高频接收机和发射机中的锁相环-第2部分

合集下载

移动通信终端构成与工作原理

移动通信终端构成与工作原理

Page 28
通信终端技术
外围电路模块-关机部分
电源管理芯片 CPU 关机触发
1、当长按关机键时触发关机操作,CPU输出信号给睡眠时钟和电源管理芯片。
2、睡眠时钟工作,电源管理芯片停止输出供电,手机振铃电路、显示电路、射 频电路 停止工作完成关机操作。
睡眠时钟
Page 29
通信终端技术
关于移动终端开关机问题的几点说明:

睡眠时钟为手机提供计时的基准频率,不论是否开机,只要电池有电就可起振。它 供向电源管理芯片和CPU,以维持手机的时间准确,并提供关机后的计时功能,从 而支持关机闹钟。
32.768KHz实时时钟的作用一般有两个,一是保持手机中时间的准确性,二是在待机状态下,作为逻辑电路 的主时钟(目的是为了节电,待机时13M间隔工作的周期延长,基本处于休眠,逻辑电路主要由32.768KHz 作为主时钟)。
由于电池电压的不稳定和器件对电压、电流要求的精确性与多样性, 最重要的是出于降低功耗的考虑,手机需要专门的电源管理单元。 对各种电压的要求: 内核电压:电压较低,要求精确度高,稳定性好。 音频电压:模拟电压,要求电源比较干净,纹波小。 I/O 电压:要求在不需要时可以关闭或降低电压,以减少功耗。 功放电压:由于电流要求较大,直接由电池供电。
1、无论是上电还是复位后,软件首先进行各个任务的初始化,最后判断当前电源开关是处于 开状态还是关状态,如果是处于开状态,立即执行正常的开机过程(如执行小区搜索及开机注
册等),如果是处于关状态,则判断当前是否有外接电源,如果有,则一直等待直到开机;否
则就立即发起关机。如果在等待开机过程中外接电源被拔掉,手机同样也会发起关机。 2、手机开机后,如果没有外接电源,并且电池采样电压低于电池关机门限时,手机发起关机。 如果只有外接电源,并且外接电源的采样电压低于了外接电源存在门限,手机同样发起关机。

(完整版)锁相环工作原理

(完整版)锁相环工作原理

基本组成和锁相环电路1、频率合成器电路频率合成器组成:频率合成器电路为本机收发电路的频率源,产生接收第一本机信号源和发射电路的发射信号源,发射信号源主要由锁相环和VCO电路直接产生。

如图3-4所示。

在现在的移动通信终端中,用于射频前端上下变频的本振源(LO),在射频电路中起着非常重要的作用。

本振源通常是由锁相环电路(Phase-Locked Loop)来实现。

2.锁相环:它广泛应用于广播通信、频率合成、自动控制及时钟同步等技术领域3.锁相环基本原理:锁相环包含三个主要的部分:⑴鉴相器(或相位比较器,记为PD或PC):是完成相位比较的单元,用来比较输入信号和基准信号的之间的相位.它的输出电压正比于两个输入信号之相位差.⑵低通滤波器(LPF):是个线性电路,其作用是滤除鉴相器输出电压中的高频分量,起平滑滤波的作用.通常由电阻、电容或电感等组成,有时也包含运算放大器。

⑶压控振荡器(VCO):振荡频率受控制电压控制的振荡器,而振荡频率与控制电压之间成线性关系。

在PLL中,压控振荡器实际上是把控制电压转换为相位。

1、压控振荡器的输出经过采集并分频;2、和基准信号同时输入鉴相器;3、鉴相器通过比较上述两个信号的频率差,然后输出一个直流脉冲电压;4、控制VCO,使它的频率改变;5、这样经过一个很短的时间,VCO 的输出就会稳定于某一期望值。

锁相环电路是一种相位负反馈系统。

一个完整的锁相环电路是由晶振、鉴相器、R分频器、N分频器、压控振荡器(VCO)、低通滤波器(LFP)构成,并留有数据控制接口。

锁相环电路的工作原理是:在控制接口对R分频器和N分频器完成参数配置后。

晶振产生的参考频率(Fref)经R分频后输入到鉴相器,同时VCO的输出频率(Fout)也经N分频后输入到鉴相器,鉴相器对这两个信号进行相位比较,将比较的相位差以电压或电流的方式输出,并通过LFP滤波,加到VCO的调制端,从而控制VCO的输出频率,使鉴相器两输入端的输入频率相等。

第2章发射机和接收机

第2章发射机和接收机

第2章 发射机和接收机本章讨论用于无线传输的发射机和接收机的设计。

使用的术语将有如下界定的含义:从调制器直至发射天线的各部件构成发射机,而从接收天线直至解调器的各部件则构成接收机。

对发射机和接收机的要求显然是不同的,这是因为发射机只须处理所要求的信号,而接收机则须从天线接收的各种频率混合的信号中将所要求的信号提取出来。

此外,发射机处理的信号强度是恒定的,或者仅有很微小的变化,而接收机所应对的信号强度差异极大,其大小取决于与发射机的远近程度。

发射机主要欲达到的目标有:将有用信号转换为干扰尽可能小的高频传输信号、以尽可能最高的效率放大信号、并使转换或放大所产生的不良干扰信号的传输降至最低。

接收机主要欲达到的目标有:在邻近频率范围接收到很强信号的同时,还要从强度很弱的信号中将所要求的信号过滤出来,并产生一个清晰的、具有高信噪比和最低互调失真的信号。

因此,就发射机而言,主要难点在效率;而接收机所面临的是选择性、动态范围和噪声等问题。

2.1 发射机我们首先考虑模拟方式调制的发射机结构,其后再讨论数字方式调制的发射机。

其中,借助一些简化的方框图来加以说明,这些方框图将只显示出基本的组成部分。

2.1.1 模拟方式调制的发射机直接调制型发射机当模拟调制器的载波频率f C 与发射频率f RF 相同时,就实现了最简单的发射机。

在这种情况下,只需将调制器的输出信号放大并馈送到天线。

在实际应用中,发射放大器必须后接一个输出滤波器,以使源于放大器的信号失真降低到可接受的水平。

图2.1(a )所示为直接调制型发射机结构,其信号频谱如图2.2所示。

单中频发射机随着频率的增高和需求的增长,使得要实现所需精度的调制器越发困难。

因此,要用较低的中频f IF 作为载波频率f CC IF RF f f f =使用中频可以更容易地构建调制器。

图2.1(b )所示为单中频发射机的结构,它用混频器M1将中频f IF 转换为发射频率f RF ,由本机振荡器(Local Oscillator ,LO )向混频器提供频率LO RF IF f f f =−混频处理所产生的和频与差频为LO IF RF f f f +=,LO IF RF IF 2f f f f −=−其中,发射频率部分用RF 滤波器滤出,然后馈入发射机放大器。

PLL02

PLL02
这是锁相环路动态方程的一般形 式。 动态方程构成的关系有: 瞬时频差=固有频差-控制频差
当输入信号频率固定时,锁定后 控制频差=固有频差。 稳态频差=0 ∆ 稳态相差 θ e (∞) = are sin KF ωj00 ) (
第四节 一阶环的捕获、锁定 与失锁
当F(p)=1时,环路的动 态方程是一个一阶非 线性方程。 pθ e (t ) = pθ1 (t ) − K sin θ e (t ) 1: 可以解析求解。 2:采用图解法求解。
是一个电压频率变换装置在环路中作为被控振荡器其振荡频率随输入控制电压线性地变化环路的相位模型鉴相特性鉴相器是一个相位比较装置用来检测输入信号相位?之间的相位差t
锁相技术 第二讲
• PLL的环路组成 • PLL环路的动态方程 • 一阶锁相环的捕获、锁定与失锁
锁相技术教案PLL--02
第二节 锁相环路的基本组成
u d (t ) = u d sin θ e (t )
环路滤波器LF
环路滤波器是一个线性电路,在时域中可以用 一传输算子F(p)表示,在频域中可以用传递函 数F(s)表示。 • RC积分滤波器。 • 无源比例滤波器 • 有源比例滤波器。
RC积分滤波器
RC积分滤波器是结构最简单的滤波器
传输算子是:
1 + pτ 2 F= pτ 1
环路的相位模型
上面是一个基本的锁相环路的相位模型。 下面是用锁相环组成的单环频率合成器的相位模型
压控振荡器VCO
VCO的振荡频率应随输入控制电压线性
ω 变化。 ν
式中 ν 为VCO的瞬时角频率;K0控制 灵敏度,单位是rad/s.v。
VCO具有一个各积分因子1/p,这是相位 与角频率之间的积分关系形成的。

MC145162锁相环(中文)

MC145162锁相环(中文)

Motorola MC145162/D (CMOS)翻译——中文福州大学林仁杰翻译一、简介MC145162(可编程的双PLL(锁相环)频率合成器),最高频率可达到60 MHz 和85 MHz 。

适合配合MC3361,MC3362,MC2833等调频发射接收模块的使用,适用于全球范围内的CT-1制式的无绳电话。

同样适用于需要60 MHz以下的频率其它产品。

MC145162-1是MC145162的高频版本,工作频率高达85 MHz。

通过MCU的串行接口,我们可以非常方便地操作它的完全可编程的接收、发射、参考、辅助参考计数器。

正因为这样,所以它可使用于任何CT-1制式的无绳电话。

本元件的发射环和接收环各有一个独立的相位检测器。

一个共用的参考晶体,驱动两个独立的参考频率计数器,为发射环和接收环提供了独立的参考频率。

如果有需要的话,辅助参考计数器可以让我们为发射环和接收环选择一个额外的参考频率。

二、参数范围工作电压范围:2.5 到5.5 V。

工作温度范围:–40 到+75℃功耗:3.0 mA @ 2.5 V最大工作频率:MC145162 - 60 MHz @ 200 mV p–p, VDD = 2.5 VMC145162-1 - 85 MHz @ 250 mV p–p, VDD = 2.5 V可选3线或者4线的串行接口。

内置MCU时钟输出,值为参考晶体的频率÷3/÷4可选。

可由MCU的MCUCLK脚控制省电模式。

内置的参考晶体,支持外置的晶体可达16.0 MHz。

参考频率计数器的分频范围:16-4095辅助参考频率计数器的分频范围:16-16,383发射计数器的分频范围:16-65,535接收计数器的分频范围:16-65,535三、管脚定义输入端:OSCin/OSCout——参考晶体输入/输出引脚(第7、8脚)当连接到一个外接的并联谐振晶体的时候,这些引脚组成了一个参考振荡器。

应用在各国的无绳电话时,图6显示了不同的晶体频率和参考频率的关系。

高频课程设计报告_调频发射机

高频课程设计报告_调频发射机

高频课程设计报告_调频发射机目录1. 内容概述 (2)1.1 课程背景 (3)1.2 报告目的 (3)1.3 报告结构 (4)2. 调频发射机概述 (5)2.1 调频通信原理 (6)2.2 调频发射机组成 (7)3. 调频发射机设计要求 (8)3.1 系统指标 (10)3.2 性能要求 (11)4. 设计方案与实现 (11)4.1 发射机结构设计 (13)4.2 高频电路设计 (14)4.3 调制和解调电路设计 (15)4.4 电源模块设计 (17)5. 调试与优化 (19)5.1 测试方法 (21)5.2 调试过程 (22)5.3 性能优化 (23)6. 测试结果与分析 (25)6.1 发射功率 (26)6.2 频谱纯度 (27)6.3 调制质量 (28)6.4 系统稳定性 (30)7. 结论与展望 (31)7.1 设计总结 (32)7.2 存在问题 (34)7.3 未来改进方向 (35)1. 内容概述本报告详细介绍了调频发射机的高频课程设计,围绕其工作原理、设计要点、实现路径以及未来改进方向展开深入探讨。

从调频发射机的基本原理出发,我们讨论了信号调制、载波频率的调整以及功率放大等关键技术点。

报告紧密结合实际工程需求,详尽阐述了调频发射机的工作著魔步骤和各个模块的功能设计,包括射频前端、调制器、功率放大器等核心部件。

在分析过程中,我们考虑了复杂信号环境下的抗干扰性设计,确保信号传输的稳定性和清晰度。

通过对调频发射机的仿真和数据分析,本报告优化了不同负载条件下的性能表现,为实际生产提供了有效的理论支持。

本课程设计报告还包括了项目实施过程中的遇到的挑战和解决方案,同时讨论了调频发射机在现代无线通信技术中的应用及其市场潜力。

报告最后展望了的未来科技发展趋势,提出了进一步提升调频发射机性能的潜在技术和创新方向。

通过本报告的学习与应用,读者能够获得关于高频调频发射机设计过程的全面了解,并为后续相关研究提供有益的参考和指导。

三相锁相环算法

三相锁相环算法

三相锁相环算法三相锁相环算法是一种常用的控制算法,用于同步两个或多个信号的相位和频率。

它在许多领域中都有广泛的应用,如通信系统、电力系统和自动控制系统等。

本文将详细介绍三相锁相环算法的原理、应用和优缺点。

一、原理三相锁相环算法的原理基于负反馈控制的思想。

它通过比较输入信号和参考信号的相位差,然后根据相位差的大小调整输出信号的频率和相位,从而使输出信号与参考信号保持同步。

具体来说,三相锁相环算法包括三个主要组件:相位检测器、环路滤波器和压控振荡器。

相位检测器用于测量输入信号与参考信号的相位差,环路滤波器用于平滑相位差的变化,压控振荡器用于调整输出信号的频率和相位。

二、应用三相锁相环算法在通信系统中有着广泛的应用。

例如,在无线通信系统中,接收机需要与发射机保持同步,以确保信号的正确接收。

通过使用三相锁相环算法,接收机可以根据接收到的信号与发射信号之间的相位差,自动调整自身的频率和相位,实现同步接收。

三相锁相环算法还可以应用于电力系统中。

在电力系统中,各个发电机需要同步工作,以确保电网的稳定运行。

通过使用三相锁相环算法,发电机可以根据电网的频率和相位差,自动调整自身的频率和相位,实现与电网的同步。

三相锁相环算法还可以应用于自动控制系统中。

例如,在自动驾驶系统中,多个传感器需要同步工作,以提供准确的环境感知数据。

通过使用三相锁相环算法,各个传感器可以根据参考信号,自动调整自身的频率和相位,实现同步工作。

三、优缺点三相锁相环算法具有以下优点:1. 可以实现快速同步:三相锁相环算法可以快速地将输出信号与参考信号同步,确保信号的准确接收或传输。

2. 高精度的同步:三相锁相环算法可以达到很高的同步精度,通常可以达到纳秒级别的精度。

3. 稳定性好:三相锁相环算法通过负反馈控制,可以实现对相位差的稳定控制,使系统具有良好的稳定性。

然而,三相锁相环算法也存在一些缺点:1. 系统复杂:三相锁相环算法由多个组件组成,需要进行参数调整和系统优化,增加了系统的复杂性。

二阶数字锁相环

二阶数字锁相环

二阶数字锁相环二阶数字锁相环(Second-Order Digital Phase-Locked Loop,简称SODPLL)是数字信号处理领域中常用的一种技术,其主要功能是实现信号同步和频率稳定。

在很多通信系统中,由于接收到的信号可能会受到各种干扰和非理想因素的影响,因此需要通过锁相环技术将信号同步到参考信号上,以保证数据的准确传输。

本文将围绕着二阶数字锁相环展开,介绍其原理、结构以及应用。

一、SODPLL原理二阶数字锁相环的原理是通过比较参考信号和输出信号的相位差,然后对其进行差分和积分,使得输出信号的相位始终保持在参考信号的相位之内。

相位差可以通过一些算法,比如arctan函数、反正切函数等等来计算。

SODPLL比一阶数字锁相环(First-Order Digital Phase-Locked Loop)具有更高的追踪精度和更快的锁定速度,因此在很多领域中被广泛应用。

二、SODPLL结构SODPLL主要由三个主要部分组成:相位检测器、滤波器和控制器。

相位检测器负责计算输入信号与参考信号之间的相位差,滤波器通过对相位差进行差分和积分运算,生成控制信号,控制器则通过控制VCO(VoltageControlled Oscillator)的输出,将输出信号锁定在参考信号上。

1. 相位检测器相位检测器是SODPLL中的核心部分,也是决定SODPLL性能的关键因素。

常用的相位检测器有三种:平均相位检测器(Average Phase Detector)、正弦相位检测器(Sine Phase Detector)和二分频相位检测器(Binary Phase Detector)。

其原理分别如下:平均相位检测器:将输入信号和参考信号分别进行取平均值操作,然后取它们的差值,得到相位差。

平均相位检测器的优点是简单易实现,缺点是追踪速度慢,追踪误差大。

正弦相位检测器:将输入信号和参考信号均输入到正弦函数中,然后将它们的乘积相加,得到相位差。

手机原理及维修教程(第二版) 每章作业 (答案)

手机原理及维修教程(第二版)  每章作业 (答案)

1.6 习题⒈GSM手机电路结构一般分为哪几部分?各部分分别起什么作用?答:GSM手机电路一般可分为四个部分——射频部分、逻辑/音频部分、输入/输出接口部分、电源部分,四个部分相互联系,是一个有机的整体。

射频电路部分主要任务有二:一是完成接收信号的下变频,得到模拟基带信号;二是完成发射模拟基带信号的上变频,得到发射高频信号。

逻辑/音频电路主要功能是以中央处理器为中心,完成对话音等数字信号的处理、传输以及对整机工作的管理和控制,它包括音频信号处理(也称基带电路)和系统逻辑控制两个部分。

输入/输出(I/O)接口部分包括模拟接口,数字接口以及人机接口三部分。

模拟接口包括A/D、D/A变换等。

数字接口主要是数字终端适配器。

人机接口有键盘输入、功能翻盖开关输入、话筒输入、液晶显示屏(LCD)输出、听筒输出、振铃输出、手机状态指示灯输出等。

电源电路包括射频部分电源和逻辑部分电源,两者各自独立,但同是手机电池原始提供。

2. GSM手机射频接收电路有几种结构形式?分别画出简要框图。

答:手机接收机一般有四种基本的电路结构:一种是超外差一次变频接收电路,另一种是超外差二次变频接收电路,第三种是低中频接收电路结构,第四种是直接变频线性接收电路。

超外差一次变频接收电路:超外差二次变频接收电路:低中频接收电路结构:直接变频线性接收电路:3.GSM手机射频发射电路有几种结构形式?分别画出简要框图。

答:手机的发射机一般有三种电路结构:带发射变频模块的发射电路、带发射上变频器的发射电路、直接变频发射电路。

带发射变频模块的发射电路:带发射上变频器的发射电路:直接变频发射电路:4.简述超外差二次变频接收机的工作流程。

答:天线感应到的无线蜂窝信号经天线电路和射频滤波器进入接收机电路。

接收到的信号首先由低噪声放大器进行放大,放大后的信号再经射频滤波后被送到第一混频器。

在第一混频器中,射频信号与接收VCO信号进行混频,得到接收第一中频信号。

中波调幅发射机与接收机组装及调试doc.

中波调幅发射机与接收机组装及调试doc.

中波调幅发射机与接收机组装及调试一、实验目的1、在模块实验的基础上掌握调幅发射机整机组成原理,建立调幅系统概念。

2、掌握发射机系统联调的方法,培养解决实际问题的能力。

3、在模块实验的基础上掌握调幅接收机组成原理,建立解调系统概念。

4、掌握调幅接收机系统联调的方法,培养解决实际问题的能力。

二、实验内容1、完成调幅发射机整机联接与调试2、完成调幅接收机整机联接与调试三、实验仪器1、实验箱2、4、7、8、10 号板5块2、耳机1副3、数字万用表1块4、数字示波器1台5、DDS函数信号发生器1台四、实验电路说明图14-1 中波调幅发射机该调幅发射机组成原理框图如图14-1所示,发射机由音频信号发生器,音频放大,AM 调制,高频功放四部分组成。

实验箱上由模块4,8,10构成。

图14-2超外差中波调幅接收机接收机由天线回路、变频电路、中频放大电路、检波器、音频功放、耳机等六部分组成,实验箱上由模块2,4,7,10构成。

天线回路:。

从天线接收进来的高频信号首先进入输入调谐回路。

天线回路的任务是:1. 通过天线收集电磁波,使之变为高频电流;2.选择信号。

在众多的信号中,只有载波频率与输入调谐回路相同的信号才能进入收音机。

变频和本机振荡级:从输入回路送来的调幅信号和本机振荡器产生的等幅信号一起送到变频级,经过变频级产生一个新的频率,这一新的频率恰好是输入信号频率和本振信号频率的差值,称为差频。

例如,输入信号的频率是535kHz,本振频率是1000kHz ,那么它们的差频就是1000 kHz -535 kHz =465kHz;当输入信号是1605kHz时,本机振荡频率也跟着升高,变成2070kHz。

也就是说,在超外差式收音机中,本机振荡的频率始终要比输入信号的频率高一个465kHz。

这个在变频过程中新产生的差频比原来输入信号的频率要低,比音频却要高得多,因此我们把它叫做中频。

不论原来输入信号的频率是多少,经过变频以后都变成一个固定的中频,然后再送到中频放大器继续放大,这是超外差式收音机的一个重要特点。

锁相环指标 -回复

锁相环指标 -回复

锁相环指标-回复什么是锁相环指标?锁相环(PLL)是一种电子反馈系统,用于调节信号的频率和相位。

锁相环指标是用来描述锁相环性能的量化指标。

锁相环指标通常包括锁定时间、锁定范围、抖动、输入偏置等。

锁相环指标的详细解释如下:1. 锁定时间:锁相环的锁定时间是指从输入信号发生变化到锁相环稳定在新的输出状态所需要的时间。

锁定时间越短,锁相环的响应速度越快。

2. 锁定范围:锁相环的锁定范围是指锁相环能够跟踪的输入信号的频率范围。

锁定范围越广,锁相环适应不同频率的输入信号能力越强。

3. 抖动:锁相环的抖动是指输出信号在稳定锁定状态下的频率和相位误差。

抖动越小,锁相环的稳定性和精度越高。

4. 输入偏置:锁相环的输入偏置是指输入信号与锁相环内部参考信号之间的相位差。

输入偏置越小,锁相环的跟踪效果越好。

为何需要锁相环指标?锁相环指标对于电子系统设计和应用至关重要。

它们是评估锁相环性能和判断锁相环是否满足系统需求的依据。

锁相环指标的合理选择可以确保系统的稳定性、精度和实时性。

以移动通信系统为例,锁相环指标的好坏直接影响信号的传输、检测和处理。

在无线通信中,移动信号的频率、相位和稳定性要求非常高,锁相环用于调整持续变化的信号以保持稳定性。

如果锁相环指标不达标,信号将可能失真、丢失或传输不及时。

如何评估锁相环指标?评估锁相环指标需要进行一系列测试和分析。

常见的锁相环指标测试方法有以下几种:1. 测试锁定时间:在输入信号变化时,观察输出信号的响应时间。

多次测试并取平均值以获得可靠的结果。

2. 测试锁定范围:逐渐改变输入信号的频率,观察锁相环的跟踪能力和输出信号的稳定性。

一般使用频谱仪或示波器进行测试。

3. 测试抖动:使用高精度的频率计或相位计对输出信号进行测量,计算其频率和相位误差。

抖动可以通过信号处理和滤波来减小。

4. 测试输入偏置:输入一个稳定的参考信号和待测试信号,测量两者的相位差。

使用示波器或均衡器等仪器进行测量。

无线通信基础知识

无线通信基础知识

(五)网络间的干扰 在同一区域内,往往存在着隶属于不同系 统的许多通信网,每个网络自成体系。这 些网络之间的相互影响就形成了网间干扰。
第十节 天线
无线电发射机输出的射频信号功率,通过 馈线(电缆)输送到天线,由天线以电磁 波形式辐射出去。电磁波到达接收地点后, 由天线接下来(仅仅接收很小很小一部分 功率),并通过馈线送到无线电接收机。 可见,天线是发射和接收电磁波的一个重 要的无线电设备,没有天线也就没有无线 电通信。
(一)工作频率范围 (二)频率间隔(频率分辨率) 频率间隔(频率分辨率) (三)频率转换时间(越小越好) 频率转换时间(越小越好) (四)频率稳定度与准确度 (五)频谱纯度
二、锁相环(PLL)基本原理 锁相环(PLL)
锁相环PLL是一个相位反馈控制系统。它 锁相环PLL是一个相位反馈控制系统。它 由鉴相器PD、环路滤波器LF和压控振荡 由鉴相器PD、环路滤波器LF和压控振荡 器VCO三个基本部件组成。 VCO三个基本部件组成。
第九节 噪声和干扰
一、噪声 噪声是一种随机信号,其频谱分布于整个 无线电工作频率范围,因此它是影响各类 收信机性能的主要因素之一。 一般可分为:① 内部噪声;②自然噪声; ③ 人为噪声。
二、干扰
在无线电通信网中,由于众多电台之间的 相互作用,相互影响,可产生互调干扰、 阻塞干扰、邻道干扰和同频干扰,其中互 调干扰、阻塞干扰和同频干扰对通信网影 响较严重,应格外注意。
(一)对无线电接收机的主要技术要 求
1.应工作于规定的波段和采用适当的解调方式, 并应根据系统设计与实际情况决定。 2.应具有高的接收灵敏度。 3.应有好的选择性。 4.应有好的保真度。 5.应有高的工作稳定度。
(二)无线电接收机的工作过程

第6章---锁相环路的应用

第6章---锁相环路的应用

cos
2ct
mA 2
sin[(2c
)t
]
mA 2
sin[(2c
)t
]
(6-10) (6-11)
《锁相技术》
第6章 锁相环路的应用
《锁相技术》
图 6-7 AM信号的PLL同步解调
第6章 锁相环路的应用
《锁相技术》
图 6-7 AM信号的PLL同步解调
第6章 锁相环路的应用
二、模拟调频和调相信号的调制与解调
f p
1( 2
f3
f2)
1 (120.8 72.5) 2
24.15kHz
《锁相技术》
第6章 锁相环路的应用
二、频率特性 锁相环路对输入高频信号的带通特性是由环路传 递函数的低通特性所决定的。设输入信号被正弦音频 信号调频,则输入瞬时频率为
i (t) c sin t
(6-1)
式中ωc是载频;
第6章 锁相环路的应用
《锁相技术》
图 6-2 锁相环路跟踪特性的测量
第6章 锁相环路的应用
当输入频率下降时得到图中实线,在
fi=f3=1208kHz处环路捕获,在fi=f1=41kHz处失锁。由 此可算得环路的同步带
捕获带
f H
1( 2
f4
f1 )
1 (161.5 41)0 2
60.25kHz
U c {sin ct
mA 2
cos[(c
)t
]
mA 2
cos[(c
)t
]
(6-8)
《锁相技术》
第6章 锁相环路的应用
2调制器 用集成锁相环路很容易构成一个性能良 好的AM调制器。这时,环中的相乘器不再作鉴相器应 用,而是直接用它的相乘功能;压控振荡器也不再作 被控振荡器,而是直接产生载波信号。 由此构成如图 6-4框图。

用于高频接收器和发射器的锁相环-第三部分

用于高频接收器和发射器的锁相环-第三部分

用于高频接收器和发射器的锁相环-第三部分用于高频接收器和发射器的锁相环-第三部分作者:Mark Curtin和Paul O’Brien本系列第一部分介绍了锁相环(PLL),说明了其基本架构和工作原理。

另外举例说明了PLL在通信系统中的用途。

在第二部分中,我们详细考察了相位噪声、参考杂散、输出漏电流等关键性能规格,还考虑了它们对系统性能的影响。

在本部分中,我们将考察PLL频率合成器的主要构建模块。

我们还将比较整数N和小数N架构。

最后将总结市场上现有的VCO,同时列出ADI的现有频率合成器系列。

PLL频率合成器基本构建模块PLL频率合成器可以从多个基本构建模块的角度来考察。

我们在前面已经提到过这个问题,下面将更加详细地进行探讨:鉴频鉴相器(PFD)参考计数器(R)反馈计数器(N)鉴频鉴相器(PFD)频率合成器的核心是鉴相器,也称鉴频鉴相器。

在鉴相器中,将比较参考频率信号与从VCO输出端反馈回来的信号,结果得到的误差信号用于驱动环路滤波器和VCO。

在数字PLL (DPLL)中,鉴相器或鉴频鉴相器是一个逻辑元件。

三种最常用的实现方法为:异或(EXOR)栅极J-K触发器数字鉴频鉴相器这里,我们只考虑PFD,这也是ADF4110和ADF4210频率合成器系列中使用的元件,因为与EXOR栅极和J-K触发器不同,处于解锁状态时,其输出为频差以及两个输入间相差的函数。

图1所示为PFD的一种实现方案,该类器件基本上由两个D型触发器组成。

一路Q输出使能正电流源,另一路Q输出则使能负电流源。

假设本设计中D型触发器由正边沿触发,则状态为(Q1, Q2):11—两个输出均为高电平,由反馈至触发器上CLR引脚的AND 栅极(U3)禁用。

00—P1和N1均关闭,输出OUT实际处于高阻抗状态。

10—P1开启,N1关闭,输出位于V+。

01—P1关闭,N1开启,输出位于V–。

图1. 运用D型触发器的典型PFD。

现在考虑系统失锁且+IN处的频率远高于–IN处的频率时电路的性能表现,如图2所示。

锁相与频率合成

锁相与频率合成
电子设计竞赛培训
锁相与频率合成
高频组
锁相
锁相环路(PLL:phase lock loop): 能 够 跟 踪 输入信号相位的闭环自动控制系统。即控制振荡器输 出与输入参考信号间保持固定的相位。
鉴相器为相位比较器,根据相差产生误差电压。 环路滤波器滤除高频和噪声,增加稳定性。 压控振荡器受uc(t) 控制,使振荡输出频率向参考 信号频率接近。
高位环
分辨力为fr
fo = fA + fB = NAfr /M + NBfr
CMOS集成双环合成器
fo =(NBfrB +fA)×10 高位环 150~509 frA 低位环 fA =NAfrA +fM 发射时 fo=118~135.975MHz 接收时 fo=128.7~146.675MHz 当NA改变一位, 输出频率增量25kHz; 当NB改变一位, 输出频率增量50kHz
324~325
用MC145106构成的单环锁相频率合成器,作为 民用电台的发射机主振和接收机第一、第二本振。
5.12MHz 512/1024
10/
fo =(Nfr +fM)
fr=10/5kHz fM =25.6MHz
下变频
3. 用MC145152构成的频率合成器。
MC145152 是一块用并行码输入方式置定的双 模CMOS-LSI频率合成器。
窄带锁相环路具有提取同步载波的功能,因而用 集成锁相环路很容易构成AM信号的同步解调器。
锁相
3.载波同步 从接收信号中提取相干载波有两种基本方法:一 是插入导频法,接收端可用锁相环路的窄带跟踪性能 来提取这个导频;二是直接提取法,用抑制载频跟踪 环提取。 例:平方环
锁相

大学_《高频电子电路》(王卫东版)课后答案下载

大学_《高频电子电路》(王卫东版)课后答案下载

《高频电子电路》(王卫东版)课后答案下载《高频电子电路》(王卫东版)内容简介绪论0.1通信系统的组成0.2发射机和接收机的组成0.3本书的研究对象和任务第1章高频小信号谐振放大器1.1LC选频网络1.1.1选频网络的基本特性1.1.2LC选频回路1.1.3LC阻抗变换网络__1.1.4双耦合谐振回路及其选频特性1.2高频小信号调谐放大器1.2.1晶体管的高频小信号等效模型1.2.2高频小信号调谐放大器1.2.3多级单调谐放大器__1.2.4双调谐回路谐振放大器__1.2.5参差调谐放大器1.2.6谐振放大器的稳定性1.3集中选频放大器1.3.1集中选频滤波器1.3.2集成宽带放大器1.3.3集成选频放大器的应用1.4电噪声1.4.1电阻热噪声1.4.2晶体三极管噪声1.4.3场效应管噪声1.4.4噪声系数__小结习题1第2章高频功率放大器2.1概述2.2高频功率放大器的工作原理 2.2.1工作原理分析2.2.2功率和效率分析2.2.3D类和E类功率放大器简介 2.2.4丙类倍频器2.3高频功率放大器的动态分析----------DL2.FBD2.3.1高频功率放大器的动态特性 2.3.2高频功率放大器的负载特性2.3.3高频功率放大器的调制特性2.3.4高频功率放大器的放大特性2.3.5高频功率放大器的调谐特性2.3.6高频功放的高频效应2.4高频功率放大器的实用电路2.4.1直流馈电电路2.4.2滤波匹配网络2.4.3高频谐振功率放大器设计举例2.5集成高频功率放大电路简介2.6宽带高频功率放大器与功率合成电路2.6.1宽带高频功率放大器2.6.2功率合成电路__小结习题2第3章正弦波振荡器3.1概述3.2反馈型自激振荡器的工作原理 3.2.1产生振荡的基本原理3.2.2反馈振荡器的振荡条件3.2.3反馈振荡电路的判断3.3LC正弦波振荡电路3.3.1互感耦合LC振荡电路3.3.2三点式LC振荡电路3.4振荡器的频率稳定度3.4.1频率稳定度的定义3.4.2振荡器的稳频原理3.4.3振荡器的稳频措施3.5晶体振荡器3.5.1石英晶体谐振器概述3.5.2晶体振荡器电路3.6集成电路振荡器3.6.1差分对管振荡电路3.6.2单片集成振荡电路E16483.6.3运放振荡器3.6.4集成宽带高频正弦波振荡电路3.7压控振荡器3.7.1变容二极管3.7.2变容二极管压控振荡器3.7.3晶体压控振荡器__3.8RC振荡器3.8.1RC移相振荡器3.8.2文氏电桥振荡器__3.9负阻振荡器3.9.1负阻器件的基本特性----------DL3.FBD3.9.2负阻振荡电路 3.10振荡器中的几种现象3.10.1间歇振荡3.10.2频率拖曳现象3.10.3振荡器的频率占据现象3.10.4寄生振荡__小结习题3第4章频率变换电路基础4.1概述4.2非线性元器件的特性描述4.2.1非线性元器件的基本特性4.2.2非线性电路的工程分析方法4.3模拟相乘器及基本单元电路4.3.1模拟相乘器的基本概念4.3.2模拟相乘器的基本单元电路4.4单片集成模拟乘法器及其典型应用 4.4.1MC1496/MC1596及其应用4.4.2BG314(MC1495/MC1595)及其应用 4.4.3第二代、第三代集成模拟乘法器 __小结习题4第5章振幅调制、解调及混频5.1概述5.2振幅调制原理及特性5.2.1标准振幅调制信号分析5.2.2双边带调幅信号5.2.3单边带信号5.2.4AM残留边带调幅5.3振幅调制电路5.3.1低电平调幅电路5.3.2高电平调幅电路5.4调幅信号的解调5.4.1调幅波解调的方法5.4.2二极管大信号包络检波器5.4.3同步检波----------DL4.FBD5.5混频器原理及电路 5.5.1混频器原理5.5.2混频器主要性能指标5.5.3实用混频电路5.5.4混频器的干扰5.6AM发射机与接收机5.6.1AM发射机5.6.2AM接收机5.6.3TA7641BP单片AM收音机集成电路 __小结习题5第6章角度调制与解调6.1概述6.2调角信号的分析6.2.1瞬时频率和瞬时相位6.2.2调角信号的分析与特点6.2.3调角信号的频谱与带宽6.3调频电路6.3.1实现调频、调相的方法6.3.2压控振荡器直接调频电路6.3.3变容二极管直接调频电路6.3.4晶体振荡器直接调频电路6.3.5间接调频电路6.4调频波的解调原理及电路6.4.1鉴频方法及其实现模型6.4.2振幅鉴频器6.4.3相位鉴频器6.4.4比例鉴频器6.4.5移相乘积鉴频器6.4.6脉冲计数式鉴频器6.5调频制的`抗干扰性及特殊电路6.5.1调频制中的干扰及噪声6.5.2调频信号解调的门限效应6.5.3预加重电路与去加重电路6.5.4静噪声电路6.6FM发射机与接收机6.6.1调频发射机的组成6.6.2集成调频发射机6.6.3调频接收机的组成6.6.4集成调频接收机__小结习题6----------DL5.FBD第7章反馈控制电路 7.1概述7.2反馈控制电路的基本原理与分析方法 7.2.1基本工作原理7.2.2数学模型7.2.3基本特性分析7.3自动增益控制电路7.3.1AGC电路的工作原理7.3.2可控增益放大器7.3.3实用AGC电路7.4自动频率控制电路7.4.1AFC电路的组成和基本特性7.4.2AFC电路的应用举例7.5锁相环路7.5.1锁相环路的基本工作原理7.5.2锁相环路的基本应用7.6单片集成锁相环电路简介与应用 7.6.1NE5627.6.2NE562的应用实例__小结习题7第8章数字调制与解调8.1概述8.2二进制振幅键控8.2.12ASK调制原理8.2.22ASK信号的解调原理8.3二进制频率键控8.3.12FSK调制原理8.3.22FSK解调原理8.4二进制相移键控8.4.12PSK调制原理8.4.22PSK解调原理8.5二进制差分相移键控8.5.12DPSK调制原理8.5.22DPSK解调原理__小结习题8第9章软件无线电基础9.1概述9.2软件无线电的关键技术 9.3软件无线电的体系结构 9.4软件无线电的应用__小结习题9附录A余弦脉冲分解系数表部分习题答案参考文献《高频电子电路》(王卫东版)图书目录本书为普通高等教育“十二五”、“十一五”国家级规划教材。

锁相环

锁相环

锁相环(Phase Locked Loop, PLL)电路是手机电路中非常重要的基本单元,其基本功能是产生手机中所需高精度的频率。

由于锁相环电路性能优越,在移动通信终端设备手机的调制、解调、频率合成器中有着举足轻重的作用,可以说,如果没有锁相环就没有现在小巧玲珑的手机。

无论是发射机中的主振,还是接收机中的本振,对频率稳定度要求都很高,它们无一例外地使用了锁相环频率合成器。

所谓频率合成,是指一种包括产生和选取高精度频率的技术,特别适应于目前手机中所需的工作频点数目多、频点要求可变、频率高稳定度的要求。

大多数的手机的锁相环电路分为接收一本振、接收二本振、发射一本振和发射二本振四个单元部分,如摩托罗拉308、328、338等机型,它们都有一个共同特点,就是采用了锁相环技术的压控振荡器(VCO)进行动态控制。

但收发的一、二本振电路又有所不同,一本振电路主要是把变频振荡器直接用于信道切换;而二本振电路则采用固定频率振荡器,相对来说,二本振电路简单得多。

而这些压控振荡器都有共同的核心元件,即变容二极管,其封装形式为两脚或三脚,在电路中充当可变电容器,电容值与加在两端的电压大小变化有关,以实现对频率的调整。

一、锁相环电路原理及应用锁相环电路是一个信号相位的负反馈系统,它可对输入信号的频率与相位实施跟踪。

如图一所示的是一锁相环电路的基本方框图,它主要由压控振荡器(VCO)、鉴相器(PD)、低通滤波器(LPF)和参考频率源(晶体振荡器)所组成。

当压控振荡器的频率f0由于某种原因而发生变化时,必然相应地产生相位变化。

相位变化在鉴相器中与参考晶体振荡器的稳定相位(频率为f1)相比较,使鉴相器输出一个与相位误差成比例的误差电压Ud(t),经过低通滤波器,取出其中缓慢变动的直流分量Uc(t),用它来控制压控振荡器中压控元件参数(通常是变容二级管的电容量),而这压控元件电容量的变化将VCO的输出频率f0又拉回到稳定值上来。

02-13发射机和接收机的组成

02-13发射机和接收机的组成

第1章绪论
1.3 调幅广播发射机和接收机的组成
缓冲器
(2)调幅广播接收机的组成框图
直接放大式接收机
1.3
调幅广播发射机和接收机的组成
(2)调幅广播接收机的组成框图1.3
调幅广播发射机和接收机的组成
超外差式接收机
1.3 调幅广播发射机和接收机的组成
(3)本课程学习的主要内容
高频信号的选择——选频网络
高频信号的放大——高频小信号放大器、高频功率放大器
高频信号的产生——高频振荡器或本地振荡器
高频信号的变换——倍频器、调制器、混频器、解调器
高频信号的控制——自动增益控制电路、自动频率控制电路、锁相环路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎜⎟ ⎝ fm ⎠
⎥ ⎦⎥
(1)
where: LPM is single-sideband phase noise density (dBc/Hz) F is the device noise factor at operating power level A (linear) k is Boltzmann’s constant, 1.38 × 10–23 J/K T is temperature (K)
4. Choose an active device that has minimal noise figure as well as low flicker frequency. The flicker noise can be reduced by the use of feedback elements.
Noise in Oscillator Systems In any oscillator design, frequency stability is of critical importance. We are interested in both long-term and short-term stability. Longterm frequency stability is concerned with how the output signal varies over a long period of time (hours, days or months). It is usually specified as the ratio, ∆f/f for a given period of time, expressed as a percentage or in dB.
1
For Leeson’s equation to be valid, the following must be true: • fm, the offset frequency from the carrier, is greater than the 1/f
flicker corner frequency; • the noise factor at the operating power level is known; • the device operation is linear; • Q includes the effects of component losses, device loading and
Random Noise Fluctuation
Discrete Spurious Signal
Amplitude
f0
Frequency
Figure 1. Short-term stability in oscillators.
The discrete spurious components could be caused by known clock frequencies in the signal source, power line interference, and mixer products. The broadening caused by random noise fluctuation is due to phase noise. It can be the result of thermal noise, shot noise and/or flicker noise in active and passive devices.
A is oscillator output power (W) QL is loaded Q (dimensionless) fO is the oscillator carrier frequency fm is the frequency offset from the carrier
Analog Dialogue 33-5 (© 1999 Analog Devices)
Phase-Locked Loops for High-Frequency Receivers and Transmitters–Part 2
by Mike Curtin and Paul O’Brien The first part of this series of articles introduced the basic concepts of phase-locked loops (PLLs). The PLL architecture and principle of operation was described and accompanied by an example of where a PLL might be used in a communication system.
In this second part, we will focus on a detailed examination of two critical specifications associated with PLLs: phase noise and reference spurs. What causes them and how can they be minimized? The discussion will include measurement techniques and the effect of these errors on system performance. We will also consider output leakage current, with an example showing its significance in openloop modulation schemes.
In many radio systems, an overall integrated phase error specification must be met. This overall phase error is made up of the PLL phase error, the modulator phase error and the phase error due to base band components. In GSM, for example, the total allowed is 5 degrees rms.
noise transition
Offset Frequency, fm (Hz)
Figure 3. Phase noise in a VCO vs. frequency offset.
Leeson’s equation only applies in the knee region between the break (f1) to the transition from the “1/f ” (more generally 1/fγ) flicker noise frequency to a frequency beyond which amplified white noise dominates (f2). This is shown in Figure 3 [γ = 3]. f1 should be as low as possible; typically, it is less than 1 kHz, while f2 is in the region of a few MHz. High-performance oscillators require devices specially selected for low 1/f transition frequency. Some guidelines to minimizing the phase noise in VCOs are:
Phase Noise in Voltage-Controlled Oscillators Before we look at phase noise in a PLL system, it is worth considering the phase noise in a voltage-controlled oscillator (VCO). An ideal VCO would have no phase noise. Its output as seen on a spectrum analyzer would be a single spectral line. In practice, of course, this is not the case. There will be jitter on the output, and a spectrum analyzer would show phase noise.To help understand phase noise, consider a phasor representation, such as that shown in Figure 2.
buffer loading; • a single resonator is used in the oscillator.
Phase Noise (dBc/Hz)
9dB/Octave
6dB/Octave Leeson's Equation Applies
f0 / 2QL
Flat
f1
f2
1/f flicker
Short-term stability, on the other hand, is concerned with variations that occur over a period of seconds or less.These variations can be random or periodic. A spectrum analyzer can be used to examine the short-term stability of a signal. Figure 1 shows a typical spectrum, with random and discrete frequency components causing a broad skirt and spurious peaks.
相关文档
最新文档