最新高中数学必修5导学案57658
人教A版高中数学必修5全册导学案
人教A版高中数学必修五全册导学案目录第一章解三角形 (1)1.1.1正弦定理 (1)1.1.2余弦定理 (4)1.2.1应用举例 (8)1.2.2解三角形实际应用举例习题 (12)必修五第一章测试题 (15)第二章数列 (19)2.1数列的概念与简单表示法 (19)2.2等差数列 (22)2.3等差数列的前n项和 (26)2.4等比数列 (31)2.5等比数列的前n项和 (34)必修五第二章测试题 (38)第三章不等式 (38)3.1不等式与不等关系 (38)课题:3.2一元二次不等式及其解法(1) (42)课题:3.2一元二次不等式及其解法(2) (47)课题:3.3.1二元一次不等式(组)与平面区域(1) (50)课题:3.3.1二元一次不等式(组)与平面区域(2) (52)课题:3.3.2简单的线性规划(1) ........................................................... 56 课题:3.3.2简单的线性规划(2) ........................................................... 61 课题:3.3.2简单的线性规划(3) ........................................................... 65 课题:3.42a b+ ................................................................ 69 课题:3.42a b + (73)必修五第三章测试题 (76)高中数学必修五全册导学案第一章解三角形1.1.1正弦定理【学习目标】1.通过对特殊三角形边角间的数量关系的探究发现正弦定理,初步学会由特殊到一般的思想方法发现数学规律。
(难点)2.掌握正弦定理,并能用正弦定理解决两类解三角形的基本问题。
高二数学必修5全册导学案经典
第一章 解三角形1.1.1 正弦定理1.在ABC △中,已知3b =,c =,30B ∠=o ,解此三角形。
2.在ABC △中,已知∠A=45o 30B ∠=o ,C=10,解此三角形。
3.在三角形ABC 中,角A,B,C 所对的边分别为a,b,c ,且A,B为锐角,sin A sin B (1) 求A+B 的值:(2) 若,求a,b,c 得值1. 在ABC △中,已知222sin sin sin A B C +=,求证:ABC △为直角三角形2. 已知ABC △中,60A ∠=o ,45B ∠=o ,且三角形一边的长为m ,解此三角1. 正弦定理反映了三角形中各边和它的对角正弦值的比例关系,表示形式为2sin sin sin a b c R A B C ===,其中R 是三角形外接圆的半径。
2. 正弦定理的应用(1)如果已知三角形的任意两角与一边,由三角形的内角和定理可以计算出另外一个角,并由三角形的正弦定理计算书另外两边。
(2)如果已知三角形的任意两边和其中一边的对角,应用正弦定理可以计算出另外一边对角的正弦值,进而可以确定这个角(此时特别注意:一定要先判断这个三角形是锐角还是钝角)和三角形其它的边和角。
1.在ABC △中,若2sin sin cos 2A C =,B 则ABC △是( )A .等边三角形B .等腰三角形C .直角三角形D . 等腰直角三角形3. 在ABC △中,已知30B =o ,b =,150c =,那么这个三角形是( )A.等边三角形 B.直角三角形C.等腰三角形 D.等腰三角形或直角三角形4. 在△ABC 中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3 B .3:2:1 C .2 D .2 6.ABC △若120c b B ===o ,则a 等于 ( )A B .2 C D7. .在△ABC 中,若B A 2=,则a 等于 ( )A .A b sin 2B .A b cos 2C .B b sin 2D .B b cos 28.若12057A AB BC ∠===o ,,,则ABC △的面积S = .9. 在ABC △中,若此三角形有一解,则a b A ,,满足的条件为________1.1.2 余弦定理1.在三角形ABC 中,已知下列条件,解三角形。
(完整word)高中数学必修5导学案
§1.1.1 正弦定理学习目标1. 掌握正弦定理的内容;2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题.学习过程一、课前准备试验:固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动.思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来?二、新课导学 ※ 学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c ,根据锐角三角函数中正弦函数的定义, 有sin a A c =,sin b B c =,又sin 1cC c==, 从而在直角三角形ABC 中,sin sin sin a b cA B C==.(探究2:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =sin sin a B b A =,则sin sin a bA B=, 同理可得sin sin c bC B =, 从而sin sin a b A B =sin c C=.类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试导.新知:正弦定理在一个三角形中,各边和它所对角的 的比相等,即sin sin a b A B =sin cC =. 试试:(1)在ABC ∆中,一定成立的等式是( ). A .sin sin a A b B = B .cos cos a A b B = C . sin sin a B b A = D .cos cos a B b A =(2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 .[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =;(2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A =sin cC . (3)正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=;b = .②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin aA B b=;sin C = .(4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形.※ 典型例题例1. 在ABC ∆中,已知45A =o ,60B =o ,42a =cm ,解三角形.变式:在ABC ∆中,已知45B =o ,60C =o ,12a =cm ,解三角形.例2. 在45,2,,ABC c A a b B C ∆===o 中,求和.变式:在60,1,,ABC b B c a A C ∆==o 中,求和.三、总结提升 ※ 学习小结1. 正弦定理:sin sin a b A B =sin cC= 2. 正弦定理的证明方法:①三角函数的定义, 还有 ②等积法,③外接圆法,④向量法. 3.应用正弦定理解三角形: ①已知两角和一边;②已知两边和其中一边的对角.※ 知识拓展 a b =2cR ==,其中2R 为外接圆直径.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC ∆中,若cos cos A bB a=,则ABC ∆是( ).A .等腰三角形B .等腰三角形或直角三角形C .直角三角形D .等边三角形 2. 已知△ABC 中,A ∶B ∶C =1∶1∶4, 则a ∶b ∶c 等于( ).A .1∶1∶4B .1∶1∶2C .1∶1D .2∶23. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ). A. A B > B. A B <C. A ≥BD. A 、B 的大小关系不能确定4. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c = .5. 已知∆ABC 中,∠A 60=︒,a =sin sin sin a b cA B C ++++= .1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,解此三角形.2. 已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k ≠0),求实数k 的取值范围为.§1.1.2 余弦定理1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题.一、课前准备复习1:在一个三角形中,各 和它所对角的 的 相等,即 = = .复习2:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形.思考:已知两边及夹角,如何解此三角形呢?二、新课导学 ※ 探究新知问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵AC =u u u r, ∴AC AC •=u u u r u u u r同理可得: 2222cos a b c bc A =+-, 2222cos c a b ab C =+-.新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论:222cos 2b c a A bc+-=, , . [理解定理](1)若C =90︒,则cos C = ,这时222c a b =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. (2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边; ②已知三角形的三条边就可以求出其它角.试试:(1)△ABC中,a=2c=,150B=o,求b.(2)△ABC中,2a=,b,1c,求A.※典型例题例1. 在△ABC中,已知a b=,45B=o,求,A C和c.变式:在△ABC中,若AB,AC=5,且cos C=910,则BC=________.例2. 在△ABC中,已知三边长3a=,4b=,c=,求三角形的最大内角.变式:在∆ABC中,若222a b c bc=++,求角A.三、总结提升※学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围:①已知三边,求三角;②已知两边及它们的夹角,求第三边.※知识拓展在△ABC中,若222a b c+=,则角C是直角;若222a b c+<,则角C是钝角;222是锐角.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 已知a c=2,B=150°,则边b的长为().A. B. C. D.2. 已知三角形的三边长分别为3、5、7,则最大角为( ). A .60o B .75o C .120o D .150o3. 已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ).A x <<B x <5C . 2<xD <x <54. 在△ABC 中,|AB u u u r |=3,|AC u u u r |=2,AB u u u r 与AC u u u r 的夹角为60°,则|AB u u u r-AC u u u r |=________. 5. 在△ABC 中,已知三边a 、b 、c 满足 222b a c ab +-=,则∠C 等于 .1. 在△ABC 中,已知a =7,b =8,cos C =1314,求最大角的余弦值.2. 在△ABC 中,AB =5,BC =7,AC =8,求AB BC ⋅u u u r u u u r的值.§1.1 正弦定理和余弦定理(练习)1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.一、课前准备复习1:在解三角形时已知三边求角,用 定理;已知两边和夹角,求第三边,用 定理; 已知两角和一边,用 定理.复习2:在△ABC 中,已知 A =6π,a =,b =二、新课导学 ※ 学习探究探究:在△ABC 中,已知下列条件,解三角形.① A =6π,a =25,b =;② A =6π,a ,b =③ A =6π,a =50,b =.思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A为锐角时).已知边a,b和∠A有两个解仅有一个解无解CH=bsinA<a<ba=CH=bsinAa<CH=bsinA试试:1. 用图示分析(A为直角时)解的情况?2.用图示分析(A为钝角时)解的情况?※典型例题例1. 在∆ABC中,已知80a=,100b=,45A∠=︒,试判断此三角形的解的情况.变式:在∆ABC中,若1a=,12c=,40C∠=︒,则符合题意的b的值有_____个.例2. 在∆ABC中,60A=︒,1b=,2c=,求sin sin sina b cA B C++++的值.变式:在∆ABC中,若55a=,16b=,且1sin2ab C=C.三、总结提升※学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况).※知识拓展在∆ABC中,已知,,a b A,讨论三角形解的情况:①当A为钝角或直角时,必须a b>才能有且只有一解;否则无解;②当A为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论: (1)若sin a b A >,则有两解; (2)若sin a b A =,则只有一解;※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且sin 2sin 3A B =,则a bb +的值=( ). A.13 B. 23 C. 43 D. 532. 已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是( ). A .135° B .90° C .120° D .150°3. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加长度决定4. 在△ABC 中,sin A :sin B :sin C =4:5:6,则cos B = .5. 已知△ABC 中,cos cos b C c B =,试判断△ABC 的形状 .1. 在∆ABC 中,a xcm =,2b cm =,45B ∠=︒,如果利用正弦定理解三角形有两解,求x 的取值范围.2. 在∆ABC 中,其三边分别为a 、b 、c ,且满足2221sin 24a b c ab C +-=,求角C .§1.2应用举例—①测量距离能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题一、课前准备复习1:在△ABC 中,∠C =60°,a +b =2+,c =A 为 .复习2:在△ABC中,sin A=sin sincos cosB CB C++,判断三角形的形状.二、新课导学※典型例题例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=51︒,∠ACB=75︒. 求A、B两点的距离(精确到0.1m).提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边.知1:基线在测量上,根据测量需要适当确定的叫基线.例2. 如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法.分析:这是例1的变式题,研究的是两个的点之间的距离测量问题.首先需要构造三角形,所以需要确定C、D两点.根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC,再利用余弦定理可以计算出AB的距离.变式:若在河岸选取相距40米的C、D两点,测得∠BCA=60°,∠ACD=30°,∠CDB=45°,∠BDA =60°.练:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少?三、总结提升 ※ 学习小结1. 解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解 (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解. 2.基线的选取:测量过程中,要根据需要选取合适的基线长度,使测量具有较高的精确度.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 水平地面上有一个球,现用如下方法测量球的大小,用锐角45︒的等腰直角三角板的斜边紧靠球面,P 为切点,一条直角边AC 紧靠地面,并使三角板与地面垂直,如果测得PA =5cm ,则球的半径等于( ). A .5cm B .C .1)cmD .6cm2. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( ).A .0.5小时B .1小时C .1.5小时D .2小时3. 在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+,则ABC ∆的形状( ).A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形4.在ABC ∆中,已知4a =,6b =,120C =o ,则sin A 的值是 .5. 一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60o ,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15o ,这时船与灯塔的距离为 km .1. 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,A 、B 、C 、D 在同一个平面,求两目标A 、B 间的距离.2. 某船在海面A处测得灯塔C与A相距103海里,且在北偏东30︒方向;测得灯塔B与A 相距156海里,且在北偏西75︒方向. 船由A向正北方向航行到D处,测得灯塔B在南偏西60︒方向. 这时灯塔C与D相距多少海里?§1.2应用举例—②测量高度学习目标1. 能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题;2. 测量中的有关名称.学习过程一、课前准备复习1:在∆ABC中,cos5cos3A bB a==,则∆ABC的形状是怎样?复习2:在∆ABC中,a、b、c分别为∠A、∠B、∠C的对边,若::a b c=1:1:3,求A:B:C 的值.二、新课导学※学习探究新知:坡度、仰角、俯角、方位角方位角---从指北方向顺时针转到目标方向线的水平转角;坡度---沿余坡向上的方向与水平方向的夹角;仰角与俯角---视线与水平线的夹角当视线在水平线之上时,称为仰角;当视线在水平线之下时,称为俯角.探究:AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法.分析:选择基线HG,使H、G、B三点共线,要求AB,先求AE在ACE∆中,可测得角,关键求AC在ACD∆中,可测得角,线段,又有α故可求得AC※典型例题例1. 如图,在山顶铁塔上B处测得地面上一点A的俯角α=5440'︒,在塔底C处测得A处的俯角β=501'︒. 已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)例2. 如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15︒的方向上,行驶5km后到达B处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD.问题1:欲求出CD,思考在哪个三角形中研究比较适合呢?问题2:在∆BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?变式:某人在山顶观察到地面上有相距2500米的A、B两个目标,测得目标A在南偏西57°,俯角是60°,测得目标B在南偏东78°,俯角是45°,试求山高.三、总结提升※学习小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.※知识拓展在湖面上高h处,测得云之仰角为α,湖中云之影的俯角为β,则云高为sin() sin() hαβαβ+-g.学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 在∆ABC中,下列关系中一定成立的是().A.sina b A>B.sina b A=C.sina b A<D.sina b A≥2. 在∆ABC中,AB=3,BC=13,AC=4,则边AC上的高为().A.32B.33C.32D.333. D、C、B在地面同一直线上,DC=100米,从D、C两地测得A的仰角分别为30o和45o,则A点离地面的高AB等于()米.A.100 B.503C.50(31)-D.50(31)+4. 在地面上C 点,测得一塔塔顶A 和塔基B 的仰角分别是60︒和30︒,已知塔基B 高出地面20m ,则塔身AB 的高为_________m .5. 在∆ABC 中,22b =,2a =,且三角形有两解,则A 的取值范围是 .课后作业1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ?2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高.§1.2应用举例—③测量角度学习目标能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.学习过程一、课前准备复习1:在ABC △中,已知2c =,3C π=,且1sin 32ab C =,求a b ,.复习2:设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,3c =,求ac的值.二、新课导学 ※ 典型例题例1. 如图,一艘海轮从A 出发,沿北偏东75︒的方向航行67.5 n mile 后到达海岛B ,然后从B 出发,沿北偏东32︒的方向航行54.0 n mile 后达到海岛C.如果下次航行直接从A 出发到达C ,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1︒,距离精确到0.01n mile)分析:首先由三角形的内角和定理求出角∠ABC , 然后用余弦定理算出AC 边,再根据正弦定理算出AC 边和AB 边的夹角∠CAB .例2. 某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?※ 动手试试练1. 甲、乙两船同时从B 点出发,甲船以每小时10(3+1)km 的速度向正东航行,乙船以每小时20km 的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A 、C 两点,求A 、C 两点的距离,以及在A 点观察C 点的方向角.练2. 某渔轮在A 处测得在北45°的C 处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群?三、总结提升 ※ 学习小结1. 已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.;2.已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.※ 知识拓展已知∆ABC 的三边长均为有理数,A =3θ,B =2θ,则cos5θ是有理数,还是无理数? 因为5C πθ=-,由余弦定理知222cos 2a b c C ab+-=为有理数, 所以cos5cos(5)cos C θπθ=--=-为有理数.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ). A .α>β B .α=βC .α+β=90oD .α+β=180o2. 已知两线段2a =,22b =,若以a 、b 为边作三角形,则边a 所对的角A 的取值范围是( ).A .(,)63ππB .(0,]6πC .(0,)2πD .(0,]4π3. 关于x 的方程2sin 2sin sin 0A x B x C ++=g g 有相等实根,且A 、B 、C 是∆的三个内角,则三角形的三边a b c 、、满足( ). A .b ac = B .a bc = C .c ab = D .2b ac =4. △ABC 中,已知a :b :c ,则此三角形中最大角的度数为 .5. 在三角形中,已知:A ,a ,b 给出下列说法: (1)若A ≥90°,且a ≤b ,则此三角形不存在 (2)若A ≥90°,则此三角形最多有一解(3)若A <90°,且a =b sin A ,则此三角形为直角三角形,且B =90° (4)当A <90°,a <b 时三角形一定存在(5)当A <90°,且b sin A <a <b 时,三角形有两解 其中正确说法的序号是 .1. 我舰在敌岛A 南偏西50︒相距12海里的B 处,发现敌舰正由岛沿北偏西10︒的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?§1.2应用举例—④解三角形1. 能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题;2. 掌握三角形的面积公式的简单推导和应用;3. 能证明三角形中的简单的恒等式.一、课前准备复习1:在∆ABC 中(1)若1,120a b B ===︒,则A 等于 .(2)若a =2b =,150C =︒,则c = _____.复习2:在ABC ∆中,a =2b =,150C =︒,则高BD = ,三角形面积= .二、新课导学 ※ 学习探究探究:在∆ABC 中,边BC 上的高分别记为h a ,那么它如何用已知边和角表示?h a =b sin C =c sin B根据以前学过的三角形面积公式S =12ah , 代入可以推导出下面的三角形面积公式,S =12ab sin C ,或S = ,同理S = .新知:三角形的面积等于三角形的任意两边以及它们夹角的正弦之积的一半.※ 典型例题例1. 在∆ABC 中,根据下列条件,求三角形的面积S (精确到0.1cm 2): (1)已知a =14.8cm ,c =23.5cm ,B =148.5︒; (2)已知B =62.7︒,C =65.8︒,b =3.16cm ;(3)已知三边的长分别为a =41.4cm ,b =27.3cm ,c =38.7cm .变式:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m ,88m ,127m ,这个区域的面积是多少?(精确到0.1cm 2)例2. 在∆ABC 中,求证:(1)222222sin sin sin a b A B c C++=;(2)2a +2b +2c =2(bc cos A +ca cos B +ab cos C ).小结:证明三角形中恒等式方法: 应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※ 动手试试练1. 在∆ABC 中,已知28a cm =,33c cm =,45B =o ,则∆ABC 的面积是 .练2. 在∆ABC 中,求证: 22(cos cos )c a B b A a b -=-.三、总结提升 ※ 学习小结1. 三角形面积公式:S =12ab sin C = = . 2. 证明三角形中的简单的恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”. ※ 知识拓展三角形面积S =,这里1()p a b c =++,这就是著名的海伦公式.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC ∆中,2,60a b C ︒===,则ABC S ∆=( ).A. B.C. D.322. 三角形两边之差为2,夹角的正弦值为35,面积为92,那么这个三角形的两边长分别是().A. 3和5B. 4和6C. 6和8D. 5和73. 在ABC∆中,若2cos sin sinB A C⋅=,则ABC∆一定是()三角形.A. 等腰B. 直角C. 等边D. 等腰直角4. ABC∆三边长分别为3,4,6,它的较大锐角的平分线分三角形的面积比是.5. 已知三角形的三边的长分别为54a cm=,61b cm=,71c cm=,则∆ABC的面积是.1.已知在∆ABC中,∠B=30︒,b=6,c a及∆ABC的面积S.2. 在△ABC中,若sin sin sin(cos cos)A B C A B+=⋅+,试判断△ABC的形状.§1.2应用举例(练习)1.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量的实际问题;2.三角形的面积及有关恒等式.一、课前准备复习1:解三角形应用题的关键:将实际问题转化为解三角形问题来解决.复习2:基本解题思路是:①分析此题属于哪种类型(距离、高度、角度);②依题意画出示意图,把已知量和未知量标在图中;③确定用哪个定理转化,哪个定理求解;④进行作答,并注意近似计算的要求.二、新课导学※典型例题例1. 某观测站C在目标A的南偏西25o方向,从A出发有一条南偏东35o走向的公路,在C 处测得与C相距31km的公路上有一人正沿着此公路向A走去,走20km到达D,此时测得CD距离为21km,求此人在D处距A还有多远?2. 在某点B处测得建筑物AE的顶端A的仰角为θ,沿BE方向前进30m,至点C处测得顶端A的仰角为2θ,再继续前进至D点,测得顶端A的仰角为4θ,求θ的大小和建筑物AE的高.3. 如图,在四边形ABCD 中,AC 平分∠DAB ,∠ABC =60°,AC =7,AD =6,S △ADC求AB 的长.※ 动手试试练1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ?练2. 两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东30°,灯塔B 在观察站C 南偏东60°,则A 、B 之间的距离为多少?三、总结提升 ※ 学习小结1. 解三角形应用题的基本思路,方法; 2.应用举例中测量问题的强化.※ 知识拓展秦九韶“三斜求积”公式:※ 自我评价 你完成本节导学案的情况为( ). A.很好 B. 较好 C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 某人向正东方向走x km 后,向右转150o ,然后朝新方向走3km ,结果他离出发点恰好km ,则x 等于( ).A B. CD .32.在200米的山上顶,测得山下一塔顶与塔底的俯角分别为30,60o o ,则塔高为()米. A .2003 B C .4003D3. 在∆ABC 中,60A ∠=︒,16AC =,面积为BC 的长度为( ).A .25B .51C .D .494. 从200米高的山顶A 处测得地面上某两个景点B 、C 的俯角分别是30º和45º,且∠BAC =45º,则这两个景点B 、C 之间的距离 .5. 一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°相距20里处,随后货轮按北偏西30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45︒,则货轮的速度 .B C1. 3.5米长的棒斜靠在石堤旁,棒的一端在离堤足1.2米地面上,另一端在沿堤上2.8米的地方,求堤对地面的倾斜角.2. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m1-),n =(cos A ,sin A ). 若m ⊥n ,且a cos B +b cos A =c sin C ,求角B .第一章 解三角形(复习)能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题.一、课前准备复习1: 正弦定理和余弦定理 (1)用正弦定理:①知两角及一边解三角形;②知两边及其中一边所对的角解三角形(要讨论解的个数). (2)用余弦定理:①知三边求三角;②知道两边及这两边的夹角解三角形.复习2:应用举例① 距离问题,②高度问题,③ 角度问题,④计算问题.练:有一长为2公里的斜坡,它的倾斜角为30°,现要将倾斜角改为45°,且高度不变. 则斜坡长变为___ .二、新课导学 ※ 典型例题例1. 在ABC ∆中tan()1A B +=,且最长边为1,tan tan A B >,1tan 2B =,求角C 的大小及△ABC 最短边的长.例2. 如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30o ,相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救援(角度精确到1o )?北 2010 A B ••C例3. 在∆ABC 中,设tan 2,tan A c bB b-= 求A 的值.※ 动手试试练1. 如图,某海轮以60 n mile/h 的速度航行,在A 点测得海面上油井P 在南偏东60°,向北航行40 min 后到达B 点,测得油井P 在南偏东30°,海轮改为北偏东60°的航向再行驶80 min 到达C 点,求P 、C 间的距离.练2. 在△ABC 中,b =10,A =30°,问a 取何值时,此三角形有一个解?两个解?无解?三、总结提升 ※ 学习小结1. 应用正、余弦定理解三角形;2. 利用正、余弦定理解决实际问题(测量距离、高度、角度等); 3.在现实生活中灵活运用正、余弦定理解决问题. (边角转化).※ 知识拓展设在ABC ∆中,已知三边a ,b ,c ,那么用已知边表示外接圆半径R 的公式是※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,则△ABC 的面积为( ). A .9 B .18 C .9 D .2.在△ABC 中,若222c a b ab =++,则∠C =( ). A . 60° B . 90° C .150° D .120°3. 在∆ABC 中,80a =,100b =,A =30°,则B 的解的个数是(). A .0个 B .1个 C .2个 D .不确定的4. 在△ABC 中,a =b =1cos 3C =,则ABC S =△_______5. 在∆ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,若2222sin a b c bc A =+-,则A =___ ____.课后作业1. 已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若1cos cos sin sin 2B C B C -=.(1)求A ;(2)若23,4a b c =+=,求ABC ∆的面积.2. 在△ABC 中,,,a b c 分别为角A 、B 、C 的对边,22285bca cb -=-,a =3, △ABC 的面积为6,(1)求角A 的正弦值; (2)求边b 、c .§2.1数列的概念与简单表示法(1)学习目标1. 理解数列及其有关概念,了解数列和函数之间的关系;2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;3. 对于比较简单的数列,会根据其前几项写出它的个通项公式.学习过程一、课前准备(预习教材P 28 ~ P 30 ,找出疑惑之处) 复习1:函数,当x 依次取1,2,3,…时,其函数值有什么特点?复习2:函数y =7x +9,当x 依次取1,2,3,…时,其函数值有什么特点?二、新课导学 ※ 学习探究探究任务:数列的概念⒈ 数列的定义: 的一列数叫做数列.⒉ 数列的项:数列中的 都叫做这个数列的项. 反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a L L ,或简记为{}n a ,其中n a 是数列的第 项.4. 数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用 来表示,那么 就叫做这个数列的通项公式.。
高中数学必修5导学案 第二章 数列
§2.1数列的概念与简单表示法(1)学习目标1. 理解数列及其有关概念,了解数列和函数之间的关系;2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;3. 对于比较简单的数列,会根据其前几项写出它的个通项公式.学习过程一、课前准备(预习教材P 28 ~ P 30 ,找出疑惑之处) 复习1:函数,当x 依次取1,2,3,…时,其函数值有什么特点?复习2:函数y =7x +9,当x 依次取1,2,3,…时,其函数值有什么特点?二、新课导学 ※ 学习探究探究任务:数列的概念⒈ 数列的定义: 的一列数叫做数列.⒉ 数列的项:数列中的 都叫做这个数列的项. 反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a ,或简记为{}n a ,其中n a 是数列的第 项.4.数列的分类:1)根据数列项数的多少分 数列和 数列;2)根据数列中项的大小变化情况分为 数列, 数列, 数列和 数列.5.数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用 一个式子 来表示,那么 这个公式 就叫做这个数列的通项公式.※ 典型例题例1写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴1,-12,13,-14;⑵1,0,1,0.变式:写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴12,45,910,1617;⑵1,-1,1,-1;小结:要由数列的若干项写出数列的一个通项公式,只需观察分析数列中的项的构成规律,将项表示为项数的函数关系.反思:⑴所有数列都能写出其通项公式?⑵一个数列的通项公式是唯一?⑶数列与函数有关系吗?如果有关,是什么关系?例2已知数列2,74,2,…的通项公式为2nan bacn+=,求这个数列的第四项和第五项.变式:已知数列5,11,17,23,29,…,则55是它的第项.小结:已知数列的通项公式,只要将数列中的项代入通项公式,就可以求出项数和项.※动手试试练1. 写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴1,13,15,17;⑵1,2,3,2 .练2. 写出数列2{}n n-的第20项,第n+1项.三、总结提升※学习小结1. 对于比较简单的数列,会根据其前几项写出它的一个通项公式;2. 会用通项公式写出数列的任意一项.※知识拓展数列可以看作是定义域为正整数集的特殊函数.思考:设()f n=1+12+13+…+131n-(n∈*N)那么(1)()f n f n+-等于()A.132n+B.11331n n++C.113132n n+++D.11133132n n n++++学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 下列说法正确的是().A. 数列中不能重复出现同一个数B. 1,2,3,4与4,3,2,1是同一数列C. 1,1,1,1…不是数列D. 两个数列的每一项相同,则数列相同2. 下列四个数中,哪个是数列{(1)}n n+中的一项().A. 380B. 392C. 321D. 2323. 在横线上填上适当的数:3,8,15,,35,48.4.数列(1)2{(1)}n n--的第4项是.5. 写出数列121-⨯,122⨯,123-⨯,124⨯的一个通项公式.课后作业1. 写出数列{2n}的前5项.2. (1)写出数列2212-,2313-,2414-,2515-的一个通项公式为.(2)已知数列3,7,11,15,19,…那么311是这个数列的第项.§2.1数列的概念与简单表示法(2)学习目标1. 了解数列的递推公式,明确递推公式与通项公式的异同;2. 会由递推公式写出数列的前几项,并掌握求简单数列的通项公式的方法.学习过程一、课前准备(预习教材P 31 ~ P 34 ,找出疑惑之处)复习1:什么是数列?什么是数列的通项公式?复习2:数列如何分类?二、新课导学 ※ 学习探究探究任务:数列的表示方法问题:全体正偶数按从小到大的顺序构成数列:2,4,6, (2)1. 通项公式法:试试:上面数列中n a 与项数n 之间关系的一个通项公式是 .2 .列表法:试试:上面数列中n a 与项数n 之间关系用列表法如何表示?n 1 2 3 …… n …… n a246……2n……3.图象法:数列的图形是 ,因为横坐标为 数,所以这些点都在y 轴的 侧,而点的个数取决于数列的 .从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势.4. 递推公式法: 递推公式:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前n 项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.反思:所有数列都能有四种表示方法吗?※ 典型例题例1 设数列{}n a 满足11111(1).nn a a n a -=⎧⎪⎨=+>⎪⎩写出这个数列的前五项.变式:已知12a =,12n n a a +=,写出前5项,并猜想通项公式n a .小结:由递推公式求数列的项,只要让n 依次取不同的值代入递推公式就可求出数列的项.例2 已知数列{}n a 满足10a =,12n n a a n +=+, 那么2007a =( ). A. 2003×2004 B. 2004×2005 C. 2007×2006 D. 22004变式:已知数列{}n a 满足10a =,12n n a a n +=+,求n a .小结:由递推公式求数列的通项公式,适当的变形与化归及归纳猜想都是常用方法. ※ 动手试试练1. 已知数列{}n a 满足11a =,223a =,且111120n n n n n n a a a a a a -+-++-= (2n ≥),求34,a a .练2.(2005年湖南)已知数列{}n a 满足10a =,1331n n n a a a +-=+ (*n N ∈),则20a =( ).A .0 B.-3 C.3 D.32练3. 在数列{}n a 中,12a =,1766a =,通项公式是项数n 的一次函数. ⑴ 求数列{}n a 的通项公式; ⑵ 88是否是数列{}n a 中的项.三、总结提升 ※ 学习小结1. 数列的表示方法;2. 数列的递推公式.※ 知识拓展n 刀最多能将比萨饼切成几块?意大利一家比萨饼店的员工乔治喜欢将比萨饼切成形状各异的小块,以便出售. 他发现一刀能将饼切成两块,两刀最多能切成4块,而三刀最多能切成7块(如图).请你帮他算算看,四刀最多能将饼切成多少块?n 刀呢?解析:将比萨饼抽象成一个圆,每一刀的切痕看成圆的一条弦. 因为任意两条弦最多只能有一个交点,所以第n 刀最多与前n -1刀的切痕都各有一个不同的交点,因此第n 刀的切痕最多被前n -1刀分成n 段,而每一段则将相应的一块饼分成两块. 也就是说n 刀切下去最多能使饼增加n 块. 记刀数为1时,饼的块数最多为1a ,……,刀数为n 时,饼的块数最多为n a ,所以n a =1n a n -+. 由此可求得n a =1+2)1(+n n .学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测1. 已知数列130n n a a +--=,则数列{}n a 是( ).A. 递增数列B. 递减数列C. 摆动数列D. 常数列2. 数列{}n a 中,2293n a n n =-++,则此数列最大项的值是( ).A. 3B. 13C. 1318D. 123. 数列{}n a 满足11a =,12n n a a +=+(n ≥1),则该数列的通项n a =( ). A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 4. 已知数列{}n a 满足113a =,1(1)2n n n a a -=- (n ≥2),则5a = .5. 已知数列{}n a 满足112a =,111n n a a +=-(n ≥2),则6a = .课后作业1. 数列{}n a 中,1a =0,1n a +=n a +(2n -1) (n ∈N ),写出前五项,并归纳出通项公式.2. 数列{}n a 满足11a =,12()2nn n a a n N a +=∈+,写出前5项,并猜想通项公式n a .§2.2等差数列(1)学习目标1. 理解等差数列的概念,了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;2. 探索并掌握等差数列的通项公式;3. 正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项.学习过程一、课前准备(预习教材P 36 ~ P 39 ,找出疑惑之处) 复习1:什么是数列?复习2:数列有几种表示方法?分别是哪几种方法?二、新课导学 ※ 学习探究探究任务一:等差数列的概念问题1:请同学们仔细观察,看看以下四个数列有什么共同特征? ① 0,5,10,15,20,25,… ② 48,53,58,63③ 18,15.5,13,10.5,8,5.5④ 10072,10144,10216,10288,10366新知:1.等差数列:一般地,如果一个数列从第 2 项起,每一项与它 前 一项的 差 等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的 公差 , 常用字母 d 表示.2.等差中项:由三个数a ,A , b 组成的等差数列,这时数 叫做数 和 的等差中项,用等式表示为A =探究任务二:等差数列的通项公式问题2:数列①、②、③、④的通项公式存在吗?如果存在,分别是什么?若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得: 21a a -= ,即:21a a =+ 32a a -= , 即:321a a d a =+=+ 43a a -= ,即:431a a d a =+=+……由此归纳等差数列的通项公式可得:n a =∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a .※ 典型例题例1 ⑴求等差数列8,5,2…的第20项;⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?变式:(1)求等差数列3,7,11,……的第10项.(2)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.小结:要求出数列中的项,关键是求出通项公式;要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数n 值,使得n a 等于这一数.例2 已知数列{n a }的通项公式n a pn q =+,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是多少?变式:已知数列的通项公式为61n a n =-,问这个数列是否一定是等差数列?若是,首项与公差分别是什么?小结:要判定{}n a 是不是等差数列,只要看1n n a a --(n ≥2)是不是一个与n 无关的常数.※ 动手试试练1. 等差数列1,-3,-7,-11,…,求它的通项公式和第20项.练2.在等差数列{}n a 的首项是51210,31a a ==, 求数列的首项与公差.三、总结提升 ※ 学习小结1. 等差数列定义: 1n n a a d --= (n ≥2);2. 等差数列通项公式:n a =1(1)a n d +- (n ≥1).※ 知识拓展1. 若三个数成等差数列,且已知和时,可设这三个数为,,a d a a d -+.2. 若四个数成等差数列,可设这四个数为3,,,3a d a d a d a d --++.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 等差数列1,-1,-3,…,-89的项数是( ). A. 92 B. 47 C. 46 D. 452. 数列{}n a 的通项公式25n a n =+,则此数列是( ).A.公差为2的等差数列B.公差为5的等差数列C.首项为2的等差数列D.公差为n 的等差数列3. 等差数列的第1项是7,第7项是-1,则它的第5项是( ).A. 2B. 3C. 4D. 64. 在△ABC 中,三个内角A ,B ,C 成等差数列,则∠B = .5. 等差数列的相邻4项是a +1,a +3,b ,a +b ,那么a = ,b = .课后作业1. 在等差数列{}n a 中,⑴已知12a =,d =3,n =10,求n a ;⑵已知13a =,21n a =,d =2,求n ;⑶已知112a =,627a =,求d ;⑷已知d =-13,78a =,求1a .§2.2等差数列(2)学习目标1. 进一步熟练掌握等差数列的通项公式及推导公式;2. 灵活应用等差数列的定义及性质解决一些相关问题.学习过程一、课前准备(预习教材P 39 ~ P 40,找出疑惑之处) 复习1:什么叫等差数列?复习2:等差数列的通项公式是什么?二、新课导学 ※ 学习探究探究任务:等差数列的性质1. 在等差数列{}n a 中,d 为公差, m a 与n a 有何关系?2. 在等差数列{}n a 中,d 为公差,若,,,m n p q N +∈且m n p q +=+,则m a ,n a ,p a ,q a 有何关系?※ 典型例题例1 在等差数列{}n a 中,已知510a =,1231a =,求首项1a 与公差d .变式:在等差数列{}n a 中, 若56a =,815a =,求公差d 及14a .小结:在等差数列{}n a 中,公差d 可以由数列中任意两项m a 与n a 通过公式m na a d m n-=-求出.例2 在等差数列{}n a 中,23101136a a a a +++=,求58a a +和67a a +.变式:在等差数列{}n a 中,已知234534a a a a +++=,且2552a a = ,求公差d .小结:在等差数列中,若m +n =p +q ,则 m n p qa a a a +=+,可以使得计算简化. ※ 动手试试练1. 在等差数列{}n a 中,14739a a a ++=,25833a a a ++=,求369a a a ++的值.练2. 已知两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个相同项?三、总结提升 ※ 学习小结1. 在等差数列中,若m +n =p +q ,则m n p q a a a a +=+注意:m n m n a a a ++≠,左右两边项数一定要相同才能用上述性质.2. 在等差数列中,公差m na a d m n-=-.※ 知识拓展判别一个数列是否等差数列的三种方法,即: (1)1n n a a d +-=; (2)(0)n a pn q p =+≠; (3)2n S an bn =+.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 一个等差数列中,1533a =,2566a =,则35a =( ).A. 99B. 49.5C. 48D. 492. 等差数列{}n a 中7916a a +=,41a =,则12a 的值为( ). A . 15 B. 30 C. 31 D. 643. 等差数列{}n a 中,3a ,10a 是方程2350x x --=,则56a a +=( ). A. 3 B. 5 C. -3 D. -54. 等差数列{}n a 中,25a =-,611a =,则公差d = .5. 若48,a ,b ,c ,-12是等差数列中连续五项,则a = ,b = ,c = .课后作业1. 若 12530a a a +++= , 671080a a a +++= , 求111215a a a +++ .2. 成等差数列的三个数和为9,三数的平方和为35,求这三个数.§2.3 等差数列的前n 项和(1)学习目标1. 掌握等差数列前n 项和公式及其获取思路;2. 会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题.学习过程一、课前准备(预习教材P 42 ~ P 44,找出疑惑之处)复习1:什么是等差数列?等差数列的通项公式是什么?复习2:等差数列有哪些性质?二、新课导学 ※ 学习探究探究:等差数列的前n 项和公式 问题:1. 计算1+2+…+100=?2. 如何求1+2+…+n =?新知:数列{}n a 的前n 项的和:一般地,称 为数列{}n a 的前n 项的和,用n S 表示,即n S反思:① 如何求首项为1a ,第n 项为n a 的等差数列{}n a 的前n 项的和?② 如何求首项为1a ,公差为d 的等差数列{}n a 的前n 项的和?试试:根据下列各题中的条件,求相应的等差数列{}n a 的前n 项和n S . ⑴184188a a n =-=-=,,;⑵114.50.715a d n ===,,.小结:1. 用1()2n n n a a S +=,必须具备三个条件: . 2. 用1(1)2n n n dS na -=+,必须已知三个条件: .※ 典型例题例1 2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的统治》. 某市据此提出了实施“校校通”工程的总目标:从2001年起用10年时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元. 为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元. 那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?小结:解实际问题的注意:① 从问题中提取有用的信息,构建等差数列模型;② 写这个等差数列的首项和公差,并根据首项和公差选择前n 项和公式进行求解. 例2 已知一个等差数列{}n a 前10项的和是310,前20项的和是1220. 由这些条件能确定这个等差数列的前n 项和的公式吗?变式:等差数列{}n a 中,已知1030a =,2050a =,242n S =,求n .小结:等差数列前n 项和公式就是一个关于11n a a n a n d 、、或者、、的方程,已知几个量,通过解方程,得出其余的未知量.三、总结提升 ※ 学习小结1. 等差数列前n 项和公式的两种形式;2. 两个公式适用条件,并能灵活运用;3. 等差数列中的“知三求二”问题,即:已知等差数列之1,,,,n n a a q n S 五个量中任意的三个,列方程组可以求出其余的两个.※ 知识拓展1. 若数列{}n a 的前n 项的和2n S An Bn =+(A 0≠,A 、B 是与n 无关的常数),则数列{}n a 是等差数列.2. 已知数列{},n a 是公差为d 的等差数列,S n 是其前n 项和,设232,,,k k k k k k N S S S S S +∈--也成等差数列,公差为2k d .学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在等差数列{}n a 中,10120S =,那么110a a +=( ).A. 12B. 24C. 36D. 482. 在50和350之间,所有末位数字是1的整数之和是( ). A .5880 B .5684 C .4877 D .45663. 已知等差数列的前4项和为21,末4项和为67,前n 项和为286,则项数n 为( ) A. 24 B. 26 C. 27 D. 284. 在等差数列{}n a 中,12a =,1d =-,则8S = .5. 在等差数列{}n a 中,125a =,533a =,则6S = .课后作业1. 数列{n a }是等差数列,公差为3,n a =11,前n 和n S =14,求n 和3a .§2.3 等差数列的前n 项和(2)学习目标1. 进一步熟练掌握等差数列的通项公式和前n 项和公式;2. 了解等差数列的一些性质,并会用它们解决一些相关问题;3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值.学习过程一、课前准备(预习教材P 45 ~ P 46,找出疑惑之处)复习1:等差数列{n a }中, 4a =-15, 公差d =3,求5S .复习2:等差数列{n a }中,已知31a =,511a =,求和8S .二、新课导学 ※ 学习探究问题:如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?※ 典型例题例1已知数列{}n a 的前n 项为212n S n n =+,求这个数列的通项公式. 这个数列是等差数列吗?如果是,它的首项与公差分别是什么?变式:已知数列{}n a 的前n 项为212343n S n n =++,求这个数列的通项公式.小结:数列通项n a 和前n 项和n S 关系为n a =11(1)(2)nn S n S S n -=⎧⎨-≥⎩,由此可由n S 求n a .例2 已知等差数列2454377,,,....的前n 项和为n S ,求使得n S 最大的序号n 的值.变式:等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.小结:等差数列前项和的最大(小)值的求法. (1)利用n a : 当n a >0,d <0,前n 项和有最大值,可由n a ≥0,且1n a +≤0,求得n 的值;当n a <0,d >0,前n 项和有最小值,可由n a ≤0,且1n a +≥0,求得n 的值(2)利用n S :由21()22n d dS n a n =+-,利用二次函数配方法求得最大(小)值时n 的值.※ 动手试试练1. 已知232n S n n =+,求数列的通项n a .三、总结提升 ※ 学习小结1. 数列通项n a 和前n 项和n S 关系;2. 等差数列前项和最大(小)值的两种求法.※ 知识拓展等差数列奇数项与偶数项的性质如下: 1°若项数为偶数2n ,则S S nd 偶奇-=;1(2)n n S an S a +≥奇偶=; 2°若项数为奇数2n +1,则1n S S a +奇偶-=;1n S na +=偶;1(1)n S n a ++奇=;1S n S n +偶奇=. 学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列数列是等差数列的是( ). A. 2n a n = B. 21n S n =+C. 221n S n =+D. 22n S n n =-2. 等差数列{n a }中,已知1590S =,那么8a =( ).A. 3B. 4C. 6D. 123. 等差数列{n a }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ). A. 70 B. 130 C. 140 D. 1704. 在小于100的正整数中共有 个数被7除余2,这些数的和为 .5. 在等差数列中,公差d =12,100145S =,则13599...a a a a ++++= .课后作业1. 在项数为2n +1的等差数列中,所有奇数项和为165,所有偶数项和为150,求n 的值.2. 等差数列{n a },10a <,912S S =,该数列前多少项的和最小?§2.4等比数列(1)学习目标1理解等比数列的概念;探索并掌握等比数列的通项公式、性质;2. 能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;3. 体会等比数列与指数函数的关系.学习过程一、课前准备(预习教材P 48 ~ P 51,找出疑惑之处) 复习1:等差数列的定义?复习2:等差数列的通项公式n a = , 等差数列的性质有:二、新课导学 ※ 学习探究观察:①1,2,4,8,16,…②1,12,14,18,116,…③1,20,220,320,420,…思考以上四个数列有什么共同特征?新知:1. 等比数列定义:一般地,如果一个数列从第 项起, 一项与它的 一项的 等于 常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,通常用字母 表示(q ≠0),即:1n n aa -= (q ≠0)2. 等比数列的通项公式: 21a a = ; 3211()a a q a q q a === ; 24311()a a q a q q a === ; … …∴ 11n n a a q a -==⋅ 等式成立的条件3. 等比数列中任意两项n a 与m a 的关系是:※ 典型例题例1 (1) 一个等比数列的第9项是49,公比是-13,求它的第1项; (2)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项.小结:关于等比数列的问题首先应想到它的通项公式11n n a a q -=.例2 已知数列{n a }中,lg 35n a n =+ ,试用定义证明数列{n a }是等比数列.小结:要证明一个数列是等比数列,只需证明对于任意正整数n ,1n na a +是一个不为0的常数就行了.※ 动手试试练1. 某种放射性物质不断变化为其他物质,每经过一年剩留的这种物质是原来的84%. 这种物质的半衰期为多长(精确到1年)?三、总结提升 ※ 学习小结1. 等比数列定义;2. 等比数列的通项公式和任意两项n a 与m a 的关系.※ 知识拓展在等比数列{}n a 中,⑴ 当10a >,q >1时,数列{}n a 是递增数列; ⑵ 当10a <,01q <<,数列{}n a 是递增数列; ⑶ 当10a >,01q <<时,数列{}n a 是递减数列; ⑷ 当10a <,q >1时,数列{}n a 是递减数列; ⑸ 当0q <时,数列{}n a 是摆动数列; ⑹ 当1q =时,数列{}n a 是常数列.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在{}n a 为等比数列,112a =,224a =,则3a =( ).A. 36B. 48C. 60D. 722. 等比数列的首项为98,末项为13,公比为23,这个数列的项数n =( ).A. 3B. 4C. 5D. 63. 已知数列a ,a (1-a ),2(1)a a -,…是等比数列,则实数a 的取值范围是( ). A. a ≠1 B. a ≠0且a ≠1 C. a ≠0 D. a ≠0或a ≠14. 设1a ,2a ,3a ,4a 成等比数列,公比为2,则123422a a a a ++= .5. 在等比数列{}n a 中,4652a a a =-,则公比q = .课后作业在等比数列{}n a 中, ⑴ 427a =,q =-3,求7a ;⑵ 218a =,48a =,求1a 和q ;⑶ 44a =,76a =,求9a ;⑷ 514215,6a a a a -=-=,求3a .§2.4等比数列(2)学习目标1.灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;2. 熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法.学习过程一、课前准备(预习教材P 51 ~ P 54,找出疑惑之处)复习1:等比数列的通项公式n a = = . 公比q 满足的条件是复习2:等差数列有何性质?二、新课导学 ※ 学习探究问题1:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则2G bG ab G a G=⇒=⇒=新知1:等比中项定义如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 称为a 与b 的等比中项. 即G = (a ,b 同号).试试:数4和6的等比中项是 .问题2:1.在等比数列{n a }中,2537a a a =是否成立呢?2.211(1)n n n a a a n -+=>是否成立?你据此能得到什么结论?3.2(0)n n k n k a a a n k -+=>>是否成立?你又能得到什么结论?新知2:等比数列的性质在等比数列中,若m +n =p +q ,则m n p k a a a a =.试试:在等比数列{}n a ,已知19105,100a a a ==,那么18a = .※ 典型例题例1已知{},{}n n a b 是项数相同的等比数列,仿照下表中的例子填写表格,从中你能得出什么结论?证明你的结论.例 自选1 自选2 n a 23()3n ⨯n b152n --⨯n n a b 1410()3n --⨯{}n n a b 是否等比 是变式:项数相同等比数列{n a }与{n b },数列{nna b }也一定是等比数列吗?证明你的结论.小结:两个等比数列的积和商仍然是等比数列.例2在等比数列{n a }中,已知47512a a =- ,且38124a a +=,公比为整数,求10a .变式:在等比数列{n a }中,已知7125a a = ,则891011a a a a = .※ 动手试试练1. 一个直角三角形三边成等比数列,则( ).A. 三边之比为3:4:5B. 三边之比为1:3:3C. 较小锐角的正弦为512-D. 较大锐角的正弦为512-练2. 在7和56之间插入a 、b ,使7、a 、b 、56成等比数列,若插入c 、d ,使7、c 、d 、56成等差数列,求a +b +c +d 的值.三、总结提升 ※ 学习小结1. 等比中项定义;2. 等比数列的性质.※ 知识拓展公比为q 的等比数列{}n a 具有如下基本性质:1. 数列{||}n a ,2{}n a ,{}(0)n ca c ≠,*{}()nm a m N ∈,{}k n a 等,也为等比数列,公比分别为2||,,,,m k q q q q q . 若数列{}n b 为等比数列,则{}n n a b,{}n n ab 也等比. 2. 若*m N ∈,则n m n m a a q -= . 当m =1时,便得到等比数列的通项公式. 3. 若m n k l +=+,*,,,m n k l N ∈,则m n k l a a a a = .4. 若{}n a 各项为正,c >0,则{l o g }c n a 是一个以1log c a 为首项,log c q 为公差的等差数列. 若{}n b 是以d 为公差的等差数列,则{}n b c 是以1b c 为首项,d c 为公比的等比数列. 当一个数列既是等差数列又是等比数列时,这个数列是非零的常数列.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在{}n a 为等比数列中,0n a >,224355216a a a a a ++=,那么35a a +=( ).A. ±4B. 4C. 2D. 82. 若-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( ).A .8B .-8C .±8D .983. 若正数a ,b ,c 依次成公比大于1的等比数列,则当x >1时,log a x ,log b x ,log c x ( ) A.依次成等差数列 B.各项的倒数依次成等差数列 C.依次成等比数列 D.各项的倒数依次成等比数列4. 在两数1,16之间插入三个数,使它们成为等比数列,则中间数等于 .5. 在各项都为正数的等比数列{}n a 中,569a a = ,则log 31a + log 32a +…+ log 310a = .课后作业1. 在{}n a 为等比数列中,1964a a = ,3720a a +=,求11a 的值.2. 已知等差数列{}n a 的公差d ≠0,且1a ,3a ,9a 成等比数列,求1392410a a a a a a ++++.§2.5等比数列的前n 项和(1)学习目标1. 掌握等比数列的前n 项和公式;2. 能用等比数列的前n 项和公式解决实际问题.学习过程一、课前准备(预习教材P 55 ~ P 56,找出疑惑之处)复习1:什么是数列前n 项和?等差数列的数列前n 项和公式是什么?复习2:已知等比数列中,33a =,681a =,求910,a a .二、新课导学 ※ 学习探究探究任务: 等比数列的前n 项和故事:“国王对国际象棋的发明者的奖励”新知:等比数列的前n 项和公式设等比数列123,,,n a a a a 它的前n 项和是n S =123n a a a a +++ ,公比为q ≠0,公式的推导方法一:则22111111n n n nS a a q a q a q a q qS --⎧=++++⎪⎨=⎪⎩(1)n q S ∴-= 当1q ≠时,n S = ①或n S = ②当q =1时,n S =公式的推导方法二:由等比数列的定义,32121n n a a a q a a a -==== , 有231121n n n n na a a S a q a a a S a -+++-==+++- ,即1n n nS a q S a -=-.∴ 1(1)n n q S a a q -=-(结论同上)公式的推导方法三:n S =123n a a a a +++=11231()n a q a a a a -++++ =11n a qS -+=1()n n a q S a +-. ∴ 1(1)n n q S a a q -=-(结论同上)试试:求等比数列12,14,18,…的前8项的和.※ 典型例题 例1已知a 1=27,a 9=1243,q <0,求这个等比数列前5项的和.变式:13a =,548a =. 求此等比数列的前5项和.例2某商场今年销售计算机5000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30000台(结果保留到个位)?※ 动手试试练1. 等比数列中,33139,.22a S a q ==,求及练2. 一个球从100m 高出处自由落下,每次着地后又弹回到原来高度的一半再落下,当它第10次着地时,共经过的路程是多少?(精确到1m )三、总结提升 ※ 学习小结1. 等比数列的前n 项和公式;2. 等比数列的前n 项和公式的推导方法;3. “知三求二”问题,即:已知等比数列之1,,,,n n a a q n S 五个量中任意的三个,列方程组可以求出其余的两个.※ 知识拓展1. 若1q ≠-,*m N ∈,则232,,,m m m m m S S S S S --⋅⋅⋅构成新的等比数列,公比为m q .2. 若三个数成等比数列,且已知积时,可设这三个数为,,aa aq q. 若四个同符号的数成等比数列,可设这四个数为33,,,a aaq aq q q .3. 证明等比数列的方法有:(1)定义法:1n naq a +=;(2)中项法:212n n n a a a ++= .4. 数列的前n 项和构成一个新的数列,可用递推公式111(1)n n n S a S S a n -=⎧⎨=+>⎩表示.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 数列1,a ,2a ,3a ,…,1n a -,…的前n 项和为( ).A. 11n a a --B. 111n a a +--C. 211n a a+-- D. 以上都不对2. 等比数列中,已知1220a a +=,3440a a +=,则56a a +=( ).A. 30B. 60C. 80D. 1603. 设{}n a 是由正数组成的等比数列,公比为2,且30123302a a a a ⋅⋅⋅=,那么36930a a a a ⋅⋅⋅=( ).A. 102B. 202C. 1D. 6024. 等比数列的各项都是正数,若1581,16a a ==,则它的前5项和为 .5. 等比数列的前n 项和3n n S a =+,则a = .课后作业1. 等比数列中,已知1441,64,.a a q S =-=求及2. 在等比数列{}n a 中,162533,32a a a a +== ,求6S .§2.5等比数列的前n 项和(2)学习目标1. 进一步熟练掌握等比数列的通项公式和前n 项和公式;2. 会用公式解决有关等比数列的1,,,,n n S a a n q 中知道三个数求另外两个数的一些简单问题.学习过程一、课前准备(预习教材P 57 ~ P 62,找出疑惑之处) 复习1:等比数列的前n 项和公式.当1q ≠时,n S = = 当q =1时,n S =复习2:等比数列的通项公式. n a = = .二、新课导学 ※ 学习探究探究任务:等比数列的前n 项和与通项关系 问题:等比数列的前n 项和 n S =1231n n a a a a a -+++++ , 1n S -=1231n a a a a -++++ (n ≥2),∴ 1n n S S --= , 当n =1时,1S = .反思:等比数列前n 项和n S 与通项n a 的关系是什么?※ 典型例题例1 数列{}n a 的前n 项和1n n S a =-(a ≠0,a ≠1),试证明数列{}n a 是等比数列.变式:已知数列{}n a 的前n 项和n S ,且142n n S a +=+, 11a =,设12n n n b a a +=-,求证:数列{}n b 是等比数列.例2 等比数列前n 项,前2n 项,前3n 项的和分别是n S ,2n S ,3n S ,求证:n S ,2n n S S -,32n n S S -也成等比.变式:在等比数列中,已知248,60n n S S ==,求3n S .※ 动手试试练1. 等比数列{}n a 中,301013S S =,1030140S S +=,求20S .练2. 求数列1,1+2,1+2+22,1+2+22+23,…的前n 项和S n .三、总结提升 ※ 学习小结1. 等比数列的前n 项和与通项关系;2. 等比数列前n 项,前2n 项,前3n 项的和分别是n S ,2n S ,3n S ,则数列n S ,2n n S S -,32n n S S -也成为等比数列.※ 知识拓展1. 等差数列中,m n m n S S S mnd +=++;2. 等比数列中,n m m n n m m n S S q S S q S +=+=+.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 等比数列{}n a 中,33S =,69S =,则9S =( ).A. 21B. 12C. 18D. 242. 在等比数列中,14a =,q =2,使4000n S >的最小n 值是( ).A. 11B. 10C. 12D. 93. 计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”.如(1101)2表示二进制的数, 将它转换成十进制的形式是32101212021213⨯+⨯+⨯+⨯=,那么将二进制数(11111111)2转换成十进制的形式是( ).A. 922-B. 821-C. 822-D. 721-4. 在等比数列中,若332422S a S a +=+,则公比q = .5. 在等比数列中,11a =,512n a =-,341n S =-,则q = ,n = .课后作业1. 等比数列的前n 项和12nn s =-,求通项n a .2. 设a 为常数,求数列a ,2a 2,3a 3,…,na n ,…的前n 项和;。
人教B版高二数学必修五导学案
人教B版高二数学必修五导学案.2 均值不等式学案【预习达标】⒈正数a、b的算术平均数为;几何平均数为.⒉均值不等式是。
其中前者是,后者是.如何给出几何解释?⒊在均值不等式中a、b既可以表示数,又可以表示代数式,但都必须保证;另外等号成立的条件是.⒋试根据均值不等式写出下列变形形式,并注明所需条件)(1)a2+b2 ( ) (2)()(3)+()(4)x+ (x0)(5)x+ (x0) (6)ab≤ ()⒌在用均值不等式求最大值和最小值时,必须注意a+b 或ab是否为值,并且还需要注意等号是否成立.6.⑴函数f(x)=x(2-x)的最大值是;此时x的值为___________________;.⑵函数f(x)=2x(2-x)的最大值是;此时x的值为___________________;⑶函数f(x)=x(2-2x)的最大值是;此时x的值为___________________;⑷函数f(x)=x(2+x)的最小值是;此时x的值为___________________。
【典例解析】例⒈已知a、b、c∈(0,+∞),且a+b+c=1,求证+ + ≥9.例⒉(1)已知x ,求函数y=4x-2+ 的最大值.(2)已知x0,y0,且=1,求x+y的最小值。
(3)已知a、b为常数,求函数y=(x-a)2+(x-b)2的最小值。
【达标练习】一.选择题:⒈下列命题正确的是()A.a2+12a B.│x+ │≥2 C.≤2 D.sinx+ 最小值为4.⒉以下各命题(1)x2+ 的最小值是1;(2)最小值是2;(3)若a0,b0,a+b=1则(a+ )(b+ )的最小值是4,其中正确的个数是()A.0 B.1C.2 D.3⒊设a0,b0则不成立的不等式为()A.+≥2B.a2+b2≥2abC.+≥a+b D. 2+⒋设a、b R+,若a+b=2,则的最小值等于()A.1 B.2 C.3 D.4⒌已知a b0,下列不等式错误的是()A.a2+b2≥2abB.C.D.二.填空题:⒍若a、b为正数且a+b=4,则ab的最大值是________.⒎已知x1.5,则函数y=2x+ 的最小值是_________.⒏已知a、b为常数且0x1,则的最小值是_________________________.三.解答题:⒐(1)设a= ,b= ,c= 且x≠0,试判断a、b、c的大小。
高中数学必修5导学案
§1.1.1 正弦定理学习目标1. 掌握正弦定理的内容;2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题.学习过程一、课前准备试验:固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动.思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来?二、新课导学※ 学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c ,根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c==, 从而在直角三角形ABC 中,sin sin sin a b c A B C==.(探究2:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =sin sin a B b A =,则sin sin a b A B=, 同理可得sin sin c b C B=, 从而sin sin a b A B =sin c C=.类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试导.新知:正弦定理在一个三角形中,各边和它所对角的 的比相等,即sin sin a b A B =sin c C=.试试:(1)在ABC ∆中,一定成立的等式是( ).A .sin sin a A bB = B .cos cos a A b B =C . sin sin a B b A =D .cos cos a B b A =(2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 .[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =;(2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A =sin c C. (3)正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B=;b = . ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值, 如sin sin a A B b=;sin C = . (4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形.※ 典型例题例1. 在ABC ∆中,已知45A =,60B =,42a =cm ,解三角形.变式:在ABC ∆中,已知45B =,60C =,12a =cm ,解三角形.例2. 在45,2,,ABC c A a b B C ∆===中,求和.变式:在60,1,,ABC b B c a A C ∆==中,求和.三、总结提升※ 学习小结1. 正弦定理:sin sin a b A B =sin c C= 2. 正弦定理的证明方法:①三角函数的定义,还有 ②等积法,③外接圆法,④向量法.3.应用正弦定理解三角形:①已知两角和一边;②已知两边和其中一边的对角.※ 知识拓展 a b =2c R ==,其中2R 为外接圆直径.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC ∆中,若cos cos A b B a=,则ABC ∆是( ). A .等腰三角形 B .等腰三角形或直角三角形C .直角三角形D .等边三角形2. 已知△ABC 中,A ∶B ∶C =1∶1∶4,则a ∶b ∶c 等于( ).A .1∶1∶4B .1∶1∶2C .1∶1D .2∶23. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ).A. A B >B. A B <C. A ≥BD. A 、B 的大小关系不能确定4. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c = .5. 已知∆ABC 中,∠A 60=︒,a =sin sin sin a b c A B C++++= .1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,解此三角形.2. 已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k ≠0),求实数k 的取值范围为.§1.1.2 余弦定理1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题.一、课前准备复习1:在一个三角形中,各 和它所对角的 的 相等,即 = = .复习2:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形.思考:已知两边及夹角,如何解此三角形呢?二、新课导学※ 探究新知问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵AC = ,∴AC AC •=同理可得: 2222cos a b c bc A =+-,2222cos c a bab C =+-.新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?从余弦定理,又可得到以下推论:222cos 2b c a A bc+-=, , .[理解定理](1)若C =90︒,则cos C = ,这时222c a b =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.(2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角.试试:(1)△ABC 中,a =2c =,150B =,求b .(2)△ABC 中,2a =,b ,1c ,求A .※ 典型例题例1. 在△ABC 中,已知a b =,45B =,求,A C 和c .变式:在△ABC中,若AB,AC=5,且cos C=910,则BC=________.例2. 在△ABC中,已知三边长3a=,4b=,c=,求三角形的最大内角.变式:在∆ABC中,若222a b c bc=++,求角A.三、总结提升※ 学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围:① 已知三边,求三角;② 已知两边及它们的夹角,求第三边.※ 知识拓展在△ABC 中,若222a b c +=,则角C 是直角;若222a b c +<,则角C 是钝角; 222是锐角.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a c =2,B =150°,则边b 的长为( ).A. 2B.C. 2D. 2. 已知三角形的三边长分别为3、5、7,则最大角为( ).A .60B .75C .120D .1503. 已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ).A x <<B x <5C . 2<xD .5<x <54. 在△ABC 中,|AB |=3,|AC |=2,AB 与AC 的夹角为60°,则|AB -AC |=________.5. 在△ABC 中,已知三边a 、b 、c 满足222b a c ab +-=,则∠C 等于 .1. 在△ABC中,已知a=7,b=8,cos C=1314,求最大角的余弦值.2. 在△ABC中,AB=5,BC=7,AC=8,求AB BC的值.§1.1 正弦定理和余弦定理(练习)1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.一、课前准备复习1:在解三角形时已知三边求角,用定理;已知两边和夹角,求第三边,用 定理; 已知两角和一边,用 定理.复习2:在△ABC 中,已知 A =6π,a =,b =二、新课导学※ 学习探究探究:在△ABC 中,已知下列条件,解三角形.① A =6π,a =25,b =;② A =6π,a ,b =③ A =6π,a =50,b =.思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A 为锐角时).已知边a,b和∠A有两个解仅有一个解无解CH=bsinA<a<ba=CH=bsinAa<CH=bsinA试试:1. 用图示分析(A为直角时)解的情况?2.用图示分析(A为钝角时)解的情况?※典型例题例1. 在∆ABC中,已知80a=,100b=,45A∠=︒,试判断此三角形的解的情况.变式:在∆ABC中,若1a=,12c=,40C∠=︒,则符合题意的b的值有_____个.例2. 在∆ABC 中,60A =︒,1b =,2c =,求sin sin sin a b c A B C++++的值.变式:在∆ABC 中,若55a =,16b =,且1sin 2ab C =C .三、总结提升※ 学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况).※ 知识拓展在∆ABC 中,已知,,a b A ,讨论三角形解的情况 :①当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解;②当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解;※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且sin 2sin 3A B =,则a b b +的值=( ). A. 13 B. 23 C. 43 D. 532. 已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是( ).A .135°B .90°C .120°D .150°3. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ).A .锐角三角形B .直角三角形C .钝角三角形D .由增加长度决定4. 在△ABC 中,sin A :sin B :sin C =4:5:6,则cos B = .5. 已知△ABC 中,cos cos b C c B =,试判断△ABC 的形状 .1. 在∆ABC 中,a xcm =,2b cm =,45B ∠=︒,如果利用正弦定理解三角形有两解,求x 的取值范围.2. 在∆ABC中,其三边分别为a、b、c,且满足2221sin24a b cab C+-=,求角C.§1.2应用举例—①测量距离能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题一、课前准备复习1:在△ABC中,∠C=60°,a+b=2+,c=A为.复习2:在△ABC中,sin A=sin sincos cosB CB C++,判断三角形的形状.二、新课导学※典型例题例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=51︒,∠ACB=75︒. 求A、B两点的距离(精确到0.1m).提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边.新知1:基线在测量上,根据测量需要适当确定的叫基线.例2. 如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法.分析:这是例1的变式题,研究的是两个的点之间的距离测量问题.首先需要构造三角形,所以需要确定C、D两点.根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC,再利用余弦定理可以计算出AB的距离.变式:若在河岸选取相距40米的C、D两点,测得∠BCA=60°,∠ACD=30°,∠CDB=45°,∠BDA =60°.练:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少?三、总结提升※ 学习小结1. 解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.2.基线的选取:测量过程中,要根据需要选取合适的基线长度,使测量具有较高的精确度.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 水平地面上有一个球,现用如下方法测量球的大小,用锐角45︒的等腰直角三角板的斜边紧靠球面,P 为切点,一条直角边AC 紧靠地面,并使三角板与地面垂直,如果测得PA =5cm ,则球的半径等于( ).A .5cm B .C .1)cmD .6cm2. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A 的正东40千米处,B 城市处于危险区内的时间为( ).A .0.5小时B .1小时C .1.5小时D .2小时3. 在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+,则ABC ∆的形状( ).A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形4.在ABC ∆中,已知4a =,6b =,120C =,则sin A 的值是 .5. 一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距离为 km .1. 的C、D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°,A、B、C、D在同一个平面,求两目标A、B间的距离.2. 某船在海面A处测得灯塔C与A相距且在北偏东30︒方向;测得灯塔B与A相距75︒方向. 船由A向正北方向航行到D处,测得灯塔B在南偏西60︒方向. 这时灯塔C与D相距多少海里?§1.2应用举例—②测量高度1. 能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题;2. 测量中的有关名称.一、课前准备复习1:在∆ABC中,cos5cos3A bB a==,则∆ABC的形状是怎样?复习2:在∆ABC中,a、b、c分别为∠A、∠B、∠C的对边,若::a b c=1:1:3,求A:B:C 的值.二、新课导学※学习探究新知:坡度、仰角、俯角、方位角方位角---从指北方向顺时针转到目标方向线的水平转角;坡度---沿余坡向上的方向与水平方向的夹角;仰角与俯角---视线与水平线的夹角当视线在水平线之上时,称为仰角;当视线在水平线之下时,称为俯角.探究:AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法.分析:选择基线HG,使H、G、B三点共线,要求AB,先求AE在ACE∆中,可测得角,关键求AC在ACD∆中,可测得角,线段,又有α故可求得AC※典型例题例1. 如图,在山顶铁塔上B处测得地面上一点A的俯角α=5440'︒,在塔底C处测得A处的俯角β=501'︒. 已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)例2. 如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15︒的方向上,行驶5km后到达B处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD.问题1:欲求出CD,思考在哪个三角形中研究比较适合呢?问题2:在∆BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?变式:某人在山顶观察到地面上有相距2500米的A、B两个目标,测得目标A在南偏西57°,俯角是60°,测得目标B在南偏东78°,俯角是45°,试求山高.三、总结提升※ 学习小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.※ 知识拓展在湖面上高h 处,测得云之仰角为α,湖中云之影的俯角为β,则云高为sin()sin()h αβαβ+-.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在∆ABC 中,下列关系中一定成立的是( ).A .sin a b A >B .sin a b A =C .sin a b A <D .sin a b A ≥2. 在∆ABC 中,AB =3,BC AC =4,则边AC 上的高为( ).A B C .32 D . 3. D 、C 、B 在地面同一直线上,DC =100米,从D 、C 两地测得A 的仰角分别为30和45,则A 点离地面的高AB 等于( )米.A .100B .C .501)D .501)4. 在地面上C 点,测得一塔塔顶A 和塔基B 的仰角分别是60︒和30︒,已知塔基B 高出地面20m ,则塔身AB 的高为_________m .5. 在∆ABC 中,b =2a =,且三角形有两解,则A 的取值范围是 .1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ?2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高.§1.2应用举例—③测量角度能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.一、课前准备复习1:在ABC △中,已知2c =,3C π=,且1sin 2ab C =a b ,.复习2:设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60,3c =,求a c的值.二、新课导学※ 典型例题例1. 如图,一艘海轮从A出发,沿北偏东75︒的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32︒的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1︒,距离精确到0.01n mile)分析:首先由三角形的内角和定理求出角∠ABC,然后用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角∠CAB.例2. 某巡逻艇在A处发现北偏东45︒相距9海里的C处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?※动手试试练1. 甲、乙两船同时从B点出发,甲船以每小时1)km的速度向正东航行,乙船以每小时20km的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A、C两点,求A、C两点的距离,以及在A点观察C点的方向角.练2. 某渔轮在A 处测得在北45°的C 处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群?三、总结提升※ 学习小结1. 已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.;2.已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.※ 知识拓展已知∆ABC 的三边长均为有理数,A =3θ,B =2θ,则cos5θ是有理数,还是无理数? 因为5C πθ=-,由余弦定理知222cos 2a b c C ab+-=为有理数, 所以cos5cos(5)cos C θπθ=--=-为有理数.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ).A .α>βB .α=βC .α+β=90D .α+β=1802. 已知两线段2a =,b =若以a 、b 为边作三角形,则边a 所对的角A 的取值范围是( ).A .(,)63ππB .(0,]6π C .(0,)2π D .(0,]4π3. 关于x 的方程2sin 2sin sin 0A x B x C ++=有相等实根,且A 、B 、C 是∆的三个内角,则三角形的三边a b c 、、满足( ).A .b ac =B .a bc =C .c ab =D .2b ac =4. △ABC 中,已知a :b :c ,则此三角形中最大角的度数为 .5. 在三角形中,已知:A ,a ,b 给出下列说法:(1)若A ≥90°,且a ≤b ,则此三角形不存在(2)若A ≥90°,则此三角形最多有一解(3)若A <90°,且a =b sin A ,则此三角形为直角三角形,且B =90°(4)当A <90°,a <b 时三角形一定存在(5)当A <90°,且b sin A <a <b 时,三角形有两解其中正确说法的序号是 .1. 我舰在敌岛A 南偏西50︒相距12海里的B 处,发现敌舰正由岛沿北偏西10︒的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?2.§1.2应用举例—④解三角形1. 能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题;2. 掌握三角形的面积公式的简单推导和应用;3. 能证明三角形中的简单的恒等式.一、课前准备复习1:在∆ABC 中(1)若1,120a b B ===︒,则A 等于 .(2)若a =2b =,150C =︒,则c = _____.复习2:在ABC∆中,a=2b=,150C=︒,则高BD= ,三角形面积= .二、新课导学※学习探究探究:在∆ABC中,边BC上的高分别记为ha,那么它如何用已知边和角表示?ha=b sin C=c sin B根据以前学过的三角形面积公式S=12 ah,代入可以推导出下面的三角形面积公式,S=12ab sin C,或S= ,同理S= .新知:三角形的面积等于三角形的任意两边以及它们夹角的正弦之积的一半.※典型例题例1. 在∆ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2):(1)已知a=14.8cm,c=23.5cm,B=148.5︒;(2)已知B=62.7︒,C=65.8︒,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm.变式:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm2)例2. 在∆ABC中,求证:(1)222222sin sinsina b A Bc C++=;(2)2a+2b+2c=2(bc cos A+ca cos B+ab cos C).小结:证明三角形中恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※动手试试练1. 在∆ABC中,已知28a cm=,33c cm=,45B=,则∆ABC的面积是.练2. 在∆ABC中,求证:22(cos cos)c a B b A a b-=-.三、总结提升※学习小结1. 三角形面积公式:S =12ab sin C = = . 2. 证明三角形中的简单的恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※ 知识拓展三角形面积S =, 这里1()p a b c =++,这就是著名的海伦公式.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC ∆中,2,60a b C ︒===,则ABC S ∆=( ).A. B. C. D. 322. 三角形两边之差为2,夹角的正弦值为35,面积为92,那么这个三角形的两边长分别是( ).A. 3和5B. 4和6C. 6和8D. 5和73. 在ABC ∆中,若2cos sin sin B A C ⋅=,则ABC ∆一定是( )三角形.A. 等腰B. 直角C. 等边D. 等腰直角4. ABC ∆三边长分别为3,4,6,它的较大锐角的平分线分三角形的面积比是 .5. 已知三角形的三边的长分别为54a cm =,61b cm =,71c cm =,则∆ABC 的面积是 .2. 已知在∆ABC 中,∠B =30︒,b =6,c a 及∆ABC 的面积S .2. 在△ABC 中,若sin sin sin (cos cos )A B C A B +=⋅+,试判断△ABC 的形状.§1.2应用举例(练习)1.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量的实际问题;2.三角形的面积及有关恒等式.一、课前准备复习1:解三角形应用题的关键:将实际问题转化为解三角形问题来解决.复习2:基本解题思路是:①分析此题属于哪种类型(距离、高度、角度);②依题意画出示意图,把已知量和未知量标在图中;③确定用哪个定理转化,哪个定理求解;④进行作答,并注意近似计算的要求.二、新课导学※典型例题例1. 某观测站C在目标A的南偏西25方向,从A出发有一条南偏东35走向的公路,在C 处测得与C相距31km的公路上有一人正沿着此公路向A走去,走20km到达D,此时测得CD距离为21km,求此人在D处距A还有多远?例2. 在某点B处测得建筑物AE的顶端A的仰角为θ,沿BE方向前进30m,至点C处测得顶端A的仰角为2θ,再继续前进至D点,测得顶端A的仰角为4θ,求θ的大小和建筑物AE的高.例3. 如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC求AB的长.※动手试试练1. 为测某塔AB的高度,在一幢与塔AB相距20m的楼的楼顶处测得塔顶A的仰角为30°,测得塔基B的俯角为45°,则塔AB的高度为多少m?练2. 两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少?三、总结提升※学习小结1. 解三角形应用题的基本思路,方法;2.应用举例中测量问题的强化.※知识拓展秦九韶“三斜求积”公式:※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 某人向正东方向走x km后,向右转150,然后朝新方向走3km,结果他离出发点恰好km,则x等于().A B.C D.32.在200米的山上顶,测得山下一塔顶与塔底的俯角分别为30,60,则塔高为( )米.A .2003BC .4003D3. 在∆ABC 中,60A ∠=︒,16AC =,面积为BC 的长度为( ).A .25B .51C .D .494. 从200米高的山顶A 处测得地面上某两个景点B 、C 的俯角分别是30º和45º,且∠BAC =45º,则这两个景点B 、C 之间的距离 .5. 一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°相距20里处,随后货轮按北偏西30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45︒,则货轮的速度 .1. 3.5米长的棒斜靠在石堤旁,棒的一端在离堤足1.2米地面上,另一端在沿堤上2.8米的地方,求堤对地面的倾斜角.2. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m 1-),n =(cos A ,sin A ). 若m ⊥n ,且a cos B +b cos A =c sin C ,求角B .第一章 解三角形(复习)能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题.一、课前准备复习1: 正弦定理和余弦定理(1)用正弦定理:①知两角及一边解三角形;②知两边及其中一边所对的角解三角形(要讨论解的个数).(2)用余弦定理:①知三边求三角;②知道两边及这两边的夹角解三角形.复习2:应用举例① 距离问题,②高度问题,③ 角度问题,④计算问题.练:有一长为2公里的斜坡,它的倾斜角为30°,现要将倾斜角改为45°,且高度不变. 则斜坡长变为___ .二、新课导学※ 典型例题例1. 在ABC ∆中tan()1A B +=,且最长边为1,tan tan A B >,1tan 2B =,求角C 的大小及△ABC 最短边的长.例2. 如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)?例3. 在∆ABC中,设tan2,tanA c bB b-=求A的值.※动手试试练1. 如图,某海轮以60 n mile/h 的速度航行,在A点测得海面上油井P在南偏东60°,向北航行40 min后到达B点,测得油井P在南偏东30°,海轮改为北偏东60°的航向再行驶80 min到达C点,求P、C间的距离.练2. 在△ABC中,b=10,A=30°,问a取何值时,此三角形有一个解?两个解?无解?三、总结提升※ 学习小结1. 应用正、余弦定理解三角形;2. 利用正、余弦定理解决实际问题(测量距离、高度、角度等);3.在现实生活中灵活运用正、余弦定理解决问题. (边角转化).※ 知识拓展设在ABC ∆中,已知三边a ,b ,c ,那么用已知边表示外接圆半径R 的公式是※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,则△ABC 的面积为( ).A .9B .18C .9D .2.在△ABC 中,若222c a b ab =++,则∠C =( ).A . 60°B . 90°C .150°D .120°3. 在∆ABC 中,80a =,100b =,A =30°,则B 的解的个数是( ).A .0个B .1个C .2个D .不确定的4. 在△ABC 中,a =b =1cos 3C =,则ABC S =△_______ 5. 在∆ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,若2222sin a b c bc A =+-,则A =___ ____.1. 已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若1cos cos sin sin 2B C B C -=. (1)求A ;(2)若4a b c =+=,求ABC ∆的面积.2. 在△ABC中,,,a b c分别为角A、B、C的对边,2228 5 bca c b-=-,a=3,△ABC的面积为6,(1)求角A的正弦值;(2)求边b、c.§2.1数列的概念与简单表示法(1)学习目标1. 理解数列及其有关概念,了解数列和函数之间的关系;2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;3. 对于比较简单的数列,会根据其前几项写出它的个通项公式.学习过程一、课前准备(预习教材P28 ~ P30 ,找出疑惑之处)复习1:函数,当x依次取1,2,3,…时,其函数值有什么特点?复习2:函数y=7x+9,当x依次取1,2,3,…时,其函数值有什么特点?二、新课导学※学习探究探究任务:数列的概念⒈数列的定义:的一列数叫做数列.⒉数列的项:数列中的都叫做这个数列的项.反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a ,或简记为{}n a ,其中n a 是数列的第 项.4. 数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用 来表示,那么 就叫做这个数列的通项公式. 反思:⑴所有数列都能写出其通项公式?⑵一个数列的通项公式是唯一?⑶数列与函数有关系吗?如果有关,是什么关系?5.数列的分类:1)根据数列项数的多少分 数列和 数列;2)根据数列中项的大小变化情况分为 数列, 数列, 数列和 数列.※ 典型例题例1写出下面数列的一个通项公式,使它的前4项分别是下列各数:⑴ 1,-12,13,-14;⑵ 1, 0, 1, 0.。
【范文】高二数学必修五全套导学案及答案(人教A版)
高二数学必修五全套导学案及答案(人教A版)本资料为woRD文档,请点击下载地址下载全文下载地址1.1.1正弦定理【学习目标】.掌握正弦定理的推导过程;2.理解正弦定理在讨论三角形边角关系时的作用;3.能应用正弦定理解斜三角形【重点难点】正弦定理及其应用;解三角形中知两边一对角型中解的判断。
【知识梳理】.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即===2R(R为△ABc外接圆半径)2.正弦定理的应用从理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角3.中,已知及锐角,则、、满足什么关系时,三角形无解,有一解,有两解?(见图示):⑴若A为锐角时:⑵若A为直角或钝角时:【范例分析】例1.(1)已知下列三角形的两边及其一边对角,先判断三角形是否有解?有解的作出解答。
①;②;③;④。
(2)在中,,若有两解,则的取值范围为A、B、C、D、例2.(1)在△ABc中,已知,求的值;(2)在△ABc中,已知,求的值。
例3.(1)在△ABc中,已知AB=l,∠c=50°,当∠B 多大时,Bc的长取得最大值.?(2)△ABc的三个角满足A<B<c,且2B=A+c,最大边为最小边的2倍,求三内角之比。
(2)在中,,求的外接圆半径和面积。
【规律总结】.正弦定理的特殊功能是边角互换,即利用它们可以把边的关系转化为角的关系,也可以把角的关系转化为边的关涉及到三角形的其他问题中,也常会用到正弦定理。
正余弦定理的边角互换功能①,,②,,③==④2.结合正弦定理,三角形的面积公式有以下几种形式:其中分别表示的边上的高、外接圆半径。
一、选择题.在△ABc中,a=10,B=60°,c=45°,则c等于()A.B.c.D.2.在中,若,则的值为()A.B.c.D.3、已知△ABc的面积为,且,则∠A等于()A.30°B.30°或150°c.60°D.60°或120°4.△ABc中,∠A、∠B的对边分别为a,b,且∠A=60°,, 那么满足条件的△ABc()A.有一个解B.有两个解c.无解D.不能确定5.在△ABc中,已知60°,如果△ABc两组解,则x的取值范围是A.B.c.D.二、填空题6.在△ABc中,若∠A:∠B:∠c=1:2:3,则7.在△ABc中,,则此三角形的最大边长为,外接圆半径为,面积为。
必修5数学导学案
必修5数学导学案一、分式及其运算1. 有理数的四则运算有理数的四则运算包括加法、减法、乘法和除法。
在进行有理数的四则运算时,需要注意同号相加为正、异号相加为负;乘法和除法时,符号相同为正,符号不同为负。
2. 分式的加减法分式的加减法需要找到分母的最小公倍数,然后进行分子的加减操作,并对结果进行化简求最简分式。
3. 分式的乘除法分式的乘法直接将分子相乘、分母相乘即可;分式的除法转化为乘法,将被除数的分子分母颠倒后与除数相乘。
4. 分式的化简化简分式时,需要找到分子分母的最大公因数,然后进行约分操作,得到最简分式。
二、一次函数1. 一次函数的基本形式一次函数的基本形式为y = kx + b,在直角坐标系中表示为一条直线,其中k为斜率,b为截距。
2. 一次函数的图像特征一次函数的图像是一条直线,斜率k决定了直线的斜度,截距b决定了直线与y轴的交点。
3. 一次函数的性质一次函数是一种线性函数,其图像是一条直线,经过两个点就能唯一确定一条直线。
4. 一次函数的应用一次函数在实际问题中有许多应用,如直线运动、比例关系等方面都可以通过一次函数来描述和解决问题。
三、二次函数1. 二次函数的基本形式二次函数的基本形式为y = ax^2 + bx + c,在直角坐标系中表示为一条抛物线,其中a为开口方向,b为对称轴位置,c为顶点的纵坐标。
2. 二次函数的图像特征二次函数的图像是一条抛物线,开口方向由系数a的正负确定,顶点位置由对称轴位置b决定。
3. 二次函数的性质二次函数的导数是一次函数,其图像是一条抛物线,可以通过顶点坐标、开口方向等性质来确定二次函数的图像。
4. 二次函数的变形通过改变系数a、b、c可以使二次函数的图像产生不同的变形,如平移、缩放、翻转等。
四、不等式1. 不等式的基本性质不等式是数学中的一种比较关系,包括大于、小于、大于等于、小于等于四种比较关系。
2. 不等式的解法不等式的解法包括通过加减乘除等方式得到解集,同时还需要注意不等式中变号的情况。
【新文案】北师大版高中数学必修5全册导学案
三 巩固 练 习
1. 一个等差数列中, a15 33, a25 66 ,则 a35 (
).
A. 99 B. 49.5 C. 48
D. 49
2. 等差数列 an 中 a7 a9 16 , a4 1 ,则 a12 的值为(
).
A . 15
B. 30
C. 31
D. 64
3. 等差数列
an
中, a3 , a10 是方程
8. 等差数列 { an } 的前 m 项和为 30,前 2m 项和为 100,则它的前 3m 项和为(
).
A. 70 B. 130 C. 140 D. 170
9. 在等差数列中,公差 d= 1 , S100 145 ,则 a1 a3 a5 ... a99
.
2
四 课后 反 思
五课后巩固练习 1. 数列{ an }是等差数列,公差为 3, an = 11,前 n 和 Sn = 14,求 n 和 a3 .
n(n 1) C.
2
n( n 1) D.
2
). an (
. ).
四 课后 反 思
五课后巩固练习
(1)写出数列 22 1 , 32 1 , 42 1 , 52 1 的一个通项公式为
.
2
3
4
5
1.c o M
(2)已知数列 3 , 7 , 11 , 15 , 19 ,… 那么 3 11 是这个数列的第
项.
an
an 2
b ,求这个数列的第四项和第五项
.
4
cn
变式 :已知数列 5 , 11 , 17 , 23 , 29 ,…,则 5 5 是它的第
项.
练 1. 写出下面数列的一个通项公式,使它的前
新人教版高中数学必修五导学案(全册)
新人教版高中数学必修五导学案(全册)目录1.1.1正弦定理 (2)1.1.2余弦定理 (4)1.1 正弦定理和余弦定理习题课 (6)1.2 应用举例 (8)2.1数列的概念与简单表示法 (11)2.2等差数列 (14)2.3等差数列的前n项和 (17)2.4等比数列 (20)2.4等比数列的性质 (22)2.5等比数列的前n项和(1) (24)2.5等比数列的前n项和(2) (26)3.1不等关系与不等式 (28)3.2一元二次不等式及其解法 (30)3.3.1二元一次不等式组与平面区域 (33)3.3.2简单的线性规划问题(1) (36)3.3.2简单的线性规划问题(2) (38)3.4基本不等式:2ba ab +≤(学案1) (40)3.4基本不等式:2ba ab +≤(学案2) (42)1.1.1正弦定理课前预习学案一、 预习目标了解正弦定理的内容及解三角形的概念 二、预习内容 1、推导正弦定理正弦定理: 变形: 正弦定理可用于两类:(1)已知三角形的任意两个角与一边,求其他两边与另一角;(2)已知三角形的任意两边与其中一边的对角,计算其他的角与边.2、了解“解三角形”的概念 三、提出困惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中课内探究学案课标要求: 掌握正弦定理,并能解决一些简单的三角度量问题和实际问题。
一、学习目标:掌握三角形中边长和角度之间的数量关系在已有知识基础上,通过对任意三角形边角关系的探究,掌握正弦定理. 通过对本节的学习,能够运用正弦定理等知识,解决一些与测量和几何计算有关的实际问题.重点:正弦定理的证明和解三角形. 难点:正弦定理的证明. 二、学习过程例1:在ABC ∆中,已知3=b , 60=B ,1=c ,求C A a 及,例2:在ABC ∆中,已知10,30,45===c C A,b a B 及,求三、当堂检测(1)在ABC ∆中,已知45,32,22===A b a ,则=B (2) 在ABC ∆中,已知45,32,62===A b a ,则=B (3)在ABC ∆中,已知120,32,22===A b a ,则=B(4)在ABC ∆中,若abB A =cos cos ,则ABC ∆是 三角形小结:课后练习与提高案 1.已知△ABC 中,sinA:sinB:sinC =1∶3∶2,则A ∶B ∶C 等于 ( ) A .1∶2∶3 B .2∶3∶1 C .1∶3∶2D .3∶1∶22.在△ABC 中,若B A sin sin >,则A 与B 的大小关系为( )A. B A >B. B A <C. A ≥BD. A 、B 的大小关系不能确定 3. 在ABC 中,若2cosBsinA=sinC,则ABC 一定是( )A. 等腰三角形B. 等边三角形C. 直角三角形D.等腰直角三角形 4.已知△ABC 中,a =4,b =43,∠A =30°,则∠B 等于( ) A .30° B .30°或150° C .60°D .60°或120°1.1.2余弦定理课前预习学案一、预习目标了解余弦定理的内容二、预习内容探究:如果已知一个三角形的两条边及其所夹的角,根据三角形全等的判定方法,此三角形是大小、形状完全确定的三角形.仍然从量化的角度来研究这个问题,已知两个边和它们的夹角,如何计算出三角形的另外一边和另外两个角的问题?已知△ABC中的边b,c,∠A,则边a如何用它们表示出来呢?通过什么方法呢?余弦定理:变形:余弦定理的用途:(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其它两角;(3)判断三角形的形状.三、提出困惑课内探究学案课标要求:掌握余弦定理,并能解决一些简单的三角度量问题和实际问题。
高中数学必修5导学案(全套)
必修五 第一章 §5-1正 余弦定理【课前预习】阅读教材P-完成下面填空1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有 = = = = 2R2、正弦定理的变形公式:2sin a R =A ,2sin b R =B ,2sin c R C =;sin A = ,sin B = ,sin C = ;::a b c = ;sin sin sin sin sin sin a b c a b cC C++===A +B +A B .3、三角形面积公式:C S ∆AB = = =4、余弦定理:在C ∆AB 中,有2a = ,2b = , 2c = .5、余弦定理的推论:cos A = ,cos B = ,cos C = .6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:若222a b c +=,则90C =;若222a b c +>,则90C <; 若222a b c +<,则90C >.【课初5分钟】课前完成下列练习,课前5分钟回答下列问题1、在△ABC 中,a=7,c=5,则sinA :sinC 的值是( ) A 、75 B 、57 C 、127 D 、125 2、在△ABC 中,已知a=8,B=600,C=750,则b=( )A 、24B 、34C 、64D 、3323、在△ABC 中,已知b=1,c=3,A=600,则 S △ABC = 。
4、在△ABC 中,已知a=6, b=8,C=600,则c= 。
强调(笔记):【课中35分钟】边听边练边落实5.在△ABC 中,若=++=A c bc b a 则,222_________。
6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090 B .0120 C .0135 D .01507.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
高中数学必修5导学案
§ 正弦定理学习目标 1. 掌握正弦定理的内容; 2. 掌握正弦定理的证明方法; 3. 会运用正弦定理解斜三角形的两类基本问题.学习过程一、课前准备试验:固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动.思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来?二、新课导学※ 学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c ,根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c==, 从而在直角三角形ABC 中,sin sin sin a b c A B C==.( 探究2:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =sin sin a B b A =,则sin sin a b A B =, 同理可得sin sin c b C B=, 从而sin sin a b A B =sin c C=.类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试导.新知:正弦定理在一个三角形中,各边和它所对角的 的比相等,即sin sin a b A B =sin c C=.试试:(1)在ABC ∆中,一定成立的等式是( ).A .sin sin a A bB = B .cos cos a A b B =C . sin sin a B b A =D .cos cos a B b A =(2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 .[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =;(2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A =sin c C. (3)正弦定理的基本作用为: ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B=;b = . ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=;sin C = . (4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形.※ 典型例题例1. 在ABC ∆中,已知45A =o ,60B =o ,42a =cm ,解三角形.变式:在ABC ∆中,已知45B =o ,60C =o ,12a =cm ,解三角形.例2. 在45,2,,ABC c A a b B C ∆===o 中,求和.变式:在60,1,,ABC b B c a A C ∆==o 中,求和.三、总结提升※ 学习小结1. 正弦定理:sin sin a b A B =sin c C= 2. 正弦定理的证明方法:①三角函数的定义,还有 ②等积法,③外接圆法,④向量法.3.应用正弦定理解三角形:①已知两角和一边;②已知两边和其中一边的对角.※ 知识拓展sin sin a b A B =2sin c R C==,其中2R 为外接圆直径. 学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC ∆中,若cos cos A b B a=,则ABC ∆是( ). A .等腰三角形 B .等腰三角形或直角三角形C .直角三角形D .等边三角形2. 已知△ABC 中,A ∶B ∶C =1∶1∶4,则a ∶b ∶c 等于( ).A .1∶1∶4B .1∶1∶2C .1∶1D .2∶23. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ).A. A B >B. A B <C. A ≥BD. A 、B 的大小关系不能确定4. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c = .5. 已知∆ABC 中,∠A 60=︒,a =sin sin sin a b c A B C++++= .课后作业1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,解此三角形.2. 已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k ≠0),求实数k 的取值范围为.§ 余弦定理学习目标1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题.学习过程 一、课前准备复习1:在一个三角形中,各 和它所对角的 的 相等,即 = = .复习2:在△ABC 中,已知10c =,A =45,C =30,解此三角形.思考:已知两边及夹角,如何解此三角形呢?二、新课导学※ 探究新知问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵AC =u u u r ,∴AC AC •=u u u r u u u r同理可得: 2222cos a b c bc A =+-, 2222cos c a b ab C =+-.新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?从余弦定理,又可得到以下推论:222cos 2b c a A bc +-=, , .[理解定理](1)若C =90︒,则cos C = ,这时222c a b =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.(2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;②已知三角形的三条边就可以求出其它角.试试:(1)△ABC中,a=2c=,150B=o,求b.(2)△ABC中,2a=,b1c=,求A.※典型例题例1. 在△ABC中,已知a=b=,45B=o,求,A C和c.变式:在△ABC中,若AB,AC=5,且cos C=910,则BC=________.例2. 在△ABC中,已知三边长3a=,4b=,c=,求三角形的最大内角.变式:在∆ABC中,若222a b c bc=++,求角A.三、总结提升※学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围:①已知三边,求三角;②已知两边及它们的夹角,求第三边.※ 知识拓展在△ABC 中,若222a b c +=,则角C 是直角;若222a b c +<,则角C 是钝角;若222a b c +>,则角C 是锐角.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a c =2,B =150°,则边b 的长为( ).2. 已知三角形的三边长分别为3、5、7,则最大角为( ).A .60oB .75oC .120oD .150o3. 已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ).A x <x <5C . 2<xD <x <54. 在△ABC 中,|AB u u u r |=3,|AC u u u r |=2,AB u u u r 与AC u u u r 的夹角为60°,则|AB u u u r -AC u u u r |=________. 5. 在△ABC 中,已知三边a 、b 、c 满足222b a c ab +-=,则∠C 等于 .课后作业1. 在△ABC 中,已知a =7,b =8,cos C =1314,求最大角的余弦值.2. 在△ABC 中,AB =5,BC =7,AC =8,求AB BC ⋅u u u r u u u r 的值.§ 正弦定理和余弦定理(练习)学习目标1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.学习过程一、课前准备复习1:在解三角形时已知三边求角,用 定理;已知两边和夹角,求第三边,用 定理;已知两角和一边,用 定理.复习2:在△ABC 中,已知 A =6π,a =,b =二、新课导学 ※ 学习探究探究:在△ABC 中,已知下列条件,解三角形.① A =6π,a =25,b =② A =6π,a ,b =;③ A =6π,a =50,b = 思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A 为锐角时).试试:1. 用图示分析(A 为直角时)解的情况?2.用图示分析(A 为钝角时)解的情况?※ 典型例题例1. 在∆ABC 中,已知80a =,100b =,45A ∠=︒,试判断此三角形的解的情况.变式:在∆ABC 中,若1a =,12c =,40C ∠=︒,则符合题意的b 的值有_____个.例2. 在∆ABC 中,60A =︒,1b =,2c =,求sin sin sin a b c A B C++++的值.变式:在∆ABC 中,若55a =,16b =,且1sin 2ab C =C .三、总结提升※ 学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况).※ 知识拓展在∆ABC 中,已知,,a b A ,讨论三角形解的情况 :①当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解;②当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解;(3)若sin a b A <,则无解.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且sin 2sin 3A B =,则a b b +的值=( ). A. 13 B. 23 C. 43 D. 532. 已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是( ).A .135°B .90°C .120°D .150°3. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ).A .锐角三角形B .直角三角形C .钝角三角形D .由增加长度决定4. 在△ABC 中,sin A :sin B :sin C =4:5:6,则cos B = .5. 已知△ABC 中,cos cos b C c B =,试判断△ABC 的形状 .课后作业1. 在∆ABC 中,a xcm =,2b cm =,45B ∠=︒,如果利用正弦定理解三角形有两解,求x 的取值范围.2. 在∆ABC 中,其三边分别为a 、b 、c ,且满足2221sin 24a b c ab C +-=,求角C .§应用举例—①测量距离学习目标能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题学习过程一、课前准备复习1:在△ABC中,∠C=60°,a+b=2,c=A为 .复习2:在△ABC中,sin A=sin sincos cosB CB C++,判断三角形的形状.二、新课导学※典型例题例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=51︒,∠ACB=75︒. 求A、B两点的距离(精确到.提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边.知1:基线在测量上,根据测量需要适当确定的叫基线.例2. 如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法.分析:这是例1的变式题,研究的是两个的点之间的距离测量问题.首先需要构造三角形,所以需要确定C、D两点.根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC,再利用余弦定理可以计算出AB的距离.变式:若在河岸选取相距40米的C、D两点,测得∠BCA=60°,∠ACD=30°,∠CDB=45°,∠BDA =60°.练:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少?三、总结提升※学习小结1. 解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.2.基线的选取:测量过程中,要根据需要选取合适的基线长度,使测量具有较高的精确度.学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 水平地面上有一个球,现用如下方法测量球的大小,用锐角45︒的等腰直角三角板的斜边紧靠球面,P为切点,一条直角边AC紧靠地面,并使三角板与地面垂直,如果测得PA=5cm,则球的半径等于().A .5cmB .C .1)cmD .6cm2. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( ).A .小时B .1小时C .小时D .2小时3. 在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+,则ABC ∆的形状( ).A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形4.在ABC ∆中,已知4a =,6b =,120C =o ,则sin A 的值是 .5. 一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60o ,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15o ,这时船与灯塔的距离为 km .课后作业1. 隔河可以看到两个目标,但不能到达,的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,A 、B 、C 、D 在同一个平面,求两目标A 、B 间的距离.2. 某船在海面A 处测得灯塔C 与A 相距30︒方向;测得灯塔B 与A相距75︒方向. 船由A 向正北方向航行到D 处,测得灯塔B 在南偏西60︒方向. 这时灯塔C 与D 相距多少海里?§应用举例—②测量高度学习目标1. 能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题;2. 测量中的有关名称.学习过程一、课前准备复习1:在∆ABC中,cos5cos3A bB a==,则∆ABC的形状是怎样?复习2:在∆ABC中,a、b、c分别为∠A、∠B、∠C的对边,若::a b c求A:B:C 的值.二、新课导学※学习探究新知:坡度、仰角、俯角、方位角方位角---从指北方向顺时针转到目标方向线的水平转角;坡度---沿余坡向上的方向与水平方向的夹角;仰角与俯角---视线与水平线的夹角当视线在水平线之上时,称为仰角;当视线在水平线之下时,称为俯角.探究:AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法.分析:选择基线HG,使H、G、B三点共线,要求AB,先求AE在ACE∆中,可测得角,关键求AC在ACD∆中,可测得角,线段,又有α故可求得AC※典型例题例1. 如图,在山顶铁塔上B处测得地面上一点A的俯角α=5440'︒,在塔底C处测得A处的俯角β=501'︒. 已知铁塔BC部分的高为m,求出山高CD(精确到1 m)例2. 如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15︒的方向上,行驶5km后到达B处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD.问题1:欲求出CD,思考在哪个三角形中研究比较适合呢?问题2:在∆BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?变式:某人在山顶观察到地面上有相距2500米的A、B两个目标,测得目标A在南偏西57°,俯角是60°,测得目标B在南偏东78°,俯角是45°,试求山高.三、总结提升※学习小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.※知识拓展在湖面上高h处,测得云之仰角为α,湖中云之影的俯角为β,则云高为sin() sin() hαβαβ+-g.学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 在∆ABC中,下列关系中一定成立的是().A .sin a b A >B .sin a b A =C .sin a b A <D .sin a b A ≥2. 在∆ABC 中,AB =3,BC AC =4,则边AC 上的高为( ).A B C .32D .3. D 、C 、B 在地面同一直线上,DC =100米,从D 、C 两地测得A 的仰角分别为30o 和45o ,则A 点离地面的高AB 等于( )米.A .100B ..501) D .501)4. 在地面上C 点,测得一塔塔顶A 和塔基B 的仰角分别是60︒和30︒,已知塔基B 高出地面20m ,则塔身AB 的高为_________m .5. 在∆ABC 中,b =2a =,且三角形有两解,则A 的取值范围是 .课后作业1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ?2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高.§应用举例—③测量角度学习目标能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.学习过程一、课前准备复习1:在ABC △中,已知2c =,3C π=,且1sin 2ab C =a b ,.复习2:设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,3c =,求a c的值.二、新课导学※典型例题例1. 如图,一艘海轮从A出发,沿北偏东75︒的方向航行 n mile后到达海岛B,然后从B 出发,沿北偏东32︒的方向航行 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到︒,距离精确到 mile)分析:首先由三角形的内角和定理求出角∠ABC,然后用余弦定理算出AC边,再根据正弦定理算出AC边和AB边的夹角∠CAB.例2. 某巡逻艇在A处发现北偏东45︒相距9海里的C处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?※动手试试练1. 甲、乙两船同时从B点出发,甲船以每小时10(3+1)km的速度向正东航行,乙船以每小时20km的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A、C两点,求A、C两点的距离,以及在A点观察C点的方向角.练2. 某渔轮在A处测得在北45°的C处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群?三、总结提升※ 学习小结1. 已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.;2.已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.※ 知识拓展已知∆ABC 的三边长均为有理数,A =3θ,B =2θ,则cos5θ是有理数,还是无理数? 因为5C πθ=-,由余弦定理知222cos 2a b c C ab+-=为有理数, 所以cos5cos(5)cos C θπθ=--=-为有理数.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ).A .α>βB .α=βC .α+β=90oD .α+β=180o2. 已知两线段2a =,b =a 、b 为边作三角形,则边a 所对的角A 的取值范围是( ).A .(,)63ππB .(0,]6πC .(0,)2πD .(0,]4π3. 关于x 的方程2sin 2sin sin 0A x B x C ++=g g 有相等实根,且A 、B 、C 是∆的三个内角,则三角形的三边a b c 、、满足( ).A .b ac =B .a bc =C .c ab =D .2b ac =4. △ABC 中,已知a :b :c =(+1) :(-1): ,则此三角形中最大角的度数为 .5. 在三角形中,已知:A ,a ,b 给出下列说法:(1)若A ≥90°,且a ≤b ,则此三角形不存在(2)若A ≥90°,则此三角形最多有一解(3)若A <90°,且a =b sin A ,则此三角形为直角三角形,且B =90°(4)当A <90°,a <b 时三角形一定存在(5)当A <90°,且b sin A <a <b 时,三角形有两解其中正确说法的序号是 .课后作业1. 我舰在敌岛A 南偏西50︒相距12海里的B 处,发现敌舰正由岛沿北偏西10︒的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?§应用举例—④解三角形学习目标1. 能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题;2. 掌握三角形的面积公式的简单推导和应用;3. 能证明三角形中的简单的恒等式.学习过程一、课前准备复习1:在∆ABC 中(1)若1,120a b B ===︒,则A 等于 .(2)若a =2b =,150C =︒,则c = _____.复习2:在ABC ∆中,a =2b =,150C =︒,则高BD = ,三角形面积= .二、新课导学※ 学习探究探究:在∆ABC 中,边BC 上的高分别记为h a ,那么它如何用已知边和角表示?h a =b sin C =c sin B根据以前学过的三角形面积公式S =12ah , 代入可以推导出下面的三角形面积公式,S =12ab sin C ,或S = ,同理S = .新知:三角形的面积等于三角形的任意两边以及它们夹角的正弦之积的一半.※ 典型例题例1. 在∆ABC 中,根据下列条件,求三角形的面积S (精确到2):(1)已知a =,c =,B =︒;(2)已知B =︒,C =︒,b =;(3)已知三边的长分别为a =,b =,c =.变式:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m ,88m ,127m ,这个区域的面积是多少?(精确到2)例2. 在∆ABC 中,求证:(1)222222sin sin sin a b A B c C++=; (2)2a +2b +2c =2(bc cos A +ca cos B +ab cos C ).小结:证明三角形中恒等式方法: 应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※ 动手试试练1. 在∆ABC 中,已知28a cm =,33c cm =,45B =o ,则∆ABC 的面积是 .练2. 在∆ABC 中,求证: 22(cos cos )c a B b A a b -=-.三、总结提升※ 学习小结1. 三角形面积公式:S =12ab sin C = = . 2. 证明三角形中的简单的恒等式方法:应用正弦定理或余弦定理,“边”化“角”或“角”化“边”.※ 知识拓展三角形面积S =,这里1()2p a b c =++,这就是著名的海伦公式.学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC ∆中,2,60a b C ︒===,则ABC S ∆=( ).A. 322. 三角形两边之差为2,夹角的正弦值为35,面积为92,那么这个三角形的两边长分别是( ).A. 3和5B. 4和6C. 6和8D. 5和73. 在ABC ∆中,若2cos sin sin B A C ⋅=,则ABC ∆一定是( )三角形. A. 等腰 B. 直角 C. 等边 D. 等腰直角4. ABC ∆三边长分别为3,4,6,它的较大锐角的平分线分三角形的面积比是 .5. 已知三角形的三边的长分别为54a cm =,61b cm =,71c cm =,则∆ABC 的面积是 .课后作业1.已知在∆ABC 中,∠B =30︒,b =6,c a 及∆ABC 的面积S .2. 在△ABC 中,若sin sin sin (cos cos )A B C A B +=⋅+,试判断△ABC 的形状.§应用举例(练习)学习目标1.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量的实际问题;2.三角形的面积及有关恒等式.学习过程一、课前准备复习1:解三角形应用题的关键:将实际问题转化为解三角形问题来解决.复习2:基本解题思路是:①分析此题属于哪种类型(距离、高度、角度);②依题意画出示意图,把已知量和未知量标在图中;③确定用哪个定理转化,哪个定理求解;④进行作答,并注意近似计算的要求.二、新课导学※典型例题例1. 某观测站C在目标A的南偏西25o方向,从A出发有一条南偏东35o走向的公路,在C 处测得与C相距31km的公路上有一人正沿着此公路向A走去,走20km到达D,此时测得CD距离为21km,求此人在D处距A还有多远?2. 在某点B处测得建筑物AE的顶端A的仰角为θ,沿BE方向前进30m,至点C处测得顶端A的仰角为2θ,再继续前进至D点,测得顶端A的仰角为4θ,求θ的大小和建筑物AE的高.3. 如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADCAB的长.※动手试试B C练1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ?练2. 两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东30°,灯塔B 在观察站C 南偏东60°,则A 、B 之间的距离为多少?三、总结提升※ 学习小结1. 解三角形应用题的基本思路,方法; 2.应用举例中测量问题的强化.※ 知识拓展秦九韶“三斜求积”公式:S = 学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 某人向正东方向走x km 后,向右转150o ,然后朝新方向走3km ,结果他离出发点恰好km ,则x 等于( ).A . D .32.在200米的山上顶,测得山下一塔顶与塔底的俯角分别为30,60o o ,则塔高为( )米.A .2003 B C .4003D3. 在∆ABC 中,60A ∠=︒,16AC =,面积为BC 的长度为( ).A .25B .51C ..494. 从200米高的山顶A 处测得地面上某两个景点B 、C 的俯角分别是30º和45º,且∠BAC =45º,则这两个景点B 、C 之间的距离 .5. 一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°相距20里处,随后货轮按北偏西30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45︒,则货轮的速度 .课后作业1. 米长的棒斜靠在石堤旁,棒的一端在离堤足米地面上,另一端在沿堤上米的地方,求堤对地面的倾斜角.2. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m 1-),n =(cos A ,sin A ). 若m ⊥n ,且a cos B +b cos A =c sin C ,求角B .第一章 解三角形(复习)学习目标能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题.学习过程一、课前准备复习1: 正弦定理和余弦定理 (1)用正弦定理:①知两角及一边解三角形;②知两边及其中一边所对的角解三角形(要讨论解的个数). (2)用余弦定理:①知三边求三角;②知道两边及这两边的夹角解三角形.复习2:应用举例① 距离问题,②高度问题,③ 角度问题,④计算问题.练:有一长为2公里的斜坡,它的倾斜角为30°,现要将倾斜角改为45°,且高度不变. 则斜坡长变为___ .二、新课导学※ 典型例题例1. 在ABC ∆中tan()1A B +=,且最长边为1,tan tan A B >,1tan 2B =,求角C 的大小及△ABC 最短边的长.例2. 如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30o ,相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救援(角度精确到1o )?例3. 在∆ABC 中,设tan 2,tan A c bB b-= 求A 的值.※ 动手试试练1. 如图,某海轮以60 n mile/h 的速度航行,在A 点测得海面上油井P 在南偏东60°,向北航行40 min 后到达B 点,测得油井P 在南偏东30°,海轮改为北偏东60°的航向再行驶80 min 到达C 点,求P 、C 间的距离.练2. 在△ABC 中,b =10,A =30°,问a 取何值时,此三角形有一个解?两个解?无解?三、总结提升※ 学习小结1. 应用正、余弦定理解三角形;2. 利用正、余弦定理解决实际问题(测量距离、高度、角度等); 3.在现实生活中灵活运用正、余弦定理解决问题. (边角转化).北北2010 A B•C※ 知识拓展设在ABC ∆中,已知三边a ,b ,c ,那么用已知边表示外接圆半径R 的公式是R =学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,则△ABC 的面积为( ).A .9B .18C .9D .2.在△ABC 中,若222c a b ab =++,则∠C =( ). A . 60° B . 90° C .150° D .120°3. 在∆ABC 中,80a =,100b =,A =30°,则B 的解的个数是( ). A .0个 B .1个 C .2个 D .不确定的4. 在△ABC 中,a =b =1cos 3C =,则ABC S =△_______5. 在∆ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,若2222sin a b c bc A =+-,则A =___ ____.课后作业1. 已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若1cos cos sin sin 2B C B C -=. (1)求A ;(2)若4a b c =+=,求ABC ∆的面积.2. 在△ABC 中,,,a b c 分别为角A 、B 、C 的对边,22285bca cb -=-,a =3, △ABC 的面积为6,(1)求角A 的正弦值; (2)求边b 、c .§数列的概念与简单表示法(1)学习目标1. 理解数列及其有关概念,了解数列和函数之间的关系;2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;3. 对于比较简单的数列,会根据其前几项写出它的个通项公式.学习过程一、课前准备(预习教材P 28 ~ P 30 ,找出疑惑之处) 复习1:函数,当x 依次取1,2,3,…时,其函数值有什么特点?复习2:函数y =7x +9,当x 依次取1,2,3,…时,其函数值有什么特点?二、新课导学※ 学习探究探究任务:数列的概念⒈ 数列的定义: 的一列数叫做数列.⒉ 数列的项:数列中的 都叫做这个数列的项. 反思:⑴ 如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?⑵ 同一个数在数列中可以重复出现吗?3. 数列的一般形式:123,,,,,n a a a a L L ,或简记为{}n a ,其中n a 是数列的第 项.4. 数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用 来表示,那么 就叫做这个数列的通项公式. 反思:⑴所有数列都能写出其通项公式?⑵一个数列的通项公式是唯一?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1.1 正弦定理123学习目标1. 掌握正弦定理的内容;452. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题.678学习过程9一、课前准备10试验:固定∆ABC的边CB及∠B,使边AC绕着顶点C转动.1112思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系?1314151617显然,边AB的长度随着其对角∠C的大小的增大而.能否用一个等式18把这种关系精确地表示出来?19202122二、新课导学23※学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角24形中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c , 25根据锐角三角函数中正弦函数的定义,26 有sin aA c =,sin bB c =,又sin 1cC c ==,27 从而在直角三角形ABC 中,sin sin sin a b c A B C==. 28 29( 30探究2:那么对于任意的三角形,以上关系式是否仍然成立? 3132可分为锐角三角形和钝角三角形两种情况: 33当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,34 有CD =sin sin a B b A =,则sin sin a b A B =, 35 同理可得sin sin c b C B=, 36 从而sin sin a b A B =sin c C=. 37 38类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试导. 394041424344新知:正弦定理 45在一个三角形中,各边和它所对角的 的比相等,即 46 sin sin a b A B =sin c C =. 4748试试: 49(1)在ABC ∆中,一定成立的等式是( ). 50A .sin sin a A bB = B .cos cos a A b B = 51C . sin sin a B b A =D .cos cos a B b A = 52(2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 . 5354[理解定理] 55(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为56同一正数,即存在正数k 使sin a k A =, ,sin c k C =;57 (2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A =sin c C . 58 (3)正弦定理的基本作用为:59 ①已知三角形的任意两角及其一边可以求其他边,如sin sin b A a B =;60b = . 61②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,62如sin sin aA B b=;sin C = . 63 (4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角64形. 6566※ 典型例题 67例1. 在ABC ∆中,已知45A =,60B =,42a =cm ,解三角形. 686970变式:在ABC ∆中,已知45B =,60C =,12a =cm ,解三角形. 717273例2. 在45,2,,ABC c A a b B C ∆===中,求和. 747576变式:在60,1,,ABC b B c a A C ∆===中,求和. 7778798081三、总结提升 82※ 学习小结83 1. 正弦定理:sin sin a b A B =sin c C = 84 2. 正弦定理的证明方法:①三角函数的定义,85还有 ②等积法,③外接圆法,④向量法.86 3.应用正弦定理解三角形:87 ①已知两角和一边;88 ②已知两边和其中一边的对角.8990 ※ 知识拓展 91 sin sin abA B =2sin cR C ==,其中2R 为外接圆直径.9293 ※ 自我评价 你完成本节导学案的情况为( ).94 A. 很好 B. 较好 C. 一般 D. 较差95 ※ 当堂检测(时量:5分钟 满分:10分)计分:96 1. 在ABC ∆中,若cos cos A bB a =,则ABC ∆是( ).97 A .等腰三角形 B .等腰三角形或直角三角形98 C .直角三角形 D .等边三角形99 2. 已知△ABC 中,A ∶B ∶C =1∶1∶4,100 则a ∶b ∶c 等于( ).101A .1∶1∶4B .1∶1∶2 C.1∶1 102D .2∶21033. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ). 104A. A B >B. A B < 105C. A ≥BD. A 、B 的大小关系不能确定 1064. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c = . 1075. 已知∆ABC 中,∠A 60=︒,a = 108 sin sin sin a b c A B C ++++= . 1091101111. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,解此三角形. 1121131141151162. 已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k ≠0),求实数k 的117取值范围为. 118119120121122123§1.1.2 余弦定理 1241251261. 掌握余弦定理的两种表示形式; 1272. 证明余弦定理的向量方法; 1283. 运用余弦定理解决两类基本的解三角形问题. 129130 学习过程 131 一、课前准备 132复习1:在一个三角形中,各 和它所对角的 的 相等,即 133= = . 134135复习2:在△ABC 中,已知10c =,A =45,C =30,解此三角形. 136 137思考:已知两边及夹角,如何解此三角形呢? 138139140141 142二、新课导学 143※ 探究新知 144问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . 145∵AC = , 146∴AC AC •= 147 c a b C148同理可得: 2222cos a b c bc A =+-, 1492222cos c a b ab C =+-. 150151新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去152这两边与它们的夹角的 的积的两倍. 153154思考:这个式子中有几个量? 155从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 156从余弦定理,又可得到以下推论: 157 222cos 2b c a A bc +-=, , 158. 159[理解定理] 160(1)若C =90︒,则cos C = ,这时222c a b =+ 161由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. 162(2)余弦定理及其推论的基本作用为: 163①已知三角形的任意两边及它们的夹角就可以求出第三边; 164②已知三角形的三条边就可以求出其它角. 165试试:166(1)△ABC 中,a =2c =,150B =,求b . 167168169170(2)△ABC 中,2a =,b =,1c =,求A . 171172173174175※ 典型例题 176例1. 在△ABC 中,已知a =b =,45B =,求,A C 和c . 177178179变式:在△ABC 中,若AB ,AC =5,且cos C =910,则BC =________. 180 181182例2. 在△ABC 中,已知三边长3a =,4b =,c =,求三角形的最大内角. 183184185186变式:在∆ABC 中,若222a b c bc =++,求角A . 187188189三、总结提升 190※ 学习小结 1911. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理192的特例;1931942. 余弦定理的应用范围:195①已知三边,求三角;196②已知两边及它们的夹角,求第三边.197198※知识拓展199在△ABC中,若222200+=,则角C是直角;a b c201若222+<,则角C是钝角;a b c202若222a b c+>,则角C是锐角.203※自我评价你完成本节导学案的情况为().204205A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:2062071. 已知a c=2,B=150°,则边b的长为().2082. 已知三角形的三边长分别为3、5、7,则最大角为(). 209210A.60 B.75 C.120 D.1503. 已知锐角三角形的边长分别为2、3、x,则x的取值范围是(). 211A x< B<x<5212C. 2<x D<x<52134. 在△ABC中,|AB|=3,|AC|=2,AB与AC的夹角为60°,则|AB-AC| 214=________.2155. 在△ABC中,已知三边a、b、c满足216222b ac ab+-=,则∠C等于.2172182191. 在△ABC中,已知a=7,b=8,cos C=1314,求最大角的余弦值.2202212222. 在△ABC中,AB=5,BC=7,AC=8,求AB BC⋅的值. 223224225226227§1.1 正弦定理和余弦定理(练习)2282292301. 进一步熟悉正、余弦定理内容;2312. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或232无解等情形. 233234235一、课前准备 236复习1:在解三角形时 237 已知三边求角,用 定理; 238 已知两边和夹角,求第三边,用 定理; 239 已知两角和一边,用 定理. 240241复习2:在△ABC 中,已知 A =6π,a =,b =,解此三角形. 242 243二、新课导学 244※ 学习探究 245探究:在△ABC 中,已知下列条件,解三角形.246① A =6π,a =25,b = 247② A =6π,a b = 248③ A =6π,a =50,b =249思考:解的个数情况为何会发生变化?250新知:用如下图示分析解的情况(A为锐角时).251已知边a,b和∠A有两个解仅有一个解无解CH=bsinA<a<ba=CH=bsinAa<CH=bsinA252试试:2531. 用图示分析(A为直角时)解的情况?2542552562.用图示分析(A为钝角时)解的情况?257258259※典型例题260例1. 在∆ABC中,已知80a=,100b=,45A∠=︒,试判断此三角形的解的情261况.262263264265变式:在∆ABC中,若1a=,12c=,40C∠=︒,则符合题意的b的值有_____ 266个.267268269例2. 在∆ABC中,60A=︒,1b=,2c=,求sin sin sina b cA B C++++的值.270271272273变式:在∆ABC 中,若55a =,16b =,且1sin 2ab C =C . 274 275276三、总结提升 277※ 学习小结 2781. 已知三角形两边及其夹角(用余弦定理解决); 2792. 已知三角形三边问题(用余弦定理解决); 2803. 已知三角形两角和一边问题(用正弦定理解决); 2814. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定282理,可能有一解、两解和无解三种情况). 283284※ 知识拓展 285在∆ABC 中,已知,,a b A ,讨论三角形解的情况 :①当A 为钝角或直角时,必286须a b >才能有且只有一解;否则无解; 287②当A 为锐角时, 288如果a ≥b ,那么只有一解; 289如果a b <,那么可以分下面三种情况来讨论: 290(1)若sin a b A >,则有两解;291(2)若sin a b A =,则只有一解; 292(3)若sin a b A <,则无解.293294※ 自我评价 你完成本节导学案的情况为( ). 295A. 很好B. 较好C. 一般D. 较差 296※ 当堂检测(时量:5分钟 满分:10分)计分:297 1. 已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且sin 2sin 3A B =,则a b b +的298值=( ).299 A. 13 B. 23 C. 43 D. 53300 2. 已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角301是( ). 302A .135°B .90°C .120°D .150° 3033. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ). 304A .锐角三角形B .直角三角形 305C .钝角三角形D .由增加长度决定 3064. 在△ABC 中,sin A :sin B :sin C =4:5:6,则cos B = . 3075. 已知△ABC 中,cos cos b C c B =,试判断△ABC 的形状 . 3083093101. 在∆ABC 中,a xcm =,2b cm =,45B ∠=︒,如果利用正弦定理解三角形有两311解,求x 的取值范围. 3123133143152. 在∆ABC 中,其三边分别为a 、b 、c ,且满足2221sin 24a b c ab C +-=,求角C . 316 317318319320§1.2应用举例—①测量距离 321322323能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问324题 325326327一、课前准备 328复习1:在△ABC 中,∠C =60°,a +b =2,c =A 为 . 329330331复习2:在△ABC 中,sin A =sin sin cos cos B C B C++,判断三角形的形状. 332333334335336337二、新课导学※典型例题338339例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A 340的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=51︒,341∠ACB=75︒. 求A、B两点的距离(精确到0.1m).342343提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适344当?345346提问2:运用该定理解题还需要那些边和角呢?347348349分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离350的问题351题目条件告诉了边AB的对角,AC为已知边,352再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,353应用正弦定理算出AB边.354355356知1:基线在测量上,根据测量需要适当确定的叫基线.357358359例2. 如图,A、B两点都在河的对岸(不可到达),设计一种360测量A、B两点间距离的方法.361362分析:这是例1的变式题,研究的是两个的点之间的距离测量问题. 363首先需要构造三角形,所以需要确定C、D两点.364根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,365分别求出AC和BC,366再利用余弦定理可以计算出AB的距离.367368369变式:若在河岸选取相距40米的C、D两点,测得∠BCA=60°,∠ACD=30°,370∠CDB=45°,∠BDA =60°.371372练:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北373374偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少?375376377三、总结提升378※学习小结3791. 解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图380(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的381三角形中,建立一个解斜三角形的数学模型;382(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解383(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解. 3842.基线的选取:385测量过程中,要根据需要选取合适的基线长度,使测量具有较高的精确度. 386387388389390※自我评价你完成本节导学案的情况为().391A. 很好B. 较好C. 一般D. 较差392※当堂检测(时量:5分钟满分:10分)计分:3931. 水平地面上有一个球,现用如下方法测量球的大小,用锐角45︒的等腰394直角三角板的斜边紧靠球面,P为切点,一条直角边AC紧靠地面,并使三角395板与地面垂直,如396 果测得PA=5cm,则球的半径等于().397A.5cm398B.399C.1)cm400D .6cm 401 2. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30402 千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的403 时间为( ). 404 A .0.5小时 B .1小时 405 C .1.5小时 D .2小时 406 3. 在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+, 407 则ABC ∆的形状( ). 408 A.等腰三角形 B.直角三角形 409 C.等腰直角三角形 D.等腰三角形或直角三角形 410 4.在ABC ∆中,已知4a =,6b =,120C =,则sin A 的值是 . 411 5. 一船以每小时15km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东412 60,行驶4h 后,船到达C 处,看到这个灯塔在北偏东15,这时船与灯塔的距413 离为 km . 414 4154161. 隔河可以看到两个目标,但不能到达,的C 、D 两点,417 并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,A 、B 、C 、D 418 在同一个平面,求两目标A 、B 间的距离. 419 4204212. 某船在海面A 处测得灯塔C 与A 相距海里,且在北偏东30︒方向;测422得灯塔B 与A 相距海里,且在北偏西75︒方向. 船由A 向正北方向航行到D 423处,测得灯塔B 在南偏西60︒方向. 这时灯塔C 与D 相距多少海里? 424425§1.2应用举例—②测量高度 4264274281. 能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的429物体高度测量的问题; 4302. 测量中的有关名称. 431432433一、课前准备434 复习1:在∆ABC 中,cos 5cos 3A b B a ==,则∆ABC 的形状是怎样? 435复习2:在∆ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,若::a b c ,436求A:B:C 的值. 437438二、新课导学 439※ 学习探究 440新知:坡度、仰角、俯角、方位角441442443方位角---从指北方向顺时针转到目标方向线的水平转角;444坡度---沿余坡向上的方向与水平方向的夹角;445446447仰角与俯角---视线与水平线的夹角当视线在水平线之上时,称为仰角;当视448线在水平线之下时,称为俯角.449450探究:AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法.451452453分析:选择基线HG,使H、G、B三点共线,454455要求AB,先求AE456在ACE∆中,可测得角,关键求AC457在ACD∆中,可测得角,线段,又有α458故可求得AC459460461462463464※典型例题例1. 如图,在山顶铁塔上B处测得地面上一点A的俯角α=5440'465︒,在塔底C 466处测得A处的俯角β=501'︒. 已知铁塔BC部分的高为27.3 m,求出山高CD(精467确到1 m)468469470471472例2. 如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南473侧远处一山顶D在东偏南15︒的方向上,行驶5km后到达B处,测得此山顶在东474偏南25︒的方向上,仰角为8︒,求此山的高度CD.475问题1:476欲求出CD,思考在哪个三角形中研究比较适合呢?477478问题2:479在∆BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?480481变式:某人在山顶观察到地面上有相距2500米的A、B两个目标,测得目标A 482483在南偏西57°,俯角是60°,测得目标B在南偏东78°,俯角是45°,试求山高.484485486三、总结提升487488※学习小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂489得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化. 490491※ 知识拓展 492在湖面上高h 处,测得云之仰角为α,湖中云之影的俯角为β,则云高为493 sin()sin()h αβαβ+-. 494495※ 自我评价 你完成本节导学案的情况为( ). 496A. 很好B. 较好C. 一般D. 较差 497※ 当堂检测(时量:5分钟 满分:10分)计分: 4981. 在∆ABC 中,下列关系中一定成立的是( ). 499A .sin a b A >B .sin a b A = 500C .sin a b A <D .sin a b A ≥ 5012. 在∆ABC 中,AB =3,BC AC =4,则边AC 上的高为( ).502A C .32 D .503 3. D 、C 、B 在地面同一直线上,DC =100米,从D 、C 两地测得A 的仰角分别504为30和45,则A 点离地面的高AB 等于( )米. 505A .100B ..501) D .501) 5064. 在地面上C 点,测得一塔塔顶A 和塔基B 的仰角分别是60︒和30︒,已知塔507基B 高出地面20m ,则塔身AB 的高为_________m . 5085. 在∆ABC 中,b =,2a =,且三角形有两解,则A 的取值范围509是 . 5105115121. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的513仰角为30°,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ? 5145155162. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西517300米的地方,在A 侧山顶的仰角是30°,求山高. 518519§1.2应用举例—③测量角度 520521522能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问523题. 524525526一、课前准备527复习1:在ABC △中,已知2c =,3C π=,且1sin 2ab C =a b ,. 528529复习2:设ABC∆的内角A,B,C的对边分别为a,b,c,且A=60,3c=,求530a c 的值.531532533二、新课导学534※典型例题535例1. 如图,一艘海轮从A出发,沿北偏东75︒的方向航行67.5 n mile后到536达海岛B,然后从B出发,沿北偏东32︒的方向航行54.0 n mile后达到海岛C. 537如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少538距离?(角度精确到0.1︒,距离精确到0.01n mile)539540分析:541首先由三角形的内角和定理求出角∠ABC,542然后用余弦定理算出AC边,543再根据正弦定理算出AC边和AB边的夹角∠CAB.544545546例2. 某巡逻艇在A处发现北偏东45︒相距9海里的C处有547一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向548我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇549550应该沿什么方向去追?需要多少时间才追赶上该走私船?551552553※动手试试554练1. 甲、乙两船同时从B点出发,甲船以每小时1)km的速度向正555东航行,乙船以每小时20km的速度沿南60°东的方向航行,1小时后甲、乙两556船分别到达A、C两点,求A、C两点的距离,以及在A点观察C点的方向角.557558559560561练2. 某渔轮在A处测得在北45°的C处有一鱼群,离渔轮9海里,并发现562鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14563海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群?564565566567568三、总结提升569※学习小结5701. 已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理571解之.;2.已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形572573优先研究,再逐步在其余的三角形中求出问题的解.574※ 知识拓展 575已知∆ABC 的三边长均为有理数,A =3θ,B =2θ,则cos5θ是有理数,还是无理576数? 577因为5C πθ=-,由余弦定理知 578 222cos 2a b c C ab +-=为有理数, 579所以cos5cos(5)cos C θπθ=--=-为有理数.580581※ 自我评价 你完成本节导学案的情况为( ). 582A. 很好B. 较好C. 一般D. 较差 583※ 当堂检测(时量:5分钟 满分:10分)计分: 5841. 从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为585( ). 586A .α>βB .α=β 587C .α+β=90D .α+β=180 5882. 已知两线段2a =,b =a 、b 为边作三角形,则边a 所对的角A 589的取值范围是( ). 590 A .(,)63ππ B .(0,]6π C .(0,)2π D .(0,]4π591 3. 关于x 的方程2sin 2sin sin 0A x B x C ++=有相等实根,且A 、B 、C 是∆的三592个内角,则三角形的三边a b c 、、满足( ).593A .b ac =B .a bc = 594C .c ab =D .2b ac = 5954. △ABC 中,已知a :b :c596数为 . 5975. 在三角形中,已知:A ,a ,b 给出下列说法: 598(1)若A ≥90°,且a ≤b ,则此三角形不存在 599(2)若A ≥90°,则此三角形最多有一解 600(3)若A <90°,且a =b sin A ,则此三角形为直角三角形,且B =90° 601(4)当A <90°,a <b 时三角形一定存在 602(5)当A <90°,且b sin A <a <b 时,三角形有两解 603其中正确说法的序号是 . 6046056061. 我舰在敌岛A 南偏西50︒相距12海里的B 处,发现敌舰正由岛沿北偏西10︒607的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能608用2小时追上敌舰? 609610611§1.2应用举例—④解三角形 6126136141. 能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问615题;6162. 掌握三角形的面积公式的简单推导和应用;6173. 能证明三角形中的简单的恒等式.618619620一、课前准备621复习1:在∆ABC中622(1)若1,120a b B===︒,则A等于.623(2)若a=2b=,150C=︒,则c= _____.624625复习2:626在ABC∆中,a=,2b=,150C=︒,则高BD= ,三角形面积627= .628629二、新课导学630※学习探究631探究:在∆ABC中,边BC上的高分别记为ha ,那么它如何用已知边和角表示?632ha =b sin C=c sin B633根据以前学过的三角形面积公式S=12ah,634代入可以推导出下面的三角形面积公式,S=12ab sin C,635或S= ,同理S= .636新知:三角形的面积等于三角形的任意两边以及它们夹角的正弦之积的一半.637638※典型例题639例1. 在∆ABC中,根据下列条件,求三角形的面积S(精确到0.1cm2):640(1)已知a=14.8cm,c=23.5cm,B=148.5︒;641(2)已知B=62.7︒,C=65.8︒,b=3.16cm;642(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm.643644645变式:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,646经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的647面积是多少?(精确到0.1cm2)648649例2. 在∆ABC中,求证:650(1)222222sin sinsina b A Bc C++=;651(2)2a+2b+2c=2(bc cos A+ca cos B+ab cos C).652653小结:证明三角形中恒等式方法: 应用正弦定理或余弦定理,“边”化“角”654 或“角”化“边”. 655656 ※ 动手试试657 练 1. 在∆ABC 中,已知28a cm =,33c cm =,45B =,则∆ABC 的面积658 是 . 659660 练2. 在∆ABC 中,求证: 22(cos cos )c a B b A a b -=-. 661662 三、总结提升 663 ※ 学习小结664 1. 三角形面积公式:665S =12ab sin C = = .666 2. 证明三角形中的简单的恒等式方法:应用正弦定理或余弦定理,“边”化667 “角”或“角”化“边”. 668 ※ 知识拓展669三角形面积S =670这里1()2p a b c =++,这就是著名的海伦公式.671672※ 自我评价 你完成本节导学案的情况为( ). 673 A. 很好 B. 较好 C. 一般 D. 较差 674 ※ 当堂检测(时量:5分钟 满分:10分)计分: 6751. 在ABC ∆中,2,60a b C ︒===,则ABC S ∆=( ).676A. 32677 2. 三角形两边之差为2,夹角的正弦值为35,面积为92,那么这个三角形的678 两边长分别是( ).679 A. 3和5 B. 4和6 C. 6和8 D. 5和7680 3. 在ABC ∆中,若2cos sin sin B A C ⋅=,则ABC ∆一定是( )三角形. 681 A. 等腰 B. 直角 C. 等边 D. 等腰直角682 4. ABC ∆三边长分别为3,4,6,它的较大锐角的平分线分三角形的面积比683 是 .684 5. 已知三角形的三边的长分别为54a cm =,61b cm =,71c cm =,则∆ABC 的面685 积是 . 6866876881.已知在∆ABC 中,∠B =30︒,b =6,c a 及∆ABC 的面积S .689690 2. 在△ABC 中,若sin sin sin (cos cos )A B C A B +=⋅+,试判断△ABC 的形状.691692693§1.2应用举例(练习)6946956961.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量的实际问题;6972.三角形的面积及有关恒等式.698699700一、课前准备701复习1:解三角形应用题的关键:将实际问题转化为解三角形问题来解决.702复习2:基本解题思路是:703704①分析此题属于哪种类型(距离、高度、角度);705②依题意画出示意图,把已知量和未知量标在图中;③确定用哪个定理转化,哪个定理求解;706707④进行作答,并注意近似计算的要求.708709二、新课导学710※典型例题711例1. 某观测站C在目标A的南偏西25方向,从A出发有一条南偏东35走向的公路,在C处测得与C相距31km的公路上有一人正沿着此公路向A走去,走71220km到达D,此时测得CD距离为21km,求此人在D处距A还有多远?7137142. 在某点B处测得建筑物AE的顶端A的仰角为θ,沿BE方向前进30m,至715点C处测得顶端A的仰角为2θ,再继续前进至D点,测得顶端A的仰角716为4θ,求θ的大小和建筑物AE的高.7177187197203. 如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60721求AB的长.722723724725726727728※动手试试729练1. 为测某塔AB的高度,在一幢与塔AB相距20m的楼的楼顶处测得塔顶A 730的仰角为30°,测得塔基B的俯角为45°,则塔AB的高度为多少m?731732733练2. 两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的734北偏东30°,灯塔B在观察站C南偏东60°,则A、B之间的距离为多少?735736737三、总结提升738※ 学习小结739 1. 解三角形应用题的基本思路,方法; 740 2.应用举例中测量问题的强化. 741742 ※ 知识拓展743 秦九韶“三斜求积”公式:744S =745746 ※ 自我评价 你完成本节导学案的情况为( ). 747 A. 很好 B. 较好 C. 一般 D. 较差 748 ※ 当堂检测(时量:5分钟 满分:10分)计分:749 1. 某人向正东方向走x km 后,向右转150,然后朝新方向走3km ,结果他离750km ,则x 等于( ).751A . C .3752 2.在200米的山上顶,测得山下一塔顶与塔底的俯角分别为30,60,则塔高为753 ( )米.754A .2003 B C .4003D7553. 在∆ABC 中,60A ∠=︒,16AC =,面积为BC 的长度为( ).756757A.25 B.51 C..497584. 从200米高的山顶A处测得地面上某两个景点B、C的俯角分别是30º和75945º,且∠BAC=45º,则这两个景点B、C之间的距离.7605. 一货轮航行到M处,测得灯塔S在货轮的北偏东15°相距20里处,随后761货轮按北偏西30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45︒,则货轮的速度.7627631. 3.5米长的棒斜靠在石堤旁,棒的一端在离堤足1.2米地面上,另一端在764765沿堤上2.8米的地方,求堤对地面的倾斜角.7667672. 已知a,b,c为△ABC的三个内角A,B,C的对边,向量m1-),n=(cos A,sin A). 若m⊥n,且a cos B+b cos A=c sin C,求角B.768769770第一章解三角形(复习)771772773能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问774题.775776777一、课前准备复习1: 正弦定理和余弦定理 778 (1)用正弦定理:779 ①知两角及一边解三角形;780 ②知两边及其中一边所对的角解三角形(要讨论解的个数).781 (2)用余弦定理:782 ①知三边求三角;783 ②知道两边及这两边的夹角解三角形. 784785 复习2:应用举例786 ① 距离问题,②高度问题,③ 角度问题,④计算问题.787 练:有一长为2公里的斜坡,它的倾斜角为30°,现要将倾斜角改为45°,788 且高度不变. 则斜坡长变为___ . 789790 二、新课导学 791 ※ 典型例题792例1. 在ABC ∆中tan()1A B +=,且最长边为1,tan tan A B >,1tan 2B =,求角C 793 的大小及△ABC 最短边的长. 794795 例2. 如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一796 艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,797相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救798 援(角度精确到1)? 799 800 801 802 803 804 805806 例3. 在∆ABC 中,设tan 2,tan A c bB b-= 求A 的值. 807808 ※ 动手试试809 练1. 如图,某海轮以60 n mile/h 的速度航行,在A 点测得海面上油井P 810 在南偏东60°,向北航行40 min 后到达B 点,测得油井P 在南偏东30°,海811 轮改为北偏东60°的航向再行驶80 min 到达C 点,求P 、812 813814 815 816 817 818819 练2. 在△ABC 中,b =10,A =30°,问a 取何值时,此三角形有一个解?两820 个解?无解? 821 822 823824 825826 三、总结提升827※ 学习小结828 1. 应用正、余弦定理解三角形;829 2. 利用正、余弦定理解决实际问题(测量距离、高度、角度等); 830 3.在现实生活中灵活运用正、余弦定理解决问题. (边角转化). 831832 ※ 知识拓展833 设在ABC ∆中,已知三边a ,b ,c ,那么用已知边表示外接圆半径R 的公式是834R =835836 ※ 自我评价 你完成本节导学案的情况为( ). 837 A. 很好 B. 较好 C. 一般 D. 较差 838 ※ 当堂检测(时量:5分钟 满分:10分)计分:839 1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,则△ABC 的面积为( ). 840A .9B .18C .9D .841 2.在△ABC 中,若222c a b ab =++,则∠C =( ). 842 A . 60° B . 90° C .150° D .120°843 3. 在∆ABC 中,80a =,100b =,A =30°,则B 的解的个数是( ). 844 A .0个 B .1个 C .2个 D .不确定的8454. 在△ABC 中,a =b =1cos 3C =,则ABC S =△_______8465. 在∆ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,若2222sin a b c bc A =+-,847 则A =___ ____.848849 1. 已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若850 1cos cos sin sin 2B C B C -=. 851(1)求A ;852(2)若4a b c =+=,求ABC ∆的面积. 853854 2. 在△ABC 中,,,a b c 分别为角A 、B 、C 的对边,22285bca cb -=-,a =3, △ABC 855 的面积为6,856 (1)求角A 的正弦值; (2)求边b 、c . 857 858859 §2.1数列的概念与简单表示法(1)860861862 1. 理解数列及其有关概念,了解数列和函数之间的关系; 863 2. 了解数列的通项公式,并会用通项公式写出数列的任意一项;8643. 对于比较简单的数列,会根据其前几项写出它的个通项公式.865866867学习过程一、课前准备868869(预习教材P28 ~ P30 ,找出疑惑之处)870复习1:函数,当x依次取1,2,3,…时,其函数值有什么特点?871复习2:函数y=7x+9,当x依次取1,2,3,…时,其函数值有什么特点?872873874二、新课导学875※学习探究876探究任务:数列的概念877⒈数列的定义:的一列数叫做数列.878879⒉数列的项:数列中的都叫做这个数列的项.880反思:881⑴如果组成两个数列的数相同而排列次序不同,那么它们是相同的数列?882883⑵同一个数在数列中可以重复出现吗?884885 3. 数列的一般形式:123,,,,,n a a a a ,或简记为{}n a ,其中n a 是数列的第 项.886887 4. 数列的通项公式:如果数列{}n a 的第n 项与n 之间的关系可以用888 来表示,那么 就叫做这个数列的通项公式. 889 反思:890 ⑴所有数列都能写出其通项公式? 891892 ⑵一个数列的通项公式是唯一? 893894 ⑶数列与函数有关系吗?如果有关,是什么关系? 895896 5.数列的分类:897 1)根据数列项数的多少分 数列和 数列; 898899 2)根据数列中项的大小变化情况分为 数列, 数列, 数900 列和 数列. 901902 ※ 典型例题903 例1写出下面数列的一个通项公式,使它的前4项分别是下列各数:904⑴ 1,-12,13,-14;905。