信号与系统 奥本海姆第九章答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter 9
9.21 Solution:
(a). Q
)()()(32t u e t u e t x t t −−+= ∴
)3)(2(523121)(+++=+++=s s s s s s X , 2}Re{−>s (b). Q
)()5(sin )()(54t u t e t u e t x t t −−+= ∴
)55)(55)(4(70155)5(541)(222j s j s s s s s s s X −++++++=++++=, 4}Re{−>s
(i). Q
)()()(t u t t x +=δ
∴ s s s s X 111)(+=+=, 0}Re{>s
(f). Q
)3()3()(t u t t x +=δ ∴
s s s s X 333/13131)(+=⋅+=, 0}Re{>s
9.22 Solution:
(a). Q 1211/6/6()9(3)(3)33
j j X s s s j s j s j s j −===+++−+−,0}Re{>s ∴ 3311()()()(sin 3)()663j t j t j j x t e u t e u t t u t −=−
+=
(b). Q 221/21/2()9(3)(3)33s s X s s s j s j s j s j =
==+++−+−,0}Re{>s ∴ 33211()()()(cos3)()22
j t j t x t e u t e u t t u t −=+= (c) From the property of shifting in the time-domain and (b),we can get 22()(cos(3))()()9s x t t u t s −−=−−⇔
−+,Re{}0s < So 2()cos(3)()()9
s g t t u t G s s =−−⇔=+,Re{}0s < From the property of shifting in the s-domain,we can get 321()(1)(1)9
s X s G s s +==+++,Re{}1s <− and 3()()(cos3)()t t x t e g t e t u t −−==−−
9.28. Solution:
(a). All possible ROCs:
),1(),1,1(),1,2(),2,(+∞−−−−−∞
(b). It’s obviouse to see:
)2,(−−∞ unstable & uncausal
)1,2(−− unstable & uncausal
)1,1(− stable & uncausal ),1(+∞ unstable & causal
9.31. Solution:
(a). Q )()(2)()(22t x t y dt t dy dt
t y d =−−
∴ )()(2)()(2s X s Y s sY s Y s =−− ∴
13/123/1)1)(2(121)()()(2+−+−=+−=−−==s s s s s s s X s Y s H
(b). 1. The system is stable.
∴ ROC: (-1,2)
∴ )()()(31231t u e t u e t h t t −−−−=
2. The system is causal.
∴ ROC: ),2(+∞
∴ )()()(31231t u e t u e t h t t −−=
3. The system is neither stable nor causal
∴ ROC: )1,(−−∞ ∴ )
()()(31231t u e t u e t h t t −+−−=− 9.32. Solution:
from (1)
Q t e t x 2)(=, for all t and x(t) is a eigen function
∴ t t s e e s H t y 2226
1|)()(=⋅== ∴ 61|)(2==s s H from (2)
Q
)()()()(2)(4t bu t u e t h dt t dh t +=+− ∴ s b s s h s sH ++=+41)(2)( ∴ )
2)(4()4()(++++=s s s s b s s H when 2=s , 6146262)2(=××+=
b h ∴ 862=+b ,1=b
∴ 0}Re{,........)
4(2)2)(4()2(2)(>+=+++=s s s s s s s s H
9.33. Solution:
Q )()()(||t u e t u e e t x t t t −+==−− ∴ )
1)(1(21111)(−+−=−−+=s s s s s X ∴ )()()(s H s X s Y =2
21)1)(1(22+++⋅−+−=
s s s s s )22)(1(22++−−=s s s )
22(5652)1(522++++−−=s s s s
1)1(541)1()1(52)1(521)1(54)1(52)1(52222+++++++−−=+++++−−=s s s s s s s ∴ )(sin 5
4)(cos 52)(52)(t tu e t tu e t u e t h t t t −−++−= 9.35. Solution:
According to the block-diagram, we will know (a) 126121611)(2222++−−=++−−=s s s s s
s s s s H , Re{s}>-1 ∴ )(6)()()()(2)(2222t x dt t dx dt
t x d t y dt t dy dt t y d −−=++ (b) It’s obviouse that this system is stable.