逻辑代数基本公式及定律.

合集下载

数电基本定律和公式

数电基本定律和公式

逻辑代数基本公式和定律一、逻辑代数基本公式1、逻辑代数中的变量和常量11)、逻辑变量是二元常量,只有两个值,即0和1。

22)、逻辑变量的二值0和1不表示数值的大小,而是表示两种对立的逻辑状态。

33)、逻辑常量是某一定值,要么为0要么为12、常量和变量的逻辑加A+0=AA+1=13.变量和常量的逻辑乘⋅A0=⋅1A=A4.变量和反变量的逻辑加和逻辑乘A+A1=⋅AA=二、逻辑代数基本定律1.交换律=+A+ABB=A⋅⋅ABB2.结合律=B+A+=++C++)(A(C)BCBA⋅A⋅B==⋅C⋅⋅⋅))A(C(BCBA3.重叠律+++⋅⋅⋅++)A==(AAAAAA⋅⋅⋅(⋅⋅)=⋯AAAAAAA=4.分配律⋅A++=⋅B+)(C(C)AAB⋅+=+(A⋅⋅)ACBACB例:用真值表证明分配律)⋅A+B+⋅=+B)(C(CAA1 / 210011101111101111111 5.吸收律AABA=+ABAA=+⋅)(6.非非律AA=7.反演律(又称摩根定律)BABA⋅=+(或⋅⋅⋅⋅⋅=+++CBACBA )BA⋅A+B(或⋅⋅⋅+++=⋅⋅⋅CBACBA例:用真值表证明反演律是否成立:真值表见表。

由表可以看出,等式左边的逻辑功能与等式右边的的逻辑功能完全一致,即二者具有相同的逻辑功能,所以等式成立。

-----精心整理,希望对您有所帮助!。

逻辑代数的基本定律及规则2010.9.23

逻辑代数的基本定律及规则2010.9.23

_ _ _
_
_ _
_
三变量最小项的编号
长春理工大学软件学院
最大项
最大项标准式是以“或与”形式出现的标准式。 最大项: 对于一个给定变量数目的逻辑函数, 所有变 量参加相“或”的项叫做最大项。 在一个最大项中, 每个 变量只能以原变量或反变量出现一次。 例如, 一个变量A有二个最大项: (2 ) A, A。
例题:化简函数
AB + AC + BC = AB + AC
F = ABC + AD + C D + BD
F = ABC + AD + C D + BD
= ABC + ( A + C ) D + BD
= AC ⋅ B + AC ⋅ D + BD
= AC ⋅ B + AC ⋅ D
= ABC + AD + C D
最小项
2 n 个最小项。最小项通 以此类推,n变量共有
常用 mi 表示。 最小项标准式:全是由最小项组成的“与或” 式,便是最小项标准式(不一定由全部最小项 组成)。 例如:
F ( ABC ) = A B C + BC + A C = A B C + ABC + A BC + AB C + AB C = ∑ m(0,3,4,6,7)
长春理工大学软件学院
逻辑代数的基本定律及规则
对合律: A = A
冗余律: AB + A C + BC = AB + A C
长春理工大学软件学院
逻辑代数的基本定律及规则
3 基本规则
代入规则:任何一个含有变量A的等式,如果将所有 出现A的位置都用同一个逻辑函数代替,则等式仍然 成立。这个规则称为代入规则。 反演规则:对于任何一个逻辑函数F,想要得到F的反 函数,只需要将F中的所有“·”换成“+”,“+”换 成“·”,“0”换成“1”,“1”换成“0”,原变量换成反 变量,反变量换成原变量。 长春理工大学软件学院

逻辑代数的运算法则

逻辑代数的运算法则

逻辑代数的运算法则逻辑代数又称布尔代数。

逻辑代数与普通代数有着不同概念,逻辑代数表示的不是数的大小之间的关系,而是逻辑的关系,它仅有0、1两种状态。

逻辑代数有哪些基本公式和常用公式呢?1.变量与常量的关系与运算公式 一、基本公式A·1=AA·0=0或运算公式A+0=A A+1=101律2.与普通代数相似的定律与运算公式A·B=B·A 或运算公式A+B=B+A交换律A·(B·C)=(A·B)·C A+(B+C)=(A+B)+C 结合律A·(B+C)=A·B+A·C A+(B·C)=(A+B)(A+C)分配律3.逻辑代数特有的定律与运算公式或运算公式互补律重叠律(同一律) 反演律(摩根定律)0=⋅A A 1=+A A BA B A +=⋅BA B A ⋅=+ 非非律(还原律)AA =A A A =⋅A A A =+真值表证明摩根定律0001101111111100结论:BA B A +=⋅ 以上定律的证明,最直接的办法就是通过真值表证明。

若等式两边逻辑函数的真值表相同,则等式成立。

【证明】公式1AB A AB =+B A AB +)(B B A += 互补律1⋅=A 01律A= 合并互为反变量的因子【证明】公式2AAB A =+AB A +)(B A +=1 01律A= 吸收多余项【证明】公式3BA B A A +=+B A A +BA AB A ++=B A A A )(++= 互补律BA += 消去含有另一项的反变量的因子【证明】CA AB BC C A AB +=++BC A A C A AB )(+++=BC C A AB ++ 分配律BC A ABC C A AB +++= 吸收多余项公式2互补律CA AB += 公式2逻辑代数的运算法则一、基本公式二、常用公式A·1=AA·0=0A+0=A A+1=1 1.变量与常量的关系01律2.与普通代数相似的定律交换律A·B=B·A A+B=B+A结合律 分配律3.逻辑代数特有的定律互补律A·A=A A+A=A 重叠律(同一律)反演律(摩根定律)0=⋅A A 1=+A A BA B A +=⋅BA B A ⋅=+非非律(还原律)AA =AB A AB =+.1AAB A =+.2BA B A A +=+.3CA AB BC C A AB +=++.4A·(B·C )=(A·B )·C A+(B+C )=(A+B )+C A·(B+C )=A·B+A·CA +(B·C )=(A+B )(A+C )谢谢!。

逻辑代数基本运算规则和基本定律

逻辑代数基本运算规则和基本定律

逻辑代数基本运算规则和基本定律
逻辑代数(又称布尔代数),它是分析设计逻辑电路的数学工具。

虽然它和普通代数一样也用字母表示变量,但变量的取值只有“0”,“1”两种,分别称为逻辑“0”和逻辑“1”。

这里“0”和“1”并不表示数量的大小,而是表示两种相互对立的逻辑状态。

逻辑代数所表示的是逻辑关系,而不是数量关系。

这是它与普通代数的本质区别。

注意:在逻辑代数中,只有加、乘、非运算,没有减、除、移项运算。

1、逻辑代数基本运算规则
;;;
;;;;。

2、基本定律
交换律
结合律
分配律
―――――注意:普通代数不成立反演律即摩根定理
可以推广到多变量
可以推广到多变量吸收律。

逻辑代数中的基本定律和公式

逻辑代数中的基本定律和公式

逻辑代数中的基本定律和公式
逻辑代数是一种用来研究逻辑的数学,它通过使用变元和逻辑公式来描述逻辑系统,它被用来解释和分析许多不同类型的逻辑结构。

它还可以帮助我们理解计算机语言、逻辑设计和许多其他类型的数学理论。

基本定律和公式是逻辑代数的基础,它们用来描述一个逻辑系统的行为。

以下是一些常见的定律和公式:* 交换律:如果A和B是同类元素,则A+B = B+A。

* 结合律:如果A、B和C是同类元素,则A+(B+C)=(A+B)+C。

* 分配率:如果A、B和C是同类元素,则A(B+C)= AB + AC。

* 吸收律:如果A和B是同类元素,则A+AB=A。

* 对立律:如果A是一个元素,则A+ A'=
1,其中A'是A的补充。

* 析取律:如果A和B是同类元素,则A+B'=A'B。

* 推理律:如果A和B是同类元素,则A→B = A'+B。

* 合取律:如果A和B是同类元素,则A+B = A'B'。

这些定律和公式提供了一种方法来描述逻辑系统的行为,这些定律和公式可以用来构建逻辑系统,并且可以用来解释和分析逻辑系统的行为。

它们也可以用来构建计算机语言,并用来解释和分析计算机语言的行为。

因此,我们可以看出,逻辑代数中的基本定律和公式是一种非常重要的工具,它们可以帮助我们理解和分析逻辑系统,也可以帮助我们理解和分析计算机语言的行为。

此外,它们还可以用来解释和分析许多不同类型的逻辑结构。

因此,逻辑代数中的基本定律和公式是一种非常重要的研究工具,它们可以帮助我们理解和探索逻辑系统的行为,从而有助于我们更好地理解和设计逻辑系统。

数电期末总结基础知识要点

数电期末总结基础知识要点

数电期末总结基础知识要点数字电路各章知识点第1章逻辑代数基础⼀、数制和码制1.⼆进制和⼗进制、⼗六进制的相互转换 2.补码的表⽰和计算 3.8421码表⽰⼆、逻辑代数的运算规则1.逻辑代数的三种基本运算:与、或、⾮ 2.逻辑代数的基本公式和常⽤公式逻辑代数的基本公式(P10)逻辑代数常⽤公式:吸收律:A AB A =+消去律:AB B A A =+ A B A AB =+ 多余项定律:C A AB BC C A AB +=++ 反演定律:B A AB += B A B A ?=+ B A AB B A B A +=+ 三、逻辑函数的三种表⽰⽅法及其互相转换★逻辑函数的三种表⽰⽅法为:真值表、函数式、逻辑图会从这三种中任⼀种推出其它⼆种,详见例1-6、例1-7 逻辑函数的最⼩项表⽰法四、逻辑函数的化简:★1、利⽤公式法对逻辑函数进⾏化简2、利⽤卡诺图队逻辑函数化简3、具有约束条件的逻辑函数化简例1.1利⽤公式法化简 BD C D A B A C B A ABCD F ++++=)(解:BD C D A B A C B A ABCD F ++++=)(BD C D A B A B A ++++= )(C B A C C B A +=+ BD C D A B +++= )(B B A B A =+ C D A D B +++= )(D B BD B +=+ C D B ++= )(D D A D =+ 例1.2 利⽤卡诺图化简逻辑函数 ∑=)107653()(、、、、m ABCD Y 约束条件为∑8)4210(、、、、m 解:函数Y 的卡诺图如下:00 01 11 1000011110AB CD111×11××××D B A Y +=第2章集成门电路⼀、三极管如开、关状态 1、饱和、截⽌条件:截⽌:beT VV < 饱和:CSBSB Ii Iβ>=2、反相器饱和、截⽌判断⼆、基本门电路及其逻辑符号★与门、或⾮门、⾮门、与⾮门、OC 门、三态门、异或、传输门(详见附表:电⽓图⽤图形符号 P321 )⼆、门电路的外特性★1、电阻特性:对TTL 门电路⽽⾔,输⼊端接电阻时,由于输⼊电流流过该电阻,会在电阻上产⽣压降,当电阻⼤于开门电阻时,相当于逻辑⾼电平。

逻辑代数的基本定律和常用公式

逻辑代数的基本定律和常用公式

逻辑代数的基本定律和常用公式1、基本定律逻辑代数是一门完整的科学。

与普通代数一样,也有一些用于运算的基本定律。

基本定律反映了逻辑运算的基本规律,是化简逻辑函数、分析和设计逻辑电路的基本方法。

(1)交换律(2)结合律(3)分配律(4)反演律(德·摩根定律)2、基本公式(1)常量与常量(2)常量与变量(3)变量与变量3、常用公式除上述基本公式外,还有一些常用公式,这些常用公式可以利用基本公式和基本定律推导出来,直接利用这些导出公式可以方便、有效地化简逻辑函数。

(1)证明:上式说明当两个乘积项相加时,若其中一项(长项:A·B)以另一项(短项:A)为因子,则该项(长项)是多余项,可以删掉。

该公式可用一个口诀帮助记忆:“长中含短,留下短”。

(2)证明:上式说明当两个乘积项相加时,若他们分别包含互为逻辑反的因子(B和),而其他因子相同,则两项定能合并,可将互为逻辑反的两个因子(B和)消掉。

(3)证明:上式说明当两项相加时,若其中一项(长项:·B)包含另一项(短项:A)的逻辑反()作为乘积因子,则可将该项(长项)中的该乘积因子()消掉。

该公式可用一个口诀帮助记忆:“长中含反,去掉反”。

例如:(4)证明:上式说明当3项相加时,若其中两项(AB和C)含有互为逻辑反的因子(A和),则该两项中去掉互为逻辑反的因子后剩余部分的乘积(BC)称为冗余因子。

若第三项中包含前两项的冗余因子,则可将第三项消掉,该项也称为前两项的冗余项。

该公式可用一个口诀帮助记忆:“正负相对,余(余项)全完”。

例:Welcome !!! 欢迎您的下载,资料仅供参考!。

逻辑代数的基本定律及规则

逻辑代数的基本定律及规则

逻辑代数的基本定律及规则文章来源:互联网作者:佚名发布时间:2012年05月26日浏览次数: 1 次评论:[已关闭] 功能:打印本文一、逻辑代数相等:假定F、G都具有n个相同变量的逻辑函数,对于这n个变量中的任意一组输入,如F和G都有相同的输出值,则称这两个函数相等。

在实际中,可以通过列真值表来判断。

二、逻辑代数的基本定律:在逻辑代数中,三个基本运算符的运算优先级别依次为:非、与、或。

由此推出10个基本定律如下:1.交换律A+B=B+A;A·B=B·A2.结合律A+(B+C)=(A+B)+C;A·(BC)=(AB)·C3.分配律A·(B+C)=AB+AC;A+BC=(A+B)·(A+C)4.0-1律A+0=A;A·1=AA+1=1 ;A·0=05.互补律A+=1 ;A·=06.重叠律A·A=A;A+A=A7.对合律=A8.吸收律A+AB=A;A·(A+B)=AA+B=A+B;A·(+B)=ABAB+B=B;(A+B)·(+B)=B9.反演律=·;=+10.多余项律AB+C+BC=AB+C;(A+B)·(+C)·(B+C)=(A+B)·(+C)上述的定律都可用真值表加以证明,它们都可以用在后面的代数化简中。

三、逻辑代数的基本规则:逻辑代数中有三个基本规则:代入规则、反演规则和对偶规则。

1.代入规则:在任何逻辑代数等式中,如果等式两边所有出现某一变量(如A)的位置都代以一个逻辑函数(如F),则等式仍成立。

利用代入规则可以扩大定理的应用范围。

例:=+,若用F=AC代替A,可得=++2.反演规则:已知函数F,欲求其反函数时,只要将F式中所有的“·”换成“+”,“+”换成“·”;“0”换成“1”,“1”换成“0”时,原变量变成反变量,反变量变成原变量,便得到。

逻辑代数中的基本公式、常用公式与基本定理

逻辑代数中的基本公式、常用公式与基本定理
(5)狄摩根定律
(1)
(2) A+AB=A
(3)
(4)
1.代入定理:在含有变量A的等式中,将A用一个逻辑表达式代替,等式仍然成立。
2.对偶定理:将某逻辑表达式Y中的与和或对换,0和1对换(所有的“+”运算符都换成“·”,“·”换成“+”,0换成1,1换成0)且保持原来的运算优先顺序,那么就得到一定对偶式 。如果两个逻辑表达式相等,那么它们各自的对偶式也就必然相等。例:
若A·(B+C)=A·B+A·C
则A+BC=(A+B)(A+C
求对偶式时,要保证优先次序不变,否则就会出错。如A+AB=A,求对偶式时如不加括号,得到AA+B=A,从而得到错误的结论:A+B=A
3.反演定理:将某逻辑表达式Y中的与和或对换,0和1对换,原变量和反变量对换,这样得到的表达式就是 。
注意:对偶规则和反演规则的区别:对偶规则不需要将逻辑变量取反,而反演规则重要将逻辑变量取反。
逻辑代数中的基本公式、常用公式与基本定理
基本公式
常用公式
基本定理
(1)基本运算
A·0=0
A·1=A A·A=A
A+0=A A+A=A
A+1=1
(2)交换律
A·B=B·A
A+B=B+A
(3)结合律
A(B·C)=(A·B)·C
A+(B+C)=(A+B)+C
(4)分配律
A·(B+C)=A·B+A·C
(A+B)·(A+C)+A+BC
狄摩根定律在我们日常生活中也有应用,如以下两句话的含意一致的:

逻辑代数基本公式及定律59383

逻辑代数基本公式及定律59383

灯亮为逻辑“1”
灯灭为逻辑“0”
(3)
A
E 真值表 A B 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1
B
C Y
逻辑式:Y=A•B•C 逻辑乘法 (逻辑与) 逻辑符号: A B C
C 0 1 0 1 0 1 0 1
Y 0 0 0 0 0 0 0 1
&
Y
与逻辑运算规则: 0 • 0=0 1 • 0=0 0 • 1=0 1 • 1=1
(16)
用真值表证明摩根定理成立
A ·B=A+B A+B= A ·B Y2=A+B 1 相等 1 1 0
A 0 0 1 1
B 0 1 0 1
Y1=A· B 1 1 1 0
(17)
2.3.2 若干常用公式--几种形式的吸收律
吸收:多余(冗余)项,多余(冗余)因子被取消、去 掉 被消化了。
短项
长项
(4)
真值表特点: 有0出0, 全1出1
二、 “或”逻辑
或逻辑:决定事件发生的各条件中,有一个或一个 以上的条件具备,事件就会发生(成立)。 A B C
规定:
开关合为逻辑“1” Y 开关断为逻辑“0”
E
灯亮为逻辑“1”
灯灭为逻辑“0”
(5)
E 真值表 A 0 0 0 0 1 1 1 1 B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1
例:用代入规则证明德 摩根定理也适用于多 变量的情况。 二变量的德 摩根定理为:
AB A B A B AB
1 2
(22)
AB A B A B AB
1 2
以(B· C)代入(1)式中B,以(B+C)代入 (2)式中B,则得到:

数字电路的基本知识3

数字电路的基本知识3
与运算 A • 0 0 A •1 A A • A 0 A • A A
或运算 A 0 A A 1 1 A A 1 A A A
非运算 A A
(2) 逻辑代数的基本定律 交换律:A B B A A• B B• A 结合律:(A B) C A (B C) ( AB)C A(BC) 分配律: A(B C) AB AC A BC (A B)(A C) 反演律: A B A • B AB A B
提取公因子A
ABC A(B C ) 利用反演律
ABC ABC A(BC BC)
消去互为 反变量的因子
A
2) 吸收法 利用公式 A AB A 将多余项AB吸收掉 化简逻辑函数 F AB AC ABC
F AB AC ABC …提取公因子AC
AB AC(1 B) …应用或运算规律,括号内为1
最简与或式的一般标准是:表达式中的与项最少,每个与 项中的变量个数最少。代数化简法最常用的方法有: 1) 并项法
利用公式 AB AB A 提取两项公因子后,互非变量消去。 化简逻辑函数 F AB AC ABC
F AB AC ABC
A(B C BC) …提取公因子A
A(B C B C) …应用反演律将非与变换为或非 A …消去互非变量后,保留公因子A,实现并项。
AB AC 3) 消去法
利用公式 A AB A B 消去与项AB中的多余因子A 化简逻辑函数 F AB AC BC F AB AC BC …提取公因子C
AB C(A B)
AB C AB …应用反演律将非或变换为与非
AB C …消去多余因子AB,实现化简。
4) 配项法 利用公式A=A(B+B),为某一项配上所缺变量。
(3) 逻辑代数的常用公式 吸收律:A AB A A(A B) A A (AB) A B

逻辑代数基础

逻辑代数基础

Y AC AB
AC( B B) AB(C C)
ABC ABC ABC ABC ABC ABC ABC m5 m6 m7
例1:画出 Y AC AB 的卡诺图
Y ABC ABC ABC m5 m6 m7
输入变量 BC 00 A 0 0 1 00 01 11 10 m0 m1 m3 m2 m4 m5 m7 m6 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



② 最小项的性质 对于任意一个最小项,只有一组变量取值使 它的值为1,而在变量取其它各值时,这个 最小项的值都是零; 不同的最小项,使它的值为1的那组变量取 值也不同; 对于变量的同一组取值,任意两个最小项 的乘积为零; 对于变量的同一组取值,所有最小项的逻辑 或为1。
第2章 逻辑代数基础
§2.1 逻辑代数 § 2.2 逻辑函数表达式的形式与变换 §2.3逻辑函数的化简
§2.1逻辑代数的基本规则和定理
逻辑代数(又称布尔代数),它是分析和 设计逻辑电路的数学工具。虽然它和普通代 数一样也用字母表示变量,但变量的取值只 有“0”,“1”两种,分别称为逻辑“0”和逻 辑 “1”。这里“0”和“1”并不表示数量的大小, 而是表示两种相互对立的逻辑状态。
③最小项的编号
注:下标与编码所对应的十进制数值相同
④函数的最小项表达式
将逻辑函数表达式化成一组最小项之和,称为 最小项表达式。任何一个函数均可表达成 唯一的 最小项之和。 如:
L( A, B, C ) ( AB AB C ) AB
( AB A B C ) AB AB ABC AB ABC A BC ABC ABC m3 m5 m 6 m 7 m(3,5,6,7)

逻辑代数的公式、定理

逻辑代数的公式、定理

C)
A 0 0
分配律:
A
A
(B B
C) C
A (A
B B)
A (A
C C)
1 1
B A.B B.A
00 0 10 0 00 0 11 1
反演律(摩根定律):
B A B
证明分配率:A+BA=(A+B)(A+C)
证明:
(A+B)(A+C)=AA+AB+AC+BC
分配率 A(B+C)=AB+AC
=A+AB+AC+BC =A(1+B+C)+BC
等幂率AA=A
分配率 A(B+C)=AB+AC
=A+BC
0-1率A+1=1
(4)常用公式
还原律:
A
B
A
B
A
( A B) ( A B ) A
吸收率:
A A
(
A A
B B)
A A
A (A B) A B A A B A B
逻辑代数的公式、定理和规则
1、逻辑代数的公式和定理 (1)常量之间的关系
与运算:0 0 0 0 1 0 1 0 0 11 1 或运算:0 0 0 0 1 1 1 0 1 1 1 1
非运算: 1 0
0 1
(2)基本公式
0-1
律:AA
0 A 1 A
A 1 1 A 0 0
互补律: A A 1 A A 0
(3)与非-与非表达式:Y A B AC
(4)或非-或非表达式:Y A B A C (5)与或非表达式:Y AB AC

1.3逻辑代数基础

1.3逻辑代数基础
1.3 逻辑代数基础
逻辑代数是按一定的逻辑关系进行运算的代数,是分 析和设计数字电路的数学工具。在逻辑代数,只有0和1 两种逻辑值,有与、或、非三种基本逻辑运算,还有与或、 与非、与或非、异或几种导出逻辑运算。 逻辑是指事物的因果关系,或者说条件和结果的关系, 这些因果关系可以用逻辑运算来表示,也就是用逻辑代数 来描述。 事物往往存在两种对立的状态,在逻辑代数中可以抽 象地表示为 0 和 1 ,称为逻辑0状态和逻辑1状态。 逻辑代数中的变量称为逻辑变量,一般用大写字母 表示。逻辑变量的取值只有两种,即逻辑0和逻辑1,0 和 1 称为逻辑常量,并不表示数量的大小,而是表示两种对 立的逻辑状态。
A E B Y
A接通、B断开,灯不亮。
A、B都接通,灯亮。
两个开关必须同时接通, 灯才亮。逻辑表达式为:
Y=AB
功能表
开关 A 开关 B 断开 断开 闭合 闭合 断开 闭合 断开 闭合 灯Y 灭 灭 灭 亮
将开关接通记作1,断开记作0; 灯亮记作1,灯灭记作0。可以作 出如下表格来描述与逻辑关系:
A B
0-1率A· 1=1
冗余律: AB A C BC AB A C
证明: AB A C BC
AB A C ( A A) BC
AB A C ABC A BC
互补率A+A=1 分配率 A(B+C)=AB+AC 0-1率A+1=1
AB(1 C) A C(1 B)
=1
Y
A B
异或门的逻辑符号
L=A+B (4) 与或非运算:逻辑表达式为: Y AB CD
A B C D & ≥1 Y
A B C D & ≥1 & 与或非门的等效电路 Y

逻辑代数

逻辑代数

逻辑代数逻辑代数(又称布尔代数),它是分析设计逻辑电路的数学工具。

虽然它和普通代数一样也用字母表示变量,但变量的取值只有“0”,“1”两种,分别称为逻辑“0”和逻辑“1”。

这里“0”和“1”并不表示数量的大小,而是表示两种相互对立的逻辑状态。

若定义一种状态为“1”,则另一种状态就为“0”。

例:灯亮用“1”表示、则灯灭就表示为“0”,不考虑灯损坏等其它可能性。

逻辑代数所表示的是逻辑关系(因果关系),而不是数量关系。

这是它与普通代数的本质区别。

1. 基本运算法则一、逻辑代数运算法则从三种基本的逻辑运算关系,我们可以得到以下的基本运算法则(公式1—9)。

0 • 0=01 • 1=10 • 1=0 1 • 0=0公式10 •A=0公式2 1 •A=A 公式3 A •A=A 公式4A •A=0与运算或运算0+0=01+1=10+1=11+0=1公式50 +A=A 公式61+A=1公式7 A +A=A 公式8A+A=1非运算01=10=公式9AA =交换律:结合律:公式11A+B=B+A 公式10A• B=B • A公式13A+(B+C)=(A+B)+C=(A+C)+B 公式12 A• (B • C)=(A • B) • C分配律:公式14A(B+C)=A • B+A • C公式15A+B • C=(A+B)(A+C)(少用)证明:右边=AA+AC+BA+BC=A+AC+BA+BC=A (1+C+B )+BC=A+BC吸收律:1. 基本运算法则公式16A (A+B )=A 证明:左边=AA+AB=A+AB=A (1+B )=A公式17A (A+B )=AB普通代数不适用!证明:BA B A A A B A A +=++=+)15())((公式DCBC A DC BC A A ++=++被吸收B A B A A +=+公式19(常用)公式18A+AB=A (常用)证明:A+AB=A(1+B)=A•1=A CDAB )F E (D AB CD AB +=+++1. 基本运算法则例:例:1. 基本运算法则公式20AB+AB=A公式21(A+B )(A+B )=A(少用)证明:BC)A A (C A AB BCC A AB +++=++CA AB BC A C AB BC A ABC C A AB +=+++=+++=)1()1(推论:CA AB BCDC A AB +=++1C A AB BC C A AB +=++公式22(常用)摩根定律公式23B A AB +=(常用)公式24BA B A ∙=+(常用)记忆:记忆:可以用列真值表的方法证明:A B 00110011A B 00001111AB A+B 00111111A+B A• B 00000011公式25=⊕B A AB或A B =BA ⊕其中:BA B A B A +=⊕是异或函数BA AB B A+=是同或函数用列真值表的方法证明:A B 00110011ABAB10000100B A 11000000A B 1100B A ⊕0011A B其中,吸收律公式16 A (A+B )= A 公式18 A+AB = A对偶式BA B A A +=+公式19公式20AB+AB=A 公式21(A+B)(A+B)=A对偶关系:将某逻辑表达式中的与(• )换成或(+),或(+)换成与(• ),得到一个新的逻辑表达式,即为原逻辑式的对偶式。

逻辑代数的基本规则

逻辑代数的基本规则

逻辑代数的基本规则
逻辑代数是一种数学系统,用于处理逻辑关系。

以下是逻辑代数的基本规则:
1. 0 和1 规则:0 和1 分别代表逻辑中的假和真。

2. 与运算规则(AND):如果A 和B 都是真,则A AND B 为真;如果A 和B 中至少有一个为假,则A AND B 为假。

3. 或运算规则(OR):如果A 或B 中至少有一个为真,则A OR B 为真;如果A 和B 都为假,则A OR B 为假。

4. 非运算规则(NOT):如果A 为真,则NOT A 为假;如果
A 为假,则NOT A 为真。

5. 分配律:A (B OR C) = (A B) OR (A C),A (B AND C) = (A B) AND (A C)。

6. 结合律:(A OR B) OR C = A OR (B OR C),(A AND B) AND C =
A AND (
B AND C)。

7. 交换律:A OR B = B OR A,A AND B = B AND A。

8. 吸收律:A OR A = A,A AND A = A。

9. 互补律:A OR NOT A = 1,A AND NOT A = 0。

10. 德摩根定律:NOT (A OR B) = (NOT A) AND (NOT B),NOT
(A AND B) = (NOT A) OR (NOT B)。

1.3.1逻辑代数基本定律和规则

1.3.1逻辑代数基本定律和规则
解:利用反演规则可得
Y A C B D
应用反演规则应注意:
1.保持原来的运算优先顺序,即如果在原函数表达式中,AB 之间先运算,再和其它变量进行运算, 那么非函数的表达式 中,仍然是AB之间先运算。 2.不属于单个变量上的反号应保留不变。
Y AB C D C
Y ( A B)C D C
对偶规则:如果两个逻辑式相等,则它们的对偶式也相等。
Y A(B C) Y AB CD
Y D A BC Y D ( A B) (C D)
利用对偶规则,可以使要证明及要记忆的公式数目减少一半。
1 A A
A(B C) AB AC
0 A A
A BC ( A B)( A C)
例如,在反演律中用BC 去代替等式中的 B,则新的等式仍成立。
BC代替等式中的B
ABC A BC A B C
02
如果将逻辑函数Y 中的所有“·”换成“+”,“+”换成
“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,
则可得到的一个新的函数表达式 Y D, Y D 称为Y 的对偶式。

一、逻辑代数的基本定律:有10个基本定律
定律名称 0-1律 自等律 重叠律 互补律 交换律 结合律 分配律 吸收律 反演律 还原律
定律1
A·0=0 A·1=A A·A=A
A A 0
A·B=B·A A·(B·C )=(A·B )·C A·(B+C )=AB+AC
A(A+B )=A
AB A B
(B B
C) C
A (A
B B)
A A B A B A B
摩根定律
A B AB BA 00 0 0 01 0 0 10 0 0 11 1 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明: 左式 AB AC BC
AB AC (A A)BC
AB AC ABC ABC 添加
添冗余因子
口诀: 正负相对, 余全完。 (消冗余项)
(8)
( AB ABC) ( AC ABC)
AB AC =右式
4. A · A· B=A · B
(12)
例1: F1 A B C D 0 注意 括号
F1 (A B) (C D) 1
注意括号
F1 AC BC AD BD
与或式
(13)
例 2: F2 A B C D E
反号不动
F2 A B C D E
A 0 0 , A 1 A, A A A, A A 0
AA
(1)
二、交换律
A+B=B+A A• B=B • A
三、结合律
A+(B+C)=(A+B)+C=(A+C)+B A• (B • C)=(A • B) • C
四、分配律
A(B+C)=A • B+A • C A+B • C=(A+B)(A+C)
证明:
A· A· B=A
A· A· B = A·(A+B) =A · B
(A+B)=A A· A· B= A· A· A· B= ?
A × A √ A· B A· B × ×
(9)
§ 2.4 逻辑代数的基本定理
2.4.1 代入定理
内容:在任何一个包含变量A的逻辑等式中, 若以另外一个逻辑式代替式中所有的变量A, 则等式仍然成立。
反号不动
A ( B C D E)
A (B C D E)

F2 A B A C A D E
与或式
(14)
常用公式
AB A B 1.消去公式:A+
2.吸收公式:
A AB A
3.并项公式:AB AB A 4.多余项公式:AB AC BC AB AC
(15)
(16)
§2.3 逻辑代数的基本公式和常用公式 2.3.1 基本公式
一、基本定律
或运算规则:
0+0=0 ,0+1=1 ,1+0=1,1+1=1
A 0 A , A 1 1, A A A, A A 1
与运算规则:
0•0=0
非运算规则:
0•1=0
1 0
1•0=0
0 1
1•1=1
||
1
长中含短,
口诀:
留下短。
(6)
原(反)变量
反(原)变量
2. 反变量的吸收:
添冗余项
A+AB=A+ B
证明: 左式 A AB AB A B( A A) =右式
||
1
长中含反, 口诀:
去掉反。
(7)
互为反变量
3.混合变量的吸收: A B + A C + BC=AB+AC
A(BC) A(BC) A B C
注:代入定理还可以扩展其他基本定律 的应用范围!
(11)
2.4.2 反演定理
内容:将函数式F中所有的 + + (反函数) 新表达式: F
变量与常数均取反 显然: FF 规则: 1.遵循先括号 再乘法 后加法的运算顺序。 2.不是一个变量上的反号不动。 用处:实现互补运算(求反运算)。
(4)
用真值表证明摩根定理成立
A ·B=A+B A+B= A ·B Y2=A+B 1 相等 1 1 0
A 0 0 1 1
B 0 1 0 1
Y1=A· B 1 1 1 0
(5)
2.3.2 若干常用公式--几种形式的吸收律
吸收:多余(冗余)项,多余(冗余)因子被取消、去 掉 被消化了。
短项
长项

1.原变量的吸收: A + AB = A 证明: 左式=A(1+B) =A =右式 原式成立
(3)
五、德 摩根定理(反演律) (De Morgan)
AB A B A B AB
1 2
证明: 真值表法、 穷举法
推广到多变量:
ABC A B C
A B C ABC
说明:两个(或两个以上)变量的与非(或非) 运算等于两个(或两个以上)变量的非或(非 与)运算。
例:用代入规则证明德 摩根定理也适用于多 变量的情况。 二变量的德 摩根定理为:
AB A B A B AB
1 2
(10)
AB A B A B AB
1 2
以(B· C)代入(1)式中B,以(B+C)代入 (2)式中B,则得到:
Α(ΒC) Α (ΒC) Α Β C
(2)
求证: (分配律第2条) A+BC=(A+B)(A+C) 证明: 右边 =(A+B)(A+C) =AA+AB+AC+BC =A +A(B+C)+BC ; 分配律 ; 结合律 , AA=A
=A(1+B+C)+BC ; 结合律 =A • 1+BC ; 1+B+C=1 =A+BC =左边 ; A • 1=A
相关文档
最新文档