的交点为E 点,从而得到CE ⊥AB ;(3)用一个直角三角形的面积分别减去2个直角三角形的面积和一个正方形的面积可计算出△BCD 的面积.【解答】解:(1)如图,△A ′B ′C ′为所作;(2)如图,CD 和CE 为所作;(3)△BCD的面积=12×4×4−12×3×1−12×1×3﹣1=4.故答案为4.【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.6.在如图所示的方格纸中,小正方形的顶点叫做格点,△ABC是一个格点三角形(即△ABC 的三个顶点都在格点上),根据要求回答下列问题:(1)画出△ABC先向左平移6格,再向上平移1格所得的△A′B′C′;(2)利用网格画出△ABC中BC边上的高AD.(3)过点A画直线,将△ABC分成面积相等的两个三角形;(4)画出与△A′B′C′有一条公共边,且与△A′B′C′全等的格点三角形.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用网格结合三角形高线的定义得出答案;(3)直接利用三角形中线的性质得出答案;(4)直接利用网格结合全等三角形的性质得出答案.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:AD 即为所求;(3)如图所示:直线l 即为所求;(4)如图所示:△B ′C ′E 即为所求.【点评】此题主要考查了平移变换以及三角形中线的性质,正确得出对应点位置是解题关键.7.如图,在方格纸中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点就是小正方形的格点.(1)将△ABC 向右平移3个单位长度再向下平移1个单位长度,得到△DEF (A 与D 、B 与E 、C 与F 对应),请在方格纸中画出△DEF ;(2)在(1)的条件下,连接AD 、CF ,AD 与CF 之间的关系是 AD =∥CF ;(3)在(1)的条件下,连接AE 和CE ,求△ACE 的面积S .【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用平移的性质结合网格即可得出答案;(3)利用△ACE 所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:△DEF 即为所求;(2)如图所示:AD 与CF 之间的关系是:AD =∥CF ;故答案为:AD =∥CF .(3)△ACE 的面积S =4×5−12×3×4−12×1×4−12×1×5=9.5.【点评】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.8.如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)在图中画出△ABC 的高CD ,中线BE ;(3)在右图中能使S △ABC =S △PBC 的格点P 的个数有 4 个(点P 异于点A ).【分析】(1)利用网格特点和平移的性质,分别画出点A 、B 、C 的对应点A ′、B ′、C ′即可;(2)利用网格特点,作CD ⊥AB 于D ,找出AC 的中点可得到BE ;(3)利用平行线的性质过点A 作出BC 的平行线进而得出符合题意的点.【解答】解:(1)如图所示:△A ′B ′C ′即为所求;(2)如图所示:CD 即为所求;(3)如图所示:能使S △PBC =S △ABC 的格点P 的个数有4个.故答案为:4.【点评】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P点位置是解题关键.9.如图,在6×6的正方形网格中,每个小正方形的边长为1,点A、B、C、D、E、F、M、N、P均为格点(格点是指每个小正方形的顶点).(1)利用图①中的网格,过P点画直线MN的平行线和垂线.(2)把图②网格中的三条线段AB、CD、EF通过平移使之首尾顺次相接组成一个三角形(在图②中画出三角形).(3)第(2)小题中线段AB、CD、EF首尾顺次相接组成一个三角形的面积是 3.5.【分析】(1)根据网格结构的特点,利用直线与网格的夹角的关系找出与AB平行的格点以及垂直的格点作出即可;(2)根据网格结构的特点,过点E找出与AB、CD位置相同的线段,过点F找出与AB、CD位置相同的线段,作出即可;(3)依据割补法进行计算,即可得到三角形的面积.【解答】解:(1)如图①,PQ∥MN,PN⊥MN;(2)如图②,△EFG或△EFH即为所求;(3)三角形的面积为:3×3−12×1×2−12×1×3−12×2×3=9﹣1﹣1.5﹣3=3.5,故答案为:3.5【点评】本题考查的是作图﹣平移变换,平行线的作法以及垂线的作法,熟知图形平移不变性的性质是解答此题的关键.10.某公园准备修建一块长方形草坪,长为30m,宽为20m.并在草坪上修建如图所示的十字路,回答下列问题:(1)如果十字路宽2m,那么草坪(阴影部分)的面积是多少?(2)已知十字路宽xm,求修建的十字路面积是多少平方米?【分析】(1)利用长方形的面积公式即可计算(2)利用长方形的面积公式即可计算【解答】解:依题意(1)草坪的面积:20×30﹣(50x﹣x2)=600﹣50x+x2将x=2代入得:600﹣50×2+2×2=504m2故当十字路宽2m时,草坪(阴影部分)的面积是504m2(2)十字路的面积:30x+20x﹣x2=50x﹣x2答:修建十字路的面积是50x﹣x2平方米【点评】此题主要考查平移在生活中的应用.灵活运用面积计算公式即可.。
八年级正方形常见题型与求线段的长
正方形常见题型与求线段的长1、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,在现有网格中,以格点为顶点,分别按下列要求画三角形。
(1) 在图1中,画一个等腰直角三角形,使它的面积为5;(2) 在图2中,画一个三角形,使它的三边长分别为3、22、5;(3) 在图3中,画一个三角形,使它的三边长都是有理数。
知识点一(几何综合题与求线段的长)【例题精讲一】利用正方形的性质和特殊角构造三垂直模型求点的坐标1、如图,A(-1,0),B(0,3),以AB为边作正方形ABCD,求C,D的坐标。
2、如图,E(-2,0),A(0,4),延长EA至D,使AD=AE,四边形ADCB为正方形,(1)求点C的坐标;(2)求CE的长。
【课堂练习】1、如图,已知边长为l的正方形OABC在直角坐标系中,A、B两点在第一象限内,OA与x轴的夹角为30°,那么点B的坐标是。
2、已知平行四边形的三个顶点的坐标分别为O(0,0)、A(4,0)、B(2,3),则第四个顶点C的坐标是【例题精讲二】与正方形相关的结论方法归纳:处理2问题的关键是利用条件构造等腰直角三角形基本图形基本结论:1、如图,点O为正方形ABCD的对角线的交点,E为正方形外一点,且AE⊥BE。
(1)求∠OEB的度数;(2)求证:EA+EB=2OE2、如图,点E、G分别是正方形ABCD的边CD、BC上的点,连AE、AG分别交对角线BD于点P、Q.若∠EAG=45°,BQ=4,PD=3,求正方形ABCD的边长3、已知正方形ABCD,P为边AB上一点(P不与A、B重合),过P作PE⊥CP,且CP=PE,连接AE.(1)如图1,求∠EAD的度数;(2)如图2,连接CE交BD于G,求证:AE+2DG=2CD;(3)如图2,当BC=10,PA=6,则BG= (直接写出结果)。
4、如图所示,在平面直角坐标系中,正方形OABC的点A、C分别在x轴和y轴的正半轴上,点B(6,6)在第一象限.AP平分∠CAB交OB于P。
中考复习专题:网格中的数学问题
情况三:点P与点O为对称点
P 不在格点上
分类讨论
5. 作轴对称图形
例6. 棋盘中建立了如图的直角坐标系,三颗棋子A,O,B的位置如图,它们
分别是(-1,1),(0,0)和(1,0).若在其他格点位置添加一颗棋子P,使
A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P所有可能
的位置的坐标.
网格中的数学问题
目录
CONTENTS
1
网格的有关常识
2
网格中的作图
网格的有关常识
1.正方形网格
格点△ABC
每个小正方形的边长均为1个单位长度
2. 以格点为顶点的图形称为格点图形
考考你:①你能快速说出这个三角形AC边的长度吗?
②若将线段AC绕点C顺时针旋转90°,你能画出旋转后的线段A’C’吗?
例5. 已知∠AOB在网格中的位置如图,O在格点上,试作出∠AOB的角平分线.
OM=ON
作MM’⊥OA
作NN’⊥OB
△OMH≌△ONH(HL)
∠AOH=∠BOH
角平分线OH
4. 作角的平分线
SSS
HL
等腰△:三线合一
全
等
三
角
形
组合
图形
全等
变换
四边形
三角形
平行线+等腰三
角形→角平分线
菱形
正方形
对角线平分一组对角
其他
……
4. 作角的平分线
问题4:在网格中,你能做一个角的角平分线吗?
例5. 已知∠AOB在网格中的位置如图,O在格点上,试作出∠AOB的角平分线.
OM=ON
5. 作轴对称图形
例6. 棋盘中建立了如图的直角坐标系,三颗棋子A,O,B的位置如图,它们
北师大版2019-2020八年级数学上册第一章勾股定理单元测试题4(基础 附答案)
北师大版2019-2020八年级数学上册第一章勾股定理单元测试题4(基础附答案)1.以下列各组数为边长,能构成直角三角形的是()A.5、6、7 B.10、8、4 C.7、24、25 D.9、15、17 2.如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,D为AB边上一动点,连接CD,△ACD与△A′CD关于直线CD轴对称,连接BA′,则BA′的最小值为()A.B.1 C.D.3.如图,直角△ABC的周长为24,且AB:AC=5:3,则BC=( )A.6 B.8 C.10 D.124.如图:已知△ABC为直角三角形,分别以直角边AC、BC为直径作半圆AmC和BnC,以AB为直径作半圆ACB,记两个月牙形阴影部分的面积之和为S1,△ABC的面积为S2,则S1与S2的大小关系为()A.S1>S2B.S1<S2C.S1=S2D.不能确定5.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,三个圆的面积分别记为S1,S2,S3,则S1,S2,S3之间的关系是()A.B.C.D.无法确定6.葛藤是一种多年生草本植物,为获得更多的雨露和阳光,其茎蔓常绕着附近的树干沿最短路线盘旋而上.如果把树干看成圆柱体,它的底面周长是50cm,当一段葛藤绕树干盘旋2圈升高为2.4m时,这段葛藤的长是()m.A.3 B.2.6 C.2.8 D.2.57.设三角形的三边长分别等于下列各组数,能构成直角三角形的是()A.,,B.,,C.,,D.4,5,68.如图,在中,AD⊥BC于D,AB=3,DB=2,DC=1,则AC等于()A.6 B.C.D.49.如图,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,则AD=_____.10.△ABC中,AB=10,BC=16,BC 边上的中线AD=6,则AC= ______.11.王师傅在操场上安装一副单杠,要求单杠与地面平行,杠与两撑脚垂直,如图所示,撑脚长AB,DC为3 m,两撑脚间的距离BC为4 m,则AC=____m就符合要求.12.如图,已知直线a∥b,a,b之间的距离为4,点P到直线a的距离为4,点Q到直线b的距离为2,PQ=2.在直线a上有一动点A,直线b上有一动点B,满足AB⊥b,且P A+AB+BQ最小,此时P A+BQ=________.13.三角形的边长之比为:①1.5∶2∶2.5;②4∶7.5∶8.5;③1∶2;④3.5∶4.5∶5.5.其中可以构成直角三角形的有___________组.14.如图,正方体每个侧面的面积为平方米,用经过,,三点的平面截这个正方体,则所得的切面的周长是________米.15.如图,一棵大树在离地面9米高的B处断裂,树顶A落在离树底BC的12米处,则大树断裂之前的高度为米.16.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),,,从三角板的刻度可知,小聪很快就知道了砌墙砖块的厚度的平方(每块砖的厚度相等)为________.17.一架长25米的云梯,斜靠在一面墙上,梯子底端离墙7米,(1)求梯子顶端到地面的距离;(2)如果梯子的顶端下滑4米,那么云梯的底端在水平方向将滑多少米?18.小烨在探究数轴上两点间距离时发现:若两点在轴上或与轴平行,两点的横坐标分别为,则两点间距离为;若两点在轴上或与轴平行,两点的纵坐标分别为,则两点间距离为.据此,小烨猜想:对于平面内任意两点,两点间的距离为.(1)请你利用下图,试证明:;(2)若,试在轴上求一点,使的距离最短,并求出的最小值和点坐标.19.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形.(1)三角形三边长为4,3,;(2)平行四边形有一锐角为45°,且面积为6.20.4个全等的直角三角形的直角边分别为a,b,斜边为c.现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.21.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A的正前方60米处的C点,过了5秒后,测得小汽车所在的B点与车速检测仪A 之间的距离为100米.求BC间的距离;这辆小汽车超速了吗?请说明理由.22.一个零件的形状如图所示,工人师傅按规定做得∠B=90°,AB=3,BC=4,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?23.如图,在△ABC中,AC=6,BC=8,DE是△ABD的边AB上的高,且DE=4,AD=,BD=,求△ABC的边AB上的高.24.如图,在5×5的方格纸中,每一个小正方形的边长都为1。
正方形网格中的每个小正方形边长都是1
高.9.已知长方体的长为2cm 、宽为1cm 、高为4cm ,一只蚂蚁如果沿长方体的表面从A 点爬到B 点,那么沿哪条路最近,最短的路程是多少?10勾股数又称商高数,它有无数组,是有一定规律的.比如有一组求勾股数的式子:a =m 2-n 2,b=2mn ,c =m 2+n 2(其中m ,n 为正整数,且m >n ).你能验证它吗?利用这组式子,完成下表,11. 如图所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.【基础训练题六】1. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( ).1倍 . 2倍 . 3倍 . 4倍4. 下列各命题的逆命题不成立的是( )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a =b ,那么a 2=b 25.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )152425207152024257252024257202415(A)(B)(C)(D)6、在下列以线段a 、b 、c 的长为三边的三角形中,不能构成直角三角形的是 ( )A 、a=9 、b=41 、c=40B 、a=b=5 、c=25C 、a ∶b ∶c=3∶4∶5D a=11 、b=12 、c=157、在△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是 ( ) A 、14 B 、4 C 、14或4 D 、以上都不对 8、2002年在北京召开的国际数学大会会徽取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的最短边为a ,较长直角边为b ,那么(a+b)2的值为 ( )A 、13B 、19C 、25D 、169 9、如图,四边形ABCD 中,AB=3cm ,BC=4cm ,CD=12cm , DA=13cm ,且∠ABC=90°,则四边形ABCD 的面积是( )cm 2A 、84B 、36C 、251D 、无法确定A DCB CDCD10、如图,已知矩形ABCD 沿直线BD 折叠,使点C 落在C ′处,BC ′交AD 于E ,AD =8,AB =4,则DE 的长为 ( )A 、3B 、4C 、5D 、6二、选择题(每小题5分,共25分) 11、已知一个直角三角形的两条直角边分别是6cm、8cm,那么这个直角三角形斜边上的高为12、三角形的两边长为3和5,要使这个三角形为直角三角形,则第三边长是 13、△ABC 中,AB =10,BC =16,BC 边上的中线AD =6,则AC =14、如图所示,一个梯子AB 长5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 间的距离为3米,梯子滑动后停在DE 的位置上,测得DB 的长为1米,则梯子顶端A 下落了 米15、如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆形水杯中,设筷子露在外面的长度为hcm ,则h 的取值范围是 三、解答题(此大题满分50分)16、如图六,圆柱的高为10cm ,底面半径为4cm ,在圆柱下底面的A 点处有一只蚂蚁,它想吃到上底面B 处的食物,已知四边形ADBC 的边AD 、BC 恰好是上、下底面的直径.问:蚂蚁至少要爬行多少路程才能食到食物?17(8分) 在R t△ABC 中,∠C =90°⑴ 已知c=25,b=15,求a; ⑵ 已知a=6,∠A =60°,求b、c18已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC ,AB ⊥AC ,∠B=60°,CD=1cm ,求BC 的长。
在下图网格中,每个小正方形边长均为1,ABC的顶点均为小正
在下图网格中,每个小正方形边长均为1,△ABC 的顶点均为小正方形的顶点(也称为格点)。
(1) 以C 为位似中心,在网格中作△A 1B 2C 3,使△A 1B 2C 3和△ABC位似,位似比为1:2,且△A 1B 2C 3在△ABC 的外部; (2) 以格点为圆心,作出所有过A 1、C 两点的圆,圆心分别记为O 1、O 2、O 3……,这样的圆有几个?并直接写出圆的周长。
出现的问题 第一问:画图 问题一:画图使用虚线问题二:找不到位似中心C 或不知道使用位似中心,乱画(如图) 问题三:找到位似中心C ,但位似比不为1:2,或画反,新图形较大,不在网格内。
问题四:画图不使用直尺,把图画在三角形的内部(如图所示)BA问题五:图形正确,但对应顶点写错位置B第二问:画图并求周长问题一:所画的圆不经过A 1、C 两点,而是以A 1为圆心(如图) 问题二:个别学生答出了2种情况 问题三:周长计算出错A分析与讲评:方法一:对于这道题我是这样处理的:1、首先让学生再认真审题,自己把图画在三角形内部的同学,自己独自改正。
2、让学生回忆位似的定义3、让学生回忆圆的定义4、回忆周长公式最后在黑板上板演,画出正确图形。
方法二:把这个题分成几个小题让学生自己作图。
1、过A、C两个点作圆。
2、作一个三角形的位似三角形,且位似比为1:23、求三个圆的周长最后让学生自己完成这个问题,并找学生讲解。
【反思与小结】1、基础知识是的检查力度不够,还要继续加强。
2、大胆尝试探究性学习的方法。
调动了学生学习的积极性,激活思维。
3、学生在学习基础知识时往往不求甚解、粗心大意,忽视对结论的反思,满足于一知半解,这是造成作业错误的重要原因。
结果常常出现不符合实际,数据出错等现象,特别是一些“隐性错误”发生频率更高。
因此我结合学生作业中出现的错误,精心设计教学情境,帮助学生从基本概念、基础知识的角度来剖析作业错误的原因,给学生提供一个对基础知识、基本概念重新理解的机会,使学生在纠正作业错误的过程中掌握基础知识,理解基本概念,指导学生自觉地检验结果,培养他们的反思能力。
格点问题
例1 已知:正方形网格中,每个小正方格都是边长为1的正方形,A 、B 两点在小方格的顶点上,位置如图
所示,C 也在小方格的顶点,且以A 、B 、C 为顶点的三角形面积为1个平方单位,则点C 的个数是
_________________.
例2 如图所示,A 、B 是4×5网格中的格点,网格中的每一个小正方形的边长为1,请在图中清晰标出使以
点A 、B 、C 为顶点的三角形是等腰三角形的所有格点C 的位置。
例3、如图是规格为8×8的正方形网格(小正方形的边长为1,小正方形的顶点叫格点),请在所给的网
格中按下列要求操作:
(1)请在网格中建立平面直角坐标系,使A 点坐标为(-2,4),B 点坐标为(-4,2);
(2)按(1)中的直角坐标系在第二象限内的格点上找到点C (C 点的横坐标大于-3),使点C 与线段AB 组成一个以AB 为底的等腰三角形,则C 点坐标是________________,三角形ABC 的面积是____________.
B A
例4、(1)请在下面的网格中建立平面直角坐标系,使得A,B两点的坐标分别为(4,1),(1,-2);
(2)在(1)的条件下,过B作BC⊥x轴于C.
①写出点C的坐标;
②平移线段AB使点A移动到点C,画出平移后的线段CD,并写出点D的坐标;
③若点P在x轴上,△PCD的面积是3,求点P坐标.
例5、如图是规格为8×8的正方形网格(小正方形的边长为1,小正方形的顶点叫格点),在网格中建立平面直角坐标系,使
A点坐标为(-2,4),B点坐标为(-4,2);在第二象限内的格点上找点C(C点的横坐标大于-3),使点C与线段AB组成一个以AB为底的等腰三角形,则C点坐标是_____________.A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高.
9.已知长方体的长为2cm 、宽为1cm 、高为4cm ,一只蚂蚁如果沿长方体的表面从A 点爬到B 点,那么沿哪条路最近,最短的路程是多少?
10勾股数又称商高数,它有无数组,是有一定规律的.比如有一组求勾股数的式子:
a =m 2-n 2,b=2mn ,c =m 2+n 2(其中m ,n 为正整数,且m >n ).你能验证它吗?利用这组式子,完成下表,
11. 如图所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,
BC =12m ,求这块地的面积.
【基础训练题六】
1. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( )
.1倍 . 2倍 . 3倍 . 4倍
4. 下列各命题的逆命题不成立的是( )
A .两直线平行,同旁内角互补
B .若两个数的绝对值相等,则这两个数也相等
C .对顶角相等
D .如果a =b ,那么a 2=b 2
5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )
15
24
25
207
15
2024
25
7
25
20
24
257
202415
(A)
(B)
(C)
(D)
6、在下列以线段a 、b 、c 的长为三边的三角形中,不能构成直角三角形的是 ( )
A 、a=9 、b=41 、c=40
B 、a=b=5 、c=25
C 、a ∶b ∶c=3∶4∶5
D a=11 、b=12 、c=15
7、在△ABC 中,AB=13,AC=15,高AD=12,则BC 的长是 ( ) A 、14 B 、4 C 、14或4 D 、以上都不对 8、2002年在北京召开的国际数学大会会徽取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的最短边为a ,较长直角边为b ,那
么
(a+b)2的值为 ( )
A 、13
B 、19
C 、25
D 、169 9、如图,四边形ABCD 中,AB=3cm ,BC=4cm ,CD=12cm , DA=13cm ,且∠ABC=90°,则四边形ABCD 的面积是( )cm 2
A 、84
B 、36
C 、
2
51
D 、无法确定
A D
C
B C
D
C
D
10、如图,已知矩形ABCD 沿直线BD 折叠,使点C 落在C ′处,
BC ′交AD 于E ,AD =8,AB =4,则DE 的长为 ( )
A 、3
B 、4
C 、5
D 、6
二、选择题(每小题5分,共25分) 11、已知一个直角三角形的两条直角边分别是6cm、8cm,那么这个直角三角形斜边上的高为
12、三角形的两边长为3和5,要使这个三角形为直角三角形,则第三边长是 13、△ABC 中,AB =10,BC =16,BC 边上的中线AD =6,则AC =
14、如图所示,一个梯子AB 长5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 间的距离为3米,梯子滑动后停在DE 的位置上,测得DB 的长为1米,则梯子顶端A 下落了 米
15、如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆形水杯中,设筷子露在外面的长度为hcm ,则h 的取值范围是 三、解答题(此大题满分50分)
16、如图六,圆柱的高为10cm ,底面半径为4cm ,在圆柱下底面的A 点处有一只蚂蚁,它想吃到上底面B 处的食物,已知四边形ADBC 的边AD 、BC 恰好是上、下底面的直径.问:蚂蚁至少要爬行多少路程才能食到食物?
17(8分) 在R t△ABC 中,∠C =90°
⑴ 已知c=25,b=15,求a; ⑵ 已知a=6,∠A =60°,求b、c
18已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC ,
AB ⊥AC ,∠B=60°,CD=1cm ,求BC 的长。
19. 如图所示,图中所有三角形是直角三角形, 所有四边形是正方有形, ,144,931==s s
1694=s ,则2s = .
20. 如图所示,某人到岛上去探宝,从A 处登陆后先往东走4km ,又往北走
1.5km ,遇到障碍后又往西走2km ,再折回向北走到4.5km 处往东一拐,仅走0.5km 就找到宝藏。
问登陆点A 与宝藏埋藏点B 之间的距离是多少?
21. 如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.
(1) A 城是否受到这次台风的影响?为什么? (2) 若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?
A
B C
D
E
B
D
A
A
B
4 1.
5 2 4.5 0.5 东
北
F
E A B h。