数学快速计算方法_乘法速算
口算速算技巧范文
口算速算技巧范文1.乘法口诀表:熟记乘法口诀表可以帮助快速计算两位数以内的乘法运算。
例如:5乘以9等于45,因为5乘以10等于50,所以减去5即可。
2.乘11的技巧:将两位数的数字相加,然后把结果放在中间。
例如:25乘以11等于275,因为2+5等于73.乘以5的技巧:将数字乘以10,然后再除以2、例如:35乘以5等于175,因为35乘以10等于350,再除以24.乘以25的技巧:将数字乘以100,然后再除以4、例如:28乘以25等于700,因为28乘以100等于2800,再除以45.乘以9的技巧:将数字乘以10,然后再减去数字本身。
例如:8乘以9等于72,因为8乘以10等于80,再减去86.平方的技巧:对于以5结尾的数字,将数字乘以自身+1,然后把25放在最后。
例如:35的平方等于1225,因为3乘以4等于12,所以将12放在最前面,再把25放在最后。
7.除以5的技巧:将数字除以10,然后再乘以2、例如:65除以5等于13,因为65除以10等于6.5,再乘以28.除以10的技巧:将数字向左移动一位即可。
例如:120除以10等于12,因为将120向左移动一位,就是129.百分比的计算:将百分数的数字除以100,再乘以要计算的数字。
例如:60%的15等于9,因为60除以100等于0.6,再乘以1510.四舍五入的技巧:当计算结果的最后一位小于5时,舍去;当计算结果的最后一位大于等于5时,进一位。
例如:3.46约等于3.5,因为6大于等于5以上是一些常见的口算速算技巧,希望对大家在日常生活和工作中进行数学计算有所帮助。
为了更好地掌握这些技巧,建议多练习和应用,提高自己的计算能力。
乘法中的速算技巧
乘法中的速算技巧乘法是数学中常见的运算之一,学好乘法不仅可以提高计算速度,还有助于培养逻辑思维和数学能力。
在进行乘法运算时,有许多速算技巧可以帮助我们更快、更准确地完成计算。
本文将介绍一些常见的乘法速算技巧,希望对读者有所帮助。
一、倍数速算倍数速算是指利用乘法的交换律和结合律,找出两个乘数中较容易计算的数进行相乘。
例如,计算75×8,可以先计算75×10,然后再将结果减去两倍的75,即75×2,得到最终的结果。
这样,我们只需要计算两步,而不是直接计算75×8,大大提高了计算速度。
二、平方数速算平方数速算是指计算一个数的平方的技巧。
当乘法题目中的两个乘数相等时,可以利用平方数速算的方法。
例如,计算12×12,可以将12拆分成10和2,然后运用(10+2)²=100+20+20+4的公式,得到144另外,还有一些常见的平方数速算公式可供利用:1. (a + b)² = a² + 2ab + b²2. (a - b)² = a² - 2ab + b²3.(a+b)(a-b)=a²-b²4. (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ac5. (a + b + c)³ = a³ + b³ + c³ + 3ab(a + b) + 3bc(b + c) +3ac(a + c) + 6abc利用这些公式,我们可以进一步简化平方数的计算,提高速算的效率。
三、近似数速算当乘法题目中的乘数接近一些特定的数时,可以利用近似数速算的方法。
例如,计算97×82,我们可以将82去一个数得到80,然后再将结果乘以两倍,得到结果7840。
这种方法在乘法运算中经常用到,能够有效简化计算过程,提高速算的能力。
小学四年级数学练习乘法口诀的快速计算和口诀表的记忆技巧
小学四年级数学练习乘法口诀的快速计算和口诀表的记忆技巧数学对于小学生来说是一门重要的学科,而乘法口诀是数学中的重要基础知识之一。
掌握乘法口诀不仅可以帮助孩子更快地计算乘法题目,还可以培养孩子的逻辑思维和记忆能力。
本文将介绍小学四年级数学练习乘法口诀的快速计算方法和口诀表的记忆技巧。
一、乘法口诀的快速计算方法1. 计算乘法口诀时,可以利用乘法的交换律。
例如,计算7乘以9,可以转换为9乘以7,因为9乘以7容易计算得63。
这样,孩子们可以根据自己擅长的数字来计算,使计算过程更加简单和快速。
2. 利用乘法的分配律。
例如,计算7乘以8,可以拆分成7乘以5再加上7乘以3。
这样的计算方法可以减少繁琐的计算,使孩子们更加容易掌握。
3. 利用乘法的结合律。
例如,计算7乘以6与2乘以7相等,都等于7乘以8减去7。
这种方法可以帮助孩子们找到更加简单明了的计算路径。
4. 利用乘法口诀的特殊性质。
例如,孩子们可以利用乘法口诀中的规律:任何数与0相乘都等于0,任何数与1相乘都等于它本身。
这样对于特殊的乘法题目,孩子们可以快速给出答案。
二、口诀表的记忆技巧1. 制作口诀表。
口诀表是记忆乘法口诀的重要辅助工具。
可以让孩子们在学习中制作一张属于自己的口诀表,将乘法的结果和口诀写在表格中,通过不断地重复记忆,提高记忆效果。
2. 创造联想。
利用图像和联想可以帮助孩子们更好地记忆口诀表。
例如,对于2乘法口诀,可以联想到一对小脚丫;对于3乘法口诀,可以联想到一只三角猫等。
通过有趣的联想,孩子们可以更加轻松地记忆口诀表。
3. 分段记忆。
将乘法口诀表分成几个小段,每天只记忆一小段口诀,逐步扩大记忆范围。
这种分段记忆的方法可以减轻孩子们的学习负担,提高记忆效果。
4. 多次复习。
复习是记忆的关键。
每天改变记忆顺序,多次复习之前记忆的口诀表,可以加深记忆的印象。
三、示例演练为了帮助孩子更好地掌握乘法口诀,我们提供以下示例演练:1. 计算:6乘以7等于多少?答案:6乘以7等于42。
数学快速计算方法乘法速算
一、两个20以内数的乘法两个20以内数相乘,将一数的个位数与另一个数相加乘以10,然后再加两个尾数的积,就就是应求的得数。
如12×13=156,计算程序就是将12的尾数2,加至13里,13加2等于15,15×10=150,然后加各个尾数的积得156,就就是应求的积数。
二、首同尾互补的乘法两个十位数相乘,首尾数相同,而尾十互补,其计算方法就是:头加1,然后头乘为前积,尾乘尾为后积,两积连接起来,就就是应求的得数。
如26×24=624。
计算程序就是:被乘数26的头加1等于3,然后头乘头,就就是3×2=6,尾乘尾6×4=24,相连为624。
三、乘数加倍,加半或减半的乘法在首同尾互补的计算上,可以引深一步就就是乘数可加倍,加半倍,也可减半计算,但就是:加倍、加半或减半都不能有进位数或出现小数,如48×42就是规定的算法,然而,可以将乘数42加倍位84,也可以减半位21,也可加半倍位63,都可以按规定方法计算。
48×21=1008,48×63=3024,48×84=4032。
有进位数的不能算。
如87×83=7221,将83加倍166,或减半41、5,这都不能按规定的方法计算。
四、首尾互补与首尾相同的乘法一个数首尾互补,而另一个数首尾相同,其计算方法就是:头加1,然后头乘头为前积,尾乘尾为后积,两积相连为乘积。
如37×33=1221,计算程序就是(3+1)×3×100+7×3=1221。
五、两个头互补尾相同的乘法两个十位数互补,两个尾数相同,其计算方法就是:头乘头后加尾数为前积,尾自乘为后积。
如48×68=3264。
计算程序就是4×6=24 24+8=32 32为前积,8×8=64为后积,两积相连就得3264。
六、首同尾非互补的乘法两个十位数相乘,首位数相同,而两个尾数非互补,计算方法:头加1,头乘头,尾乘尾,把两个积连接起来。
数学小技巧如何快速计算乘法口诀
数学小技巧如何快速计算乘法口诀在学习数学的过程中,乘法口诀是非常重要的基础知识之一。
它不仅在计算中起到了关键作用,而且在后续的数学学习中也会频繁地用到。
许多学生在学习乘法口诀时会感到困惑,觉得记忆繁琐且费时,但其实有一些小技巧可以帮助我们更快速地计算乘法口诀。
本文将介绍一些实用的数学小技巧,帮助我们快速计算乘法口诀。
技巧一:利用乘法交换律和分配律对于两个数相乘,我们可以利用乘法交换律和分配律的特性,将其分解为更易计算的形式。
例如,对于计算3×7,我们可以利用交换律将其转化为7×3,这样就可以利用我们熟悉的7×3=21来计算。
同样,我们也可以利用3×7=3×(5+2)=3×5+3×2=15+6=21来计算。
技巧二:倍数的计算我们可以利用乘法口诀中的倍数关系,来快速计算某个数的倍数。
例如,计算3的倍数时,我们只需要将3的乘法口诀逐个倍增即可,即3×1=3,3×2=6,3×3=9,依此类推。
对于其他数的倍数也可以按照这种方式进行快速计算。
技巧三:外排法外排法是一种简单而快速的乘法运算技巧。
以计算37×8为例,我们可以按照下面的步骤进行计算:首先,将被乘数37和乘数8写在两边:37× 8然后,从乘数的个位开始,依次执行以下步骤:Step 1: 将乘数的个位数字8与被乘数37相乘,得到结果296,并写在第一行下方对应的位置:3 7× 8-----2 9 6Step 2: 将乘数的十位数字0与被乘数37相乘,得到结果0,并写在第二行下方对应的位置,注意要在结果前面补上一个0:3 7× 8-----0 2 9 6Step 3: 将两个部分结果相加,即296+0296=3328,得到最终结果:3 7× 8-----0 3 3 2 8通过这种外排法,我们可以很快速地计算出37×8的结果。
一年级儿童数学速算法
一年级儿童的数学速算法:
1. 加法速算法:
使用10的倍数:如果一个加数接近10,可以先加上10,然后从结果中减去2(如果另一个加数是2或更少)。
利用100的倍数:如果两个数都是100的倍数,可以快速相加。
2. 减法速算法:
使用10的倍数:如果一个减数接近10,可以先减去10,然后给结果加上2(如果被减数的个位数是2或更多)。
3. 乘法速算法:
乘以10、100、1000等:只需在数字后面添加相应数量的零。
乘以2或5:如果一个因数是2或5,只需将另一个因数乘以2或5。
4. 除法速算法:
除以10、100、1000等:只需去掉数字后面的相应数量的零。
除以2或5:如果被除数是2或5的倍数,只需将被除数除以2或5。
5. 记忆口诀:
九九乘法表:通过记忆乘法表中的乘积,可以快速进行乘法计算。
6. 分组法:
将数字分组,比如将三位数分成两个两位数,分别计算后再组合结果。
7. 近似法:
对于复杂的计算,可以先将数字近似为更容易计算的数字,然后进行计算。
8. 使用手指:
对于较小的数字,可以使用手指来帮助计算。
9. 视觉辅助:
使用图表或物体来帮助理解数字和计算。
10. 练习和游戏:
通过数学游戏和练习来提高计算速度和兴趣。
小学数学12种速算方法
小学数学12种速算方法小学数学中有很多种速算方法可以帮助学生快速计算,提高计算能力。
下面将介绍12种常用的小学数学速算方法:一、九九乘法口诀法:九九乘法口诀法是小学数学中最基础也是最重要的速算方法之一、通过背诵九九乘法口诀表,可以快速计算任意两个小于10的数的乘积。
二、区域乘法法:区域乘法法是一种用于计算两个大数相乘的方法。
通过画出乘法方块区域,然后将区域内的数进行相乘,最后相加得到结果。
三、前导零法:前导零法是一种在计算两个大数相乘时,通过在乘数的前面补零的方法,使乘法过程更简单。
四、去零法:去零法是一种在计算两个大数相乘时,通过把乘数中的零去掉,然后再计算得到结果。
这样可以减少计算过程中的错误。
五、整数加减补法:整数加减补法是一种通过补数的方式,将带有负号的整数加减法转化为正数加减法的方法。
六、连加连减法:连加连减法是一种通过逐级相加或逐级相减的方式计算多个数相加或相减的方法。
可以将复杂的计算过程简化。
七、倍数和法:倍数和法是一种通过计算多个数的倍数和来计算多个数之和或之差的方法。
可以简化计算过程。
八、求平均值法:求平均值法是一种通过计算多个数的平均值来计算多个数之和的方法。
可以简化计算过程。
九、拆法:拆法是一种将一个数拆分成不同的数然后进行计算的方法。
通过拆分可以使计算过程更简单。
十、逆向思维法:逆向思维法是一种通过将问题进行逆向思考,找到相反的运算方法来解题的方法。
可以减少计算的复杂度。
十一、估算法:估算法是一种通过适当的放大或缩小数值,然后进行估算得到结果的方法。
可以提高计算速度。
十二、约分法:约分法是一种通过将分数进行约分,将分子和分母进行简化,使计算更简单的方法。
可以减少计算过程中的错误。
以上是小学数学中常用的12种速算方法。
通过灵活运用这些方法,学生可以在数学计算中更快速、准确地得出结果,提高计算能力和解决问题的能力。
数学快速计算方法_乘法速算
数学快速计算方法_乘法速算乘法速算是数学中常用的一种计算方法,它可以帮助我们快速、准确地进行乘法运算。
下面我们将介绍一些常用的乘法速算技巧。
一、倍数与商数法倍数与商数法是一种常见的乘法速算方法。
它利用了乘法的交换律、结合律和分配律。
例如,我们要计算23×8,我们可以将8展开成倍数与商数的和:23×8=23×(5+3)=23×5+23×3=115+69=184二、分解法分解法是一种常见的乘法速算方法。
它利用了乘法的交换律和结合律。
例如,我们要计算38×4,我们可以将4分解成10-6:38×4=38×(10-6)=38×10-38×6=380-228=152三、尾数相同法尾数相同法是一种常见的乘法速算方法。
它适用于计算两个乘数的尾数相同的情况。
例如,我们要计算25×25,可以按照以下步骤进行计算:1.确定尾数,即5×5=25;2.计算十位数,即2×(2+1)=6;3.结合尾数和十位数,即625四、平方差法平方差法是一种常见的乘法速算方法。
它适用于计算两个数的平方差。
例如,我们要计算42×38,可以按照以下步骤进行计算:1.计算稍大数的平方,即(42+38)×(42-38)=80×4=320;2.计算差的平方,即(42-38)²=16²=256;3.两者之差即为所求,即320-256=64五、倍增法倍增法是一种常见的乘法速算方法。
它适用于计算一个数与2的倍数相乘的情况。
例如,我们要计算24×16,可以按照以下步骤进行计算:1.通过倍增不断计算2的幂次方,即2²=4,2⁴=16;2.通过分解24为2的倍数之和,即24=16+8;3.结合上述两步,即24×16=16×16+8×16=256+128=384以上介绍的是一些常见的乘法速算方法,它们可以通过巧妙的运用数学运算律来简化乘法运算,从而提高计算效率。
数学快速计算方法_乘法速算
数学快速计算方法_乘法速算乘法速算是指在不借助计算器或其他工具的情况下,通过一些特殊的计算方法快速而准确地完成乘法运算。
乘法速算的目的是提高计算效率,减少错误的发生,并培养学生对数学的逻辑思维。
以下是一些常见的乘法速算方法:1.乘法竖式乘法竖式是我们最常见的计算乘法的方法,适用于任何乘法运算。
将两个数相乘时,将第一个数的每一位分别与第二个数的每一位进行相乘,然后将部分乘积相加得到最终结果。
在竖式中,我们可以通过一些简化的方法来减少计算量,例如将数整理为最简形式。
2.九九乘法口诀九九乘法口诀是最基本也是最重要的乘法速算方法之一、通过记忆九九乘法口诀表,可以在一定程度上减少计算量,特别是对于小于10的数的乘法运算。
例如,当我们计算7乘以8时,可以根据九九乘法口诀中7乘以8的结果直接得到答案563.对数法对数法是一种将乘法转化为加法的速算方法。
对数法的核心思想是将乘法问题转化为指数运算问题。
例如,若要计算23乘以14,可以将23转化为10的对数形式,2.3,将14转化为10的对数形式,1.4、然后将对数相加得到3.7,并将结果反向转化为普通形式得到37、对数法适用于相对较大的乘法运算,尤其是涉及较多位数的乘法。
4.交换法则交换法则指的是改变乘法运算中数字的顺序,并不会改变结果的法则。
例如,6乘以8的结果与8乘以6的结果是相同的。
通过利用交换法则,我们可以选择更简单的乘法运算来得到结果。
交换法则在降低计算量和提高计算效率方面非常有效。
5.平方法平方法是指将一个数平方后再相加或相减得到结果的速算方法。
它适用于解决近似于平方数的乘法运算。
例如,如果要计算14乘以16,可以将其分解为(10+4)乘以(10+6),先计算10的平方得到100,然后将10乘以4和10乘以6分别得到40和60,在将4的平方和6的平方分别得到16和36、最后将这些结果相加得到(100+40+60+16+36)=252以上是一些常见的乘法速算方法。
小学数学技巧快速计算乘法的小技巧
小学数学技巧快速计算乘法的小技巧数学是小学阶段学生们学习的重要科目之一,其中乘法运算是数学学习的基础内容。
然而,对于一些学生来说,乘法计算可能会带来困难和复杂性。
本文将介绍一些小学数学技巧,帮助学生快速计算乘法,提高他们的计算效率和准确性。
1、利用倍数和分配律进行简化计算在乘法计算中,我们经常需要计算两个数的乘积。
如果其中一个数是另一个数的倍数,那么计算就会变得容易。
例如,计算24 × 5,我们可以知道24是5的倍数,所以可以将计算简化为计算5的倍数,即120。
分配律也是乘法计算的一个重要性质。
例如,计算23 × 6,我们可以将这个计算分解成20 × 6 和 3 × 6,然后再将两个结果相加。
这样我们只需要计算两个小运算就能得到最终的结果。
2、利用九九乘法表快速计算九九乘法表是小学数学学习中一个重要的工具。
学生们可以通过熟记九九乘法表来快速计算乘法。
例如,计算7 × 8,我们可以在九九乘法表中找到7的行和8的列的交汇处,得到结果56。
通过反复练习和记忆九九乘法表,学生们可以提高计算速度和准确性。
3、运用相近数和近似数快速估算乘法结果当我们需要估算一个较大的乘法结果时,可以运用相近数或近似数的方法快速获取一个接近的结果。
例如,计算87 × 23,我们可以将23近似为20,然后计算87 × 20,得到结果1740。
虽然这个结果不是准确的,但它可以帮助我们快速估算这个乘法的结果。
4、利用乘法和除法的逆运算快速计算在乘法计算中,我们可以利用乘法和除法的逆运算来进行快速计算。
例如,计算300 ÷ 25,我们需要将25乘以一个数等于或接近300。
通过观察,我们可以发现25 × 12 = 300,所以300 ÷ 25 = 12。
这种方法可以帮助学生在没有计算器的情况下快速计算乘法和除法的结果。
5、利用数字性质简化计算过程在乘法计算中,有一些数字性质可以帮助我们简化计算过程。
小学一年级数学速算方法与技巧
小学一年级是学生初次接触数学的阶段,对于他们来说,数学的概念和运算符号都是新鲜的。
在这个阶段,老师和家长可以通过一些简单的速算方法和技巧来帮助孩子建立数学思维和培养计算能力。
下面是一些适合一年级学生的数学速算方法和技巧。
1.加法的速算方法-十位进位法:当两个个位数相加的和大于10时,可以将个位数相加的结果写在算式上方的十位上,个位数保持不变。
例如:7+6=13,可以写作:6+__=1__3-十位零个位相加法:当一个数个位数为0时,可以直接将另一个数写在后面作为结果。
例如:4+30=34-整十或整百相加法:当两个数都是整十或整百时,可以将十位或百位相加的结果写在算式上方的十位或百位上,个位数或十位数保持不变。
例如:40+60=1__00。
2.减法的速算方法-补数法:当两个数的个位相减得到的差小于10时,可以用一个数的个位加上差得到另一个数的个位。
例如:16-7=9,可以用7+9=16-单位减个位法:当一个数的个位减去另一个数的个位得到10时,可以将十位的数减1,个位直接变成0。
例如:30-20=1__0。
-整十减整十法:当一个数是整十时,可以将减数的个位变成9,个位数不变,然后减去整十数。
例如:50-20=3__0。
3.乘法的速算方法-9的乘法口诀:当一个数乘以9时,可以先将这个数的个位减1,个位数变成差,十位数为9减去个位数。
例如:9×8=7_2-10的倍数的乘法:当一个数乘以10的倍数时,可以直接在这个数后面加上相应数量的0。
例如:20×5=1_00。
-2的倍数的乘法:当一个数乘以2的倍数时,可以将这个数的倍数除以2得到的商后面加上一个0。
例如:2×4=84.除法的速算方法-10的倍数的除法:当一个数除以10的倍数时,可以直接将这个数的个位及之后的数字去掉。
例如:100÷10=10。
-同除法乘法法则:当两个数除法运算时,可以先将这两个数去掉相同数量的0,然后用去掉0后的数做除法,最后再加上去掉的0。
万能乘法速算法大全
万能乘法速算法大全乘法是数学中常见的运算之一,对于学生来说,掌握乘法速算技巧可以极大地提高计算效率。
本文将介绍一些万能乘法速算法,帮助大家轻松应对各种乘法计算。
一、快速乘以11的方法。
当我们需要将一个两位数乘以11时,可以采用以下方法:例如,23×11。
首先将23的十位数和个位数分开,然后将两个数字相加,得到233(2+3=5),最后将原始的23放在中间,即253。
二、快速乘以99的方法。
当我们需要将一个两位数乘以99时,可以采用以下方法:例如,23×99。
首先将23的十位数和个位数分开,然后用9减去十位数,再用9减去个位数,最后将结果放在中间,即2277(9-2=7,9-3=6)。
三、快速乘以9的方法。
当我们需要将一个数乘以9时,可以采用以下方法:例如,23×9。
首先将23的个位数减1,再用10减去十位数,最后将结果放在中间,即207(2-1=1,10-2=8)。
四、快速乘以5的方法。
当我们需要将一个数乘以5时,可以采用以下方法:例如,23×5。
将这个数除以2,然后再乘以10,即115(23÷2=11.5,11.5×10=115)。
五、快速乘以25的方法。
当我们需要将一个两位数乘以25时,可以采用以下方法:例如,23×25。
先将这个数乘以100,然后再除以4,即575(23×100÷4=575)。
六、快速乘以50的方法。
当我们需要将一个两位数乘以50时,可以采用以下方法:例如,23×50。
先将这个数乘以100,然后再除以2,即1150(23×100÷2=1150)。
七、快速乘以125的方法。
当我们需要将一个三位数乘以125时,可以采用以下方法:例如,234×125。
先将这个数乘以1000,然后再除以8,即29250(234×1000÷8=29250)。
行测速算方法与技巧口诀
行测速算方法与技巧口诀一、概述在行测中,速算是一个重要的考察点。
掌握一些速算方法和技巧,可以帮助我们在有限的时间内快速准确地完成题目。
下面给大家介绍一些常用的速算方法和技巧。
二、整数运算1. 乘法的速算口诀:先算个位数,再算进位数。
例如:63 × 7 = 441,先算个位数3 × 7 = 21,再算进位数6 × 7 = 42,最后将结果相加得到441。
2. 除法的速算口诀:先算商,再算余。
例如:48 ÷ 6 = 8,先算商4,再算余数8。
三、分数运算1. 分数加减法的速算口诀:通分后直接相加或相减。
例如:1/2 + 1/4 = 3/4,先将1/2通分为2/4,然后直接相加得到3/4。
2. 分数乘法的速算口诀:分子相乘,分母相乘。
例如:2/3 × 3/4 = 6/12,分子2 × 3 = 6,分母3 × 4 = 12。
3. 分数除法的速算口诀:倒数相乘。
例如:2/3 ÷ 3/4 = 8/9,先将3/4取倒数得到4/3,然后按照分数乘法的口诀进行计算。
四、百分数运算1. 百分数转换为小数:将百分数去掉百分号,除以100。
例如:75%= 0.75。
2. 小数转换为百分数:将小数乘以100,加上百分号。
例如:0.6 = 60%。
3. 百分数之间的运算:直接按照百分数的运算法则进行计算。
例如:60% + 40% = 100%。
五、近似计算1. 近似数的加减法:保留最高有效数字,其他数字舍去。
例如:34.56 + 12.345 ≈ 34.6 + 12.3 = 46.9。
2. 近似数的乘法:保留有效数字,其他数字舍去,并将结果进行四舍五入。
例如:2.3 × 4.56 ≈ 10.5。
3. 近似数的除法:保留有效数字,其他数字舍去,并将结果进行四舍五入。
例如:7.8 ÷ 2.34 ≈ 3.3。
六、快速计算技巧1. 快速计算平方数:以5为中心,向左右对称。
小学数学速算与巧算方法例解
小学数学速算与巧算方法例解小学数学的速算与巧算方法是指通过一些简单、快捷的计算方法,进行数学运算,节省计算时间,提高计算效率。
下面,我将介绍几种常见的小学数学速算与巧算方法。
一、乘法速算方法1.小数×10的整数幂:将小数点向右移动和移动的位数相等,反之向左移动。
例如:0.32×100=322.两位数之积:求两位数相乘,先算个位上的乘积,再算十位上的乘积,最后相加。
3.乘法竖式中的快速乘法:将个位数乘以个位数,再将十位数乘以十位数,分别相加得到乘积的十位和个位,然后将个位数乘以十位数和十位数乘以个位数,再相加得到乘积的百位数。
例如:37×24=8(×2+×7)+(×2+×3)×10+7(×4)=888二、除法速算方法1.短除法:将被除数和除数对齐,逐位进行计算,得到商和余数。
例如:245÷5=49,余0。
2.效果法:遇到末尾数字是5、50、500等以5结尾的除数时,可以先除以10,然后再乘以2、例如:465÷5=93,930÷10=93×2=1863.两个数相除得到循环小数:将被除数和除数进行移位,使得除数变成整数,然后进行计算。
例如:11÷9=1.2222...,可以近似表示为11/9≈1.2三、加法速算方法1.近似法:将大数近似为最接近的整数相加,然后再根据误差进行修正。
例如:387+597≈400+600=1000-13-3=9842.数量法:将两个数分解成数个量的相同数,然后再进行计算。
例如:387+597=400+500+72+97=1000+169=11693.进位借位法:将两个数按位进行计算,向后进位或借位。
例如:387+597=7+7=14,37+57+1=95,3+1=4,所以387+597=984四、减法速算方法1.进退法:将减数和被减数对齐进行计算,遇到退位时向前退位。
数学快速计算方法乘法速算
数学快速计算方法乘法速算乘法速算是指使用一些特殊技巧和方法,在不借助计算器的情况下,快速而准确地进行乘法计算。
下面我将介绍几种常用的乘法速算方法。
1.乘以11的方法:当乘数是两位数或更小的数时,我们可以使用乘以11的方法进行快速计算。
假设有一个两位数的乘数ab,那么乘积为abb。
简单来说,我们将ab的十位数和个位数保持不变,然后将十位数和个位数的和作为新的十位数,个位数不变。
例如,56 * 11 = 5(5+6)6 = 6162.乘以9的方法:当乘数是一个个位数时,我们可以使用乘以9的方法进行快速计算。
假设有一个个位数的乘数a,那么乘积为a*9=a再加上a的补数(10-a)。
例如,6*9=6+(10-6)=543.乘以5的方法:当乘数是一个整数后面跟着一个0时,我们可以使用乘以5的方法进行快速计算。
假设有一个整数a0,那么乘积为a0*5=a*10+0*5、也就是说,我们只需要在原数后面加一个0。
例如,36*5=360。
4.乘以2的方法:当乘数是一个整数后面跟着一个0时,我们可以使用乘以2的方法进行快速计算。
假设有一个整数a0,那么乘积为a0*2=a*10+0*2、也就是说,我们只需要在原数后面加一个0。
例如,46*2=460。
5.大数相乘的方法:当乘数和被乘数非常大时,我们可以采用分段相乘和竖式相乘的方法进行计算。
具体步骤如下:(1)将乘数和被乘数分别分为若干段,每段的长度通常是一位数或两位数。
(2)从被乘数的最右边开始,分别与乘数的每一段相乘。
(3)然后将每一段的乘积相加,得到最后的结果。
以上是一些常用的乘法速算方法,通过熟练掌握这些方法,我们可以在不使用计算器的情况下,快速地进行乘法计算。
当然,要熟练掌握这些技巧,需要多加练习和实践。
小学数学技巧快速计算乘法口诀
小学数学技巧快速计算乘法口诀小学数学技巧:快速计算乘法口诀在小学数学学习中,学习乘法口诀是非常重要的一部分。
通过掌握乘法口诀,可以在计算乘法时提高速度和准确性。
本文将介绍一些小学数学技巧,帮助你快速计算乘法口诀。
1、利用倍数关系快速计算我们知道,乘法是重复加法的简化形式。
因此,当我们遇到乘法计算时,可以利用倍数关系进行快速计算。
举例来说,当我们需要计算8 × 6时,可以利用倍数关系来简化计算。
我们知道8可以看作4的两倍,而6可以看作3的两倍。
因此,8 × 6可以看作4 × 2 × 3 × 2。
根据乘法的结合律,我们可以将其拆分为(4 × 3) × (2 × 2),即12 × 4。
最后,我们可以通过倍数关系计算得出48。
2、利用关联性质简化计算乘法有一个重要的关联性质,即乘法的交换性。
这意味着,乘法计算的结果不受乘法因子的顺序影响。
利用这一性质,我们可以简化计算过程。
例如,当我们计算7 × 9时,可以将其拆分为7 × 10 - 7。
根据乘法的交换性,我们可以将其改写为10 × 7 - 7,即70 - 7。
最后,我们可以通过减法计算得出63。
3、利用乘法分配律计算乘法分配律是一个非常重要的数学性质,即对于任意的三个数a、b 和c,(a + b) × c = a × c + b × c。
利用这一性质,我们可以简化计算过程。
例如,当我们计算7 × 8时,可以将其改写为(5 + 2) × 8。
根据乘法分配律,我们可以将其拆分为5 × 8 + 2 × 8,即40 + 16。
最后,我们可以通过加法计算得出56。
4、利用乘法的结合律计算乘法的结合律是指乘法计算的结果不受乘法顺序的影响。
利用这一性质,我们可以根据自己的计算习惯进行合理的顺序调整。
12种数学速算技巧
12种数学速算技巧在学习数学过程中,速算技巧是必备的。
掌握速算技巧不仅可以提高数学计算的效率,还能提高数学思维能力。
本文将介绍12种数学速算技巧。
一、乘法口诀乘法口诀是小学阶段我们必须掌握的一种速算技巧。
通过乘法口诀我们可以快速地进行乘法运算。
例如,当算9 × 8时,可以快速地用乘法口诀:9 × 8 = 72。
二、加减法逆运算加减法逆运算指的是,在做加减法运算时,我们可以反向思考,从结果推算出来运算式。
例如,当算30 + 20时,我们可以将结果50拆分为25 + 25,再相加得到结果。
三、平方之和公式平方之和公式指的是,当算两个数平方之和时,我们可以使用公式(a+ b)²= a²+2ab+b²。
例如,当算9² + 13²时,我们可以使用公式(9+13)²=9²+2×9×13+13²=250 。
四、减法分配律减法分配律指的是,当要减去一个数时,我们可以将这个数分别减去每一个加数,再相减得到结果。
例如,当算18 - 9时,我们可以用减法分配律:18 - 9 = 18 - 8 -1 = 10。
五、倍数关系倍数关系指的是,两个数有倍数关系时,它们的差是这两个数中较小的数的倍数。
例如,当算72 - 36时,我们可以知道36是72的一半,所以答案是36 × 1 = 36。
六、除法结合律除法结合律指的是,当除以一个数时,我们可以将这个数分别除以每一个因数,再相除得到结果。
例如,当算108÷3÷4时,我们可以用除法结合律:108÷3÷4=108÷(3×4)=9。
七、水仙花数水仙花数是指,一个三位数,其每位的数字的立方和等于这个数本身。
例如,153是一个水仙花数,因为1³+5³+3³=153。
通过水仙花数的规律,我们可以推广到四、五位的水仙花数。
数学快速计算方法乘法速算
数学快速计算方法乘法速算乘法速算是指在没有使用计算器的情况下,能够快速准确地进行乘法运算的方法。
下面我将介绍几种常用的乘法速算方法。
1.将一个数乘以10:将这个数的末尾加上一个0。
例如:45×10=450。
2.将一个数的倍数乘法:在两个数中选择一个数做乘法,然后将得到的结果乘以另一个数。
例如:23×6=(23×3)×2=69×2=1383.将两个数相乘后再除以10:先将两个数相乘,然后将得到的结果除以10。
例如:25×35÷10=875÷10=87.54.以9为基准进行乘法:当一个数乘以9时,将这个数的每一位数字都减去1,然后用9减去这个数的每一位数字所得到的差再从9中减去。
例如:9×4=36,其中3=9-4,6=9-35.快速分解乘法:将一个数按照方便的方式进行分解,然后进行乘法计算。
例如:36×10=(30+6)×10=300+60=360。
6.整数和小数乘法:将小数乘以整数,然后将结果小数点右移相应的位数。
例如:3.5×20=70(小数点右移一位)。
7.两个数相乘,其中一个数接近10的整数倍:将这个数乘以10,再除以接近的整数倍的数,得到的商再与另一个数相乘。
例如:24×8=(24×10)÷5=240÷5=488.两个数相乘,其中一个数是10的倍数:将这个数直接乘以另一个数,然后将得到的结果直接加上相应的零。
例如:30×6=180。
这些都是常用的乘法速算方法,通过熟练掌握和大量的练习,可以在没有计算器的情况下快速准确地进行乘法运算。
高效学习:数学速算十大方法
高效学习:数学速算十大方法
概述
数学速算是一种提高计算效率和准确性的技巧,对于数学学习和解决实际问题都非常有帮助。
本文将介绍数学速算的十种高效方法,帮助你在学习数学过程中更加迅速和准确地进行计算。
1. 快速乘法法则
通过利用数字的特性,如交换律和分配律,可以在乘法计算中更快地得出结果。
2. 快速除法法则
使用除法法则可以在除法计算中更迅速地得到商和余数。
3. 快速加法法则
通过将数字按位数进行分组,可以更快地进行加法计算。
4. 快速减法法则
利用数字的特性,如借位和减法的逆运算,可以更快地进行减法计算。
5. 平方近似法
利用数字的平方近似值,可以更快地估算平方根和乘法结果。
6. 百分比转换法
利用分数和小数的关系,可以更快地进行百分比转换和计算。
7. 数据整合法
将大量数据进行整合和简化,可以更快地进行统计和分析。
8. 单位换算法
利用单位之间的换算关系,可以更快地进行长度、面积、体积等单位之间的转换和计算。
9. 快速排列组合法
利用排列组合的性质,可以更快地计算不同元素的排列组合情况。
10. 快速逻辑推理法
通过分析逻辑关系和条件,可以更快地得出结论和解决问题。
总结
数学速算是提高计算效率和准确性的重要技巧。
通过掌握以上十种高效方法,你可以更迅速和准确地进行数学计算,提高数学学习和解决实际问题的能力。
数学快速计算方法_乘法速算
一. 两个 20 之内数的乘法两个 20 之内数相乘 , 将一数的个位数与另一个数相加乘以10, 而后再加两个尾数的积, 就是应求的得数。
如 12 ×13=156, 计算程序是将12 的尾数 2, 加至 13 里 ,13 加 2 等于 15,15 × 10=150, 而后加各个尾数的积得156, 就是应求的积数。
二 . 首同尾互补的乘法两个十位数相乘 , 首尾数同样 , 而尾十互补 , 其计算方法是 : 头加 1, 而后面乘为前积 , 尾乘尾为后积 ,两积连结起来 , 就是应求的得数。
如26× 24=624。
计算程序是 : 被乘数 26 的头加 1 等于 3, 而后面乘头, 就是 3×2= 6, 尾乘尾 6×4=24, 相连为 624。
三. 乘数加倍 , 加半或减半的乘法在首同尾互补的计算上 , 能够引深一步就是乘数可加倍 , 加半倍 , 也可减半计算 , 可是 : 加倍、加半或减半都不可以有进位数或出现小数 , 如 48× 42 是规定的算法 , 但是 , 能够将乘数 42 加倍位 84, 也能够减半位21, 也可加半倍位 63, 都能够按规定方法计算。
48×21= 1008,48 ×63=3024,48× 84=4032。
有进位数的不可以算。
如 87×83= 7221, 将 83 加倍 166, 或减半 , 这都不可以按规定的方法计算。
四 . 首尾互补与首尾同样的乘法一个数首尾互补 , 而另一个数首尾同样 , 其计算方法是 : 头加 1, 而后面乘头为前积 , 尾乘尾为后积 , 两积相连为乘积。
如 37×33= 1221, 计算程序是 (3 +1) ×3×100+7× 3=1221。
五 . 两个头互补尾同样的乘法两个十位数互补 , 两个尾数同样 , 其计算方法是 : 头乘头后加尾数为前积 , 尾自乘为后积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.两个20以内数的乘法两个20以内数相乘,将一数的个位数与另一个数相加乘以10,然后再加两个尾数的积,就是应求的得数。
如12×13=156,计算程序是将12的尾数2,加至13里,13加2等于15,15×10=150,然后加各个尾数的积得156,就是应求的积数。
二.首同尾互补的乘法两个十位数相乘,首尾数相同,而尾十互补,其计算方法是:头加1,然后头乘为前积,尾乘尾为后积,两积连接起来,就是应求的得数。
如26×24=624。
计算程序是:被乘数26的头加1等于3,然后头乘头,就是3×2=6,尾乘尾6×4=24,相连为624。
三.乘数加倍,加半或减半的乘法在首同尾互补的计算上,可以引深一步就是乘数可加倍,加半倍,也可减半计算,但是:加倍、加半或减半都不能有进位数或出现小数,如48×42是规定的算法,然而,可以将乘数42加倍位84,也可以减半位21,也可加半倍位63,都可以按规定方法计算。
48×21=1008,48×63=3024,48×84=4032。
有进位数的不能算。
如87×83=7221,将83加倍166,或减半41.5,这都不能按规定的方法计算。
四.首尾互补与首尾相同的乘法一个数首尾互补,而另一个数首尾相同,其计算方法是:头加1,然后头乘头为前积,尾乘尾为后积,两积相连为乘积。
如37×33=1221,计算程序是(3+1)×3×100+7×3=1221。
五.两个头互补尾相同的乘法两个十位数互补,两个尾数相同,其计算方法是:头乘头后加尾数为前积,尾自乘为后积。
如48×68=3264。
计算程序是4×6=24 24+8=32 32为前积,8×8=64为后积,两积相连就得3264。
六.首同尾非互补的乘法两个十位数相乘,首位数相同,而两个尾数非互补,计算方法:头加1,头乘头,尾乘尾,把两个积连接起来。
再看尾和尾的和比10大几还是小几,大几就加几个首位数,小几就减掉几个首位数。
加减的位置是:一位在十位加减,两位在百位加减。
如36×35=1260,计算时(3+1)×3=12 6×5=30 相连为1230 6+5=11,比10大1,就加一个首位3,一位在十位加,1230+30=1260 36×35就得1260。
再如36×32=1152,程序是(3+1)×3=12,6×2=12,12与12相连为1212,6+2=8,比10小2减两个3,3×2=6,一位在十位减,1212-60就得1152。
七.一数相同一数非互补的乘法两位数相乘,一数的和非互补,另一数相同,方法是:头加1,头乘头,尾乘尾,将两积连接起来后,再看被乘数横加之和比10大几就加几个乘数首。
比10小几就减几个乘数首,加减位置:一位数十位加减,两位数百位加减,如65×77=5005,计算程序是(6+1)×7=49,5×7=35,相连为4935,6+5=11,比10大1,加一个7,一位数十位加。
4935+70=5005八.两头非互补两尾相同的乘法两个头非互补,两个尾相同,其计算方法是:头乘头加尾数,尾自乘。
两积连接起来后,再看两个头的和比10大几或小几,比10大几就加几个尾数,小几就减几个尾数,加减位置:一位数十位加减,两位数百位加减。
如67×87=5829,计算程序是:6×8+7=55,7×7=49,相连为5549,6+8=14,比10大4,就加四个7,4×7=28,两位数百位加,5549+280=5829九.任意两位数头加1乘法任意两个十位数相乘,都可按头加1方法计算:头加1后,头乘头,尾乘尾,将两个积连接起来后,有两比,这两比是非常关键的,必须牢记。
第一是比首,就是被乘数首比乘数首小几或大几,大几就加几个乘数尾,小几就减几个乘数尾。
第二是比两个尾数的和比10大几或小几,大几就加几个乘数首,小几就减几个乘数首。
加减位置是:一位数十位加减,两位数百位加减。
如:35×28=980,计算程序是:(3+1)×2=8,5×8=40,相连为840,这不是应求的积数,还有两比,一是比首,3比2大1,就要加一个乘数尾,加8,二是比尾,5+8=13,13比10大3,就加3个乘数首,3×2=6,8+6=14,两位数百位加,840+140=980。
再如:28×35=980, 计算程序是:(2+1)×3=9,8×5=40,相连位940,一是比首,2比3小1,减一个乘数尾,减5,二是比尾,8+5=13,比10大3,加三个3,3×3=9,9-5=4,一位数十位加,940+40=980。
十.首位都是5的乘法两个十位数相乘,首位都是5时,先求出5的平方,再求出尾数和的一半,加平方数里,为前积,然后求两个尾数的积,为后积,连接起来就应求的得数。
如58×54=3132,其计算程序是:5×5=25,8+4=12,12的半数6,25+6=31,再加8×4=32。
两积相连为3132。
58×54就得3132。
十一.尾数都是5的乘法两个十位数相乘,尾数都是5的乘法,先求出首位数的积,再加上首和的一半为前积,再加尾5的平方,就是应求的数。
如:65×85=5525,计算程序是:6×8=48,6+8=14,半数为7,48+7=55,5×5=25,连接起来,就得5525。
十二.减平方差的乘法两个首位数差1,尾为互补的乘法,其计算方法是:大1的首位数平方减去尾数的平方,就是得数。
如:42×38=1596。
其计算程序是:首先4比3大1,尾数又是互补,那就减平方差,40的平方减2的平方,1600-4=1596。
十三.多位数减平方差的乘法根据减平方差的计算原理,可以引深一步,凡是首位大1,后边的数字为互补的数码,都可以按减平方差公式计算。
如:406×394=159964。
计算程序是:400的平方减6的平方,160000-36=159964。
十四.一数和为9,另一数为连接数的乘法凡是一个两位数的和为9,另一数为连接数,其计算方法是,头加1后,头乘头为前积,尾补乘尾补为后积,中间不管有多少位数,不用计算,都是头加1那个数。
比如:72×4567=328824,计算程序是:7加1为8,8乘4等于32,为前积,两个尾补的积是:8×3=24,为后积,中间两位数是56,不用计算,这两位都是头加1的数,都是8,72×4567就得328824。
十五.首同是9的乘法两个十位数相乘,首位都是9时,其计算方法是:将一数的补数从另一数中减掉,为前积,然后加上两个尾补的积为后积,连接起来,就为得数。
如:97×94=9118,计算程序是:97-6等于91,为前积,两个尾补的积是3×6=18,91和18相连就得9118。
十六.9的倍数乘法9的倍数是指18 27 36 45 54 63 72 81 198 297等等,都是9的倍数,都可以用一位数计算。
如18=20-2,297=300-3,3996=4000-4等等,用一位去乘任何数,得出积来错位相减即可得到乘积。
如:27×35=945,(27=30-3) 30×35=1050,1050-105=945。
十七.以11为标准的排积法以11为标准的速算,已经形成规律,这里要解决的是小数码的计算,要以11为标准见数排积,如:11×32=352,计算方法是:见3读3,为第一位数,第二位数是3与2相加等于5,尾数2是第三位数。
实际是:乘数32横加等于5,排在2与3中间,11×32就得352。
再如:11×23125=254375。
看数就能直接报数,23125,第一位数是2,第二位数是2+3的和5,第三位是3+1的和4,第四位是1+2的和3,第五位是2+5的和7,第六位是尾数5。
利用以11为标准的排积法,可以对12,22等都能直接报数。
如:12×321=3852。
在排321时,首位3不动,还首3,第二位是首位加倍加下位,首位3加倍为6,再加下位2,3+3+2=8第二位我8、第三位是本位加倍加下位2+2+1=5 ,第四位是尾数加倍落下来。
十八.稍大于100-500的乘法两个乘数都稍大于100,可以采用一百零几的规律计算,如:106×107=11342。
计算方法是:首位不动,尾相加,尾相乘,把得数连接起来,就是得数。
计算程序是:先排首位1,次排尾数和,再排尾数积。
106×107是:排首位1,排尾数和,6+7=13,排尾数积6×7=42,把1、13、42连接起来,就得11342。
以一百零几为标准,可对稍大于一百几的任何数码进行计算。
如:112×113=12656,计算程序是:(112+13)×100+12×13,12500+156=12656。
以一百零几为标准,可对稍大于200-500的数进行计算:要扩大倍数,几百就扩大几百倍,如205×208=42640,计算程序是:(205+8)×200+5×8,213×200+40=42640 十九.稍小于100-500的乘法稍小于100-500的数码,要利用补数计算,计算方法是:从一个乘数中减去另一个乘数的补数,为前积,再加两个补数的积为后积。
如:86×96=8256,计算程序是:(86-4)×100+14×4,8200+56=8256。
(86的补数14,96的补数4)一个数稍大于100-500,另一个数稍小于100-500的计算方法是:小数加大数零头,扩大接近数的倍数,再减去大数零头与小数补数的积,就是应求的得数。
如:104×98=10192。
计算程序是:(98+4)×100-4×2,10200-8=10192。
二十.十几乘20以上数的乘法一个数是十几,另一个数是20以上的数相乘,其计算方法是:大数头与小数尾的积加在大数上乘10,再加两个尾数的积,就数应求的得数。
.如:26×13=338。
计算程序是:大数头2乘小数尾3得6,加在大数26上得32,乘10得320,再加上两个尾数的积即6×3=18,320+18=338。