高考数学选择题技巧精选文档

合集下载

高考数学选择题解题技巧集锦.doc

高考数学选择题解题技巧集锦.doc

高考数学选择题解题技巧集锦高考数学选择题解题技巧排除法:利用已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

如下题,y=x为奇函数,y=sin|x|为偶函数,奇函数+偶函数为非奇非偶函数,四个选项中,只有B选项为非奇非偶函数,凭此一点排除ACD。

特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

值得注意的是,特殊值法常常也与排除法同时使用;如下题,代入特殊值0,显然符合,排除AD;代入x=-1显然不符,排除C。

极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何、立体几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决问题。

如下题,直接取AB CD的极端情况,取AB中点E,CD中点F,连结EF,令EF AB且EF CD,算出的值即最大值,无须过多说明。

顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

如下题,根据题意,依次将点代入函数及其反函数即可。

逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

常与排除法结合使用;如下题,代入x=0,显然符合,排除AD;代入x=-1显然不符,排除C。

选B。

高考数学选择题解题方法1.特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B 两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.2 5/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。

高考数学选择题答题技巧和套路(最新)

高考数学选择题答题技巧和套路(最新)

高考数学选择题答题技巧和套路(最新)高考数学选择题是很多考生感到头疼的题型,因为涉及范围广、题目多样,需要考生有一些技巧和策略进行应对。

本篇文档将分享一些最新的高考数学选择题答题技巧和套路,希望能对大家有所帮助。

一、减少遗漏很多考生在做高考数学选择题时,容易遗漏掉一些题目,进而影响成绩。

下面是一些减少遗漏的技巧:1.认真审题在做选择题时,应该认真审题,看清题目要求,确定所求答案,避免在做题时出现偏差,导致选错答案。

2.注意选项在给出的选项中,有些选项很容易错,需要进行仔细辨别,避免出现选错答案的情况。

另外,有些选项很容易漏选,需要在做题时特别留意。

3.确认答案做题时不能太着急,做完了题目就直接选答案。

应该多核对几遍答案,确保所选答案是正确的。

二、选择题常用技巧1.先排除显然的选项有些选项很显然是不对的,应该先把这些选项排除掉,降低选项的数量。

2.看选项相近程度有时候选项中的两个答案会非常相似,这时候就需要在细节中寻找差异,找到不同之处再做出选择。

3.利用常见套路有些选项出题人会使用一些常见的套路,比如“反过来”、“倒着来”,考生可以熟悉这些套路,从而避免出现错误的选择。

4.利用图形、数据、公式等信息选择题可能提供一些关键信息,如图形、数据、公式等,需要看清这些信息,并学会从这些信息中得出正确答案。

三、套路类题型1.函数类题目函数类题目一般会提供函数的定义或者图像,需要考生熟悉函数的性质,了解函数的基本图像和变形规律,并注意特殊点的位置。

2.数列类题目数列类题目可能涉及到数列的通项公式、项数公式、求和公式等,需要考生能够识别数列的性质,熟悉数列的通项公式和项数公式,并学会运用求和公式。

3.几何类题目几何类题目一般与图形有关,需要考生熟悉几何形状的性质和变形规律,注意直角、相似、全等等关系,同时还需要掌握一些基本的几何公式和定理。

四、总结在做高考数学选择题时,应该认真审题、注意选项、多确认答案,同时熟练掌握一些常用的答题技巧和套路,对于套路类题型要熟悉相应的知识点。

高考数学选择题答题技巧

高考数学选择题答题技巧

高考数学选择题答题技巧1. 通读题目:在开始作答之前,首先要通读题目,理解题目所描述的情境和要求。

注意关键词或条件,例如“解方程”,“证明”,“推理”等,这有助于确定解题思路。

2. 符号约定:在解决数学问题时,可以使用符号来简化计算和推导过程。

在作答之前,对于不同符号的含义进行明确的约定,以避免混淆和错误。

3. 良好的解题方式:在选择题中,常见的解题方式包括代入法、排除法、利用特殊性质或性质等。

了解每种方法的适用场景,并根据题目的特点选择合适的解题方式。

4. 时间分配和顺序:做选择题时,可以根据题目的难度和自己的能力合理安排时间和顺序。

先解答较简单的题目,以提高答题的效率和信心。

5. 注意选项:借助选项也是解决选择题的常用方法。

有时,即使你不知道如何解答题目,通过观察选项的特点或性质,可以推测出正确答案或排除错误答案。

6. 注意题目条件:在阅读题目时,特别要注意题目中提供的信息和条件。

有时,答案可能可以直接由题目中的条件推导出来,而不需要进行复杂的计算。

7. 交叉验证:在解答选择题时,可以通过交叉验证的方式来确认答案的正确性。

即用已选择的答案回代到原题中验证,确保这个答案符合所有给定的条件和要求。

8. 检查答案:完成所有选择题后,建议花一些时间仔细检查答案。

检查是否有计算错误、逻辑错误或遗漏的信息。

这可以帮助你发现潜在的错误并进行修正。

9. 划重点:在解答过程中,可以对题目中的重要信息或关键步骤进行划重点,以便于清晰思路和回顾。

这有助于提高解题的准确性和效率。

10. 练习积累:最重要的一点是要进行充分的练习积累。

多做一些模拟试题、历年真题和各种类型的题目,熟悉不同题型和解题思路,提升解题能力。

高考数学选择题技巧(精选5篇)

高考数学选择题技巧(精选5篇)

高考数学选择题技巧(精选5篇)高考数学选择题技巧篇11、高考数学时带一个量角器进考场,因为高考解析几何题一定会有求度数的小题,这时考生就可以用量角器测一下,就可以写出最后结论,这是最简单也是最牛的高考数学蒙题技巧。

2、在高考数学计算题中,要首先写一答字!如果选项是4个数,一般是第二大的是正确选项。

单看选项,一般BD稍多,A较少。

还有一点,选了之后就不要改了,除非有90以上的把握。

这个经验堪称是史上最牛的高考数学蒙题技巧。

3、经过历年高考经验总结,高考数学第一题和最后一题一般不会是A!高考数学选择题的答案分布均匀!填空题不会就填0或1!答案有根号的,不选!答案有1的,选!有一个是正X,一个是负X的时候,在这两个中选!题目看起来数字简单,那么答案选复杂的,反之亦然。

上一题选什么,这一题选什么,连续有三个相同的则不适合本条!以上都不实用的时候选B!4、数学选择不会时去除最大值与最小值再二选一,老师告诉我们的!高考题百分之八十是这样的。

高考数学选择题技巧篇2一、利用已知条件和选项所提供的信息,从四个数学选择题选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

二、对于具有一般性的数学问题,在选择题解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

值得注意的是,特殊值法常常也与排除法同时使用.三、将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何、立体几何上面,很多计算步骤繁琐、计算量大的题,采用极端性去分析,就能瞬间解决数学选择题问题。

四、利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

如下题,根据题意,依次将点代入函数及其反函数即可。

五、将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

高考数学选择题技巧方法

高考数学选择题技巧方法

一.选择题部分(一)高考数学选择题的解题方法1、直接法:就是从题设条件出发, 通过正确的运算、推理或判断, 直接得出结论再与选择支对照, 从而作出选择的一种方法。

运用此种方法解题需要扎实的数学基础。

例1、某人射击一次击中目标的概率为0.6, 经过3次射击, 此人至少有2次击中目标的概率为 ( )12527.12536.12554.12581.D C B A 解析:某人每次射中的概率为0.6, 3次射击至少射中两次属独立重复实验。

12527)106(104)106(333223=⨯+⨯⨯C C 故选A 。

例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直, 那么过a 的任一个平面与b 都不垂直。

其中正确命题的个数为( )A .0B .1C .2D .3解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断, 易得都是正确的, 故选D 。

例3、已知F 1、F 2是椭圆162x +92y =1的两焦点, 经点F 2的的直线交椭圆于点A 、B , 若|AB|=5, 则|AF 1|+|BF 1|等于( )A .11B .10C .9D .16解析:由椭圆的定义可得|AF 1|+|AF 2|=2a=8,|BF 1|+|BF 2|=2a=8, 两式相加后将|AB|=5=|AF 2|+|BF 2|代入, 得|AF 1|+|BF 1|=11, 故选A 。

例4、已知log (2)a y ax =-在[0, 1]上是x 的减函数, 则a 的取值范围是( )A .(0, 1)B .(1, 2)C .(0, 2)D .[2, +∞) 解析:∵a>0,∴y 1=2-ax 是减函数, ∵ log (2)a y ax =-在[0, 1]上是减函数。

∴a>1, 且2-a>0, ∴1<a<2, 故选B 。

例5已知集合}4,3,2,1,0{=A , 集合},2|{A n n x x B ∈==, 则=B A I DA .}0{B .}4,0{C .}4,2{D .}4,2,0{ 分析:,,例6设向量=a ()21x ,-, =b ()14x ,+, 则“3x =”是“a //b ”的 A A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 分析:当时, 有2/x+1=x-1/4解得; 所以, 但, 故“”是“”的充分不必要条件例7.已知函数()2030x x x fx x log ,,⎧>=⎨≤⎩, 则14f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是 BA .9B .19 C .9- D .19-,例8.已知函数2()f x x -=, 则C(A) ()f x 为偶函数且在),0(+∞上单调增 (B) ()f x 为奇函数且在),0(+∞上单调增 (C )()f x 为偶函数且在),0(+∞上单调减 (D) ()f x 为奇函数且在),0(+∞上单调增 根据f(-x)=f(x)可得 函数为偶函数且在(0, +无穷大)上单调递减例9.集合{||2|2}A x x =-≤, 2{|,12}B y y x x ==--≤≤, 则A B =I CA .RB .{|0}x x ≠C .{0}D .∅[0,4]A =, [4,0]B =-, 所以{0}A B =I .2、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理, 利用问题在某一特殊情况下不真, 则它在一般情况下也不真的原理, 由此判明选项真伪的方法。

高考数学选择题答题技巧(精选6篇)

高考数学选择题答题技巧(精选6篇)

高考数学选择题答题技巧(精选6篇)高考数学选择题答题技巧精选篇1一、解答选择题的基本策略解答选择题的基本策略是“小题小做,不择手段”.1.要充分挖掘各选择支的暗示作用;2.要巧妙有效的排除迷惑支的干扰.快速解答选择题要靠基础知识的熟练和思维方法的灵活以及科学、合理的巧解,应尽量避免小题大做.二、选择题常用解题方法由于高考数学选择题四个选项中有且只有一个结论正确,因而解选择题要沿着以下两个途径思考:一是否定3个结论;二是肯定一个结论.常用的方法有:直接法,筛选法(排除法),利用数学中的二级结论法,特例法 (特殊值,特殊图形,特殊位置,特殊函数)是重点方法,还有数形结合法,验证法,估算法,特征分析法,极限法等,还是要学会通式通法,扎扎实实打好基础,才能最后成功。

高考数学选择题答题技巧精选篇2所谓直接法就是利用数学公式、法则或者定理直接进行计算来获得答案的方法。

通常是在做计算题时用此方法。

从另一个角度讲,考生在做选择题时,先观察一下四个选项,认为哪一个选项可能性最大就先做哪一个,而不是按照顺序逐个做,这也体现了一种直接选择的思想。

高考数学选择题答题技巧精选篇3所谓构建数学模型法就是将问题建立在某一个数学模型中,利用该数学模型所具有的`意义、几何性质等去解题的一种方法。

最后说及一点,选择方法固然重要,但根本上还是要学会通式通法,扎扎实实打好基础,才能最后成功。

高考数学选择题答题技巧精选篇4将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

高考数学选择题答题技巧精选篇5所谓排除法就是对各个选项通过分析、推理、计算、判断,排除掉错误的选项,留下正确选项的一种选择方法。

直接法和排除法是高考做选择题时最常用的两种基本选择方法。

高考数学选择题答题技巧精选篇6所谓特值法就是利用满足题设条件的某些特殊数值、特殊位置、特殊函数、特殊图形等对各个选项进行验证或推理,利用问题在这一特殊条件下不真,则它在一般情况下也不真的原理,去伪存真作出选择的一种方法。

高考数学选择题秒杀技巧

高考数学选择题秒杀技巧

高考数学选择题秒杀技巧
1. 嘿,你知道吗?特殊值法简直就是高考数学选择题的大救星啊!比如这道题“若函数 f(x)满足 f(2)=3,那 f(4)等于多少”,咱就直接找个满足条件的特殊值带进去,说不定一下就出来啦,这多省事儿呀!
2. 哇塞,选项代入排除法可太好用啦!就像找宝藏一样,把不合适的选项一个一个排除掉,最后剩下的不就是正确答案嘛!比如那道求角度的题,一试就知道哪个对啦!
3. 哎呀呀,图形结合法真是绝了呀!碰到几何题,画个图出来,答案有时候就一目了然啦!像那道求阴影面积的,画出来不就清楚多啦!
4. 嘿,数量关系分析法也很牛呀!看看题目里的数量关系,分析分析,答案也许就自己蹦出来咯!比如那道算速度的题,通过关系一分析不就懂啦!
5. 哇哦,反推法有时候能带来大惊喜呢!从答案反推条件,看看合不合理,不就知道选哪个啦!就像那道判断函数奇偶性的题,反推一下嘛!
6. 哈哈,极限思维法也是个厉害角色呀!把数值往极限去想,往往能找到突破点呢!像那道求最大值的题,想想极限情况呀!
7. 哟呵,整体代换法可别小瞧呀!把一个复杂的式子整体代换一下,说不定难题就变简单啦!比如那道含有多项式的题,整体代换一下多轻松呀!
8. 哎呀,类比法也很有趣呀!想想类似的题目怎么做的,这道题也许就有思路啦!就像那道和之前做过的类似的题,类比一下就懂啦!
9. 哇,估算法有时候能快速解决问题呀!大致估算一下范围,就能排除好多选项呢!比如那道计算面积的题,先估算个大概嘛!
10. 嘿,规律总结法可是很重要的哟!多做几道题总结总结规律,以后碰到类似的题就不怕啦!就像那类找数列规律的题,总结好规律就简单啦!
我的观点结论就是:这些高考数学选择题秒杀技巧真的超有用,大家一定要好好掌握呀,能帮你在考场上节省不少时间,提高准确率呢!。

掌握10种高考数学选择题答题技巧 答题速度快一倍

掌握10种高考数学选择题答题技巧 答题速度快一倍

掌握10种高考数学选择题答题技巧答题速度快一倍以下是10种高考数学选择题答题技巧,可以帮助提高答题速度:1. 首先通读题目:在开始解答任何选择题之前,先通读整个题目,理解题目要求和给出的信息。

这有助于提前筛选选项,并确定解题的思路。

2. 分析选项:仔细阅读选项,排除明显错误的选项,然后再根据解题思路和题目要求判断剩余选项的正确与否。

3. 利用近似法:如果选项中有数值,可以利用近似法快速估算答案。

通过对选项中的数值进行快速评估,可以帮助排除一些不可能的答案。

4. 注意特殊情况:有些题目可能涉及到特殊情况,例如除法运算中除数为零的情况等。

对于这些情况,要特别注意,并合理选择答案。

5. 利用排除法:利用排除法可以帮助快速缩小选项范围。

如果可以排除某些选项,就可以将注意力集中在剩余的选项上,并更快地找到正确答案。

6. 多角度思考:尝试从不同的角度思考问题,可能会发现不同的解题路径或思路。

这有助于更好地理解题目,并更快地解答出正确答案。

7. 注意单位转换:在物理题或几何题中,可能涉及到单位转换。

在计算过程中要注意单位的转换,以确保得出正确的答案。

8. 注意题目中的关键词:题目中可能出现一些关键词,例如“最大值”、“最小值”、“平均值”等。

对于这些关键词,要特别注意,并在解题过程中加以利用。

9. 注意图表信息:对于涉及图表的题目,要善于利用图表中给出的信息,例如直线斜率、图表趋势等。

这些信息可以帮助更快地解答问题。

10. 练习做题:做更多的练习题可以帮助熟悉各种题型和解题方法,提高解题的速度和准确性。

在备考期间,多做模拟试题,并检查解题方法和答案是否正确。

通过掌握这些技巧,并不断进行练习和实践,可以提高在高考数学选择题中的答题速度,更快地找到正确的答案。

高考数学选择题答题技巧优选篇

高考数学选择题答题技巧优选篇

高考数学选择题答题技巧优选篇高考数学选择题答题技巧 11.选择题分数所占比例高,约占750分的40%以上,即315~330分。

2.选择题可猜答,有一定几率不会做也能得分。

3.选择题容易丢分也容易得分,单题分值较大,而且存在干扰选项做误导,选择题好坏能决定你与他人的优势或劣势。

4.选择题可快速答题,留下时间做大题,也可浪费你大量时间,叫你来不及做题。

5.掌握选择题答题技巧可做到所有科目选择题既能快速解答,又能获取满分。

高考数学选择题解题技巧:一、猜答技巧选择题虽不易猜答但仍有它的答题基本方法,现简单介绍如下:消元法选择题答案是唯一正确的,运用消元法是最普通的。

该法也适用多选题排除错误选项。

分析法将四个选择项全部置于试题中,纵横比较,逐个分析,去误求正,去伪存真,获得理想的答案。

联想法有时对四个选项无从下手,这时可以展开联想,联想课本、练习、阅读材料及其他,从而捕捉自己需要的知识点。

类比法在能力倾向选择题中类比法十分重要,四个选项中有一个选项不属于同一范畴,那么,余下的三项则为选择项。

推测法利用上下文推测词义。

有些试题要从句子中的结构及语法知识推测入手,配合自己*时积累的常识来判断其义,推测出逻辑的条件和结论,以期将正确的选项准确地选出。

二、数学选择题部分方法1)数学选项暗示:①开闭区间开闭区间的思想就是暗示我们能不能取到这个值,直接代入验证就行。

一般可通过数形结合来判断其具体取值。

②含有+∞及-∞的。

即极限讨论法,一般有给出无穷大的选项,我么可用极限的思想去讨论排除或者待选(案例较多,大家自行找任意题去验证)。

③函数单调性判断。

根据单调性的特征取两个到三个好算的特殊值验证即可得出结论。

④函数奇偶性判断。

根据对称特性,取相应的对称点验证是否成立。

2)根据所学知识点简化我们不必管其中的道理,但是这类题通常比较难,我们在完全没有思路的时候,完全可以利用知识点来简化,如下题:这道题估计很多人没思路,或者埋头计算了,其实根据课本知识点,因选择题不考虑中间过程,我们完全可以将x给弄没了,但是不能瞎弄没。

高考数学选择题技巧

高考数学选择题技巧

高考数学选择题技巧高考数学选择题技巧1、圆锥曲线中最后题往往联立起来很复杂导致算不出,这时你可以取特殊值法强行算出过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就ok了。

2、高考数学必考题型之空间几何,证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。

如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的考生建议先随便建立个空间坐标系,如果做错了,至少还可以得几分,这是一个投机取巧的技巧,但好比过一分不得!3、空间几何过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。

如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!4、立体几何中,求二面角b-oa-c的新方法。

利用三面角余弦定理。

设二面角b-oa-c是∠oa,∠aob是α,∠boc是β,∠aoc是γ,这个定理就是:cos ∠oa=(cosβ-cosαcosγ)/sinαsinγ。

知道这个定理,如果考试中遇到立体几何求二面角的题,套一下公式就出来了,还来得及,试试?高考数学选择题技巧特殊值检验法在解题的过程中,考生们可以将问题特殊化,利用问题在某一种特殊情况下不真,那么在一般情况下也不真的这个原因,达到辨别正确与否的目的,这种办法常常和下文提到的排除法同时使用。

很简单,就是遇到问题时,将所要研究的问题向极端进行分析,因为在极端状态下,因果关系会更加明显,这样可以达到迅速解决问题的目的。

这种办法适用于求极值、取值范围、解析几何、立体几何上面,很多计算步骤繁琐、计算量大的题也可以采用这种极端性去分析解决。

选择题解题万能技巧在平时的学习和考试过程中,如果仔细观察不难发现,数学选择题中有一些几何体可以直接用尺子量,求数值的可以直接把选项带进去计算,高考数学也是如此,遇到实在不知道怎么做的,就类似的方法去做,不过要注意题目中的隐含条件。

(完整word版)专题:高考数学选择题的解题方法与技巧

(完整word版)专题:高考数学选择题的解题方法与技巧

专题:选择题的解题方法与技巧一、教学目标1、了解并掌握选择题的解题方法与技巧,使学生能够达到准确、迅速解答选择题的目的;2、培养学生灵活多样的辩证唯物主义观点;3、培养学生的自信心,提高学生的创新意识.二、重点聚集高考数学选择题占总分值的2•5其解答特点是“四选一”,快速、准确、无误地选择好这个“一”是十分重要的.选择题和其它题型相比,解题思路和方法有着一定的区别,产生这种现象的原因在于选择题有着与其它题型明显不同的特点:①立意新颖、构思精巧、迷惑性强、题材内容相关相近,真假难分;②技巧性高、灵活性大、概念性强、题材内容储蓄多变、解法奇特;③知识面广、跨度较大、切入点多、综合性强.正因为这些特点,使得选择题还具有区别与其它题型的考查功能:①能在较大的知识范围内,实现对基础知识、基本技能和基本思想方法的考查;②能比较确切地考查考生对概念、原理、性质、法则、定理和公式的掌握和理解情况;③在一定程度上,能有效地考查逻辑思维能力,运算能力、空间想象能力及灵活和综合地运用数学知识解决问题的能力.三、基础训练(1)若定义在区间(-1, 0)内的函数f(x) log 2a (x 1),满足f(x) 0,则a的取值范围是:1 1 1A• (0,-) B • (0,-] C- [-,) D • (0,)2 2 2(2)过原点的直线与圆x2寸4x 3 0相切,若切点在第三象限,则该直线的方程是:一一.3 . 3A. y . 3xB. y 、3xC. y xD. y x3 3 3 43 如果函数y sin 2x a cos2x的图像关于直线x 对称,那么a等于:8A. .2 B . 2 C . 1 D . -12 x1,x 04 设函数f (x) 丄,若f(x°) 1,则x°的取值范围为:x2,x 0A • (-1 , 1)B • ( 1, )C • ( , 2) (0,)D ・(,1) (1,)(5) 已知向量a e , |e| 1,且对任意t R ,恒有|a te| |a e|,贝U——P----- I- ff十—F —F fA . a eB . a (a e)C . e (a e)D . (e a) (a e)答案:(1) A (2) C (3) C (4) D (5) C四、典型例题(一) 直接法直接从题目条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理 和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应 的选择、涉及概念、性质的辨析或运算较简单的题目常用直接法.21例1、关于函数f (x) sin 3 4 x (-)|x| -,看下面四个结论:3 21①f(x)是奇函数;②当x 2007时,f(x) -恒成立;232 |x |sin x 0, ( )1, • f (x) 4等号当且仅当x=0时成立,可知结论④正确.【题后反思】直接法是解答选择题最常用的基本方法,低档选择题可用此法迅速求解,直接法运用的 范围很广,只要运算正确必能得到正确的答案,提高直接法解选择题的能力,准确地把握中 档题的“个性”,用简便方法巧解选择题,是建在扎实掌握“三基”的基础上的,否则一味求 快则会快中出错.(二) 排除法排除法也叫筛选法或淘汰法,使用排除法的前提条件是答案唯一,具体的做法是采用简捷有效的手段对各个备选答案进行“筛选”,将其中与题干相矛盾的干扰支逐一排除,从而获 得正确结论.③f(x)的最大值是-:④f(x)2的最小值是1.其中正确结论的个数为: 2A . 1个B . 2个【解析】f(x) sin 2x (-)|x|- 321 cos2x2C . 3个2 §|x|D . 4个1 -—cos2x (二)|x|, 2 3••• f(x)为偶函数,结论①错; 对于结论②,1000时, - 2凶3x 2007,sin 2 10001 3 1cos2x ,从而 1 - cos2x 2 2 2•- f(1000 ) 1 (f)1000231 又I 1 cos2x 1,•••一222 |x | 1 , f (x) sin x (詁中,32,结论②错.(-)|x| 3,结论③错.3 2-,A • (-1 , 1)B • ( 1, )C • ( , 2) (0,)D ・(,1) (1,)由B 、D 两图知a 0, b 0 .直线方程可化为y ax b ,可知应选B .【题后反思】用排除法解选择题的一般规律是:(1) 对于干扰支易于淘汰的选择题,可采用筛选法,能剔除几个就先剔除几个;(2) 允许使用题干中的部分条件淘汰选择支; (3) 如果选择支中存在等效命题,那么根据规定---答案唯一,等效命题应该同时排除; (4) 如果选择支存在两个相反的,或互不相容的判断,那么其中至少有一个是假的; (5) 如果选择支之间存在包含关系,必须根据题意才能判定. (三) 特例法特例法也称特值法、特形法.就是运用满足题设条件的某些特殊值、特殊关系或特殊图形对选项进行检验或推理,从 而得到正确选项的方法,常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、 特殊位置等.••丄不符合题意,2•••排除选项A 、B 、C ,故应选D .例3、设函数f (x)x12x 2,x2 1,xI 若 f(x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学选择题技巧精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-高考数学选择题的解题策略解答选择题的基本策略是准确、迅速。

准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。

高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。

解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。

(一)数学选择题的解题方法1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。

运用此种方法解题需要扎实的数学基础。

例1、某人射击一次击中目标的概率为,经过3次射击,此人至少有2次击中目标的概率为 ( )解析:某人每次射中的概率为,3次射击至少射中两次属独立重复实验。

12527)106(104)106(333223=⨯+⨯⨯C C 故选A 。

例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直。

其中正确命题的个数为( )A .0B .1C .2D .3解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D 。

例3、已知F 1、F 2是椭圆162x +92y =1的两焦点,经点F 2的的直线交椭圆于点A 、B ,若|AB|=5,则|AF 1|+|BF 1|等于( )A .11B .10C .9D .16解析:由椭圆的定义可得|AF 1|+|AF 2|=2a=8,|BF 1|+|BF 2|=2a=8,两式相加后将|AB|=5=|AF 2|+|BF 2|代入,得|AF 1|+|BF 1|=11,故选A 。

例4、已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( )A .(0,1)B .(1,2)C .(0,2)D .[2,+∞)解析:∵a>0,∴y 1=2-ax 是减函数,∵ log (2)a y ax =-在[0,1]上是减函数。

∴a>1,且2-a>0,∴1<a<2,故选B 。

2、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。

用特例法解选择题时,特例取得愈简单、愈特殊愈好。

(1)特殊值例5、过抛物线2y ax =(0)a >的焦点F 作一直线交抛物线于P,Q 两点,若线段PF 与FQ 的长分别为p,q,则11p q+等于( )A.4aB.2aC.aD.12a解:若用常规方法,运算量很大,不妨设PQ ∥x 轴,则12p q a==,∴11p q+=4a .故选A.例6、一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( )A .-24B .84C .72D .36解析:结论中不含n ,故本题结论的正确性与n 取值无关,可对n 取特殊值,如n=1,此时a 1=48,a 2=S 2-S 1=12,a 3=a 1+2d= -24,所以前3n 项和为36,故选D 。

(2)特殊函数例7、如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( )A.增函数且最小值为-5B.减函数且最小值是-5C.增函数且最大值为-5D.减函数且最大值是-5解析:构造特殊函数f(x)=35x ,虽然满足题设条件,并易知f(x)在区间[-7,-3]上是增函数,且最大值为f(-3)=-5,故选C 。

例8、定义在R 上的奇函数f(x)为减函数,设a+b ≤0,给出下列不等式:①f(a)·f(-a)≤0;②f(b)·f(-b)≥0;③f(a)+f(b)≤f(-a)+f(-b);④f(a)+f(b)≥f(-a)+f(-b)。

其中正确的不等式序号是( )A .①②④B .①④C .②④D .①③解析:取f(x)= -x ,逐项检查可知①④正确。

故选B 。

(3)特殊数列例9、已知等差数列{}n a 满足121010a a a ++⋅⋅⋅+=,则有 ( )A 、11010a a +>B 、21020a a +<C 、3990a a +=D 、5151a =解析:取满足题意的特殊数列0n a =,则3990a a +=,故选C 。

(4)特殊位置例9、过)0(2>=a ax y 的焦点F 作直线交抛物线与Q 、P 两点,若PF 与FQ 的长分别是q 、p ,则=+qp 11 ( )A 、a 2B 、a 21C 、a 4D 、 a4解析:考虑特殊位置PQ ⊥OP 时,1||||2PF FQ a==,所以11224a a a p q+=+=,故选C 。

例10、向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如右图所示,那么水瓶的形状是 ( )解析:取2H h =,由图象可知,此时注水量V 大于容器容积的12,故选B 。

(6)特殊方程例11、双曲线b 2x 2-a 2y 2=a 2b 2 (a>b>0)的渐近线夹角为α,离心率为e,则cos2α等于( ) A .eB .e 2C .e1D .21e解析:本题是考查双曲线渐近线夹角与离心率的一个关系式,故可用特殊方程来考察。

取双曲线方程为42x -12y =1,易得离心率e=25,cos 2α=52,故选C 。

(7)特殊模型例12、如果实数x,y 满足等式(x -2)2+y 2=3,那么xy的最大值是( )A .21B .33 C .23D .3解析:题中xy可写成00--x y 。

联想数学模型:过两点的直线的斜率公式k=1212x x y y --,可将问题看成圆(x -2)2+y 2=3上的点与坐标原点O 连线的斜率的最大值,即得D 。

3、图解法:就是利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。

这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速。

例13、已知α、β都是第二象限角,且cos α>cos β,则( )A .α<βB .sin α>sin βC .tan α>tan βD .cot α<cot β解析:在第二象限角内通过余弦函数线cosα>cos β找出α、β的终边位置关系,再作出判断,得B 。

a +3b例14、已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( ) A .7 B .10 C .13 D .4解析:如图,a +3b =OB ,在OAB ∆中,||1,||3,120,OA AB OAB ==∠=∴由余弦定理得|a +3b |=|OB |=13,故选C 。

例15、已知{a n }是等差数列,a 1=-9,S 3=S 7,那么使其前n 项和S n 最小的n 是( )A .4B .5C .6D .7解析:等差数列的前n 项和S n =2d n 2+(a 1-2d )n 可表示为过原点的抛物线,又本题中a 1=-9<0, S 3=S 7,可表示如图,由图可知,n=5273=+,是抛物线的对称轴,所以n=5是抛物线的对称轴,所以n=5时S n 最小,故选B 。

4、验证法:就是将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法。

在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度。

例16、方程lg 3x x +=的解0x ∈ ( )A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)解析:若(0,1)x ∈,则lg 0x <,则lg 1x x +<;若(1,2)x ∈,则0lg 1x <<,则1lg 3x x <+<;若(2,3)x ∈,则0lg 1x <<,则2lg 4x x <+<;若3,lg 0x x >>,则lg 3x x +>,故选C 。

将题目所提供的各选择支或特值逐一代入题干中进行验证,从而确定正确的答案. 有时可通过初步分析,判断某个(或某几个)选项正确的可能性较大,再代入检验,可节省时间.◆例17:(2007年全国卷Ⅰ)下面给出的四个点中,到直线10x y-+=的距离为,且位于表示的平面区域内的点是( )A.(1,1)B.(1,1)- C.(1,1)-- D.(1,1)-解:将点(1,1)代入1x y+-中得1+1-1=1>0,排除A;将(-1,1)代入1x y-+得-1-1+1=-1<0,排除B;D中的点(1,-1)到直线10x y-+=的距离为≠2,故排除D. 正确选项为C.例18:数列{}na满足11a=,223a=,且11112n n na a a-++=(n≥2),则na等于( )A.21n+B.123n-⎛⎫⎪⎝⎭C.23n⎛⎫⎪⎝⎭D.22n+解:先代入求得312a=,再对照给出的选择支,分别验证11a=,223a=,312a=即可得出结论,选A.5、筛选法(也叫排除法、淘汰法):就是充分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与–1<0题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。

使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确。

例19、若x 为三角形中的最小内角,则函数y=sinx+cosx 的值域是( )A .(1,2]B .(0,23]C .[21,22]D .(21,22]解析:因x 为三角形中的最小内角,故(0,]3x π∈,由此可得y=sinx+cosx>1,排除B,C,D ,故应选A 。

相关文档
最新文档