统计学软件及应用_实验11多因素方差分析模型
高级统计方法 多因素实验的方差分析
表 11-1
家兔神经缝合后的轴突通过率( ) 家兔神经缝合后的轴突通过率 (%)
束膜缝合( 束膜缝合( a 2 ) 1 月( b1 ) 10 20 30 50 30 28 2 月( b 2 ) 50 50 70 60 30 52 合计
A (缝合方法) 缝合方法) B (缝合后时间) 缝合后时间)
外膜缝合( 外膜缝合( a1 ) 1 月( b1 ) 10 10 40 50 10 2 月( b 2 ) 30 30 70 60 30 44
表 11-1
家兔神经缝合后的轴突通过率( ) 家兔神经缝合后的轴突通过率 (%)
束膜缝合( 束膜缝合( a 2 ) 1 月( b1 ) 10 20 30 50 30 28 2 月( b 2 ) 50 50 70 60 30 52 合计
A (缝合方法) 缝合方法) B (缝合后时间) 缝合后时间)
外膜缝合( 外膜缝合( a1 ) 1 月( b1 ) 10 10 40 50 10 2 月( b 2 ) 30 30 70 60 30 44
第十一章 多因素实验的方差分析 (P181) 第一节 析因设计的方差分析
第一节 析因设计的方差分析
单因素试验与多因素试验概念 当重点的研究因素为一个因素时叫单因 素试验 当重点的研究因素为两个或两个以上因 素时叫多因素试验
设计类型 完全随机设计 (单因 素多水 平) 随机区组设计 (双因 素多水 平) 拉丁方设计 (三个因素且水 平 数 相 同 ,无 交 互 无 作用) 析因设计(多因 素多水平有重复 数据,可观察交 互作用) 正交设计 嵌套设计 裂区设计 重复测量设计
变异分拆
பைடு நூலகம்
重点研究因素 一个处理因素
组内
试验类型
spss 方差分析(多因素方差分析)实验报告
大学经济管理学院学生实验报告实验课程名称:统计软件及应用专业工商管理班级学号姓名成绩实验地点实验性质:演示性 验证性综合性设计性实验项目名称方差分析(多因素方差分析)指导教师一、实验目的掌握利用SPSS 进行单因素方差分析、多因素方差分析的基本方法,并能够解释软件运行结果。
二、实验内容及步骤(包括实验案例及基本操作步骤)实验案例:为研究某商品在不同地区和不同日期的销售差异性,调查收集了以下日平均销售量数据。
销售量日期周一至周三周四至周五周末地区一5000 6000 4000 6000 8000 3000 4000 7000 5000地区二700080008000500050006000500060004000地区三300020004000600060005000800090006000(1)选择恰当的数据组织方式建立关于上述数据的SPSS数据文件。
在SPSS输入数据。
(2)利用多因素方差分析法,分析不同地区和不同日期对该商品的销售是否产生了显著影响。
1. 选择菜单Analyze,General Linear Model,Univariate;2. 指定观测变量销售额到Dependant Variable框中;3. 指定固定效应的控制变量到Fixed Factors框中,4. OK,得到分析结果。
(3)地区和日期是否对该商品的销售产生了交互影响?若没有显著的交互影响,则试建立非饱和模型进行分析,并与饱和模型进行对比。
三、实验结论(包括SPSS输出结果及分析解释)SPSS输出的多因素方差分析的饱和模型分析:表的第一列是对观测变量总变差分解的说明;第二列是观测变量变差分解的结果;第三列是自由度;第四列是方差;第五列是F检验统计量的观测值;第六列是检验统计量的概率P-值。
F日期,,F地区,F日期*地区概率P-值分别为0.254,0.313,0.000。
如果显著性水平α为0.05,由于F日期、,F地区大于显著性水平α,所以不应拒绝原假设,不同地区和不同日期对该商品没有显著性影响。
多因素方差分析
目的:比较多个因素对因变量 的影响程度,确定显著因素
应用场景:如心理学、经济学、 社会学等领域的实验数据分析 和调查数据分析
数据清洗:去除 异常值、缺失值 和重复值
数据转换:对数 据进行标准化、 归一化或中心化 处理
描述性统计:计 算各因素的平均 值、标准差、偏 度、峰度等统计 指标
数据可视化:制 作箱线图、直方 图等图表,直观 展示数据分布情 况
构建模型:根据研究目的和数据特征,选择合适的方差分析模型,包括单因素方 差分析、多因素方差分析和协方差分析等。
检验各因素间的交互作用
检验模型假设是否满足
进行方差分析并解释结果
描述统计:对各组数据的均值、方差等统计指标进行描述。 检验假设:检验各组数据之间是否存在显著性差异。 因素分析:分析各因素对数据的影响程度。 结论:根据分析结果得出结论,并给出相应的建议或策略。
PART FOUR
正态性检验:确保数据符合正态分布,可以使用图形或统计检验方法进行验证。
考虑交互效应:在多因素方差分析中,需要考虑交互效应对结果的影响,这可以通过在模型中添加交互项来实现。
控制其他因素:在多因素方差分析中,需要注意控制其他潜在因素的影响,以确保结果的准确性和可靠性。
结果解释:正 确理解各因素 对结果的影响 程度和显著性
结果解释:注 意结果的稳健
性和可靠性
报告撰写:清 晰明了地呈现 分析过程和结
检验假设:在模型构建后,需要检验各组之间是否存在显著差异,即检验假设是 否成立。常用的检验方法有F检验和Welch's F检验等。
统计学之方差分析
使用Python的方差分析库(如SciPy)进行方差分析,如 “scipy.stats.f_oneway()”。
查看结果
Python将输出方差分析的结果,包括F值、p值、效应量等。
THANKS FOR WATCHING
感谢您的观看
详细描述
独立性检验可以通过卡方检验、相关性检验 等方法进行。如果数据不独立,需要考虑数 据的相关性和因果关系等因素,以避免误导 的分析结果。
06 方差分析的软件实现
SPSS软件实现
导入数据
将数据导入SPSS软件中,选择正确的数 据类型和格式。
查看结果
SPSS将输出方差分析的结果,包括F值、 p值、效应量等。
03 方差分析的步骤
数据准备
01
02
03
收集数据
收集实验或调查所需的数 据,确保数据来源可靠、 准确。
数据筛选
对异常值、缺失值等进行 处理,确保数据质量。
数据分组
根据研究目的,将数据分 成不同的组或处理水平。
建立模型
确定因子
确定影响因变量的自变量或因子。
建立模型
根据因子和因变量的关系,建立合适的方差分析模型。
统计学之方差分析
目 录
• 方差分析简介 • 方差分析的数学原理 • 方差分析的步骤 • 方差分析的应用场景 • 方差分析的注意事项 • 方差分析的软件实现
01 方差分析简介
方差分析的定义
• 方差分析(ANOVA)是一种统计技术,用于比较两个或多个 组(或类别)的平均值差异是否显著。它通过对总体平均值的 假设检验来进行数据分析,以确定不同条件或处理对观测结果 是否有显著影响。
执行方差分析
在SPSS的“分析”菜单中选择“比较均值” 或“一般线性模型”中的“单变量”,然 后选择需要进行方差分析的变量。
第2章多因素方差分析
Error
2.685
16
.168
Total
775.984
24
Corrected Total
6 .611 (Adjusted R Squared = .441)
F 3.591 4582.977 .012 .459 4.763 11.346 .311 7.954 .290
例:A、B两药治疗缺铁性贫血24例,试验结果如下:
四种疗法治疗缺铁性贫血后红细胞增加数(1012/L)
疗法 号
一般疗法 一般疗法加A药 一般疗法加B药 一般疗法加A药加B药
红细胞增加数
0.8 0.9 0.7 1.3 1.2 1.1 0.9 1.1 1.0 2.1 2.2 2.0
总体均数记
7
研究目的
27
因子A
对照组
围产期 窒息组
因子B
出生时 出生后20分钟
6.20 5.80 8.25 23.06 21.46 11.43
11.50 13.37 24.10 25.56 30.40 18.19
出生后30分钟
14.53 11.40 12.37 10.52 13.66 18.20
28
用混合效应作方差分析时,离均差平方和与自由度的计算与固定效应相同, 但无效假设与F统计量不同。它们的计算公式为:
Sig. .
.947
.824
.803
a. Cannot compute the error degrees of freedom using Satterthwaite's method.
b. MS(A * B)
c. MS(Error)
26
方差分析的混合效应模型
例题:设某人研究围产期窒息对新生儿中血中次黄 嘌呤浓度是否有影响,同时还了解新生出生一小时 内次黄嘌呤浓度是否有变化。他随机抽取围产期窒 息9名,不窒息的正常新生儿9名(作为对照)对每 组的9名新生儿随机安排三个不同时间,测定血中 次黄嘌呤浓度如下:
4.7.125多因素方差分析及软件操作
25
4.打开“单变量”的“绘制”对话框,选择“教学方法”为横轴变量
,选择“教学态度”为分线变量,单击“添加”,即显示这两个因素
变量的交互作用,即
26
5.打开“估计边际平均值”对话框,将左边因子与因子交互项中“教学
方法、教学态度、教学方法*教学态度”均移入右边 “显示均值”,选
中“比较主效应”。
平方和
自由度
均方
F
A因素
8.45
1
8.45
0.36
B因素
1264.05
1
1264.05
53.39**
A×B281.251281.25
组内变异
378.8
16
23.675
总变异
1932.55
19
变异来源
组间变异
19
11.88**
5.简单效应检验
在a1水平上B因素的平方和SSB(a1)
(a1)
642 + 1812 2452
H1:A因素主效应显著
B因素
H0:B因素主效应不显著
H1:B因素主效应显著
A×B
H0:A×B效应不显著
H1:A×B效应显著
12
2.计算F值
(1)计算平方和
∑∑X=64+181+95+137=477
∑∑X 2 =13309
2
2
(∑∑X)
477
= ∑∑X 2 −
=13309 −
= 13309 − 11376.45
例
研究不同的教学方法(A)和不同的教学态度(B)对儿童识字量的作
用。将20名被试随机分成四组(每组5人),每组接受一种实验处
统计学中的方差分析方法
统计学中的方差分析方法统计学是现代社会中最重要的学科之一,它基于大量的数据和数学模型,研究人类社会和自然环境中各种现象和规律。
其中,方差分析是统计学中最基本的分析方法之一,它常常被用来分析各种因素对某个变量的影响。
在本文中,我们将详细介绍方差分析方法的基本原理和应用。
一、方差分析的基本原理方差分析是利用方差的性质分析多组数据之间的差异或相似性的方法。
它是以方差分解为基础的,通过对总方差、组间平方和和组内平方和的分解,来度量实验因素对实验变量的影响。
在具体的研究过程中,我们通常将所研究的因素分为不同的组别,并在每个组别中测量实验变量的值,随后运用方差分析方法来分析不同组别之间的差异。
在方差分析中,我们通常采用F检验法来判断差异的显著性。
通过计算F值并与临界值进行比较,得出数据是否符合研究假设的结果。
如果F值大于临界值,则说明差异是显著的,反之则说明差异不显著。
F检验法在实际应用中非常广泛,适用于大多数实验设计和数据类型。
二、方差分析的应用方差分析方法可以用于各种不同类型的数据分析,如一元方差分析、双因素方差分析、三因素方差分析等等。
下面我们将分别介绍它们的应用。
1. 一元方差分析一元方差分析是指只有一个自变量和一个因变量的分析方法,也就是说只有一个因素影响一个变量。
一元方差分析通常用于分析实验组与对照组之间的差异或者不同处理方式对实验结果的影响等。
例如,我们要研究不同肥料对作物产量的影响,我们可以将实验分成几组,每组采用不同的肥料,最后对产量进行测量。
接着通过方差分析法来比较每组之间产量的差异,最后确定哪种肥料更适合提高作物产量。
2. 双因素方差分析双因素方差分析是指有两个自变量和一个因变量的分析方法,也就是说有两个因素对一个变量产生影响。
双因素方差分析通常用于研究两种或多种因素的交互效应。
例如,我们要研究不同机器和不同操作员对产品质量的影响,我们可以先在不同机器上制造同种产品,然后再让不同的操作员进行操作。
使用SPSS软件进行多因素方差分析
使用SPSS软件进行多因素方差分析使用SPSS软件进行多因素方差分析一、引言多因素方差分析(ANOVA)是一种统计方法,用于比较两个或更多个因素对于某个连续型变量的影响是否显著不同。
通常,研究者需要了解不同因素对于结果值的影响,并确定是否存在交互作用。
SPSS(统计软件包for社会科学)是一款常用的统计软件,它提供了丰富的功能和工具,可用于数据分析和建模。
本文将介绍如何使用SPSS软件进行多因素方差分析。
二、数据准备在进行多因素方差分析之前,需要先进行数据准备。
假设我们有一个研究目的是了解不同教育水平和不同工作经验对个人收入的影响。
我们收集了400位参与者的数据,包括个人收入(连续型变量),教育水平(分类变量:小学、初中、高中、本科、硕士、博士)和工作经验(分类变量:1-5年、6-10年、11-15年、16年及以上)。
三、数据导入首先,将数据导入SPSS软件。
打开SPSS软件后,选择“文件”-“读取数据”-“输入数据”。
在弹出的对话框中选择数据文件,并将其导入到SPSS软件中。
四、数据探索在进行多因素方差分析之前,我们首先需要对数据进行探索,查看教育水平、工作经验和收入之间的关系。
选择“描述统计”-“交叉表”菜单,将教育水平和工作经验作为行变量,将收入作为列变量。
点击“确定”按钮后,SPSS将生成一个交叉表,显示不同教育水平和工作经验对于收入的平均值和标准差等统计信息。
五、多因素方差分析在导入数据并进行数据探索后,我们可以开始进行多因素方差分析。
选择“分析”-“一般线性模型”-“多因素”菜单。
在弹出的对话框中,将个人收入作为因变量,将教育水平和工作经验作为因子变量。
点击“因子”按钮,将教育水平和工作经验拖动到因子变量框中。
然后,点击“选项”按钮,对方差分析的设置进行调整,如是否显示交互作用。
点击“确定”按钮,SPSS将自动生成多因素方差分析的结果报告。
在报告中,我们可以看到各个因素的显著性检验结果,以及不同因素对于个人收入的影响情况。
使用SPSS软件进行多因素方差分析
使用SPSS软件进行多因素方差分析多因素方差分析(ANOVA)是一种常用的统计分析方法,用于研究多个独立与自变量对因变量的影响程度。
SPSS软件是一款强大的数据分析工具,提供了多种统计方法,包括多因素方差分析。
本文将重点介绍如何,以及如何解读分析结果。
一、数据准备与导入在进行多因素方差分析之前,我们首先需要准备好要进行分析的数据,并将其导入到SPSS软件中。
SPSS软件支持各种数据格式的导入,包括Excel、CSV等。
在导入数据之后,可以使用SPSS软件的数据编辑功能进行必要的数据清洗与整理。
二、选择分析方法在SPSS软件中,多因素方差分析有两种不同的方法:多因素方差分析(逐步)和多因素方差分析(GLM)。
前者适用于符合方差齐性和正态分布要求的数据,而后者则没有这些限制。
根据实际情况选择适合的方法进行分析。
三、设置因素在进行多因素方差分析之前,需要设置自变量(因素)和因变量。
SPSS软件允许用户添加多个因素,并可以对每个因素进行设置。
例如,设置因素的水平数目、因素名称、因素标签等。
四、进行多因素方差分析设置因素之后,即可进行多因素方差分析。
在SPSS软件中,选择“分析”-“一般线性模型”-“多因素”进行分析。
进入多因素方差分析的参数设置界面后,依次选择因变量和自变量,并根据实际情况选择交互作用。
五、解读结果多因素方差分析完成后,SPSS软件会生成一系列分析结果。
这些结果包括效应大小(主效应和交互作用)、显著性检验结果(F值和P值)以及不同因素水平之间的差异(均值和置信区间)。
用户应该重点关注显著性检验结果,以判断因素是否对因变量产生显著影响。
六、结果可视化除了结果解读之外,SPSS软件还提供了数据可视化功能,可帮助用户更直观地理解分析结果。
用户可以通过绘制柱状图、折线图等图表,展示因变量在不同自变量水平之间的差异。
七、结果报告最后,用户可以根据分析结果编写一份详细的结果报告,对分析结果进行综合、客观地描述和解释。
多因素被试内方差分析图分解
多因素被试间、被试内混合实验方差分析本次实验为多因素被试间、被试内混合实验设计,如A因素采用被试间设计,A因素各个程度不是使用同一组被试,A因素各个程度之间的数据是不相关的。
B因素采用被试内设计,在A因素的某一程度下,B因素的各个程度那么是使用一样的被试。
每一被试B因素的各程度的实验都做,因此B因素各程度之间的数据为相关数据。
一、目的、通过测定“知道结果〞对画线准确性的影响,验证实验中的自变量、因变量和控制变量。
二、被试:本批被试为某大学学生〔年龄在23~40岁之间〕分两组:实验组〔有反应〕;控制组〔无反应〕三、实验材料3.1.画有标准线段的卡片3.2.挡板、短尺〔最小刻度单位mm〕3.3.每名被试三张记录纸,记录画线结果四、实验程序4.1.前测:4.1.1. 参照标准线段画20条一样长的线段,被试只能看标准线段,不能看自己画的线和画线的手,主试用挡板遮挡。
4.2.练习阶段:. 实验组:继续画100条线段,每次画完给反应:4.2.2. 误差2mm反应“正好〞,误差5mm反应“稍长〞或“稍短〞,大于5mm反应“长了〞或“短了〞4.2.3. 控制组:继续画100条线段,没有反应,如前测。
4.3.后测:4.3.1. 考察练习效果,参照标准线段画20条一样长的线段,没有反应。
五、A2S5B5混合实验设计模型表A2S10B5混合设计模型在这个实验中A因素是采用的被试间设计,A1、A2分别采用不同的被试组S1~S5和S6~S10,A1 、A2 的数据各自独立。
而B因素的五个程度是用被试内设计,在A1 程度的下面B因素的五个程度是用被试组〔S1~S5〕,在A2 程度的下面B因素的五个程度是用被试组〔S6~S10〕,分别按拉丁方顺序采集的数据,B1 B2 B3 B4 B5的数据是相关的。
六、变异来源分析A因素为被试间设计,分A因素组间均方MS A 组内均方MS S(A)、MS S(A)含有被试的个体差异和实验和实验偶尔误差带来的变异。
多因素混合设计的方差分析在SPSS中的实现SPSS在《心理与教育统计学》教学中的具体应用
实验讨论
实验结果表明,SPSS在《心理与教育统计学》教学中的应用效果显著。通过 多因素混合设计的方差分析,学生可以全面了解各因素及其交互作用对因变量的 影响,为进一步的数据分析和研究提供依据。相比其他统计软件或手算方法, SPSS具有更为便捷、高效的优点,更适合实际研究的需求。
此外,实验结果也验证了多因素混合设计的方差分析在心理学与教育学研究 中的重要性和适用范围。通过深入探讨实验结果,可以解释各因素对因变量的影 响机制和适用条件,从而为相关领域的研究提供有益的启示。与其他统计方法相 比,多因素混合设计的方差分析能够更全面地考察各因素及其交互作用的影响, 因此具有较广泛的适用范围。
(3)进一步考察因素之间的交互作用,根据方差分析表中的交互作用项进 行判断。
实验结果
通过SPSS在《心理与教育统计学》教学中的运用,学生可以轻松地进行多因 素混合设计的方差分析。相比传统的手算或者较复杂的统计软件,SPSS具有易学 易用、功能丰富、结果准确等优点。具体实验结果展示了SPSS在多因素混合设计 的方差分析中的效果和优越性,不仅提高了学生的数据分析效率,而且有助于学 生对统计方法的深入理解和实际应用。
多因素混合设计的方差分析在SPSS 中的实现——SPSS在《心理与教育
统计学》教学中的具体应用
01 引言
03 实验步骤 05 实验讨论
目录
02 理论基础 04 实验结果 06 结论
引言
SPSS(Statistical Package for the Social Sciences)是一款广泛应 用于社会科学领域的统计分析软件,它提供了丰富的数据管理和分析功能,适用 于各种数据结构和研究设计。在《心理与教育统计学》教学中,SPSS的运用有助 于学生更好地理解和掌握统计方法,提高数据分析的准确性和效率。本次演示将 以SPSS为工具,介绍多因素混合设计的方差分析在《心理与教育统计学》教学中 的具体应用。
医学统计学第十一章多因素试验资料的方差分析
表11-3 表11-1处理组均数比较的方差分解
01
A1=T1+T2=120+220=340,
02
A2=T3+T4=140+260=400,
03
B1=T1+T3=120+140=260,
04
B2=T2+T4=220+260=480。
用表11-1数据计算:
代入表11-4,得
表11-5 表11-1析因试验结果方差分析表
1
2
Content
01
Please add content 1
02
Please add content 2
03
Please add content 3
04
Please add content 4
目的:研究多个处理因素对试验对象的试验 指标的作用。 原因 结果 多个 1个 资料:处理因素分几个水平,试验指标多为 定量数据。 方法:多为方差分析 ,少数 检验。
2. 主效应 指某一因素各水平间的平均差别
STEP3
STEP2
STEP1
本例
即AB=BA。
交互作用 当某因素的各个单独效应随另一因素变化而变化时,则称这两个因素间存在交互作用。
缝合2月 (b2)
缝合1月 (b1)
4个均数可作线图,若两条直线几乎相互平行, 则表示两因素交互作用很小;若两条直线相互不平行, 则说明两因素可能存在交互作用。
高级统计方法
添加副标题
汇报人姓名
高级统计方法是基本统计方法的延伸和发展,表现在空间广度和时间深度上。
1-10章,单双因素(变量)研究,基本不涉及时间变量,即时间是固定的。
01
02
概 述
多因素方差分析实验报告模板
评阅人:日期:
表1保险销售人员的月收入数据(百元)
地区
A
B
C
D
产品
类型
1
39.3
41.6
38.8
42.9
37.7
42.7
37.2
39.3
40.6
38.9
39.1
40.5
2
41.5
38.4
40.2
38.9
39.7
37.7
41.1
38.1
38.4
40.1
40.9
39.2
3
40.6
40.3
37.2
43.6
39.8
38.8
21
2
3
40.9
4
1
2
41.6
22
2
4
38.9
5
1
2
42.7
23
2
4
38.1
6
1
2
38.9
24
2
4
39.2
7
1
3
38.8
25
3
1
40.6
8
1
3
37.2
26
3
1
39.8
9
1
3
39.1
27
3
1
41.3
10
1
4
42.9
28
3
2
40.3
11
1
4
39.3
29
3
2
38.8
12
1
4
40.5
30
3
2
39.6
多因素方差分析
多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。
SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。
在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。
该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。
但也可以通过方差齐次性检验选择均值比较结果。
因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。
因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。
固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。
[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。
分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。
表5-7 不同温度与不同湿度粘虫发育历期表1)准备分析数据在数据编辑窗口中输入数据。
建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。
然后输入对应的数值,如图5-6所示。
或者打开已存在的数据文件“DATA5-2.SAV”。
图5-6 数据输入格式2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“General Linear Model”项,在右拉式菜单中点击“Univariate”项,系统打开单因变量多因素方差分析设置窗口如图5-7。
图5-7 多因素方差分析窗口3)设置分析变量设置因变量:在左边变量列表中选“历期”,用向右拉按钮选入到“Dependent Variable:”框中。
设置因素变量:在左边变量列表中选“a”和“b”变量,用向右拉按钮移到“Fixed Factor(s):”框中。
可以选择多个因素变量。
由于内存容量的限制,选择的因素水平组合数(单元数)应该尽量少。
设置随机因素变量:在左边变量列表中选“重复”变量,用向右拉按钮移到“到Random Factor(s)”框中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《统计学软件及应用》上机试验报告试验名称:实验11 多因素方差分析模型
成绩:
课
堂
试
验
内
容
五、实验步骤(请截图展示详细的操作过程)
PPT例题:现希望研究四种广告的宣传效果有无差异,具体的广告类型为:店内展示、发放传单、推销员展示、广播广告。
在本地区共有几百个销售网点可供选择,出于经费方面的考虑,在其中随机选择了18个网点进入研究,各网点均在规定长度的时间段内使用某种广告宣传方式,并记录该时间段内的具体销售额。
为减小误差,每种广告方式在每个网点均重复测量两次。
数据见ranavona.sav。
结论:依据销售额的平均值,可得到结论,发放传单的宣传效果最好,其次是广播广告和推销员展示,店内展示的宣传效果最差。
例2 如何按随机区组设计,分配5个区组的15只小白鼠接受甲、已、丙三种抗癌药物?
方法:先将小白鼠的体重从轻到重编号,体重相近的3只配成一区组,然后在随机数字表中任选一行一列开始的2位数作为一个随机数,在每个区组内将随机数按大小排序,各区组中内序号为1的接受甲药,序号为2的接受已药,序号为3的接受丙药。
某研究者采用随机区组设计进行实验,比较三种抗癌药物对小白鼠肉瘤的抑制效果,以肉瘤的重量为指标,问三种不同药物的抑瘤效果有无差别?
主体间因子
个案数
药品类型 A 5
B 5
C 5
误差方差的莱文等同性检验a 因变量: 测量值
显著性.512 .243
将显示齐性子集中各个组的平均值。
基于实测平均值。
误差项是均方(误差)= .025。
a. 使用调和平均值样本大小 = 5.000。
b. Alpha = .05。
解读:按照肉瘤测量值大小,C<B<A。
S-N-K法将统计量分为两子集,CB、AB,C 药品与B药品的相关性为0.257。
A药品与B药品的相关性为0.099.图基HSD法将统计量分为两子集,CB、BA, C药品与B药品的相关性为0.481,A药品与B药品的相关性为0.216.雪费法将统计量分为两子集,C药品与B药品的相关性为0.512,A药品与B药品的相关性为0.243.综合三种方法可得到结论,C药品抑制效果最好,其次是B药品,A药品的抑制效果最差。
结论:依据肉瘤测量值的平均值,ABC三种药品之间有显著性差别。
可以看出C药品的抑制效果最好,B药品的抑制效果其次,A药品的抑制效果最差。